PROJECT MANUAL FOR:

Lafferre Hall – 3rd Floor – Lab & Cleanroom Shell Space Fitout

PROJECT NUMBER: CP181761

AT: UNIVERSITY OF MISSOURI
 COLUMBIA, MISSOURI

FOR: THE CURATORS OF THE UNIVERSITY OF MISSOURI

PREPARED BY:

 Architect:
 TreanorHL
 1040 Vermont Street
 Lawrence, KS 66044
 785.842.4858

 Mechanical/Plumbing Engineers:
 Ross & Baruzzini
 6 South Old Orchard Avenue
 Saint Louis, Missouri 63119
 314.918.8383

 Electrical Engineers:
 Antella Consulting Engineers, Inc.
 1600 Genessee Street, Suite 260
 Kansas City, Missouri 64102
 816.421.0950

DATE: July 22, 2019
ADVERTISEMENT FOR BIDS

Sealed bids for:

LAFFERRE HALL –
3RD FLOOR LAB & CLEAN ROOM SHELL SPACE FITOUT
UNIVERSITY OF MISSOURI
COLUMBIA, MISSOURI
PROJECT NUMBER: CP181761
CONSTRUCTION ESTIMATE $4,851,000 - $5,390,000

will be received by the Curators of the University of Missouri, Owner, at Campus Facilities, Planning, Design & Construction, Room L100 (Front Reception Desk), General Services Building, University of Missouri, Columbia, Missouri 65211, until 1:30 p.m., C.T., August 22, 2019 and then immediately opened and publicly read aloud.

Drawings, specifications, and other related contract information may be obtained at http://operations-webapps.missouri.edu/pdc/adsite/ad.html. Electronic bid sets are available at no cost and may be printed as desired by the plan holders. No paper copies will be issued. If paper copies are desired, it is the responsibility of the user to print the files or have them printed. Questions should be directed to the office of Planning, Design & Construction at (573) 882-0455.

Questions regarding the scope of work should be directed to Jerome Ratzlaff with TreanorHL at (785) 727-2409 or jratzlaff@treanorhl.com. Questions regarding commercial conditions should be directed to Jude Wawrzyniak at (573) 882-9340 or wawrzyniakj@missouri.edu.

Information regarding bid results will be available the day following the bid opening by calling (573) 882-6894.

A prebid meeting will be held at 10:00 a.m., C.T., July 31, 2019 at Lafferre Hall, Ketcham Auditorium, 416 S. 6th Street, Room W1005, University of Missouri, Columbia, Missouri, followed by a walk-through at the site. All interested bidders are invited to attend this meeting. A walk-through of the project may be scheduled by contacting the Prebid Inspection Guide at (573) 882-2228 or mucfpmprebidinspectionsguides@missouri.edu.

A Diversity Participation goal of 10% MBE, 10% Combined WBE, DBE, Veteran Owned Business and 3% SDVE has been established for this contract.

The Owner reserves the right to waive informalities in bids and to reject any and all bids.

Individuals with special needs as addressed by the Americans with Disabilities Act may contact (573) 882-1133.

Advertisement Date: July 22, 2019

Gary Ward
Vice Chancellor of Operations & Chief Operating Officer
University of Missouri
PROJECT MANUAL FOR:

Lafferre Hall – 3rd Floor – Lab & Cleanroom Shell Space Fitout

PROJECT NUMBER: CP181761

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>-**</td>
<td>Advertisement for Bids</td>
<td>1</td>
</tr>
</tbody>
</table>

General Requirements Subgroup

<table>
<thead>
<tr>
<th>DIVISION 01</th>
<th>GENERAL REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 0001</td>
<td>Table of Contents</td>
</tr>
<tr>
<td>00 0002</td>
<td>Architectural Certification</td>
</tr>
<tr>
<td>00 0003</td>
<td>FPPM Certification</td>
</tr>
<tr>
<td>00 0004</td>
<td>Electrical Certification</td>
</tr>
<tr>
<td>1.B</td>
<td>Bidder's Statement of Qualifications</td>
</tr>
<tr>
<td>1.B.1</td>
<td>Bidder's Statement of Qualifications for Asbestos Abatement (Not Used)</td>
</tr>
<tr>
<td>1.B.2</td>
<td>Supplier Diversity Compliance Evaluation</td>
</tr>
<tr>
<td>1.B.3</td>
<td>Application for Waiver</td>
</tr>
<tr>
<td>1.B.4</td>
<td>Affidavit for Affirmative Action</td>
</tr>
<tr>
<td>1.B.5</td>
<td>Certifying Supplier Diversity Agencies</td>
</tr>
<tr>
<td>1.B.6</td>
<td>Newspapers for Outreach to Diverse Suppliers</td>
</tr>
<tr>
<td>1.B.7</td>
<td>Affidavit of Supplier Diversity Participation</td>
</tr>
<tr>
<td>1.C</td>
<td>Information for Bidders</td>
</tr>
<tr>
<td>1.D</td>
<td>General Conditions</td>
</tr>
<tr>
<td>1.E</td>
<td>Special Conditions</td>
</tr>
<tr>
<td>1.E.1</td>
<td>Scheduling Specification</td>
</tr>
<tr>
<td>1.E.2</td>
<td>Roofing System Manufacturer's Certification (Not Used)</td>
</tr>
<tr>
<td>1.E.3</td>
<td>Contractor's Roofing/Flashing/SHEET Metal Guarantee (Not Used)</td>
</tr>
<tr>
<td>1.E.4</td>
<td>Shop Drawing and Submittal Log</td>
</tr>
<tr>
<td>1.E.5</td>
<td>Operating Instructions and Service Manual Log</td>
</tr>
<tr>
<td>1.E.6</td>
<td>Closeout Log</td>
</tr>
<tr>
<td>1.E.7</td>
<td>Commissioning Plan</td>
</tr>
<tr>
<td>1.F</td>
<td>Index of Drawings</td>
</tr>
<tr>
<td>1.G</td>
<td>Prevailing Wage Rates</td>
</tr>
<tr>
<td>1.H</td>
<td>Alternates</td>
</tr>
</tbody>
</table>

TreanorHL
ST7028.1901.00

TABLE OF CONTENTS

00 0001 - 1 of 4
Facility Construction Subgroup

DIVISION 02 - EXISTING CONDITIONS
02 4119 - Selective Demolition 1-4

DIVISION 03 - CONCRETE
03 3543 - Bonded Abrasive Polished Concrete Floors 1-6

DIVISION 04 - MASONRY
04 2000 - Unit Masonry 1-3

DIVISION 05 - METALS
05 5116 - Metal Floor Plate Stairs 1-5

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES
06 1000 - Rough Carpentry 1-2
06 4116 - Plastic-Laminate-Faced Architectural Cabinets 1-4

DIVISION 07 - THERMAL AND MOISTURE PROTECTION
07 9005 - Joint Sealers 1-2
07 9500 - Expansion Control 1-3

DIVISION 08 - OPENINGS
08 1113 - Hollow Metal Doors and Frames 1-3
08 4113 - Aluminum-Framed Storefronts 1-4
08 7100 - Door Hardware 1-16
08 8000 - Glazing 1-3

DIVISION 09 - FINISHES
09 2116 - Gypsum Board Assemblies 1-4
09 5113 - Acoustical Panel Ceilings 1-5
09 6513 - Resilient Base and Accessories 1-2
09 6723 - Resinous Flooring 1-4
09 6813 - Tile Carpeting 1-3
09 9000 - Painting 1-6

DIVISION 10 - SPECIALTIES
10 1100 - Visual Display Units 1-3
10 2600 - Wall Protection 1-3
10 4413 - Fire Protection Cabinets 1-2

DIVISION 11 - EQUIPMENT
11 5313 - Laboratory Fume Hoods 1-5
11 6000 - Laboratory Equipment 1-4
DIVISION 12 - FURNISHINGS
12 2113 - Horizontal Louver Blinds 1-3
12 3553.13 - Metal Laboratory Casework 1-8
12 3661.16 - Solid Surfacing Countertops 1-2

DIVISION 13 - SPECIAL CONSTRUCTION
13 0300 - Cleanroom 1-3

DIVISION 14 - CONVEYING EQUIPMENT (NOT USED)

DIVISION 21 - FIRE SUPPRESSION
21 0500 - Common Work Results 1 – 6
21 1200 - Fire-Suppression Standpipes 1 – 9
21 1313 - Wet-Pipe Sprinkler Systems 1 – 13
21 2200 - Clean-Agent Fire-Extinguishing Systems 1 – 6

DIVISION 22 - PLUMBING
22 0500 - Common Work Results for Plumbing 1 – 7
22 0523 - General-Duty Valves 1 – 4
22 0529 - Hangers and Supports 1 – 7
22 0553 - Identification for Plumbing Piping and Equipment 1 – 3
22 0719 - Plumbing Piping Insulation 1 – 10
22 1116 - Domestic Water Piping 1 – 7
22 1117 - Laboratory Water Piping 1 – 7
22 1119 - Domestic Water Piping Specialties 1 – 6
22 1316 - Storm, Sanitary Waste, and Vent Piping 1 – 5
22 1319 - Sanitary Waste Piping Specialties 1 – 5
22 4000 - Plumbing Fixtures 1 – 5
22 6113 - Compressed Air Piping for Laboratory 1 – 3
22 6213 - Vacuum Piping for Laboratory 1 – 3
22 6700 - Deionized Water Piping for Laboratory Facilities 1 – 3

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING
23 0100 - Basic Mechanical Requirements 1 – 5
23 0500 - Basic Mechanical Materials and Methods 1 - 18
23 0519 - Meters and Gages 1 – 4
23 0523 - Valves 1 – 7
23 0529 - Hangers and Supports 1 – 8
23 0700 - Mechanical Insulation 1 – 17
23 0900 - Controls Systems 1 – 8
23 0950 - Facility Monitoring System 1 – 14
23 0990 - Testing, Adjusting, and Balancing 1 – 2
23 2113 - Hydronic Piping 1 – 7
23 3113 - Metal Ducts 1 – 11
23 3300 - Duct Accessories 1 – 7
23 3419 - Laboratory Mechanical Systems 1 – 8
23 3600 - Air Terminal Units 1 - 6
23 3713 - Diffusers, Registers, and Grilles 1 – 4
23 8123 - Computer-Room Air Conditioning System 1 – 8
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Division</th>
<th>Section</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>0500</td>
<td>Common Work Results for Electrical</td>
<td>1-2</td>
</tr>
<tr>
<td>26</td>
<td>0519</td>
<td>Low-Voltage Electrical Power Conductors and Cables</td>
<td>1-5</td>
</tr>
<tr>
<td>26</td>
<td>0526</td>
<td>Grounding and Bonding for Electrical Systems</td>
<td>1-4</td>
</tr>
<tr>
<td>26</td>
<td>0529</td>
<td>Hangers and Supports for Electrical Systems</td>
<td>1-5</td>
</tr>
<tr>
<td>26</td>
<td>0533</td>
<td>Raceways and Boxes for Electrical Systems</td>
<td>1-8</td>
</tr>
<tr>
<td>26</td>
<td>0536</td>
<td>Cable Trays for Electrical Systems</td>
<td>1-6</td>
</tr>
<tr>
<td>26</td>
<td>0544</td>
<td>Sleeves and Sleeve Seals for Electrical Raceways and Cabling</td>
<td>1-3</td>
</tr>
<tr>
<td>26</td>
<td>0548.16</td>
<td>Seismic Controls for Electric Systems – Not Submitted</td>
<td>1-4</td>
</tr>
<tr>
<td>26</td>
<td>0553</td>
<td>Identification for Electrical Systems</td>
<td>1-7</td>
</tr>
<tr>
<td>26</td>
<td>0572</td>
<td>Overcurrent Protective Device Short-Circuit Study</td>
<td>1-4</td>
</tr>
<tr>
<td>26</td>
<td>0573</td>
<td>Overcurrent Protective Device Coordination Study</td>
<td>1-6</td>
</tr>
<tr>
<td>26</td>
<td>0574</td>
<td>Overcurrent Protective Device Arc Flash Study</td>
<td>1-6</td>
</tr>
<tr>
<td>26</td>
<td>0923</td>
<td>Lighting Control Devices</td>
<td>1-9</td>
</tr>
<tr>
<td>26</td>
<td>2416</td>
<td>Panelboards</td>
<td>1-9</td>
</tr>
<tr>
<td>26</td>
<td>2726</td>
<td>Wiring Devices</td>
<td>1-6</td>
</tr>
<tr>
<td>26</td>
<td>2813</td>
<td>Fuses</td>
<td>1-3</td>
</tr>
<tr>
<td>26</td>
<td>2816</td>
<td>Enclosed Switches and Circuit Breakers</td>
<td>1-8</td>
</tr>
<tr>
<td>26</td>
<td>5119</td>
<td>LED Interior Lighting</td>
<td>1-6</td>
</tr>
<tr>
<td>26</td>
<td>5219</td>
<td>Emergency and Exit Lighting</td>
<td>1-5</td>
</tr>
<tr>
<td>27</td>
<td>0500</td>
<td>Common Work Results for Communication</td>
<td>1-2</td>
</tr>
<tr>
<td>27</td>
<td>0544</td>
<td>Sleeves and Sleeve Seals for Communications Pathways and Cabling</td>
<td>1-2</td>
</tr>
<tr>
<td>28</td>
<td>3111</td>
<td>Digital, Addressable Fire-Alarm System</td>
<td>1-7</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>EARTHWORK (NOT USED)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>EXTERIOR IMPROVEMENTS (NOT USED)</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>UTILITIES (NOT USED)</td>
<td></td>
</tr>
</tbody>
</table>

Site and Infrastructure Subgroup
Lafferre Hall – 3rd Floor – Lab & Cleanroom Shell Space Fitout

PROJECT NUMBER: CP181761

AT: UNIVERSITY OF MISSOURI
COLUMBIA, MISSOURI

FOR:
THE CURATORS OF THE UNIVERSITY OF MISSOURI

PREPARED BY:
TreasnorHL
1040 Vermont Street
Lawrence, KS 66044
785.842.4858

ARCHITECTURAL SPECIFICATIONS:

DIVISION 01
01 7300 - Execution
01 7419 - Construction Waste Management

DIVISION 02
02 4119 - Selective Demolition

DIVISION 03
03 3543 - Bonded Abrasive Polished Concrete Floors

DIVISION 04
04 2000 - Unit Masonry

DIVISION 05
05 5116 - Metal Floor Plate Stairs

DIVISION 06
06 1000 - Rough Carpentry
06 4116 - Plastic-Laminate-Faced Architectural Cabinets

DIVISION 07
07 9005 - Joint Sealers
07 9500 - Expansion Control

DIVISION 08
08 1113 - Hollow Metal Doors and Frames
08 4113 - Aluminum-Framed Storefronts
08 7100 - Door Hardware
08 8000 - Glazing

DIVISION 09
09 2116 - Gypsum Board Assemblies
09 5113 - Acoustical Panel Ceilings

TreasnorHL
ST7028.1901.00

ARCHITECTURAL CERTIFICATION
00 0002 - 1 of 2
Lafferre Hall – 3rd Floor – Lab & Cleanroom Shell Space Fitout
MU Project #CP181761

Bid Documents
July 22, 2019

09 6513 - Resilient Base and Accessories
09 6723 - Resinous Flooring
09 6813 - Tile Carpeting
09 9000 - Painting

DIVISION 10
10 1100 - Visual Display Units
10 2600 - Wall Protection
10 4413 - Fire Protection Cabinets

DIVISION 11
11 5313 - Laboratory Fume Hoods
11 6000 - Laboratory Equipment

DIVISION 12
12 2113 - Horizontal Louver Blinds
12 3553.13 - Metal Laboratory Casework
12 3661.16 - Solid Surfacing Countertops

DIVISION 13
13 0300 - Cleanroom

DATE: July 22, 2019

I hereby certify that these Drawings and/or Specifications have been prepared by me, or under my supervision. I further certify that to the best of my knowledge these Drawings and/or Specifications are as required by and in compliance with Building Codes of the University of Missouri.

Signature: [Signature]
07.22.2019

END OF SECTION
PROJECT MANUAL FOR:

Lafferre Hall – 3rd Floor – Lab & Cleanroom Shell Space Fitout

PROJECT NUMBER: CP181761

AT: UNIVERSITY OF MISSOURI
 COLUMBIA, MISSOURI

FOR:
 THE CURATORS OF THE UNIVERSITY OF MISSOURI

PREPARED BY:
 TreanorHL
 1810 Baltimore
 Kansas City, Missouri 64108-1314
 P. 785.842.4858

FIRE PROTECTION, PLUMBING, MECHANICAL SPECIFICATIONS:

DIVISION 21 - FIRE SUPPRESSION
21 0500 - Common Work Results
21 1200 - Fire-Suppression Standpipes
21 1313 - Wet-Pipe Sprinkler Systems
21 2200 - Clean-Agent Fire-Extinguishing Systems

DIVISION 22 - PLUMBING
22 0500 - Common Work Results for Plumbing
22 0523 - General-Duty Valves
22 0529 - Hangers and Supports
22 0553 - Identification for Plumbing Piping and Equipment
22 0719 - Plumbing Piping Insulation
22 1116 - Domestic Water Piping
22 1117 - Laboratory Water Piping
22 1119 - Domestic Water Piping Specialties
22 1316 - Storm, Sanitary Waste, and Vent Piping
22 1319 - Sanitary Waste Piping Specialties
22 4000 - Plumbing Fixtures
22 6113 - Compressed Air Piping for Laboratory
22 6213 - Vacuum Piping for Laboratory
22 6700 - Processed Water Systems for Laboratory Facilities

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING
23 0100 - Basic Mechanical Requirements
23 0500 - Basic Mechanical Materials and Methods
23 0519 - Meters and Gages
23 0523 - Valves
23 0529 - Hangers and Supports
23 0700 - Mechanical Insulation
23 0900 - Controls Systems
23 0950 - Facility Monitoring System
23 0990 - Testing, Adjusting, and Balancing
23 2113 - Hydronic Piping
23 3113 - Metal Ducts
DATE: July 22, 2019

I hereby certify that these Drawings and/or Specifications have been prepared by me, or under my supervision. I further certify that to the best of my knowledge these Drawings and/or Specifications are as required by and in compliance with Building Codes of the University of Missouri.

Signature: [Signature]

[Affix professional seal. Use separate page for certifications and professional seals if required.]
PROJECT MANUAL FOR:

Lafferre Hall – 3rd Floor – Lab & Cleanroom Shell Space Fitout

PROJECT NUMBER: CP181761

AT: UNIVERSITY OF MISSOURI
COLUMBIA, MISSOURI

FOR:
THE CURATORS OF THE UNIVERSITY OF MISSOURI

PREPARED BY:
Antella Consulting Engineers, Inc.
1600 Genessee Street, Suite 260
Kansas City, Missouri 64102
816.421.0950

ELECTRICAL SPECIFICATIONS:

DIVISION 26 - ELECTRICAL

26 0500 - Common Work Results for Electrical
26 0519 - Low-Voltage Electrical Power Conductors and Cables
26 0526 - Grounding and Bonding for Electrical Systems
26 0529 - Hangers and Supports for Electrical Systems
26 0533 - Raceways and Boxes for Electrical Systems
26 0536 - Cable Trays for Electrical Systems
26 0544 - Sleeves and Sleeve Seals for Electrical Raceways
- and Cabling
26 0548.16 - Seismic Controls for Electric Systems
26 0553 - Identification for Electrical Systems
26 0572 - Overcurrent Protective Device Short-Circuit Study
26 0573 - Overcurrent Protective Device Coordination Study
26 0574 - Overcurrent Protective Device Arc Flash Study
26 0923 - Lighting Control Devices
26 2416 - Panelboards
26 2726 - Wiring Devices
26 2813 - Fuses
26 2816 - Enclosed Switches and Circuit Breakers
26 5119 - LED Interior Lighting
26 5219 - Emergency and Exit Lighting

- COMMUNICATIONS

DIVISION 27

27 05 00 - Common Work Results for Communication
27 05 44 - Sleeves and Sleeve Seals for Communications

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

28 31 11 - Digital, Addressable Fire-Alarm System
DRAWINGS:

E001 GENERAL NOTES, SYMBOLS AND DETAILS
ED101 THIRD FLOOR - ELECTRICAL DEMOLITION
E201 THIRD FLOOR - LIGHTING PLAN
E301 THIRD FLOOR - POWER PLAN
E302 THIRD FLOOR - RCP POWER PLAN
E401 THIRD FLOOR - HVAC POWER PLAN
E601 ELECTRICAL DETAILS
E602 ELECTRICAL DETAILS
E701 PARTIAL RISER DIAGRAM
E702 PARTIAL ONE-LINE DIAGRAM
E801 ELECTRICAL SCHEDULES
E802 PANELBOARD SCHEDULES
E803 PANELBOARD SCHEDULES
E804 PANELBOARD SCHEDULES
FA101 THIRD FLOOR - FIRE ALARM PLAN

DATE: July 22, 2019

I hereby certify that these Drawings and/or Specifications have been prepared by me, or under my supervision. I further certify that to the best of my knowledge these Drawings and/or Specifications are as required by and in compliance with Building Codes of the University of Missouri.

Signature: ________________

END OF SECTION
SECTION 1.A

BID FOR LUMP SUM CONTRACT

Date: ____________________________

BID OF
(hereinafter called "Bidder") a corporation* organized and existing under laws of the State of ____________________________,
a partnership* consisting of __,
an individual* trading as __,
a joint venture* consisting of __.

*Insert Corporation(s), partnership or individual, as applicable.

TO: Curators of the University of Missouri
c/o Director, Campus Facilities- Planning Design and Construction
Room L100 General Services Building
Columbia, Missouri 65211

1. Bidder, in compliance with invitation for bids for construction work in accordance with Drawings and Specifications prepared by TreanorHL and their sub-consultants, entitled "LAFFERRE HALL – 3RD FLOOR – LAB & CLEANROOM SHELL SPACE FITOUT", project number CP181761, dated July 22, 2019 having examined Contract Documents and site of proposed work, and being familiar with all conditions pertaining to construction of proposed project, including availability of materials and labor, hereby proposes to furnish all labor, materials and supplies to construct project in accordance with Contract Documents, within time set forth herein at prices stated below. Prices shall cover all expenses, including taxes not covered by the University of Missouri’s tax exemption status, incurred in performing work required under Contract documents, of which this Bid is a part.

Bidder acknowledges receipt of following addenda:

Addendum No. _____________________ Dated ________________

2. In following Bid(s), amount(s) shall be written in both words and figures. In case of discrepancy between words and figures, words shall govern.

3. BID PRICING

a. Base Bid:

The Bidder agrees to furnish all labor, materials, tools, and equipment required to fitout Lafferre Hall – 3rd Floor lab and cleanroom shell space; all as indicated on the Drawings and described in these Specifications for sum of:

DOLLARS ($ ____________________________).

b. Additive Alternate Bids:

Above Base Bid may be changed in accordance with following Alternate Bids as Owner may elect. Alternates are as described in Section 1.H of Project Manual. Alternates are written in a priority order, but Owner is not required to accept or reject in order listed. This is a one (1)
contract project, therefore, Alternates shall be studied by each Bidder to determine effect on Bids of Contractor and each Subcontractor and/or Material supplier.

(1) Additive Alternate No. 1: Provide stair access and openings C3201B and C3201C between Computational Lab C3201 and Stair W3039. Provide HVAC system to serve Equipment Room C3201A. All for sum of:

DOLLARS ($__________________).

(2) Additive Alternate No. 2: Provide FM-200 fire suppression system to serve Equipment Room C3201A. All for sum of:

DOLLARS ($__________________).

4. PROJECT COMPLETION

a. Contract Period - Contract period begins on the day the Contractor receives unsigned Contract, Performance Bond, Payment Bond, and "Instructions for Execution of Contract, Bonds, and Insurance Certificates." Bidder agrees to complete project within Two Hundred Forty (240) calendar days from receipt of aforementioned documents. Fifteen (15) calendar days have been allocated in construction schedule for receiving aforementioned documents from Bidder.

b. Commencement - Contractor agrees to commence work on this project after the "Notice to Proceed" is issued by the Owner. "Notice to Proceed" will be issued within seven (7) calendar days after Owner receives properly prepared and executed Contract documents listed in paragraph 4.a. above.

c. Special scheduling requirements:

(1) Outages requiring in excess of 48-hours shall be scheduled to occur during one of the following timeframes when scheduled classes are in recess:

 Thanksgiving Recess: November 25th, 2019 through November 29th, 2019
 Winter Recess: December 16th, 2019 through January 17th, 2020
 Spring Break: March 23rd, 2020 through March 27th, 2020
 Summer Recess: May 18th, 2020 through June 5th, 2020

(2) On-Site Work Hours: Contractor shall have access to project area 24 hours a day, 7 days a week.

a. The project may be completed during normal working hours, with the exception of Disruptive Activities. Contractor shall perform all disruptive activities Before 7:00am and after 5:00pm. The Contractor shall plan for the labor rates needed to complete Disruptive Activities before 7:00am and after 5:00pm.

b. Coordinate large deliveries with Owner to limit interruption to daily activities.

(3) Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions, and then only after providing temporary utility services according to requirements indicated:

a. Submit plan to Owner not less than fourteen (14) days in advance of proposed utility interruptions.

b. Contractor shall not shut down utilities without Owner present.

c. HVAC start-up will require shutdown of these services. Coordinate with Owner as indicated above.
d. Addition of new electrical panels will require shutdown of power to distribution panel. Coordinate with Owner as indicated above.

(4) If Alternate No. 1 is accepted, access to adjacent CGI Suite shall be maintained in a secure manner, acceptable to Owner, once the opening between spaces is made.

(5) If Alternate No. 1 is accepted, the Owner requires a 60-day advance notice and agreed scheduling for any outages related to electrical conduit rerouting in the CGI Suite necessary to accommodate new opening connection.

5. SUBCONTRACTOR LIST:

Bidder hereby certifies that the following subcontractors will be used in performance of Work:

NOTE: Failure to list subcontractors for each category of work identified on this form or listing more than one subcontractor for any category of work without designating the portion of work performed by each shall be grounds for rejection of bid. List name, city, and state of designated subcontractor, for each category of work listed in Bid For Lump Sum Contract. If work within a category will be performed by more than one subcontractor, Bidder shall provide name, city, and state of each subcontractor and specify exact portion of work to be performed by each. If acceptance/non-acceptance of Alternates will affect designation of a subcontractor, Bidder shall provide information, for each affected category, with this bid form. If Bidder intends to perform any designated subcontract work by using Bidder’s own employees, then Bidder shall list their own name, city, and state. The bidder may petition the Owner to change a listed subcontractor only within 48 hours of the bid opening. See Information For Bidders Section 16 List of Subcontractors for requirements.

<table>
<thead>
<tr>
<th>Work to be performed</th>
<th>Subcontractor Name, City, State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td>Plumbing</td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
</tr>
<tr>
<td>Laboratory Casework</td>
<td></td>
</tr>
</tbody>
</table>

6. SUPPLIER DIVERSITY PARTICIPATION GOALS

a. The Contractor shall have as a goal, subcontracting with Minority Business Enterprise (MBE) of ten percent (10%)\[with Service Disabled Veteran Owned Business (SDVE) of three percent (3%); and with Women Business Enterprise (WBE), Disadvantage Business Enterprise (DBE), and/or Veteran Owned Business of ten percent (10%)\[of awarded contract price for work to be performed.

b. Requests for waiver of this goal shall be submitted on the attached Application For Waiver form. A determination by the Director of Facilities Planning & Development, UM, that a good faith effort has not been made by Contractor to achieve above stated goal may result in rejection of bid.

c. The Undersigned proposes to perform work with following Supplier Diversity participation level:

MBE PERCENTAGE PARTICIPATION: _______________ percent (___ %)

SDVE PERCENTAGE PARTICIPATION: ______________ percent (___ %)

WBE, DBE, and/or VETERAN PERCENTAGE PARTICIPATION: ___________ percent (___ %)
7. BIDDER'S ACKNOWLEDGMENTS

a. Bidder declares that he has had an opportunity to examine the site of the work and he has examined Contract Documents therefore; that he has carefully prepared his bid upon the basis thereof; that he has carefully examined and checked bid, materials, equipment and labor required thereunder, cost thereof, and his figures therefore. Bidder hereby states that amount, or amounts, set forth in bid is, or are, correct and that no mistake or error has occurred in bid or in Bidder's computations upon which this bid is based. Bidder agrees that he will make no claim for reformation, modifications, revisions or correction of bid after scheduled closing time for receipt of bids.

b. Bidder agrees that bid shall not be withdrawn for a period of Sixty(60) days after scheduled closing time for receipt of bids.

c. Bidder understands that Owner reserves right to reject any or all bids and to waive any informalities in bidding.

d. Accompanying the bid is a bid bond, or a certified check, or an irrevocable letter of credit, or a cashier's check payable without condition to "The Curators of the University of Missouri" which is an amount at least equal to five percent (5%) of amount of largest possible total bid herein submitted, including consideration of Alternates.

e. Accompanying the bid is a Bidder's Statement of Qualifications. Failure of Bidder to submit the Bidder's Statement of Qualifications with the bid may cause the bid to be rejected. Owner does not maintain Bidder's Statements of Qualifications on file.

f. It is understood and agreed that bid security of two (2) lowest and responsive Bidders will be retained until Contract has been executed and an acceptable Performance Bond and Payment Bond has been furnished. It is understood and agreed that if the bid is accepted and the undersigned fails to execute the Contract and furnish acceptable Performance/Payment Bond as required by Contract Documents, accompanying bid security will be realized upon or retained by Owner. Otherwise, the bid security will be returned to the undersigned.

8. BIDDER'S CERTIFICATE

Bidder hereby certifies:

a. His bid is genuine and is not made in interest of or on behalf of any undisclosed person, firm or corporation, and is not submitted in conformity with any agreement or rules of any group, association or corporation.

b. He has not directly or indirectly induced or solicited any other bidder to put in a false or sham bid.

c. He has not solicited or induced any person, firm or corporation to refrain from bidding.

d. He has not sought by collusion or otherwise to obtain for himself any advantage over any other Bidder or over Owner.

e. He will not discriminate against any employee or applicant for employment because
of race, color, religion, sex or national origin in connection with performance of work.

f. By virtue of policy of the Board of Curators, and by virtue of statutory authority, a preference will be given to materials, products, supplies, provisions and all other articles produced, manufactured, mined or grown within the State of Missouri. By virtue of policy of the Board of Curators, preference will also be given to all Missouri firms, corporations, or individuals, all as more fully set forth in "Information For Bidders."

9. BIDDER'S SIGNATURE

Note: All signatures shall be original; not copies, photocopies, stamped, etc.

<table>
<thead>
<tr>
<th>Authorized Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printed Name</td>
<td>Title</td>
</tr>
<tr>
<td>Company Name</td>
<td></td>
</tr>
<tr>
<td>Mailing Address</td>
<td></td>
</tr>
<tr>
<td>City, State, Zip</td>
<td></td>
</tr>
<tr>
<td>Phone No.</td>
<td>Federal Employer ID No.</td>
</tr>
<tr>
<td>Fax No.</td>
<td>E-Mail Address</td>
</tr>
<tr>
<td>Circle one: Individual Partnership Corporation Joint Venture</td>
<td></td>
</tr>
<tr>
<td>If a corporation, incorporated under the laws of the State of__________</td>
<td></td>
</tr>
<tr>
<td>Licensed to do business in the State of Missouri? yes no</td>
<td></td>
</tr>
</tbody>
</table>

(Each Bidder shall complete bid form by manually signing on the proper signature line above and supplying required information called for in connection with the signature. Information is necessary for proper preparation of the Contract, Performance Bond and Payment Bond. Each Bidder shall supply information called for in accompanying "Bidder's Statement of Qualifications.")

END OF SECTION
UNIVERSITY OF MISSOURI
BIDDER'S STATEMENT OF QUALIFICATIONS

Submit with Bid for Lump Sum Contract in separate envelope appropriately labeled. Attach additional sheet if necessary.

1. Company Name __

 Phone# ___________________________ Fax #: ___________________________

 Address __

2. Number of years in business _____ . If not under present firm name, list previous firm names and
 types of organization.

3. List contracts on hand (complete the following schedule, include telephone number).

<table>
<thead>
<tr>
<th>Project & Address</th>
<th>Owner/Owner's Representative</th>
<th>Phone Number</th>
<th>Architect</th>
<th>Amount of your Contract</th>
<th>Percent Completed</th>
</tr>
</thead>
</table>

4. General character of work performed by your company personnel.

5. List important projects completed in the last five (5) years on a type similar to the work now bid for,
 including approximate cost and telephone number.

<table>
<thead>
<tr>
<th>Project & Address</th>
<th>Owner/Owner's Representative</th>
<th>Phone Number</th>
<th>Architect</th>
<th>Amount of your Contract</th>
<th>Percent Completed</th>
</tr>
</thead>
</table>

6. Other experience qualifying you for the work now bid.

7. No default has been made in any contract complete or incomplete except as noted below:
 (a) Number of contracts on which default was made __________________________
 (b) Description of defaulted contracts and reason therefor

8. (a) Have you or your company participated in any contract subject to an equal opportunity clause similar
to that described in the General Conditions?

 Yes _____ No _____

 (b) Have you filed all required compliance reports?

 Yes _____ No _____
(c) Is fifty percent or more of your company owned by a minority?
 Yes No

(d) Is fifty percent or more of your company owned by a woman?
 Yes No

(e) Is fifty percent or more of your company owned by a service disabled veteran?
 Yes No

(f) Is fifty percent or more of your company owned by a veteran?
 Yes No

(g) Is your company a Disadvantaged Business Enterprise?
 Yes No

9. Have you or your company been suspended or debarred from working at any University of Missouri campus?
 Yes No (If the answer is "yes", give details.)

10. Have any administrative or legal proceedings been started against you or your company alleging violation of any wage and hour regulations or laws?
 Yes No (If the answer is "yes", give details.)

11. Workers Compensation Experience Modification Rates (last 3 yrs): / /
 Incidence Rates (last 3 years): / /

12. List banking references.

13. (a) Do you have a current confidential financial statement on file with Owner?
 Yes No (If not, and if desired, Bidder may submit such statement with bid, in a separate sealed and labeled envelope.)

 (b) If not, upon request will you file a detailed confidential financial statement within three (3) days?
 Yes No

Dated at ___________________________ this __________ day of ____________________ 20____

Name of Organization

__
Signature

__
Printed Name

__
Title of Person Signing

END OF SECTION
SUPPLIER DIVERSITY COMPLIANCE EVALUATION FORM

This form shall be completed by Bidders and submitted with the Bidder’s Statement of Qualifications form for each diverse firm who will function as a subcontractor on the contract.

The undersigned submits the following data with respect to this firm’s assurance to meet the goal for Supplier Diversity participation.

I. Project:

II. Name of General Contractor:

III. Name of Diverse Firm:

Address:

Phone No.: Fax No.:

Status (check one) MBE WBE Veteran Service Disabled Veteran DBE

IV. Describe the subcontract work to be performed. (List Base Bid work and any Alternate work separately):

Base Bid:

V. Dollar amount of contract to be subcontracted to the Diverse firm:

Base Bid:

Alternate(s), (Identify separately):

VI. Is the proposed subcontractor listed in the Directory of M/W/DBE Vendors, Directory of Serviced Disabled Veterans and/or the Directory of Veterans maintained by the State of Missouri?

Yes _____ No _____

SD/1
Is the proposed subcontractor certified as a diverse supplier by any of the following: federal government agencies, state agencies, State of Missouri city or county government agencies, Minority and/or WBE certifying agencies?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>If yes, please provide details and attach a copy of the certification.</th>
</tr>
</thead>
</table>

Does the proposed subcontractor have a signed document from their attorney certifying the Supplier as a Diverse and meeting the 51% owned and committed requirement?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>If yes, please attach letter.</th>
</tr>
</thead>
</table>

Signature: ____________________________

Name: ______________________________________

Title: ______________________________________

Date: ______________________________________
APPLICATION FOR WAIVER

This form shall be completed and submitted with the Bidder's Statement of Qualifications. Firms wishing to be considered for award are required to demonstrate that a good faith effort has been made to include diverse suppliers. This form will be used to evaluate the extent to which a good faith effort has been made. The undersigned submits the following data with respect to the firm's efforts to meet the goal for Supplier Diversity Participation.

1. List pre-bid conferences your firm attended where Supplier Diversity requirements were discussed.

 __
 __
 __

2. Identify advertising efforts undertaken by your firm which were intended to recruit potential diverse subcontractors for various aspects of this project. Provide names of newspapers, dates of advertisements and copies of ads that were run.

 __
 __
 __

3. Note specific efforts to contact in writing those diverse suppliers capable of and likely to participate as subcontractors for this project.

 __
 __
 __

4. Describe steps taken by your firm to divide work into areas in which diverse suppliers/contractors would be capable of performing.

 __
 __
 __

5. What efforts were taken to negotiate with prospective diverse suppliers/contractors for specific sub-bids? Include the names, addresses, and telephone numbers of diverse suppliers/contractors contacted, a description of the information given to diverse suppliers/contractors regarding plans and specifications for the assigned work, and a statement as to why additional agreements were not made with diverse suppliers/contractors.

 __
 __
 __

6. List reasons for rejecting a diverse supplier/contractor which has been contacted.

 __
 __
 __
8. Describe the follow-up contacts with diverse suppliers/contractors made by your firm after the initial solicitation.

9. Describe the efforts made by your firm to provide interested diverse suppliers/contractors with sufficiently detailed information about the plans, specifications and requirements of the contract.

10. Describe your firm's efforts to locate diverse suppliers/contractors.

Based on the above stated good faith efforts made to include supplier diversity, the bidder hereby requests that the original supplier diversity percentage goal be waived and that the percentage goal for this project be set at _______ percent.

The undersigned hereby certifies, having read the answers contained in the foregoing Application for Waiver, that they are true and correct to the best of his/her knowledge, information and belief.

Signature

Name

Title

Company

Date
AFFIDAVIT

"The undersigned swears that the foregoing statements are true and correct and include all material information necessary to identify and explain the operation of ____________________________ (name of firm) as well as the ownership thereof. Further, the undersigned agrees to provide through the prime contractor or directly to the Contracting Officer current, complete and accurate information regarding actual work performed on the project, the payment therefore and any proposed changes, if any, of the project, the foregoing arrangements and to permit the audit and examination of books, records and files of the named firm. Any material misrepresentation will be grounds for terminating any contract which may be awarded and for initiating action under federal or state laws concerning false statements."

Note - If, after filing this information and before the work of this firm is completed on the contract covered by this regulation, there is any significant change in the information submitted, you must inform the Director of Facilities Planning and Development of the change either through the prime contractor or directly.

Signature __
Name __
Title ___
Date __

Corporate Seal (where appropriate)

Date __
State of __
County of __

On this __________________ day of ______________________, 19__, before me appeared (name) ______________________________ to me personally known, who, being duly sworn, did execute the foregoing affidavit, and did state that he or she was properly authorized by (name of firm) ________________________________ to execute the affidavit and did so as his or her own free act and deed.

(Seal)

Notary Public __
Commission expires __

SD/5
AFFIDAVIT FOR AFFIRMATIVE ACTION

State of Missouri)
) ss.
County of)

first being duly sworn on his/her oath

states: that he/she is the (sole proprietor, partner, or officer) of __________________________, a (sole proprietorship, partnership, corporation), and as such (sole proprietor, partner, or officer) is duly authorized to make this affidavit on behalf of said (sole proprietorship, partnership, corporation); that under the contract known as "__________________________" Project No. ___________ less than 50 persons in the aggregate will be employed and therefore, the applicable Affirmative Action requirements as set forth in the "Nondiscrimination in Employment Equal Opportunity," Supplemental Special Conditions, and Article 13 in the General Conditions do not apply.

__

Subscribed and sworn before me this ___________ day of ___________________________, 19_________

My commission expires ____________________________, 19_________.

SD/6
CERTIFYING SUPPLIER DIVERSITY AGENCIES

Diverse firms are defined in General Conditions Articles 1.1.7 and those businesses must be certified as disadvantaged by an approved agency. The Bidder is responsible for obtaining information regarding the certification status of a firm. A list of certified firms may be obtained by contacting the agencies listed below. Any firm listed as disadvantaged by any of the following agencies will be classified as a diverse firm by the Owner.

St. Louis Development Corporation
1520 Market St., Ste. 2000
St. Louis, MO 63103
P: 314.982.1400
W: www.stlouis-mo.gov/sldc/

Bi-State Development
211 N. Broadway, Ste. 700
St. Louis, MO 63102
P: 314.982.1400
W: www.metrostlouis.dbesystem.com

St. Louis Minority Business Council
211 N. Broadway, Ste. 1300
St. Louis, MO 63102
P: 314.231.5555
W: www.slmbc.org

U.S. Small Business Administration - St. Louis, MO
8(a) Contractors, Minority Small Business
1222 Spruce Street, Suite 10.103
St. Louis, MO 63101
P: 314.539.6600
W: www.sba.gov

Lambert St. Louis International Airport
Business Diversity Development Office
11495 Navaid
Bridgeton, MO 63044
P: 314-426-8111

City of Kansas City, Missouri
Human Relations Department, MBE/WBE Division
4th Floor, City Hall
414 E. 12th Street
Kansas City, MO 64106
P: 816.513.1836
W: kcmohrd.mwdbce.com/?TN=kcmohrd

Mid-States Minority Supplier Development Council
505 N. 7th Street, Ste. 1820
St. Louis, MO 63101
P: 314.278.5616
W: midstatesdc.org

U.S. Small Business Administration - Kansas City, MO
8(a) Contractors, Minority Small Business
1000 Walnut, Suite 500
Kansas City, MO 64106
P: 816.426.4900
W: kcmohrd.mwdbce.com/?TN=kcmohrd

Missouri Department of Transportation
Division of Construction
1617 Missouri Blvd.
P.O. Box 270
Jefferson City, MO 65102
P: 573.526.2978
W: www.modot.org/mrcc-directory

Illinois Department of Transportation
MBE/WBE Certification Section
2300 Dirksen Parkway
Springfield, IL 6264
217/782-5490; 217/785-1524 (Fax)
W: webapps.dot.illinois.gov/UCP/ExternalSearch

State of Missouri OA
Office of Equal Opportunity
301 W. High St. HSC Rm 870-B
Jefferson City, MO 65101
P: 877.259.2963
W: oeo.mo.gov/

Minority Newspapers

Dos Mundos Bilingual Newspaper
902A Southwest Blvd.
Kansas City, MO 64108
816-221-4747
www.dosmundos.com

Kansas City Hispanic News
2918 Southwest Blvd.
Kansas City, MO 64108
816/472-5246
www.kchispanicnews.com

The Kansas City Globe
615 E. 29th Street
Kansas City, MO 64109
816-531-5253
www.thekcglobe.com/about_us.php

St. Louis American
4144 Lindell
St. Louis, MO 63108
314-533-8000
www.stlamerican.com

St. Louis Chinese American News
1766 Burns Ave, Suite 201
St. Louis, MO 63132
314-432-3858
www.scannews.com

St. Louis Business Journal
815 Olive St., Suite 100
St. Louis, MO 63101
314-421-6200
www.bizjournal.com/stlouis

Kansas City Business Journal
1100 Main Street, Suite 210
Kansas City, MO 64105
816-421-5900
www.bizjournals.com/kansascity
AFFIDAVIT OF SUPPLIER DIVERSITY PARTICIPATION

The apparent low Bidder shall complete and submit this form within 48 hours of bid opening for each Diverse firm that will participate on the contract.

1. Diverse Firm: ____________________________
 Contact Name: ____________________________
 Address: ____________________________
 Phone No.: ____________________________ E-Mail: ____________________________

 Status (check one): MBE ☐ WBE ☐ Veteran ☐ Service Disabled Veteran ☐ DBE ☐
 If MBE, Certified as (circle one): 1) Black American 2) Hispanic American 3) Native American 4) Asian American

2. Is the proposed diverse firm certified by an approved agency [see IFB article 15]? Yes ☐ No ☐
 Agency: ____________________________ [attach copy of certification authorization from agency]
 Certification Number: ____________________________

3. Diverse firm scope work and bid/contract dollar amount of participation (List Base Bid and Alternate work separately). The final Dollar amount will be determined at substantial completion:

<table>
<thead>
<tr>
<th>Scope of Work</th>
<th>Bid/Contract Amount</th>
<th>Final Dollar Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Bid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate #3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate #4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate #5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate #6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The undersigned certifies that the information contained herein (i.e. Scope of Work and Bid/Contract Amount) is true and correct to the best of their knowledge, information and belief.

General Contractor: ____________________________ Diverse Firm: ____________________________
Signature: ____________________________ Signature: ____________________________
Name: ____________________________ Name: ____________________________
Title: ____________________________ Title: ____________________________
Date: ____________________________ Date: ____________________________

The undersigned certifies that the information contained herein (i.e. Scope of Work and Final Dollar Amount) is true and correct to the best of their knowledge, information and belief. If the Final Dollar Amount is different than the Bid/Contract Amount, then attach justification for the difference.

Contractor: ____________________________ Diverse Firm: ____________________________
Signature: ____________________________ Signature: ____________________________
Name: ____________________________ Name: ____________________________
Title: ____________________________ Title: ____________________________
Date: ____________________________ Date: ____________________________
1. Contract Documents
 1.1 Drawings, specifications, and other contract documents, pursuant to work which is to be done, may be obtained shown in the Advertisement for Bids and Special Conditions.

2. Bidder Obligations
 2.1 Before submitting bids each bidder shall carefully examine the drawings and specifications and related contract documents, visit site of work and fully inform themselves as to all existing conditions, facilities, restrictions and other matters which can affect the work or the cost thereof.

 2.2 Each bidder shall include in their bid the cost of all work and materials required to complete the contract in a first-class manner as hereinafter specified.

 2.3 Failure or omission of any bidder to receive or examine any form, instrument, addendum, or other document, or to visit the site and acquaint themselves with existing conditions, shall in no way relieve them from any obligation with respect to their bid or contract, and no extra compensation will be allowed by reason of any thing or matter concerning which bidder should have fully informed themselves prior to bidding.

 2.4 Submission of bids shall be deemed acceptance of the above obligations and each and every obligation required to be performed by all of the contract documents in the event the bid is accepted.

3. Interpretation of Documents
 3.1 If any prospective bidder is in doubt as to the true meaning of any part of the drawings and specifications or contract documents, they shall submit a written request to the Architect for an interpretation.

 3.2 Requests for such interpretations shall be delivered to the Architect at least one (1) week prior to time for receipt of bids.

3.3 Bids shall be based only on interpretations issued in the form of addenda mailed to each person who is on the Architect's record as having received a set of the contract documents.

4. Bids
 4.1 Bids shall be received separately or in combination as shown in and required by the Bid for Lump Sum contract. Bids will be completed so as to include insertion of amounts for alternate bids, unit prices and cost accounting data.

 4.2 Bidders shall apportion each base bid between various phases of the work, as stipulated in the Bid for Lump Sum contract. All work shall be done as defined in the specifications and as indicated on the drawings.

 4.3 Bids shall be presented in sealed envelopes which shall be plainly marked “Bids for (indicate name of project from cover sheet)”, and mailed or delivered to the building and room number specified in the Advertisement for Bids. Bidders shall be responsible for actual delivery of bids during business hours, and it shall not be sufficient to show that a bid was mailed in time to be received before scheduled closing time for receipt of bids, nor shall it be sufficient to show that a bid was somewhere in a university facility.

 4.4 The bidder's price shall include all federal sales, excise, and similar taxes, which may be lawfully assessed in connection with their performance of work and purchase of materials to be incorporated in the work. City & State taxes shall not be included as defined within Article 3.16 of the General Conditions for Construction Contract included in the contract documents.

 4.5 Bids shall be submitted on a single bid form, furnished by the Owner or Architect. Do not remove the bid form from the specifications.

 4.6 No bidder shall stipulate in their bid any conditions not contained in the bid form.
4.7 The Owner reserves the right to waive informalities in bids and to reject any or all bids.

5. **Modification and Withdrawal of Bids**

5.1 The bidder may withdraw their bid at any time before the scheduled closing time for receipt of bids, but no bidder may withdraw their bid after the scheduled closing time for receipt of bids.

5.2 Only telegrams, letters and other written requests for modifications or correction of previously submitted bids, contained in a sealed envelope which is plainly marked "Modification of Bid on (name of project on cover sheet)," which are addressed in the same manner as bids, and are received by Owner before the scheduled closing time for receipt of bids will be accepted and bids corrected in accordance with such written requests.

6. **Signing of Bids**

6.1 Bids which are signed for a partnership shall be **manually** signed in the firm name by at least one partner, or in the firm name by Attorney-in-Fact. If signed by Attorney-in-Fact there should be attached to the bid, a Power of Attorney evidencing authority to sign the bid dated the same date as the bid and executed by all partners of the firm.

6.2 Bids that are signed for a corporation shall have the correct corporate name thereon and the signature of an authorized officer of the corporation manually written below corporate name. Title of office held by the person signing for the corporation shall appear below the signature of the officer.

6.3 Bids that are signed by an individual doing business under a firm name, shall be manually signed in the name of the individual doing business under the proper firm name and style.

6.4 Bids that are signed under joint venture shall be manually signed by officers of the firms having authority to sign for their firm.

7. **Bid Security**

7.1 Each bid shall be accompanied by a bid bond, certified check, or cashier's check, acceptable to and payable without condition to The Curators of the University of Missouri, in an amount at least equal to five percent (5%) of bidder's bid including additive alternates.

7.2 Bid security is required as a guarantee that bidder will enter into a written contract and furnish a performance bond within the time and in form as specified in these specifications; and if successful bidder fails to do so, the bid security will be realized upon or retained by the Owner. The apparent low bidder shall notify the Owner in writing within 48 hours (2 work days) of the bid opening of any circumstance that may affect the bid security including, but not limited to, a bidding error. This notification will not guarantee release of the bidder's security and/or the bidder from the Bidder's Obligations.

7.3 If a bid bond is given as a bid security, the amount of the bond may be stated as an amount equal to at least five percent (5%) of the bid, including additive alternates, described in the bid. The bid bond shall be executed by the bidder and a responsible surety licensed in the State of Missouri with a Best’s rating of no less than A-/XI.

7.4 It is specifically understood that the bid security is a guarantee and shall not be considered as liquidated damages for failure of bidder to execute and deliver their contract and performance bond, nor limit or fix bidder's liability to Owner for any damages sustained because of failure to execute and deliver the required contract and performance bond.

7.5 Bid security of the two (2) lowest and responsive Bidders will be retained by the Owner until a contract has been executed and an acceptable bond has been furnished, as required hereby, when such bid security will be returned. Surety bonds of all other bidders will be destroyed and all other alternative forms of bid bonds will be returned to them within ten (10) days after Owner has determined the two (2) lowest and responsive bids.

8. **Bidder's Statement of Qualifications**

8.1 Each bidder submitting a bid shall present evidence of their experience, qualifications, financial responsibility and ability to carry out the terms of the contract by completing and submitting with their bid the schedule of information set forth in the form furnished in the bid form.

8.2 Such information, a single copy required in a separate sealed envelope, will be treated as confidential information by the Owner, within the meaning of Missouri Statute 610.010.

8.3 Bids not accompanied with current Bidder's Statement of Qualifications may be rejected.

9. **Award of Contract**

9.1 The Owner reserves the right to let other contracts in connection with the work, including, but not by way of limitation, contracts for furnishing and installation of furniture, equipment, machines, appliances, and other apparatus.

9.2 In awarding the contract, the Owner may take into consideration the bidder's, and their subcontractor's, ability to handle promptly the additional work, skill, facilities, capacity, experience, ability, responsibility, previous work, financial standing of bidder, and the bidder's ability to provide the required bonds and insurance; quality, efficiency and construction of equipment proposed to be furnished; period of time within which equipment is proposed to be furnished and delivered; success in achieving the specified Supplier Diversity goal, or demonstrating a good faith effort as described in Article 15; necessity of prompt and efficient completion of work herein described, and the bidder's status as suspended or debarred. Inability of any bidder to meet the requirements mentioned above may be cause for rejection of their bid.

10. **Contract Execution**

10.1 The Contractor shall submit within fifteen (15) days from receipt of notice, the documents required in Article 9 of the General Conditions for Construction Contract included in the contract documents.
10.2 No bids will be considered binding upon the Owner until the documents listed above have been furnished. Failure of Contractor to execute and submit these documents within the time period specified will be treated, at the option of the Owner, as a breach of the bidder's bid security under Article 7 and the Owner shall be under no further obligation to Bidder.

11. Contract Security
11.1 When the Contract sum exceeds $50,000, the Contractor shall procure and furnish a Performance bond and a Payment bond in the form prepared by Owner. Each bond shall be in the amount equal to one hundred percent (100%) of the contract sum, as well as adjustments to the Contract Sum. The Performance Bond shall secure and guarantee Contractor’s faithful performance of this Contract, including but not limited to Contractor’s obligation to correct defects after final payment has been made as required by the Contract Documents. The Payment Bond shall secure and guarantee payment of all persons performing labor on the Project under this Contract and furnishing materials in connection with this Contract. These Bonds shall be in effect through the duration of the Contract plus the Guaranty Period as required by the Contract Documents.

11.2 The bonds required hereunder shall be meet all requirements of Article 11 of the General Conditions for Construction Contract included in the contract documents.

11.3 If the surety of any bond furnished by Contractor is declared bankrupt or becomes insolvent or its right to conduct business in the State of Missouri is terminated, or it ceases to meet the requirements of this Article 11, Contractor shall within ten (10) days substitute another bond and surety, both of which must be acceptable to Owner. If Contractor fails to make such substitution, Owner may procure such required bonds on behalf of Contractor at Contractor’s expense.

12. Time of Completion
12.1 Contractors shall agree to commence work within five (5) days of the date "Notice to Proceed" is received from the Owner, and the entire work shall be completed by the completion date specified or within the number of consecutive calendar days stated in the Special Conditions. The duration of the construction period, when specified in consecutive calendar days, shall begin when the contractor receives notice requesting the documents required in Article 9 of the General Conditions for Construction Contract included in the contract documents.

13. Number of Contract Documents
13.1 The Owner will furnish the Contractor a copy of the executed contract and performance bond.

13.2 The Owner will furnish the Contractor the number of copies of complete sets of drawings and specifications for the work, as well as, clarification and change order drawings pertaining to change orders required during construction as set forth in the Special Conditions.

14. Missouri Products and Missouri Firms
14.1 The Curators of the University of Missouri have adopted a policy which is binding upon all employees and departments of the University of Missouri, and which by contract, shall be binding upon independent contractors and subcontractors with the University of Missouri whereby all other things being equal, and when the same can be secured without additional cost over foreign products, or products of other states, a preference shall be granted in all construction, repair and purchase contracts, to all products, commodities, materials, supplies and articles mined, grown, produced and manufactured in marketable quantity and quality in the State of Missouri, and to all firms, corporations or individuals doing business as Missouri firms, corporations or individuals. Each bidder submitting a bid agrees to comply with, and be bound by the foregoing policy.

15. Supplier Diversity
15.1 Award of Contract
The Supplier Diversity participation goal for this project is stated on the Bid for Lump Sum Contract Form, and the Owner will take into consideration the bidder's success in achieving the Supplier Diversity participation goal in awarding the contract. Inability of any bidder to meet this requirement may be cause for rejection of their bid.

The University will grant a three (3) point bonus preference to a Missouri based, certified Service Disabled Veteran Enterprise (SDVE) bidder as defined in Article 1 – (Supplier Diversity Definitions) of the General Conditions of the Contract for Construction included in the contract documents. The three percent (3%) goal can be met, and the bonus points obtained, by a qualified SDVE vendor and/or through the use of qualified subcontractors or suppliers that provide at least three percent (3%) of the total contract value.

15.2 List of Supplier Diversity Firms
15.2.1 The bidder shall submit as part of their bid a list of diverse firms performing as contractor, subcontractors, and/or suppliers. The list shall specify the single designated diverse firm name and address. If acceptance or non-acceptance of alternates will affect the designation of a subcontractor, provide information for each affected category.

15.2.2 Failure to include a complete list of diverse firms may be grounds for rejection of the bid.

15.2.3 The list of diverse firms shall be submitted in addition to any other listing of subcontractors required in the Bid for Lump Sum Contract Form.

15.3 Supplier Diversity Percentage Goal
The bidder shall have a minimum goal of subcontracting with diverse contractors, subcontractors, and suppliers, the percent of contract price stated in the Supplier Diversity goal paragraph of the Bid for Lump Sum Contract Form.

15.4 Supplier Diversity Percent Goal Computation
15.4.1 The total dollar value of the work granted to the diverse firms by the successful bidder is counted towards the applicable goal of the entire contract, unless otherwise noted below.

15.4.2 The bidder may count toward the Supplier Diversity goal only expenditures to diverse firms that perform a commercially useful function in the work of a contract. A diverse firm is considered to perform a commercially useful function when it is responsible for executing a distinct element of the work and carrying out its responsibilities by
actually performing, managing and supervising the work involved. A bidder that is a certified diverse firm may count as 100% of the contract towards the Supplier Diversity goal. For projects with separate MBE, SDVE, and WBE/Veteran/DBE goals, a MBE firm bidding as the prime bidder is expected to obtain the required SDVE, and WBE/Veteran/DBE participation; a WBE or Veteran or DBE firm bidding as the prime bidder is expected to obtain the required MBE and SDVE participation and a SDVE firm bidding as the prime bidder is expected to obtain the required MBE, and WBE/Veteran/DBE participation.

15.4.3 When a MBE, WBE, Veteran Business Enterprise, DBE, or SDVE performs work as a participant in a joint venture, only the portion of the total dollar value of the contract equal to the distinct, clearly defined portion of the work of the contract that the MBE, WBE, Veteran Business Enterprise, DBE, or SDVE performs with its own forces shall count toward the MBE, WBE, Veteran Business Enterprise, DBE, or SDVE individual contract percentages.

15.4.4 The bidder may count toward its Supplier Diversity goal expenditures for materials and supplies obtained from diverse suppliers and manufacturers, provided the diverse firm assumes the actual and contractual responsibility for the provision of the materials and supplies.

15.4.4.1 The bidder may count its entire expenditure to a diverse manufacturer. A manufacturer shall be defined as an individual or firm that produces goods from raw materials or substantially alters them before resale.

15.4.4.2 The bidder may count its entire expenditure to diverse suppliers that are not manufacturers provided the diverse supplier performs a commercially useful function as defined above in the supply process.

15.4.4.3 The bidder may count 25% of its entire expenditures to diverse firms that do not meet the definition of a subcontractor, a manufacturer, nor a supplier. Such diverse firms may arrange for, expedite, or procure portions of the work but are not actively engaged in the business of performing, manufacturing, or supplying that work.

15.4.5 The bidder may count toward the Supplier Diversity goal that portion of the total dollar value of the work awarded to a certified joint venture equal to the percentage of the ownership and control of the diverse partner in the joint venture.

15.4.6 On projects with separate MBE and WBE/Veteran/DBE goals, the Owner may allow MBE participation provided in excess of the MBE goal to be counted towards the WBE/Veteran/DBE goal.

15.5 Certification by Bidder of Diverse Firms

15.5.1 The bidder shall submit with its bid the information requested in the "Supplier Diversity Compliance Evaluation Form" for every diverse firm the bidder intends to award work to on the contract.

15.5.2 Diverse firms are defined in Article 1 – (Supplier Diversity Definitions) of the General Conditions of the Contract for Construction included in the contract documents, and as those businesses certified as disadvantaged by an approved agency. The bidder is responsible for obtaining information regarding the certification status of a firm. A list of certified firms may be obtained by contacting the agencies listed in the proposal form document "Supplier Diversity Certifying Agencies". Any firm listed as disadvantaged by any of the identified agencies will be classified as a diverse firm by the Owner.

15.5.3 Bidders are urged to encourage their prospective diverse contractors, subcontractors, joint venture participants, team partners, and suppliers who are not currently certified to obtain certification from one of the approved agencies.

15.6 Supplier Diversity Participation Waiver

15.6.1 The bidder is required to make a good faith effort to locate and contract with diverse firms. If a bidder has made a good faith effort to secure the required diverse firms and has failed, the bidder shall submit with the bid, the information requested in "Application for Supplier Diversity Participation Waiver." The Contracting Officer will review the bidder's actions as set forth in the bidder's "Application for Waiver" and any other factors deemed relevant by the Contracting Officer to determine if a good faith effort has been made to meet the applicable percentage goal. If the bidder is judged not to have made a good faith effort, the bid may be rejected. Bidder's who demonstrate that they have made a good faith effort to include Supplier Diversity participation may be awarded the contract regardless of the percent of Supplier Diversity participation, provided the bid is otherwise acceptable and is determined to be the best bid.

15.6.2 To determine good faith effort of the bidder, the Contracting Officer may evaluate factors including, but not limited to, the following:

15.6.2.1 The bidder’s attendance at pre-proposal meetings scheduled to inform bidders and diverse firms of contracting and subcontracting opportunities and responsibilities associated with Supplier Diversity participation.

15.6.2.2 The bidder’s advertisements in general circulation trade association, and diverse (minority) focused media concerning subcontracting opportunities.

15.6.2.3 The bidder’s written notice to specific diverse firms that their services were being solicited in sufficient time to allow for their effective participation.

15.6.2.4 The bidder’s follow-up attempts to the initial solicitation(s) to determine with certainty whether diverse firms were interested.

15.6.2.5 The bidder’s efforts to divide the work into packages suitable for subcontracting to diverse firms.

15.6.2.6 The bidder’s efforts to provide interested diverse firms with sufficiently detailed information about the drawings, specific actions and requirements of the contract, and clear scopes of work for the firms to bid on.
15.6.2.7 The bidder’s efforts to solicit for specific sub-bids from diverse firms in good faith. Documentation should include names, addresses, and telephone numbers of firms contacted a description of all information provided the diverse firms, and an explanation as to why agreements were not reached.

15.6.2.8 The bidder's efforts to locate diverse firms not on the directory list and assist diverse firms in becoming certified as such.

15.6.2.9 The bidder's initiatives to encourage and develop participation by diverse firms.

15.6.2.10 The bidder’s efforts to help diverse firms overcome legal or other barriers impeding the participation of diverse firms in the construction contract.

15.6.2.11 The availability of diverse firms and the adequacy of the bidder's efforts to increase the participation of such business provided by the persons and organizations consulted by the bidder.

15.7 Submittal of Forms

15.7.1 The bidder will include the Supplier Diversity Compliance Evaluation Form(s), or the Application for Waiver and other form(s) as required above in the envelope containing the "Bidder's Statement of Qualifications", see Article 8.

15.8 Additional Bid/Proposer Information

15.8.1 The Contracting Officer reserves the right to request additional information regarding Supplier Diversity participation and supporting documentation from the apparent low bidder. The bidder shall respond in writing to the Contracting Officer within 24 hours (1 work day) of a request.

15.8.2 The Contracting Officer reserves the right to request additional information after the bidder has responded to prior 24 hour requests. This information may include follow up and/or clarification of the information previously submitted.

15.8.3 The Owner reserves the right to consider additional diverse subcontractor and supplier participation submitted by the bidder after bids are opened under the provisions within these contract documents that describe the Owner’s right to accept or reject subcontractors including, but not limited to, Article 16 below. The Owner may elect to waive the good faith effort requirement if such additional participation achieves the Supplier Diversity goal.

15.8.4 The Bidder shall provide the Owner information related to the Supplier Diversity participation included in the bidder’s proposal, including, but is not limited to, the complete Application for Waiver, evidence of diverse certification of participating firms, dollar amount of participation of diverse firms, information supporting a good faith effort as described in Article 15.6 above, and a list of all diverse firms that submitted bids to the Bidder with the diverse firm’s price and the name and the price of the firm awarded the scope of work bid by the diverse firm.

16. List of Subcontractors

16.1 If a list of subcontractors is required on the Bid for Lump Sum Contract Form, the bidders shall list the name, city and state of the firm(s) which will accomplish that portion of the contract requested in the space provided. This list is separate from both the list of diverse firms required in Article 15.2, and the complete list of subcontractors required in Article 10.1 of this document. Should the bidder choose to perform any of the listed portions of the work with its own forces, the bidder shall enter its own name, city and state in the space provided. If acceptance or non-acceptance of alternates will affect the designation of a subcontractor, the bidder shall provide that information on the bid form.

16.2 Failure of the bidder to supply the list of subcontractors required or the listing of more than one subcontractor for any category without designating the portion of the work to be performed by each, shall be grounds for the rejection of the bid. The bidder can petition the Owner to change a listed subcontractor within 48 hours of the bid opening. The Owner reserves the right to make the final determination on a petition to change a subcontractor. The Owner will consider factors such as clerical and mathematical bidding errors, listed subcontractor’s inability to perform the work for the bid used, etc. Any request to change a listed subcontractor shall include at a minimum, contractor’s bid sheet showing tabulation of the bid; all subcontractor bids with documentation of the time they were received by the contractor; and a letter from the listed subcontractor on their letterhead stating why they cannot perform the work if applicable. The Owner reserves the right to ask for additional information.

16.3 Upon award of the contract, the requirements of Article 10 of this document and Article 5 of the General Conditions of the Contract for Construction included in the contract documents will apply.
University of Missouri

General Conditions

of the

Contract

for

Construction

August 2018 Edition
TABLE OF ARTICLES

<table>
<thead>
<tr>
<th>1. GENERAL PROVISIONS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Basic Definitions</td>
<td>GC/1</td>
</tr>
<tr>
<td>1.2 Specifications and Drawings</td>
<td>GC/3</td>
</tr>
<tr>
<td>1.3 Required Provisions Deemed Inserted</td>
<td>GC/4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. OWNER</th>
<th>GC/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Information and Services Required of the Owner</td>
<td>GC/4</td>
</tr>
<tr>
<td>2.2 Owner's Right to Stop the Work</td>
<td>GC/4</td>
</tr>
<tr>
<td>2.3 Owner's Right to Carry Out the Work</td>
<td>GC/4</td>
</tr>
<tr>
<td>2.4 Extent of Owner Rights</td>
<td>GC/4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. CONTRACTOR</th>
<th>GC/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Contractor's Warranty</td>
<td>GC/5</td>
</tr>
<tr>
<td>3.2 Compliance with Laws, Permits, Regulations and Inspections</td>
<td>GC/5</td>
</tr>
<tr>
<td>3.3 Anti-Kickback</td>
<td>GC/6</td>
</tr>
<tr>
<td>3.4 Supervision and Construction Procedures</td>
<td>GC/6</td>
</tr>
<tr>
<td>3.5 Use of Site</td>
<td>GC/7</td>
</tr>
<tr>
<td>3.6 Review of Contract Documents and Field Conditions by Contractor</td>
<td>GC/8</td>
</tr>
<tr>
<td>3.7 Cleaning and Removal</td>
<td>GC/8</td>
</tr>
<tr>
<td>3.8 Cutting and Patching</td>
<td>GC/9</td>
</tr>
<tr>
<td>3.9 Indemnification</td>
<td>GC/9</td>
</tr>
<tr>
<td>3.10 Patents</td>
<td>GC/9</td>
</tr>
<tr>
<td>3.11 Materials, Labor, and Workmanship</td>
<td>GC/10</td>
</tr>
<tr>
<td>3.12 Approved Equal</td>
<td>GC/11</td>
</tr>
<tr>
<td>3.13 Shop Drawings, Product Data and Samples</td>
<td>GC/11</td>
</tr>
<tr>
<td>3.14 Record Drawings</td>
<td>GC/12</td>
</tr>
<tr>
<td>3.15 Operating Instructions and Service Manual</td>
<td>GC/13</td>
</tr>
<tr>
<td>3.16 Taxes</td>
<td>GC/13</td>
</tr>
<tr>
<td>3.17 Contractor's Construction Schedules</td>
<td>GC/14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. ADMINISTRATION OF THE CONTRACT</th>
<th>GC/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Rights of the Owner</td>
<td>GC/14</td>
</tr>
<tr>
<td>4.2 Rights of the Architect</td>
<td>GC/15</td>
</tr>
<tr>
<td>4.3 Review of the Work</td>
<td>GC/15</td>
</tr>
<tr>
<td>4.4 Claims</td>
<td>GC/15</td>
</tr>
<tr>
<td>4.5 Claims for Concealed or Unknown Conditions</td>
<td>GC/16</td>
</tr>
<tr>
<td>4.6 Claim for Additional Cost</td>
<td>GC/16</td>
</tr>
<tr>
<td>4.7 Claims for Additional Time</td>
<td>GC/16</td>
</tr>
<tr>
<td>4.8 Resolution of Claims and Disputes</td>
<td>GC/17</td>
</tr>
<tr>
<td>4.9 Administrative Review</td>
<td>GC/17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. SUBCONTRACTORS</th>
<th>GC/18</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Award of Subcontracts</td>
<td>GC/18</td>
</tr>
<tr>
<td>5.2 Subcontractual Relations</td>
<td>GC/18</td>
</tr>
<tr>
<td>5.3 Contingent Assignment of Subcontract</td>
<td>GC/18</td>
</tr>
</tbody>
</table>

| 6. SEPARATE CONTRACTS AND COOPERATION | GC/18 |

<table>
<thead>
<tr>
<th>7. CHANGES IN THE WORK</th>
<th>GC/19</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Change Orders</td>
<td>GC/19</td>
</tr>
<tr>
<td>7.2 Construction Change Directive</td>
<td>GC/20</td>
</tr>
<tr>
<td>7.3 Overhead and Profit</td>
<td>GC/20</td>
</tr>
<tr>
<td>7.4 Extended General Conditions</td>
<td>GC/21</td>
</tr>
<tr>
<td>7.5 Emergency Work</td>
<td>GC/21</td>
</tr>
</tbody>
</table>
8. TIME ... GC/21

8.1 Progress and Completion .. GC/21
8.2 Delay in Completion .. GC/22
8.3 Liquidated Damages .. GC/22

9. PAYMENTS AND COMPLETION .. GC/23

9.1 Commencement, Prosecution and Completion GC/23
9.2 Contract Sum .. GC/24
9.3 Schedule of Values .. GC/24
9.4 Applications for Payment .. GC/24
9.5 Approval for Payment ... GC/25
9.6 Decisions to Withhold Approval .. GC/25
9.7 Progress Payments ... GC/25
9.8 Failure of Payment .. GC/26
9.9 Substantial Completion .. GC/26
9.10 Partial Occupancy or Use .. GC/26
9.11 Final Completion and Final Payment GC/27

10. PROTECTION OF PERSONS AND PROPERTY GC/27

10.1 Safety Precautions and Programs .. GC/27
10.2 Safety of Persons and Property .. GC/28

11. INSURANCE & BONDS ... GC/28

11.1 Insurance ... GC/28
11.2 Commercial General Liability ... GC/28
11.3 Licensed for Use Vehicle Liability .. GC/29
11.4 Workers’ Compensation Insurance GC/29
11.5 Liability Insurance General Requirements GC/29
11.6 Builder’s Risk Insurance ... GC/30
11.7 Bonds ... GC/31

12. UNCOVERING AND CORRECTION OF THE WORK GC/32

12.1 Uncovering of the Work .. GC/32
12.2 Correction of the Work .. GC/32
12.3 Acceptance of Nonconforming Work GC/33

13. MISCELLANEOUS PROVISIONS GC/33

13.1 Written Notice ... GC/33
13.2 Rights and Remedies ... GC/33
13.3 Tests and Inspections ... GC/33
13.4 Nondiscrimination in Employment Equal Opportunity GC/34
13.5 Supplier Diversity Goal Program .. GC/34
13.6 Wage Rates .. GC/35
13.7 Records ... GC/36
13.8 Codes and Standards ... GC/37
13.9 General Provisions ... GC/37
13.10 Debarment and Suspension Certificate GC/38
14. TERMINATION OR SUSPENSION OF THE CONTRACT

14.1 Termination by Owner for Cause

14.2 Suspension by the Owner for Convenience

14.3 Owner’s Termination for Convenience
1.1 Basic Definitions
As used in the Contract Documents, the following terms shall have the meanings and refer to the parties designated in these definitions.

1.1.1 Owner
The Curators of the University of Missouri. The Owner may act through its Board of Curators or any duly authorized committee or representative thereof.

1.1.2 Contracting Officer
The Contracting Officer is the duly authorized representative of the Owner with the authority to execute contracts. Communications to the Contracting Officer shall be forwarded via the Owner's Representative.

1.1.3 Owner's Representative
The Owner’s Representative is authorized by the Owner as the administrator of the Contract and will represent the Owner during the progress of the Work. Communications from the Architect to the Contractor and from the Contractor to the Architect shall be through the Owner's Representative, unless otherwise indicated in the Contract Documents.

1.1.4 Architect
When the term "Architect" is used herein, it shall refer to the Architect or the Engineer specified and defined in the Contract for Construction or its duly authorized representative. Communications to the Architect shall be forwarded to the address shown in the Contract for Construction.

1.1.5 Contractor
The Contractor is the person or entity with whom the Owner has entered into the Contract for Construction. The term “Contractor” means the Contractor or the Contractor’s authorized representative.

1.1.6 Subcontractor and Lower-tier Subcontractor
A Subcontractor is a person or organization who has a contract with the Contractor to perform any of the Work. The term "Subcontractor" is referred to throughout the Contract Documents as if singular in number and means a Subcontractor or its authorized representative. The term "Subcontractor" also is applicable to those furnishing materials to be incorporated in the Work whether work performed is at the Owner’s site or off site, or both. A lower-tier Subcontractor is a person or organization who has a contract with a Subcontractor or another lower-tier Subcontractor to perform any of the Work at the site. Nothing contained in the Contract Documents shall create contractual relationships between the Owner or the Architect and any Subcontractor or lower-tier Subcontractor of any tier.

1.1.7 Supplier Diversity Definitions
Businesses that fall into the Supplier Diversity classification shall mean an approved certified business concern which is at least fifty-one percent (51%) owned and controlled by one (1) or more diverse suppliers as described below.

1.2 Women Business Enterprise (WBE)
Women Business Enterprise [WBE] shall mean an approved certified business concern which is at least fifty-one percent (51%) owned and controlled by one (1) or more women or, in the case of any publicly-owned business, in which at least fifty-one percent (51%) of the stock of which is owned by one (1) or more women, and whose management and daily business operations are controlled by one (1) or more women.

1.3 Veteran Owned Business
Veteran Owned Business shall mean an approved certified business concern which is at least fifty-one percent (51%) owned and controlled by one (1) or more Veterans or, in the case of any publicly-owned business, in which at least fifty-one percent (51%) of the stock of which is owned by one (1) or more Veterans, and whose management and daily business operations are controlled by one (1) or more Veterans.

1.4 Service Disabled Veteran Enterprise (SDVE)
Service Disabled Veteran Enterprise (SDVE) shall mean a business certified by the State of Missouri Office of Administration as a Service Disabled Veteran Enterprise, which is at least fifty-one percent (51%) owned and controlled by one (1) or more Serviced Disabled Veterans or,
in the case of any publicly-owned business, in which at least fifty-one percent (51%) of the stock of which is owned by one (1) or more Service Disabled Veterans, and whose management and daily business operations are controlled by one (1) or more Serviced Disabled Veterans.

.5 Disadvantaged Business Enterprise (DBE)
A Disadvantaged Business Enterprise (DBE) is a for-profit small business concern where a socially and economically disadvantaged individual owns at least 51% interest and also controls management and daily business operations. These firms can and also be referred to as Small Disadvantaged Businesses (SDB). Eligibility requirements for certification are stated in 49 CFR (Code of Federal Regulations), part 26, Subpart D.

U.S. citizens that are African-Americans, Hispanics, Native Americans, Asian-Pacific and Subcontinent Asian Americans, and women are presumed to be socially and economically disadvantaged. Also recognized as DBE’s are Historically Black Colleges and Universities (HBCU) and small businesses located in Federal HUB Zones.

To be regarded as economically disadvantaged, an individual must have a personal net worth that does not exceed $1.32 million. To be seen as a small business, a firm must meet Small Business Administration (SBA) size criteria (500 employees or less) and have average annual gross receipts not to exceed $22.41 million. To be considered a DBE/SDB, a small business owned and controlled by socially and/or economically disadvantaged individuals must receive DBE certification from one of the recognized Missouri state agencies to be recognized in this classification.

1.1.9 Work
Work shall mean supervision, labor, equipment, tools, material, supplies, incidentals operations and activities required by the Contract Documents or reasonably inferable by Contractor therefrom as necessary to produce the results intended by the Contract Documents in a safe, expeditious, orderly, and workmanlike manner, and in the best manner known to each respective trade.

1.1.10 Approved
The terms "approved", "equal to", "directed", "required", "ordered", "designated", "acceptable", "satisfactory", and similar words or phrases will be understood to have reference to action on the part of the Architect and/or the Owner's Representative.

1.1.11 Contract Documents
The Contract Documents consist of (1) the executed Contract for Construction, (2) these General Conditions of the Contract for Construction, (3) any Supplemental Conditions or Special Conditions identified in the Contract for Construction, (4) the Specifications identified in the Contract for Construction, (5) the Drawings identified in the Contract for Construction, (6) Addenda issued prior to the receipt of bids, (7) Contractor’s bid addressed to Owner, including Contractor’s completed Qualification Statement, (8) Contractor’s Performance Bond and Contractor’s Payment Bond, (9) Notice to Proceed, (10) and any other exhibits and/or post bid adjustments identified in the Contract for Construction, (11) Advertisement for Bid, (12) Information for Bidders, and (13) Change Orders issued after execution of the Contract. All other documents and technical reports and information are not Contract Documents, including without limitation, Shop Drawings, and Submittals.

1.1.12 Contract
The Contract Documents form the Contract and are the exclusive statement of agreement between the parties. The Contract represents the entire and integrated agreement between the parties hereto and supersedes prior representations or agreements, either written or oral. The Contract Documents shall not be construed to create a contractual relationship of any kind between the Owner and a Subcontractor or any lower-tier Subcontractor.

1.1.13 Change Order
The Contract may be amended or modified without invalidating the Contract, only by a Change Order, subject to the limitations in Article 7 and elsewhere in the Contract Documents. A Change Order is a written instrument signed by the Owner and the Contractor stating their agreement to a change in the Work, the amount of the adjustment to the Contract Sum, if any, and the extent of the adjustment to the Contract Time, if any. Agreement to any Change Order shall constitute a final settlement of all matters relating to the change in the work which is the subject of the Change Order, including, but not limited to, all direct and indirect costs associated with such change and any and all adjustments of the Contract sum, time and schedule.

1.1.14 Substantial Completion
The terms “Substantial Completion” or "substantially complete" as used herein shall be construed to mean the completion of the entire Work, including all submittals required under the Contract Documents, except minor items which in the opinion of the Architect, and/or the Owner's Representative will not interfere with the complete and satisfactory use of the facilities for the purposes intended.

1.1.15 Final Completion
The date when all punch list items are completed, including all closeout submittals and approval by the Architect is given to the Owner in writing.

1.1.16 Supplemental and Special Conditions
The terms “Supplemental Conditions” or “Special Conditions” shall mean the part of the Contract Documents which amend, supplement, delete from, or add to these General Conditions.

1.1.17 Day
The term "day" as used in the Contract Documents shall mean calendar day unless otherwise specifically defined.

1.1.18 Knowledge.
The terms “knowledge,” “recognize” and “discover,” their respective derivatives and similar terms in the Contract Documents, as used in reference to the Contractor, shall be interpreted to mean that which the Contractor knows or should know, recognizes or should recognize and discovers or should discover in exercising the care, skill, and diligence of a diligent and prudent contractor familiar with the work. Analogously, the expression “reasonably inferable” and similar terms in the Contract Documents shall be interpreted to mean reasonably inferable by a diligent and prudent contractor familiar with the work.

1.1.19 Punch List
“Punch List” means the list of items, prepared in connection with the inspection of the Project by the Owner’s Representative or Architect in connection with Substantial Completion of the Work or a portion of the Work, which the Owner’s Representative or Architect has designated as remaining to be performed, completed or corrected before the Work will be accepted by the Owner.

1.1.20 Public Works Contracting Minimum Wage
The public works contracting minimum wage shall be equal to one hundred twenty percent of the average hourly wage in a particular locality, as determined by the Missouri economic research and information center within the department of economic development, or any successor agency.

1.2 Specifications and Drawings
1.2.1 The Specifications are that portion of the Contract Documents consisting of the written requirements for materials, equipment, construction system, standards and workmanship and performance of related services for the Work identified in the Contract for Construction. Specifications are separated into titled divisions for convenience of reference only. Organization of the Specifications into divisions, sections and articles, and arrangement of Drawings shall not control the Contractor in dividing the Work among Subcontractors or in establishing the extent of Work to be performed by any trade. Such separation will not operate to make the Owner or the Architect an arbiter of labor disputes or work agreements.

1.2.2 The drawings herein referred to, consist of drawings prepared by the Architect and are enumerated in the Contract Documents.

1.2.3 Drawings are intended to show general arrangements, design, and dimensions of work and are partly diagrammatic. Dimensions shall not be determined by scale or rule. If figured dimensions are lacking, they shall be supplied by the Architect on the Contractor's written request to the Owner's Representative.

1.2.4 The intent of the Contract Documents is to include all items necessary for the proper execution and completion of the Work by the Contractor. The Contract Documents are complimentary, and what is required by one shall be as binding as if required by all; performance by the Contractor shall be required only to the extent consistent with the Contract Documents and reasonably inferable from them as being necessary to produce the intended results.

1.2.5 In the event of inconsistencies within or between parts of the Contract Documents, or between the Contract Documents and applicable standards, codes and ordinances, the Contractor shall (1) provide the better quality or greater quantity of Work or (2) comply with the more stringent requirement; either or both in accordance with the Owner’s Representative’s interpretation. On the Drawings, given dimensions shall take precedence over scaled measurements and large scale drawings over small scale drawings. Before ordering any materials or doing any Work, the Contractor and each Subcontractor shall verify measurements at the Work site and shall be responsible for the correctness of such measurements. Any difference which may be found shall be submitted to the Owner’s Representative and Architect for resolution before proceeding with the Work. If a minor change in the Work is found necessary due to actual field conditions, the Contractor shall submit detailed drawings of such change to the Owner’s Representative and Architect before making the change.

1.2.6 Data in the Contract Documents concerning lot size, ground elevations, present obstructions on or near the site, locations and depths of sewers, conduits, pipes, wires, etc., position of sidewalks, curbs, pavements, etc., and nature of ground and subsurface conditions have been obtained from sources the Architect believes reliable, but the Architect and Owner do not represent or warrant that this information is accurate or complete. The Contractor shall verify such data to the extent possible through normal construction procedures, including but not limited to contacting utility owners and by prospecting.

1.2.7 Only work included in the Contract Documents is authorized, and the Contractor shall do no work other than that described therein.

GC/3
08/18
1.2.8 Execution of the Contract by the Contractor is a representation that the Contractor has visited the site, become familiar with local conditions under which the Work is to be performed and correlated personal observations with requirements of the Contract Documents. Contractor represents that it has performed its own investigation and examination of the Work site and its surroundings and satisfied itself before entering into this Contract as to:

1. conditions bearing upon transportation, disposal, handling, and storage of materials;
2. the availability of labor, materials, equipment, water, electrical power, utilities and roads;
3. uncertainties of weather, river stages, flooding and similar characteristics of the site;
4. conditions bearing upon security and protection of material, equipment, and Work in progress;
5. the form and nature of the Work site, including the surface and sub-surface conditions;
6. the extent and nature of Work and materials necessary for the execution of the Work and the remedying of any defects therein; and
7. the means of access to the site and the accommodations it may require and, in general, shall be deemed to have obtained all information as to risks, contingencies and other circumstances.
8. the ability to complete work without disruption to normal campus activities, except as specifically allowed in the contract documents.

The Owner assumes no responsibility or liability for the physical condition or safety of the Work site or any improvements located on the Work site. The Contractor shall be solely responsible for providing a safe place for the performance of the Work. The Owner shall not be required to make any adjustment in either the Contract Sum or Contract Time concerning any failure by the Contractor or any Subcontractor to comply with the requirements of this Paragraph.

1.2.9 Drawings, specifications, and copies thereof furnished by the Owner are and shall remain the Owner’s property. They are not to be used on another project and, with the exception of one contract set for each party to the Contract, shall be returned to the Owner's Representative on request, at the completion of the Work.

1.3 Required Provisions Deemed Inserted
Each and every provision of law and clause required by law to be inserted in this Contract shall be deemed to be inserted herein, and the Contract shall be read and enforced as though it were included herein; and if through mistake or otherwise any such provision is not inserted, or is not correctly inserted, then upon the written application of either party the Contract shall forthwith be physically amended to make such insertion or correction.

ARTICLE 2
OWNER

2.1 Information and Services Required of the Owner
2.1.1 Permits and fees are the responsibility of the Contractor under the Contract Documents, unless specifically stated in the contract documents that the Owner will secure and pay for specific necessary approvals, easements, assessments, and charges required for construction, use or occupancy of permanent structures, or for permanent changes in existing facilities.

2.1.2 When requested in writing by the Contractor, information or services under the Owner's control, which are reasonably necessary to perform the Work, will be furnished by the Owner with reasonable promptness to avoid delay in the orderly progress of the Work.

2.2 Owner's Right to Stop the Work
2.2.1 If the Contractor fails to correct Work which is not in strict accordance with the requirements of the Contract Documents or fails to carry out Work in strict accordance with the Contract Documents, the Owner's Representative may order the Contractor to stop the Work, or any portion thereof, until the cause for such order has been eliminated; however, the right of the Owner to stop the Work will not give rise to a duty on the part of the Owner to exercise this right for the benefit of the Contractor or any other person or entity. Owner’s lifting of Stop Work Order shall not prejudice Owner’s right to enforce any provision of this Contract.

2.3 Owner's Right to Carry Out the Work
2.3.1 If the Contractor defaults or neglects to carry out the Work in accordance with the Contract Documents, and fails within a seven (7) day period after receipt of a written notice from the Owner to correct such default or neglect, the Owner may, without prejudice to other remedies the Owner may have, correct such default or neglect. In such case, an appropriate Change Order shall be issued deducting from payments then or thereafter due the Contractor the cost of correcting such deficiencies, including compensation for the Architect’s additional services and expenses made necessary by such default or neglect. If payments then or thereafter due the Contractor are not sufficient to cover such amounts, the Contractor shall pay the difference to Owner. However, such notice shall be waived in the event of an emergency with the potential for property damage or the endangerment of students, faculty, staff, the public or construction personnel, at the sole discretion of the Owner.

2.3.2 In the event the Contractor has not satisfactorily completed all items on the Punch List within thirty (30) days of its receipt, the Owner reserves the right to complete the Punch List without further notice to the Contractor or its
safety precautions and programs in connection with the Work, notwithstanding any of the rights and authority granted the Owner in the Contract Documents.

ARTICLE 3
CONTRACTOR

3.1 Contractor's Warranty
3.1.1 The Contractor warrants all equipment and materials furnished, and work performed, under this Contract, against defective materials and workmanship for a period of twelve months after acceptance as provided in this Contract, unless a longer period is specified, regardless of whether the same were furnished or performed by the Contractor or any Subcontractors of any tier. Upon written notice from the Owner of any breach of warranty during the applicable warranty period due to defective material or workmanship, the affected part or parts thereof shall be repaired or replaced by the Contractor at no cost to the Owner. Should the Contractor fail or refuse to make the necessary repairs, replacements, and tests when requested by the Owner, the Owner may perform, or cause the necessary work and tests to be performed, at the Contractor's expense, or exercise the Owner's rights under Article 14.

3.1.2 Should one or more defects mentioned above appear within the specified period, the Owner shall have the right to continue to use or operate the defective part or apparatus until the Contractor makes repairs or replacements or until such time as it can be taken out of service without loss or inconvenience to the Owner.

3.1.3 The above warranties are not intended as a limitation, but are in addition to all other express warranties set forth in this Contract and such other warranties as are implied by law, custom, and usage of trade. The Contractor, and its surety or sureties, if any, shall be liable for the satisfaction and full performance of the warranties set forth herein.

3.1.4 Neither the final payment nor any provision in the Contract Documents nor partial or entire occupancy of the premises by the Owner, nor expiration of warranty stated herein, will constitute an acceptance of Work not done in accordance with the Contract Documents or relieve the Contractor of liability in respect to any responsibility for non-conforming work. The Contractor shall immediately remedy any defects in the Work and pay for any damage to other Work resulting therefrom upon written notice from the Owner. Should the Contractor fail or refuse to remedy the non-conforming work, the Owner may perform, or cause to be performed the work necessary to bring the work into conformance with the Contract Documents at the Contractor's expense.

3.1.5 The Contractor agrees to defend, indemnify, and save harmless The Curators of the University of Missouri, their Officers, Agents, Employees and Volunteers, from and against all loss or expense from any injury or damages to property of others suffered or incurred on account of any breach of the aforesaid obligations and covenants. The Contractor agrees to investigate, handle, respond to and provide defense for and defend against any such liability, claims, and demands at the sole expense of the Contractor, or at the option of the University, agrees to pay to or reimburse the University for the defense costs incurred by the University in connection with any such liability claims, or demands. The parties hereto understand and agree that the University is relying on, and does not waive or intend to waive by any provision of this Contract, any monetary limitations or any other rights, immunities, and protections provided by the State of Missouri, as from time to time amended, or otherwise available to the University, or its officers, employees, agents or volunteers.

3.2 Compliance with Laws, Permits, Regulations and Inspections
3.2.1 The Contractor shall, without additional expense to the Owner, comply with all applicable laws, ordinances, rules, statutes, and regulations (collectively referred to as “Laws”).

3.2.2 Since the Owner is an instrumentality of the State of Missouri, municipal, or political subdivision, ordinances, zoning ordinances, and other like ordinances are not applicable to construction on the Owner's property, and the Contractor will not be required to submit plans and specifications to any municipal or political subdivision authority to obtain construction permits or any other licenses or permits from or submit to, inspection by any municipality or political subdivision relating to the construction on the Owner's property, unless required by the Owner in these Contract Documents or otherwise in writing.

GC/5
08/18
3.2.3 All fees, permits, inspections, or licenses required by municipality or political subdivision for operation on property not belonging to the Owner, shall be obtained by and paid for by the Contractor. The Contractor, of its own expense, is responsible to ensure that all inspections required by said permits or licenses on property, easements, or utilities not belonging to the Owner are conducted as required therein. All connection charges, assessments or transportation fees as may be imposed by any utility company or others are included in the Contract Sum and shall be the Contractor’s responsibility, as stated in 2.1.1 above.

3.2.4 If the Contractor has knowledge that any Contract Documents are at variance with any Laws, including Americans with Disabilities Act – Standards for Accessible Design, ordinances, rules, regulations or codes applying to the Work, Contractor shall promptly notify the Architect and the Owner’s Representative, in writing, and any necessary changes will be adjusted as provided in Contract Documents. However, it is not the Contractor’s primary responsibility to ascertain that the Contract Documents are in accordance with applicable Laws, unless such Laws bear upon performance of the Work.

3.3 Anti-Kickback

3.3.1 No member or delegate to Congress, or resident commissioner, shall be admitted to any share or part of this Contract or to any benefit that may arise therefrom, but this provision shall not be construed to extend to this Contract if made with a corporation for its general benefit.

3.3.2 No official of the Owner who is authorized in such capacity and on behalf of the Owner to negotiate, make, accept or approve, or to take part in negotiating, making, accepting, or approving any architectural, engineering, inspection, construction, or material supply contract or any Subcontract of any tier in connection with the construction of the Work shall have a financial interest in this Contract or in any part thereof, any material supply contract, Subcontract of any tier, insurance contract, or any other contract pertaining to the Work.

3.4 Supervision and Construction Procedures

3.4.1 The Contractor shall supervise and direct the Work, using the Contractor’s best skill and attention. The Contractor shall be solely responsible for and have control over construction means, methods, techniques, sequences, and procedures and for coordinating all portions of the Work under the Contract. The Contractor shall supply sufficient and competent supervision and personnel, and sufficient material, plant, and equipment to prosecute the Work with diligence to ensure completion thereof within the time specified in the Contract Documents, and shall pay when due any laborer, Subcontractor of any tier, or supplier.

3.4.2 The Contractor, if an individual, shall give the Work an adequate amount of personal supervision, and if a partnership or corporation or joint venture the Work shall be given an adequate amount of personal supervision by a partner or executive officer, as determined by the Owner's Representative.

3.4.3 The Contractor and each of its Subcontractors of any tier shall submit to the Owner such schedules of quantities and costs, progress schedules in accordance with 3.17.2 of this document, payrolls, reports, estimates, records, and other data as the Owner may request concerning Work performed or to be performed under the Contract.

3.4.4 The Contractor shall be represented at the site by a competent superintendent from the beginning of the Work until its final acceptance, whenever contract work is being performed, unless otherwise permitted in writing by the Owner's Representative. The superintendent for the Contractor shall exercise general supervision over the Work and such superintendent shall have decision making authority of the Contractor. Communications given to the superintendent shall be binding as if given to the Contractor. The superintendent shall not be changed by the contractor without approval from the Owner’s Representative.

3.4.5 The Contractor shall establish and maintain a permanent bench mark to which access may be had during progress of the Work, and Contractor shall establish all lines and levels, and shall be responsible for the correctness of such. Contractor shall be fully responsible for all layout work for the proper location of Work in strict accordance with the Contract Documents.

3.4.6 The Contractor shall establish and be responsible for wall and partition locations. If applicable, separate contractors shall be entitled to rely upon these locations and for setting their sleeves, openings, or chases.

3.4.7 The Contractor’s scheduled outage/tie-in plan, time, and date for any utilities is subject to approval by the Owner’s Representative. Communication with the appropriate entity and planning for any scheduled outage/tie-in of utilities shall be the responsibility of the Contractor. Failure of Contractor to comply with the provisions of this Paragraph shall cause Contractor to forfeit any right to an adjustment of the Contract Sum or Contract Time for any postponement, rescheduling or other delays ordered by Owner in connection with such Work. The Contractor shall follow the following procedures for all utility outages/tie-ins or disruption of any building system:

.1 All shutting of valves, switches, etc., shall be by the Owner's personnel.
.2 Contractor shall submit its preliminary outage/tie-in schedule with its baseline schedule.

.3 The Contractor shall request an outage/tie-in meeting at least two weeks before the outage/tie-in is required.

.4 The Owner's Representative will schedule an outage/tie-in meeting at least one week prior to the outage/tie-in.

3.4.8 The Contractor shall coordinate all Work so there shall be no prolonged interruption of existing utilities, systems and equipment of Owner. Any existing plumbing, heating, ventilating, air conditioning, or electrical disconnection necessary, which affect portions of this construction or building or any other building, must be scheduled with the Owner's Representative to avoid any disruption of operation within the building under construction or other buildings or utilities. In no case shall utilities be left disconnected at the end of a work day or over a weekend. Any interruption of utilities, either intentionally or accidentally, shall not relieve the Contractor from repairing and restoring the utility to normal service. Repairs and restoration shall be made before the workers responsible for the repair and restoration leave the job.

3.4.9 The Contractor shall be responsible for repair of damage to property on or off the project occurring during construction of project, and all such repairs shall be made to meet code requirements or to the satisfaction of the Owner's Representative if code is not applicable.

3.4.10 The Contractor shall be responsible for all shoring required to protect its work or adjacent property and shall pay for any damage caused by failure to shore or by improper shoring or by failure to give proper notice. Shoring shall be removed only after completion of permanent supports.

3.4.11 The Contractor shall maintain at his own cost and expense, adequate, safe and sufficient walkways, platforms, scaffolds, ladders, hoists and all necessary, proper, and adequate equipment, apparatus, and appliances useful in carrying on the Work and which are necessary to make the place of Work safe and free from avoidable danger for students, faculty, staff, the public and construction personnel, and as may be required by safety provisions of applicable laws, ordinances, rules regulations and building and construction codes.

3.4.12 During the performance of the Work, the Contractor shall be responsible for providing and maintaining warning signs, lights, signal devices, barricades, guard rails, fences, and other devices appropriately located on site which shall give proper and understandable warning to all persons of danger of entry onto land, structure, or equipment, within the limits of the Contractor’s work area.

3.4.13 The Contractor shall pump, bail, or otherwise keep any general excavations free of water. The Contractor shall keep all areas free of water before, during and after concrete placement. The Contractor shall be responsible for protection, including weather protection, and proper maintenance of all equipment and materials installed, or to be installed by him.

3.4.14 The Contractor shall be responsible for care of the Work and must protect same from damage of defacement until acceptance by the Owner. All damaged or defaced Work shall be repaired or replaced to the Owner's satisfaction, without cost to the Owner.

3.4.15 When requested by the Owner's Representative, the Contractor, at no extra charge, shall provide scaffolds or ladders in place as may be required by the Architect or the Owner for examination of Work in progress or completed.

3.4.16 The Contractor shall be responsible to the Owner for acts and omissions of the Contractor’s employees, Subcontractors of any tier and their agents and employees, and any entity or other persons performing portions of the Work.

3.4.17 The Contractor shall not be relieved of its obligations to perform the Work in accordance with the Contract Documents either by activities or duties of the Owner’s Representative or Architect in their administration of the Contract, or by tests, inspections or approvals required or performed by persons other than the Contractor.

3.4.18 The Contractor shall be responsible for inspection of portions of the Work already performed under this Contract to determine that such portions are in proper condition to receive subsequent Work.

3.5 Use of Site

3.5.1 The Contractor shall limit operations and storage of material to the area within the Work limit lines shown on Drawings, except as necessary to connect to exiting utilities, shall not encroach on neighboring property, and shall exercise caution to prevent damage to existing structures.

3.5.2 Only materials and equipment, which are to be used directly in the Work, shall be brought to and stored on the Work site by the Contractor. After equipment is no longer required for the Work, it shall be promptly removed from the Work site. Protection of construction materials and equipment stored at the Work site from weather, theft, damage and all other adversity is solely the responsibility of the Contractor.
3.5.3 No project signs shall be erected without the written approval of the Owner's Representative.

3.5.4 The Contractor shall ensure that the Work is at all times performed in a manner that affords reasonable access, both vehicular and pedestrian, to the site of the Work and all adjacent areas. Particular attention shall be paid to access for emergency vehicles, including fire trucks. Wherever there is the possibility of interfering with normal emergency vehicle operations, Contractor shall obtain permission from both campus and municipal emergency response entities prior to limiting any access. The Work shall be performed, to the fullest extent reasonably possible, in such a manner that public areas adjacent to the site of the Work shall be free from all debris, building materials and equipment likely to cause hazardous conditions. Without limitation of any other provision of the Contract Documents, Contractor shall not interfere with the occupancy or beneficial use of (1) any areas and buildings adjacent to the site of the Work or (2) the Work in the event of partial occupancy. Contractor shall assume full responsibility for any damage to the property comprising the Work or to the owner or occupant of any adjacent land or areas resulting from the performance of the Work.

3.5.5 The Contractor shall not permit any workers to use any existing facilities at the Work site, including, without limitation, lavatories, toilets, entrances, and parking areas other than those designated by Owner. The Contractor, Subcontractors of any tier, suppliers and employees shall comply with instructions or regulations of the Owner’s Representative governing access to, operation of, and conduct while in or on the premises and shall perform all Work required under the Contract Documents in such a manner as not to unreasonably interrupt or interfere with the conduct of Owner’s operations. Any request for Work, a suspension of Work or any other request or directive received by the Contractor from occupants of existing buildings shall be referred to the Owner’s Representative for determination.

3.5.6 The Contractor and the Subcontractor of any tier shall have its’ name, acceptable abbreviation or recognizable logo and the name of the city and state of the mailing address of the principal office of the company, on each motor vehicle and motorized self-propelled piece of equipment which is used in connection with the project. The signs are required on such vehicles during the time the Contractor is working on the project.

3.6 Review of Contract Documents and Field Conditions by Contractor

3.6.1 The Contractor shall carefully study and compare the Contract Documents with each other and with information furnished by the Architect and Owner and shall at once report in writing to the Architect and Owner’s Representative any errors, inconsistencies or omissions discovered. If the Contractor performs any construction activity which it knows or should have known involves a recognized error, inconsistency or omission in the Contract Documents without such written notice to the Architect and Owner’s Representative, the Contractor shall assume appropriate responsibility for such performance and shall bear an appropriate amount of the attributable costs for correction.

3.6.2 The Contractor shall take field measurements and verify field conditions and shall carefully compare such field measurements and conditions and other information known to the Contractor with the Contract Documents before commencing activities. Errors, inconsistencies or omissions discovered shall be reported in writing to the Architect and Owner’s Representative within twenty-four (24) hours. During the progress of work, Contractor shall verify all field measurements prior to fabrication of building components or equipment, and proceed with the fabrication to meet field conditions. Contractor shall consult all Contract Documents to determine the exact location of all work and verify spatial relationships of all work. Any question concerning said location or spatial relationships shall be submitted to the Owner's Representative. Specific locations for equipment, pipelines, ductwork and other such items of work, where not dimensioned on plans, shall be determined in consultation with Owner's Representative and Architect. Contractor shall be responsible for the proper fitting of the Work in place.

3.6.3 The Contractor shall provide, at the proper time, such material as required for support of the Work. If openings or chases are required, whether shown on Drawings or not, the Contractor shall see they are properly constructed. If required openings or chases are omitted, the Contractor shall cut them at the Contractors own expense, but only as directed by the Architect, through the Owner Representative.

3.6.4 Should the Contract Documents fail to particularly describe materials or goods to be used, it shall be the duty of the Contractor to inquire of the Architect and the Owner's Representative what is to be used and to supply it at the Contractor’s expense, or else thereafter replace it to the Owner’s Representative’s satisfaction. At a minimum, the Contractor shall provide the quality of materials as generally specified throughout the Contract Documents.

3.7 Cleaning and Removal

3.7.1 The Contractor shall keep the Work site and surrounding areas free from accumulation of waste materials, rubbish, debris, and dirt resulting from the Work and shall
clean the Work site and surrounding areas as requested by the Architect and the Owner's Representative, including mowing of grass greater than 6 inches high. The Contractor shall be responsible for the cost of clean up and removal of debris from premises. The building and premises shall be kept clean, safe, in a workmanlike manner, and in compliance with OSHA standards at all times. At completion of the Work, the Contractor shall remove from and about the Work site tools, construction equipment, machinery, fencing, and surplus materials. Further, at the completion of the work, all dirt, stains, and smudges shall be removed from every part of the building, all glass in doors and windows shall be washed, and entire Work shall be left broom clean in a finished state ready for occupancy. The Contractor shall advise his Subcontractors of any tier of this provision, and the Contractor shall be fully responsible for leaving the premises in a finished state ready for use to the satisfaction of the Owner's Representative. If the Contractor fails to comply with the provisions of this paragraph, the Owner may do so and the cost thereof shall be charged to the Contractor.

3.8 Cutting and Patching

3.8.1 The Contractor shall be responsible for cutting, fitting, or patching required to complete the Work or to make its parts fit together properly.

3.8.2 The Contractor shall not damage or endanger a portion of the Work or fully or partially completed construction of the Owner or separate contractors by cutting, patching, or otherwise altering such construction, or by excavation. The Contractor shall not cut or otherwise alter such construction by the Owner or a separate contractor except with written consent of the Owner and of such separate contractor; such consent shall not be unreasonably withheld. The Contractor shall not unreasonably withhold from the Owner or a separate contractor the Contractor's consent to cutting or otherwise altering the Work.

3.8.3 If the Work involves renovation and/or alteration of existing improvements, Contractor acknowledges that cutting and patching of the Work is essential for the Work to be successfully completed. Contractor shall perform any cutting, altering, patching, and/or fitting of the Work necessary for the Work and the existing improvements to be fully integrated and to present the visual appearance of an entire, completed, and unified project. In performing any Work which requires cutting or patching, Contractor shall use its best efforts to protect and preserve the visual appearance and aesthetics of the Work to the reasonable satisfaction of both the Owner’s Representative and Architect.

3.9 Indemnification

3.9.1 To the fullest extent permitted by law, the Contractor shall defend, indemnify, and hold harmless the Owner, the Architect, Architect’s consultants, and the agents, employees, representatives, insurers and re-insurers of any of the foregoing (hereafter collectively referred to as the “Indemnites”) from and against claims, damages (including loss of use of the Work itself), punitive damages, penalties and civil fines unless expressly prohibited by law, losses and expenses, including, but not limited to, attorneys’ fees, arising out of or resulting from performance of the Work to the extent caused in whole or in part by negligent acts or omissions or other fault of Contractor, a Subcontractor of any tier, or anyone directly or indirectly employed by them or anyone for whose acts they may be liable, regardless of whether or not such claim, damage, loss, or expense is caused in part by the negligent acts or omissions or other fault of a party indemnified hereunder. The Contractor’s obligations hereunder are in addition to and shall not be construed to negate, abridge, or reduce other rights or obligations of indemnity that the Owner may possess. If one or more of the Indemnites demand performance by the Contractor of obligations under this paragraph or other provisions of the Contract Documents and if Contractor refuses to assume or perform, or delays in assuming or performing Contractor’s obligations, Contractor shall pay each Indemnitee who has made such demand its respective attorneys’ fees, costs, and other expenses incurred in enforcing this provision. The defense and indemnity required herein shall be a binding obligation upon Contractor whether or not an Indemnitee has made such demand. Even if a defense is successful to a claim or demand for which Contractor is obligated to indemnify the Indemnites from under this Paragraph, Contractor shall remain liable for all costs of defense.

3.9.2 The indemnity obligations of Contractor under this Section 3.9 shall survive termination of this Contract or final payment hereunder. In the event of any claim or demand made against any party which is entitled to be indemnified hereunder, the Owner may in its sole discretion reserve, return or apply any monies due or to become due the Contractor under the Contract for the purpose of resolving such claims; provided, however, that the Owner may release such funds if the Contractor provides the Owner with reasonable assurance of protection of the Owner’s interests. The Owner shall in its sole discretion determine if such assurances are reasonable. Owner reserves the right to control the defense and settlement of any claim, action or proceeding which Contractor has an obligation to indemnify the Indemnites against under Paragraph 3.9.1.

3.9.3 In claims against any person or entity indemnified under this Section 3.9 by an employee of the Contractor, a Subcontractor of any tier, anyone directly or indirectly employed by them or anyone for whose acts they may be liable, the indemnification obligation under this Section 3.9 shall not be limited by a limitation on amount or type of
3.10 Patents
3.10.1 The Contractor shall hold and save harmless the Owner and its officers, agents, servants, and employees from liability of any nature or kind, including cost and expense, for, or on account of, any patented or otherwise protected invention, process, article, or appliance manufactured or used in the performance of the Contract, including its use by the Owner, unless otherwise specifically stipulated in the Contract Documents.

3.10.2 If the Contractor uses any design, device, or material covered by letters patent or copyright, he shall provide for such use by suitable agreement with the Owner of such patented or copyrighted design, device, or material. It is mutually agreed and understood, without exception, that the Contract Sum includes and the Contractor shall pay all royalties, license fees or costs arising from the use of such design, device, or material in any way involved in the Work. The Contractor and/or sureties shall indemnify and save harmless the Owner from any and all claims for infringement by reason of the use of such patented or copyrighted design, device, or material or any trademark or copyright in connection with Work agreed to be performed under this Contract and shall indemnify the Owner for any cost, expense, or damage it may be obligated to pay by reason of such infringement at any time during the prosecution of the Work or after completion of the Work.

3.11 Materials, Labor, and Workmanship
3.11.1 Materials and equipment incorporated into the Work shall strictly conform to the Contract Documents and representations and approved Samples provided by Contractor and shall be of the most suitable grade of their respective kinds for their respective uses, and shall be fit and sufficient for the purpose intended, merchantable, of good new material and workmanship, and free from defect. Workmanship shall be in accordance with the highest standard in the industry and free from defect in strict accordance with the Contract Documents.

3.11.2 Materials and fixtures shall be new and of latest design unless otherwise specified, and shall provide the most efficient operating and maintenance costs to the Owner. All Work shall be performed by competent workers and shall be of best quality.

3.11.3 The Contractor shall carefully examine the Contract Documents and shall be responsible for the proper fitting of his material, equipment, and apparatus into the building.

3.11.4 The Contractor shall base his bid only on the Contract Documents.

3.11.5 Materials and workmanship shall be subject to inspection, examination, and test by the Architect and the Owner's Representative at any and all times during manufacture, installation, and construction of any of them, at places where such manufacture, installation, or construction is performed.

3.11.6 The Contractor shall enforce strict discipline and good order among the Contractor's employees and other persons carrying out the Contract. The Contractor shall not permit employment of unfit persons or persons not skilled in tasks assigned to them.

3.11.7 Unless otherwise specifically noted, the Contractor shall provide and pay for supervision, labor, materials, equipment, tools, construction equipment and machinery, water, heat, utilities, transportation, and other facilities and services necessary for the proper execution and completion of the Work.

3.11.8 Substitutions
3.11.8.1 A substitution is a Contractor proposal of an alternate product or method in lieu of has been specified or shown in the Contract Documents, which is not an “or equal” as set forth in Section 3.12.1.

3.11.8.2 Contractor may make a proposal to the Architect and the Owner’s Representative to use substitute products or methods as set forth herein, but the Architect's and the Owner’s Representative’s decision concerning acceptance of a substitute shall be final. The Contractor must do so in writing and setting forth the following:

.1 Full explanation of the proposed substitution and submittal of all supporting data including technical information, catalog cuts, warranties, test results, installation instructions, operating procedures, and other like information necessary for a complete evaluation of the substitution.

.2 Reasons the substitution is advantageous and necessary, including the benefits to the Owner and the Work in the event the substitution is acceptable.

.3 The adjustment, if any, in the Contract Sum, in the event the substitution is acceptable.

.4 The adjustment, if any, in the time of completion of the Contract and the construction schedule in the event the substitution is acceptable.

.5 An affidavit stating that (a) the proposed substitution conforms to and meets all of the
Contract Documents, except as specifically disclosed and set forth in the affidavit and (b) the Contractor accepts the warranty and correction obligations in connection with the proposed substitution as if originally specified by the Architect. Proposals for substitutions shall be submitted to the Architect and Owner’s Representative in sufficient time to allow the Architect and Owner’s Representative no less than ten (10) working days for review. No substitution will be considered or allowed without the Contractor's submittal of complete substantiating data and information as stated herein.

3.11.8.3 Substitutions may be rejected without explanation in Owner’s sole discretion and will be considered only under one or more of the following conditions:

1. Required for compliance with interpretation of code requirements or insurance regulations then existing;
2. Unavailability of specified products, through no fault of the Contractor;
3. Material delivered fails to comply with the Contract Documents;
4. Subsequent information discloses inability of specified products to perform properly or to fit in designated space;
5. Manufacturer/fabricator refuses to certify or guarantee performance of specified product as required; or
6. When in the judgment of the Owner or the Architect, a substitution would be substantially to the Owner's best interests, in terms of cost, time, or other considerations.

3.11.8.4 Whether or not any proposed substitution is accepted by the Owner or the Architect, the Contractor shall reimburse the Owner for any fees charged by the Architect or other consultants for evaluating each proposed substitute.

3.12 Approved Equal

3.12.1 Whenever in the Contract Documents any article, appliance, device, or material is designated by the name of a manufacturer, vendor, or by any proprietary or trade name, the words "or approved equal," shall automatically follow and shall be implied unless specifically indicated otherwise. The standard products of manufacturers other than those specified will be accepted when, prior to the ordering or use thereof, it is proven to the satisfaction of the Owner’s Representative and the Architect they are equal in design, appearance, spare parts availability, strength, durability, usefulness, serviceability, operation cost, maintenance cost, and convenience for the purpose intended. Any general listings of approved manufacturers in any Contract Document shall be for informational purposes only and it shall be the Contractor’s sole responsibility to ensure that any proposed “or equal” complies with the requirements of the Contract Documents.

3.12.2 The Contractor shall submit to Architect and Owner’s Representative a written and full description of the proposed “or equal” including all supporting data, including technical information, catalog cuts, warranties, test results, installation instructions, operating procedures, and similar information demonstrating that the proposed “or equal” strictly complies with the Contract Documents. The Architect or Owner’s Representative shall take appropriate action with respect to the submission of a proposed “or equal” item. If Contractor fails to submit proposed “or equals” as set forth herein, it shall waive any right to supply such items. The Contract Sum and Contract Time shall not be adjusted as a result of any failure by Contractor to submit proposed “or equals” as provided for herein. All documents submitted in connection with preparing an “or equal” shall be clearly and obviously marked as a proposed “or equal” submission.

3.12.3 No approvals or action taken by the Architect or Owner’s Representative shall relieve Contractor from its obligation to ensure that an “or equal” article, appliance, devise or material strictly complies with the requirements of the Contract Documents. Contractor shall not propose “or equal” items in connection with Shop Drawings or other Submittals, and Contractor acknowledges and agrees that no approvals or action taken by the Architect or Owner’s Representative with respect to Shop Drawings or other Submittals shall constitute approval of any “or equal” item or relieve Contractor from its sole and exclusive responsibility. Any changes required in the details and dimensions indicated in the Contract Documents for the incorporation or installation of any “or equal” item supplied by the Contractor shall be properly made and approved by the Architect at the expense of the Contractor. No ‘or equal’ items will be permitted for components of or extensions to existing systems when, in the opinion of the Architect, the named manufacturer must be provided in order to ensure compatibility with the existing systems, including, but not limited to, mechanical systems, electrical systems, fire alarms, smoke detectors, etc. No action will be taken by the Architect with respect to proposed “or equal” items prior to receipt of bids, unless otherwise noted in the Special Conditions.

3.13 Shop Drawings, Product Data, Samples, and Coordination Drawings/BIM Models

3.13.1 Shop Drawings are drawings, diagrams, schedules and other data specifically prepared for the Work by the Contractor or a Subcontractor, sub-subcontractor, manufacturer, supplier or distributor to illustrate some portion of the Work.
3.13.2 Product Data are illustrations, standard schedules, performance charts, instructions, brochures, diagrams and other information furnished by the Contractor to illustrate materials or equipment for some portion of the Work.

3.13.3 Samples are physical samples which illustrate materials, equipment or workmanship and establish standards by which the Work will be judged.

3.13.4 Coordination Drawings are drawings for the integration of the Work, including work first shown in detail on shop drawings or product data. Coordination drawings show sequencing and relationship of separate units of work which must interface in a restricted manner to fit in the space provided, or function as indicated. Coordination Drawings are the responsibility of the contractor and are submitted for informational purposes. The Special Conditions will state whether coordination drawings are required. BIM models may be used for coordination in lieu of coordination drawings at the contractor’s discretion, unless required in the Special Conditions. The final coordination drawings/BIM Model will not change the contract documents, unless approved by a fully executed change order describing the specific modifications that are being made to the contract documents.

3.13.5 Shop Drawings, Coordination Drawings/BIM Models, Product Data, Samples and similar submittals (collectively referred to as “Submittals”) are not Contract Documents. The purpose of their submittal is to demonstrate for those portions of the Work for which submittals are required the way the Contractor proposes to conform to the information given and the design concept expressed in the Contract Documents.

3.13.6 The Contractor shall schedule submittal of Shop Drawings and Product Data to the Architect so that no delays will result in delivery of materials and equipment, advising the Architect of priority for checking of Shop Drawings and Product Data, but a minimum of two weeks shall be provided for this purpose. Because time is of the essence in this contract, unless noted otherwise in the Special Conditions or Technical Specifications, all submittals, shop drawings and samples must be submitted as required to maintain the contractor’s plan for proceeding, but must be submitted within 90 days of the Notice To Proceed. If Contractor believes that this milestone is unreasonable for any submittal, Contractor shall request an extension of this milestone, within 60 days of Notice To Proceed, for each submittal that cannot meet the milestone. The request shall contain a reasonable explanation as to why the 90 day milestone is unrealistic, and shall specify a date on which the submittal will be transmitted, for approval by the Owner’s Representative. Failure of the Contractor to comply with this section may result in delays in the submittal approval process and/or charges for expediting approval, both of which will be the responsibility of the Contractor.

3.13.7 The Contractor, at its own expense, shall submit Samples required by the Contract Documents with reasonable promptness as to cause no delay in the Work or the activities of separate contractors and no later than twenty (20) days before materials are required to be ordered for scheduled delivery to the Work site. Samples shall be labeled to designate material or products represented, grade, place of origin, name of producer, name of Contractor and the name and number of the Owner’s project. Quantities of Samples shall be twice the number required for testing so that Architect can return one set of the Samples. Materials delivered before receipt of Architect’s approval may be rejected by Architect and in such event, Contractor shall immediately remove all such materials from the Work site. When requested by Architect or Owner’s Representative, samples of finished masonry and field applied paints and finishes shall be located as directed and shall include sample panels built at the site of approximately twenty (20) square feet each.

3.13.8 The Contractor shall perform no portion of the Work requiring submittal and review of Shop Drawings, Product Data, Samples or similar submittals until the respective submittal has been approved by the Architect. Such Work shall be in accordance with approved submittals.

3.13.9 By approving and submitting Shop Drawings, Product Data, Samples and similar submittals, the Contractor represents such Submittals strictly comply with the requirements of the Contract Documents and that the Contractor has determined and verified field measurements and field construction criteria related thereto, that materials are fit for their intended use and that the fabrication, shipping, handling, storage, assembly and installation of all materials, systems and equipment are in accordance with best practices in the industry and are in strict compliance with any applicable requirements of the Contract Documents. Contractor shall also coordinate each Submittal with other Submittals.

3.13.10 Contractor shall be responsible for the correctness and accuracy of the dimensions, measurements and other information contained in the Submittals.

3.13.11 Each Submittal will bear a stamp or specific indication that the Submittal complies with the Contract Documents and Contractor has satisfied its obligations under the Contract Documents with respect to Contractor’s review and approval of that Submittal. Each Submittal shall bear the signature of the representative of Contractor who approved the Submittal, together with the Contractor’s name, Owner’s name, number of the Project, and the item name and specification section number.

3.13.12 The Contractor shall not be relieved of responsibility for deviations from requirements of the Contract Documents by the Architect's approval of Shop Drawings, Product Data,
Samples or similar submittals. The Contractor shall not be relieved of responsibility for errors or omissions in Shop Drawings, Product Data, Samples or similar submittals by the Architect's approval thereof. Specifically, but not by way of limitation, Contractor acknowledges that Architect's approval of Shop Drawings shall not relieve Contractor for responsibility for errors and omissions in the Shop Drawings since Contractor is responsible for the correctness of dimensions, details and the design of adequate connections and details contained in the Shop Drawings.

3.13.13 The Contractor shall direct specific attention, in writing or on resubmitted Shop Drawings, Product Data, Samples or similar submittals, to revisions other than those requested by the Architect on previous Submittals.

3.13.14 The Contractor represents and warrants that all Shop Drawings shall be prepared by persons and entities possessing expertise and experience in the trade for which the Shop Drawing is prepared and, if required by the Architect or applicable Laws, by a licensed engineer or other design professional.

3.14 Record Drawings

3.14.1 The Contractor shall maintain a set of Record Drawings on site in good condition and shall use colored pencils to mark up said set with "record information" in a legible manner to show: (1) bidding addendums, (2) executed change orders, (3) deviations from the Drawings made during construction; (4) details in the Work not previously shown; (5) changes to existing conditions or existing conditions found to differ from those shown on any existing drawings; (6) the actual installed position of equipment, piping, conduits, light switches, electric fixtures, circuiting, ducts, dampers, access panels, control valves, drains, openings, and stub-outs; and (7) such other information as either Owner or Architect may reasonably request. The prints for Record Drawing use will be a set of "blue line" prints provided by Architect to Contractor at the start of construction. Upon Substantial Completion of the Work, Contractor shall deliver all Record Drawings to Owner and Architect for approval. If not approved, Contractor shall make the revisions requested by Architect or Owner's Representative. Final payment and any retainage shall not be due and owing to Contractor until the final Record Drawings marked by Contractor as required above are delivered to Owner.

3.15 Operating Instructions and Service Manuals

3.15.1 The Contractor shall submit four (4) volumes of operating instructions and service manuals to the Architect before completing 50% of the adjusted contract amount. Payments beyond 50% of the adjusted contract amount may be withheld until all operating instructions and service manuals are received. The operating instructions and service manuals shall contain:

.1 Start-up and Shutdown Procedures: Provide a step-by-step write up of all major equipment. When manufacturer's printed start-up, trouble shooting and shut-down procedures are available, they may be incorporated into the operating manual for reference.

.2 Operating Instructions: Written operating instructions shall be included for the efficient and safe operation of all equipment.

.3 Equipment List: List of all major equipment as installed shall include model number, capacities, flow rate, and name-plate data.

.4 Service Instructions: The Contractor shall be required to provide the following information for all pieces of equipment.

(a) Recommended spare parts including catalog number and name of local suppliers or factory representative.

(b) Belt sizes, types, and lengths.

(c) Wiring diagrams.

.5 Manufacturer's Certificate of Warranty: Manufacturer's certificates of warranty shall be obtained for all major equipment. Warranty shall be obtained for at least one year from the date of Substantial Completion. Where longer period is required by the Contract Documents, the longer period shall govern.

.6 Parts catalogs: For each piece of equipment furnished, a parts catalog or similar document shall be provided which identifies the components by number for replacement ordering.

3.15.2 Submission

.1 Manuals shall be bound into volumes of standard 8 1/2" x 11" hard binders. Large drawings too bulky to be folded into 8 1/2" x 11" shall be separately bound or folded and in brown envelopes, cross-referenced and indexed with the manuals.

.2 The manuals shall identify the Owner's project name, project number, and include the name and address of the Contractor and major Subcontractors of any tier who were involved with the activity described in that particular manual.

3.16 Taxes

3.16.1 The Contractor shall pay all applicable sales, consumer, use, and similar taxes for the Work which are legally enacted when the bids are received, whether or not yet effective or scheduled to go into effect. However, certain purchases by the Contractor of materials incorporated in or consumed in the Work are exempt from certain sales tax pursuant to RSMo § 144.062. The Contractor shall be issued a Project Tax Exemption Certificate for this Work to obtain the benefits of RSMo § 144.062.

3.16.2 The Contractor shall furnish this certificate to all subcontractors, and any person or entity purchasing materials
for the Work shall present such certificate to all material suppliers as authorization to purchase, on behalf of the Owner, all tangible personal property and materials to be incorporated into or consumed in the Work and no other on a tax-exempt basis. Such suppliers shall provide to the purchasing party invoices bearing the name of the exempt entity and the project identification number. Nothing in this section shall be deemed to exempt from any sales or similar tax the purchase of any construction machinery, equipment or tools used in construction, repairing or remodeling facilities for the Owner. All invoices for all personal property and materials purchased under a Project Tax Exemption Certificate shall be retained by the Contractor for a period of five years and shall be subject to audit by the Director of Revenue.

3.16.3 Any excess resalable tangible personal property or materials which were purchased for the project under this Project Tax Exemption Certificate but which were not incorporated into or consumed in the Work shall either be returned to the supplier for credit or the appropriate sales or use tax on such excess property or materials shall be reported on a return and paid by such purchasing party not later than the due date of the purchasing party’s Missouri sales or use tax return following the month in which it was determined that the materials were not used in the Work.

3.16.4 If it is determined that sales tax is owed by the Contractor on property and materials due to the failure of the Owner to revise the certificate expiration date to cover the applicable date of purchase, Owner shall be liable for the tax owed.

3.16.5 The Owner shall not be responsible for any tax liability due to Contractor’s neglect to make timely orders, payments, etc. or Contractor’s misuse of the Project Tax Exemption Certificate. Contractor represents that the Project Tax Exemption Certificate shall be used in accordance with RSMo § 144.062 and the terms of the Project Tax Exemption Certificate. Contractor shall indemnify the Owner for any loss or expense, including but not limited to, reasonable attorneys’ fees, arising out of Contractor’s use of the Project Tax Exemption Certificate.

3.17 Contractor’s Construction Schedules

3.17.1 The Contractor, within fifteen (15) days after the issuance of the Notice to Proceed, shall prepare and submit for the Owner’s and Architect's information Contractor's construction schedule for the Work and shall set forth interim dates for completion of various components of the Work and Work Milestone Dates as defined herein. The schedule shall not exceed time limits current under the Contract Documents, shall be revised on a monthly basis or as requested by the Owner’s Representative as required by the conditions of the Work, and shall provide for expeditious and practicable execution of the Work. The Contractor shall conform to the most recent schedule.

3.17.2 The construction schedule shall be in a detailed format satisfactory to the Owner’s Representative and the Architect and in accordance with the detailed schedule requirements set forth in this document and the Special Conditions. If the Owner’s Representative or Architect has a reasonable objection to the schedule submitted by Contractor, the construction schedule shall be promptly revised by the Contractor. The Contractor shall monitor the progress of the Work for conformance with the requirements of the construction schedule and shall promptly advise the Owner of any delays or potential delays.

3.17.3 As time is of the essence to this contract, the University expects that the Contractor will take all necessary steps to insure that the project construction schedule shall be prepared in accordance with the specific requirements of the Special Conditions to this contract. At a minimum, contractor shall comply with the following:

1. The schedule shall be prepared using Primavera P3, Oracle P6, Microsoft Project or other software acceptable to the Owner’s Representative.

2. The schedule shall be prepared and maintained in CPM format, in accordance with Construction CPM Scheduling, published by the Associated General Contractors of American (AGC).

3. Prior to submittal to the Owner’s Representative for review, Contractor shall obtain full buy-in to the schedule from all major subcontractors, in writing if so requested by Owner’s Representative.

4. Schedule shall be updated, in accordance with Construction CPM Scheduling, published by the AGC, on a monthly basis at minimum, prior to, and submitted with, the monthly pay application or as requested by the Owner’s Representative.

5. Along with the update the Contractor shall submit a narrative report addressing all changes, delays and impacts, including weather to the schedule during the last month, and explain how the end date has been impacted by same.

6. The submission of the updated certifies that all delays and impacts that have occurred on or to the project during the previous month have been factored into the update and are fully integrated into the schedule and the projected completion date.

Failure to comply with any of these requirements will be considered a material breach of this contract. See Special Conditions for detailed scheduling requirements.

3.17.4 In the event the Owner’s Representative or Architect determines that the performance of the Work, as of a Milestone Date, has not progressed or reached the level of completion required by the Contract Documents, the Owner shall have the
right to order the Contractor to take corrective measures necessary to expedite the progress of construction, including, without limitation, (1) working additional shifts or overtime, (2) supplying additional manpower, equipment, facilities, (3) expediting delivery of materials, and (4) other similar measures (hereinafter referred to collectively as Extraordinary Measures). Such Extraordinary Measures shall continue until the progress of the Work complies with the stage of completion required by the Contract Documents. The Owner's right to require Extraordinary Measures is solely for the purpose of ensuring the Contractor's compliance with the construction schedule. The Contractor shall not be entitled to an adjustment in the Contract Sum concerning Extraordinary Measures required by the Owner under or pursuant to this Paragraph 3.17.3. The Owner may exercise the rights furnished the Owner under or pursuant to this Paragraph 3.17.3 as frequently as the Owner deems necessary to ensure that the Contractor's performance of the Work will comply with any Milestone Date or completion date set forth in the Contract Documents.

ARTICLE 4
ADMINISTRATION OF THE CONTRACT

4.1 Rights of the Owner

4.1.1 The Owner's Representative will administer the Construction Contract. The Architect will assist the Owner's Representative with the administration of the Contract as indicated in these Contract Documents.

4.1.2 If, in the judgment of the Owner's Representative, it becomes necessary to accelerate the work, the Contractor, when directed by the Owner's Representative in writing, shall cease work at any point and transfer its workers to such point or points and execute such portions of the work as may be required to enable others to hasten and properly engage and carry out the work, all as directed by the Owner's Representative. The additional cost of accelerating the work, if any, will be borne by the Owner, unless the Contractor's work progress is behind schedule as shown on the most recent progress schedule.

4.1.3 If the Contractor refuses, for any reason, to proceed with what the Owner believes to be contract work, the Owner may issue a Construction Directive, directing the Contractor to proceed. Contractor shall be obligated to promptly proceed with this work. If Contractor feels that it is entitled to additional compensation for this work, it may file a claim for additional compensation and/or time, in accordance with 4.4 of this document.

4.1.4 The Owner's Representative, may, by written notice, require a Contractor to remove from involvement with the Work, any of Contractor's personnel or the personnel of its Subcontractors of any tier whom the Owner's Representative may deem abusive, incompetent, careless, or a hindrance to proper and timely execution of the Work. The Contractor shall comply with such notice promptly, but without detriment to the Work or its progress.

4.1.5 The Owner's Representative will schedule Work status meetings that shall be attended by representatives of the Contractor and appropriate Subcontractors of any tier. Material suppliers shall attend status meetings if required by the Owner's Representative. These meetings shall include preconstruction meetings.

4.1.6 The Owner does not allow smoking on University property.

4.2 Rights of the Architect

4.2.1 The Architect will interpret requirements of the Contract Documents with respect to the quality, quantity and other technical requirements of the Work itself within a reasonable time after written request of the Contractor. Contractor shall provide Owner’s Representative a copy of such written request.

4.3 Review of the Work

4.3.1 The Architect and the Owner's Representative shall, at all times, have access to the Work; and the Contractor shall provide proper and safe facilities for such access.

4.3.2 The Owner’s Representative shall have authority to reject Work that does not strictly comply with the requirements of the Contract Documents. Whenever the Owner’s Representative considers it necessary or advisable for implementation of the intent of the Contract Documents, Owner’s Representative shall have the authority to require additional inspection or testing of the Work, whether or not such Work is fabricated, installed or completed.

4.3.3 The fact that the Architect or the Owner's Representative observed, or failed to observe, faulty Work, or Work done which is not in accordance with the Contract Documents, regardless of whether or not the Owner has released final payment, shall not relieve the Contractor from responsibility for all damages and additional costs of the Owner as a result of defective or faulty Work.

4.4 Claims

4.4.1 A Claim is a demand or assertion by Contractor seeking, as a matter of right, adjustment or interpretation of Contract terms, payment of money, extension of time or any other relief with respect to the terms of the Contract. The term "Claim(s)" also includes demands and assertions of Contractor arising out of or relating to the Contract Documents, including Claims based upon breach of contract, mistake, misrepresentation, or other cause for Contract Modification or
Claims must be made by written notice. Contractor shall have the responsibility to substantiate Claims.

4.4.2 Claims by Contractor must be made promptly, and no later than within fourteen (14) days after occurrence of the event giving rise to such Claim. Claims must be made by written notice. Such notice shall include a detailed statement setting forth all reasons for the Claim and the amount of additional money and additional time claimed by Contractor. The notice of Claims shall also strictly comply with all other provisions of the Contract Documents. Contractor shall not be entitled to rely upon any grounds or basis for additional money on additional time not specifically set forth in the notice of Claim. All Claims not made in the manner provided herein shall be deemed waived and of no effect. Contractor shall furnish the Owner and Architect such timely written notice of any Claim provided for herein, including, without limitation, those in connection with alleged concealed or unknown conditions, and shall cooperate with the Owner and Architect in any effort to mitigate the alleged or potential damages, delay or other adverse consequences arising out of the condition which is the cause of such a Claim.

4.4.3 Pending final resolution of a Claim, the Contractor shall proceed diligently with performance of the Contract and the Owner shall continue to make payments that are not in dispute in accordance with the Contract Documents.

4.5 Claims for Concealed or Unknown Conditions

4.5.1 If conditions are encountered at the site which are (1) subsurface or otherwise concealed physical conditions which differ materially from those indicated in the Contract Documents, or (2) unknown physical conditions of an unusual nature, which differ materially from those ordinarily found to exist and generally recognized as inherent in construction activities of the character provided for in the Contract Documents, then notice by the Contractor shall be given to the Owner's Representative promptly before conditions are disturbed, and in no event later than three (3) days after first observance of the conditions. The Owner's Representative will promptly investigate such conditions. If such conditions differ materially, as provided for above and cause an increase or decrease in the Contractor’s cost, or time, required for performance of the Work, an equitable adjustment in the Contract sum or Contract Time, or both, shall be made, subject to the provisions and restrictions set for herein. If the Owner's Representative determines that the conditions at the site are not materially different from those indicated in the Contract Documents, and that no change in the terms of the Contract is justified, the Owner's Representative will so notify the Contractor in writing. If the Contractor disputes the finding of the Owner’s Representative that no change in the terms of the Contract terms is justified, Contractor shall proceed with the Work, taking whatever steps are necessary to overcome or correct such conditions so that Contractor can proceed in a timely manner. The Contractor may have the right to file a Claim in accordance with the Contract Documents.

4.5.2 It is expressly agreed that no adjustment in the Contract Time or Contract Sum shall be permitted, however, in connection with a concealed or unknown condition which does not differ materially from those conditions disclosed or which reasonably should have been disclosed by the Contractor’s (1) prior inspections, tests, reviews and preconstruction investigations for the Project, or (2) inspections, tests, reviews and preconstruction inspections which the Contractor had the opportunity to make or should have performed in connection with the Project.

4.6 Claim for Additional Cost

4.6.1 If the Contractor makes a Claim for an increase in the Contract Sum, written notice as provided herein shall be given before proceeding to execute the Work. In addition to all other requirements for notice of a Claim, said notice shall detail and itemize the amount of all Claims and shall contain sufficient data to permit evaluation of same by Owner.

4.7 Claims for Additional Time

4.7.1 If the Contractor makes a Claim for an increase in the Contract Time, written notice as provided herein shall be given in addition to other requirements for notice of a Claim, Contractor shall include an estimate of the probable effect of delay upon the progress of the Work, utilizing a CPM Time Impact Schedule Analysis, (TIA) as defined in the AGC Scheduling Manual. In the case of a continuing delay, only one Claim is necessary.

.1 Time extensions will be considered for excusable delays only. That is, delays that are beyond the control and/or contractual responsibility of the contractor.

4.7.2 If weather days are the basis for a Claim for additional time, such Claim shall be documented by the Contractor by data acceptable to the Owner's Representative substantiating that weather conditions for the period of time in question, had an adverse effect on the critical path of the scheduled construction. Weather days shall be defined as days on which critical path work cannot proceed due to weather conditions (including but not limited to rain, snow, etc.), in excess of the number of days shown on the Anticipated Weather Day schedule in the Special Conditions. To be considered a weather day, at least four hours must be lost due to the weather conditions on a critical path scope item for that day. Weather days and Anticipated weather days listed in the Special Conditions shall only apply to Monday through Friday. A weather day claim cannot be made for Saturdays, Sundays, New Year’s Day, Martin Luther King Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, the day after Thanksgiving Day and
4.8 Resolution of Claims and Disputes

4.8.1 The Owner's Representative will review Claims and take one or more of the following preliminary actions within ten days of receipt of a Claim: (1) request additional supporting data from the Contractor, (2) reject the Claim in whole or in part, (3) approve the Claim, or (4) suggest a compromise.

4.8.2 If a Claim has not been resolved, the Contractor shall, within ten days after the Owner's Representative's preliminary response, take one or more of the following actions: (1) submit additional supporting data requested, (2) modify the initial Claim, or (3) notify the Owner's Representative that the initial Claim stands.

4.8.3 If a Claim has not been resolved after consideration of the foregoing and of further information presented by the Contractor, the Contractor has the right to seek administrative review as set forth in Section 4.9. However, Owner's Representative's decisions on matters relating to aesthetics will be final.

4.9 Administrative Review

4.9.1 Claims not resolved pursuant to the procedures set forth in the Contract Documents except with respect to Owner's Representative's decision on matters relating to aesthetic effect, and except for claims which have been waived by the making or acceptance of final payment, or the Contractor's acceptance of payments in full for changes in work may be submitted to administrative review as provided in this section. All requests for administrative review shall be made in writing.

4.9.2 Upon written request from the Contractor, the Owner's Review Administrator authorized by the Campus Contracting Officer will convene a review meeting between the Contractor and Owner's Representative within fifteen (15) days of receipt of such written request. The Contractor and Owner's Representative will be allowed to present written documentation with respect to the claim(s) before or during the meeting. The Contractor and Owner's Representative will be allowed to present the testimony of any knowledgeable person regarding the claim at the review meeting. The Owner's Review Administrator will issue a written summary of the review meeting and decision to resolve the Claim within fifteen (15) days. If the Contractor is in agreement with the decision the Contractor shall notify the Owner's Review Administrator in writing within five (5) days, and appropriate documentation will be signed by the parties to resolve the Claim.

4.9.3 If the Contractor is not in agreement with the proposal of the Owner's Review Administrator as to the resolution of the claim, the Contractor may file a written appeal with the UM System Contracting Officer, [in care of the Director of Facilities Planning and Development,
University of Missouri, 109 Old Alumni Centers, University of Missouri, Columbia, Missouri 65211] within fifteen (15) days after receipt of the Owner’s Review Administrator’s proposal. The UM System Contracting Officer will call a meeting of the Contractor, the Owner’s Representative, and the Owner’s Review Administrator by written notice, within thirty (30) days after receipt of the Contractor’s written appeal. The Owner’s Review Administrator shall provide the UM System Contracting Officer with a copy of the written decision and summary of the review meeting, the Contractor's corrections or comments regarding the summary of the review meeting, and any written documentation presented by the Contractor and the Owner’s Representative at the initial review meeting. The parties may present further documentation and/or present the testimony of any knowledgeable person regarding the claim at the meeting called by the UM System Contracting Officer.

4.9.4 The UM System Contracting Officer will issue a written decision to resolve the claim within fifteen (15) days after the meeting. If the Contractor is in agreement with the UM System Contracting Officer’s proposal, the Contractor shall notify the UM System Contracting Officer in writing within five (5) days, and the Contractor and the Owner shall sign appropriate documents. The issuance of the UM System Contracting Officer's written proposal shall conclude the administrative review process even if the Contractor is not in agreement. However, proposals and any opinions expressed in such proposals issued under this section will not be binding on the Contractor nor will the decisions or any opinions expressed be admissible in any legal actions arising from the Claim and will not be deemed to remove any right or remedy of the Contractor as may otherwise exist by virtue of Contract Documents or law. Contractor and Owner agree that the Missouri Circuit Court for the County where the Work is located shall have exclusive jurisdiction to determine all issues between them. Contractor agrees not to file any complaint, petition, lawsuit or legal proceeding against Owner except with such Missouri Circuit Court.

ARTICLE 5
SUBCONTRACTORS

5.1 Award of Subcontracts
5.1.1 Pursuant to Article 9, the Contractor shall furnish the Owner and the Architect, in writing, with the name, and trade for each Subcontractor and the names of all persons or entities proposed as manufacturers of products, materials and equipment identified in the Contract Documents and where applicable, the name of the installing contractor. The Owner’s Representative will reply to the Contractor in writing if the Owner has reasonable objection to any such proposed person or entity. The Contractor shall not contract with a proposed person or entity to whom the Owner has made reasonable and timely objection.

5.1.2 The Contractor may request to change a subcontractor. Any such request shall be made in writing to the Owner’s Representative. The Contractor shall not change a Subcontractor, person, or entity previously disclosed if the Owner makes reasonable objection to such change.

5.1.3 The Contractor shall be responsible to the Owner for acts, defaults, and omissions of its Subcontractors of any tier.

5.2 Subcontractual Relations
5.2.1 By appropriate agreement, written where legally required for validity, the Contractor shall require each Subcontractor of any tier, to the extent of the Work to be performed by the Subcontractor of any tier, to be bound to the Contractor by terms of the Contract Documents and to assume toward the Contractor all the obligations and responsibilities which the Contractor, by these Documents, assumes toward the Owner and the Architect. Each subcontract agreement of any tier shall preserve and protect the rights of the Owner and the Architect under the Contract Documents with respect to the Work to be performed by the Subcontractor of any tier so that subcontracting thereof will not prejudice such rights and shall allow to the Subcontractor of any tier, unless specifically provided otherwise in the subcontract agreement, the benefit of all rights, remedies, and redress against the Contractor that the Contractor, by the Contract Documents, has against the Owner. Where appropriate, the Contractor shall require each Subcontractor to enter into similar agreements with its sub-subcontractors. The Contractor shall make available to each proposed Subcontractor of any tier, prior to the execution of the subcontract agreement, copies of the Contract Documents to which the Subcontractor of any tier shall be bound Subcontractors of any tier shall similarly make copies of applicable portions of such documents available to their respective proposed Subcontractors of any tier.

5.2.2 All agreements between the Contractor and a Subcontractor or supplier shall contain provisions whereby Subcontractor or supplier waives all rights against the Owner, contractor, Owner’s representative, Architect and all other additional insureds for all losses and damages caused by, arising out of, or resulting from any of the perils covered by property or builders risk insurance coverage required of the Contractor in the Contract Documents. If Contractor fails to include said provisions in all subcontracts, Contractor shall indemnify, defend and hold all the above entities harmless in the event of any legal action by Subcontractor or supplier. If insureds on any such policies require separate
waiver forms to be signed by any Subcontractors of any tier or suppliers, Contractor shall obtain the same.

5.3 **Contingent Assignment of Subcontract**

5.3.1 No assignment by the Contractor of any amount or any part of the Contract or of the funds to be received thereunder will be recognized unless such assignment has had the written approval of the Owner, and the surety has been given due notice of such assignment and has furnished written consent hereto. In addition to the usual recitals in assignment Contracts, the following language must be set forth: "it is agreed that the funds to be paid to the assignee under this assignment are subject to performance by the Contractor of the contract and to claims and to liens for services rendered or materials supplied for the performance of the Work called for in said contract in favor of all persons, firms or corporations rendering such services or supplying such materials.

ARTICLE 6

SEPARATE CONTRACTS AND COOPERATION

6.1 The Owner reserves the right to let other contracts in connection with the Work.

6.2 It shall be the duty of each Contractor to whom Work may be awarded, as well as all Subcontractors of any tier employed by them, to communicate immediately with each other in order to schedule Work, locate storage facilities, etc., in a manner that will permit all Contractors to work in harmony in order that Work may be completed in the manner and within the time specified in the Contract Documents.

6.3 No Contractor shall delay another Contractor by neglecting to perform his work at the proper time. Each Contractor shall be required to coordinate his work with other Contractors to afford others reasonable opportunity for execution of their work. Any costs caused by defective or ill-timed work, including actual damages and liquidated damages for delay, if applicable, shall be borne by the Contractor responsible therefor.

6.4 Each Contractor shall be responsible for damage to Owner's or other Contractor's property done by him or persons in his employ, through his or their fault or negligence. If any Contractor shall cause damage to any other Contractor, the Contractor causing such damage shall upon notice of any claim, settle with such Contractor.

6.5 The Contractor shall not claim from the Owner money damages or extra compensation under this Contract when delayed in initiating or completing his performance hereunder, when the delay is caused by labor disputes, acts of God, or the failure of any other Contractor to complete his performance under any Contract with the Owner, where any such cause is beyond the Owner's reasonable control.

6.6 Progress schedule of the Contractor for the Work shall be submitted to other Contractors as necessary to permit coordinating their progress schedules.

6.7 If Contractors or Subcontractors of any tier refuse to cooperate with the instructions and reasonable requests of other contractors performing work for the Owner under separate contract, in the overall coordinating of the Work, the Owner's Representative may take such appropriate action and issue such instructions as in his judgement may be required to avoid unnecessary and unwarranted delay.

ARTICLE 7

CHANGES IN THE WORK

7.1 **CHANGE ORDERS**

7.1.1 A change order is a written instrument prepared by the Owner and signed by the Owner and Contractor formalizing their agreement on the following:

1. a change in the Work
2. the amount of an adjustment, if any, in the Contract amount
3. an adjustment, if any, in the Contract time

7.1.2 The Owner may at any time, order additions, deletions, or revisions in the Work by a Change Order or a Construction Change Directive. Such Change Order or Construction Change Directive shall not invalidate the Contract and requires no notice to the surety. Upon receipt of any such document, or written authorization from the Owner's Representative directing the Contractor to proceed pending receipt of the document, Contractor shall promptly proceed with the Work involved in accordance with the terms set forth therein.

7.1.3 Until such time as the change order is formalized and signed by both the Owner and the Contractor it shall be considered a Change Order Request.

7.1.4 The amount of adjustment in the contract price for authorized Change Orders will be agreed upon before such Change Orders becomes effective and will be determined as follows:

1. By a lump sum proposal from the Contractor and the Subcontractors of any tier, including overhead and profit.
2. By a time and material basis with or without a specified maximum. The Contractor shall submit to the Owner’s Representative itemized time and material sheets depicting labor, materials, equipment utilized in completing the Work on a daily basis for the Owner's Representative approval. If this pricing option is utilized, the
Contractor may be required to submit weekly reports summarizing costs to date on time and material change orders not yet finalized.

4 By unit prices contained in the Contractor's original bid and incorporated in the Construction Contract or subsequently agreed upon. Such unit prices contained in the Contractor's original proposal are understood to include the Contractor's overhead and profit. If unit prices are stated in the Contract Documents or subsequently agreed upon, and if quantities originally contemplated are so changed in a proposed Change Order that application of such unit prices to quantities of the Work proposed will cause substantial inequity to the Owner or to the Contractor, the applicable unit prices shall be equitably adjusted.

5.1.5 The Contractor shall submit all fully documented change order requests with corresponding back-up documentation within the time requested by the Owner but no later than fourteen (14) working days following 1.) the Owner's request for change order pricing in the case of a lump sum; or 2.) the completion of unit price or time and material work.

5.1.6 The Contractor shall submit change order requests in sufficient detail to allow evaluation by the Owner. Such requests shall be fully itemized by units of labor, material and equipment and overhead and profit. Such breakdowns shall be itemized as follows:

1. Labor: The Contractor's proposal shall include breakdowns by labor, by trade, indicating number of hours and cost per hour for each Subcontractor as applicable. Such breakdowns shall only include employees in the direct employ of Contractor or Subcontractors in the performance of the Work. Such employees shall only include laborers at the site, mechanics, craftsmen and foremen. Payroll cost shall include base rate salaries and wages plus the cost of fringe benefits required by agreement or custom and social security contributions, unemployment, payroll taxes and workers' or workmen's compensation insurance and other customary and legally required taxes paid by the Contractor or Subcontractors. Any item or expense outside of these categories is not allowed. The expense of performing Work after regular working hours, on Saturdays, Sundays or legal holidays shall not be included in the above, unless approved in writing and in advance by Owner.

2. Material, supplies, consumables and equipment to be incorporated into the Work at actual invoice cost to the Contractor or Subcontractors; breakdowns showing all material, installed equipment and consumables fully itemized with number of units installed and cost per unit extended. Any singular item or items in aggregate greater than one thousand dollars ($1,000) in cost shall be supported with supplier invoices at the request of the Owner's Representative. Normal hand tools are not compensable.

3. Equipment: Breakdown for required equipment shall itemize (at a minimum) delivery / pick-up charge, hourly rate and hours used. Operator hours and rate shall not be included in the equipment breakdown. Contractor must use the most cost effective equipment available in the area and should not exceed the rates listed in the Rental Rate Blue Book for Construction Equipment (Blue Book). Contractor shall submit documentation for the Blue Book to support the rate being requested.

7.2 Construction Change Directive

7.2.1 A construction change directive is a written order prepared and signed by the Owner, issued with supporting documents prepared by the Architect (if applicable), directing a change in the Work prior to agreement on adjustment of the Contract amount or Contract time, or both. A Construction Change Directive shall be used in the absence of complete agreement between the Owner and Contractor on the terms of a change order. If the Construction Change Directive allows an adjustment of the contract amount or time, such adjustment amount shall be based on one of the following methods:

1. A lump sum agreement, properly itemized and supported by substantiating documents of sufficient detail to allow evaluation.

2. By unit prices contained in the Contractor's original proposal and incorporated in the Construction Contract or subsequently agreed upon.

3. A method agreed to by both the Owner and the contractor with a mutually agreeable fee for overhead and profit.

4. In the absence of an agreement between the Owner and the Contractor on the method of establishing an adjustment of the contract amount, the Owner, with the assistance of the architect, shall determine the adjustment amount on the basis of expenditures by the Contractor for labor, materials, equipment and other costs consistent with other provisions of the Contract. The contractor shall keep and submit to the Owner an itemized accounting of all cost components, either expended or saved, while performing the Work covered under the Construction Change Directive.

7.2.2 Upon receipt of a Construction Change Directive, Contractor shall promptly proceed with the change in the Work involved and advise Owner of Contractor's agreement or disagreement with the method, if any, provided in the Construction Change Directive for determining the proposed adjustment in the Contract Sum, Contract Time or both.

7.2.3 A Construction Change Directive signed by Contractor indicates the agreement of the Contractor therewith, including adjustment in Contract Sum and Contract Time or the method for determining them.
Such agreement shall be effective immediately and shall be recorded as a Change Order.

7.3 Overhead and Profit

7.3.1 Overhead and Profit on Change Orders shall be applied as follows:

.1 The overhead and profit charged by the Contractor and Subcontractors shall be considered to include, but not limited to, job site office and clerical expense, normal hand tools, incidental job supervision, field supervision, payroll costs and other compensation for project manager, officers, executives, principals, general managers, estimators, attorneys, auditors, accountants, purchasing and contracting agents, expediters, time-keepers, and other personnel employed whether at the site or in principal or a branch office for general superintendent and administration of the Work.

.2 The percentages for overhead and profit charged on Change Orders shall be negotiated and may vary according to the nature, extent, and complexity of the Work involved but in no case shall exceed the following:

15% To the Contractor or the Subcontractor of any tier for Work performed with their respective forces or materials purchased
5% To the Contractor on Work performed by other than his forces
5% To first tier Subcontractor on Work performed by his Subcontractor of any tier

.3 The Contractor will be allowed to add 2% for the cost of bonding and insurance to their cost of work. This 2% shall be allowed on the total cost of the added work, including overhead and profit.

.4 Not more than three mark-ups, not to exceed individual maximums shown above, shall be allowed regardless of the number of tier subcontractors. Overhead and profit shall be shown separately for each subcontractor of any tier and the Contractor.

.5 On proposals covering both increases and decreases in the amount of the Contract, the application of overhead and profit shall be on the net change in direct cost for the Contractor or Subcontractor of any tier performing the Work.

.6 The percentages for overhead and profit credit to the Owner on Change Orders that are strictly decreases in the quantity of work or materials shall be negotiated and may vary according to the nature, extent, and complexity of the Work involved, but shall not be less than the following:

Overhead and Profit
7.5% Credit to the Owner from the Contractor or Subcontractor of any tier for Work performed with their respective forces or materials purchased
2.5% Credit to the Owner from the Contractor on Work performed by other than his forces
2.5% Credit to the Owner from the first tier Subcontractor on Work performed by his Subcontractor of any tier

7.4 Extended General Conditions

7.4.1 The Contractor acknowledges that the percentage mark-up allowed on change orders for overhead and profit cover the Contractor’s cost of administering and executing the Work, inclusive of change orders that increase the contract time. Contractor further acknowledges that no compensation beyond the specified mark-up percentages for extended overhead shall be due or payable as a result of an increase in the Contract Time.

7.4.2 The Owner may reimburse the Contractor for extended overhead if an extension of the Contract Time is granted by the Owner, in accordance with Article 4.7.1 and the Owner determines that the extension of the Contract Time creates an inequitable condition for the Contractor. If these conditions are determined by the Owner to exist the Contractor may be reimbursed by unit prices contained in the Contractor's original bid and incorporated in the Construction Contract or by unit prices subsequently agreed upon.

7.4.3 If unit prices are subsequently agreed upon, the Contractor’s compensation shall be limited as follows:

.1 For the portion of the direct payroll cost of the Contractor’s project manager expended in completing the Work and the direct payroll cost of other onsite administrative staff not included in Article 7.3.1. Direct payroll cost shall include base rate salaries and wages plus the cost of fringe benefits required by agreement or custom and social security contributions, unemployment, payroll taxes and workers’ or workmen's compensation insurance and other customary and legally required taxes paid by the Contractor;

.2 Cost of Contractor’s temporary office, including temporary office utilities expense;

.3 Cost of temporary utilities required in the performance of the work;

.4 Profit not to exceed 5% of the total extended overhead direct costs;

7.4.4 All costs not falling into one of these categories and costs of the Contractors staff not employed onsite are not allowed.

7.5 Emergency Work

7.5.1 If, during the course of the Work, the Owner has need to engage the Contractor in emergency work, whether related to the Work or not, the Contractor shall immediately
proceed with the emergency work as directed by the Owner under the applicable provisions of the contract. In so doing, Contractor agrees that all provisions of the contract remain in full force and effect and the schedule for the Work is not impacted in any way unless explicitly agreed to in writing by the Owner.

ARTICLE 8
TIME

8.1 Progress and Completion

8.1.1 Contractor acknowledges and agrees that time is of the essence of this Contract

8.1.2 Contract Time is the period of time set forth in the Contract for Construction required for Substantial Completion and Final Completion of the entire Work or portions of the Work as defined in the Contract Documents. Time limits stated in the Contract Documents are of the essence of the Contract. The Contract Time may only be changed by a Change Order. By executing the Contract, the Contractor confirms that the Contract Time is a sufficient period for performing the Work in its entirety.

8.1.3 The Contractor shall not knowingly, except by agreement or instruction of the Owner in writing, prematurely commence operations on the site or elsewhere prior to the effective date of insurance and bonds required by Article 11 to be furnished by the Contractor.

8.1.4 The Contractor shall proceed expeditiously and diligently with adequate forces and shall achieve Substantial Completion and Final Completion within the time specified in the Contract Documents.

8.2 Delay in Completion

8.2.1 The Contractor shall be liable for all of the Owner’s damages for delay in achieving Substantial Completion and/or Final Completion of the entire Work or portions of Work as set forth in the Contract Documents within the Contract Time unless liquidated damages are specifically provided for in the Contract Documents. If liquidated damages are specifically provided for in the Contract for Construction, Contractor shall be liable for such liquidated damages as set forth in Paragraph 8.3.

8.2.2 All time limits stated in the Contract are of the essence of the Contract. However, if the Contractor is delayed at any time in the progress of the Work by any act or neglect of the Owner or by the Owner’s Representative, by changes ordered in the Work, by strikes, lockouts, abnormal weather conditions, jurisdictional disputes, or any other causes beyond the Contractor’s reasonable control which the Owner’s Representative determines may justify delay then, upon submission of the Time Impact Schedule Analysis (TIA) called out in Section 4.7 of these General Conditions, the Contract Time may be extended for a reasonable time to the extent such delay will prevent Contractor from achieving Substantial Completion and/or Final Completion within the Contract Time and if performance of the Work is not, was not or would not have been delayed by any other cause for which the Contractor is not entitled to an extension in the Contract Time under the Contract Documents. It shall be a condition precedent to any adjustment of the Contract Time that Contractor provide the Owner’s Representative with written notice of the cause of delay within seven (7) days from the occurrence of the event or condition which caused the claimed delay. Written notices hereunder shall be in accordance with the applicable provisions of Section 4.7.

8.2.3 The Contractor further acknowledges and agrees that adjustments in the Contract Time will be permitted for a delay only to the extent such delay (1) is not caused, or could not have been anticipated, by the Contractor, (2) could not be limited or avoided by the Contractor's timely notice to the Owner of the delay, (3) prevents Contractor from completing its Work by the Contract Time, and (4) is of a duration not less than one (1) day. Delays attributable to and within the control of a Subcontractor or supplier shall not justify an extension of the Contract Time.

8.2.4 Notwithstanding anything to the contrary in the Contract Documents, except as otherwise noted in these General Conditions, an extension in the Contract Time, to the extent permitted under this Article, shall be the sole remedy of the Contractor for any (1) delay in the commencement, prosecution or completion of the Work, (2) hindrance or obstruction in the performance of the Work, (3) loss of productivity, or (4) other similar claims due to or caused by any events beyond the control of both the Owner and Contractor. In no event shall the Contractor be entitled to any compensation or recovery of any damages or any portion of damages resulting from delays caused by or within the control of Contractor or by acts or omissions of Contractor or its Subcontractors of any tier or delays beyond the control of both Owner and Contractor. If the Contractor contends that delay, hindrance, obstruction or other adverse condition results from acts or omissions of the Owner, the Owner’s Representative or the Architect, Contractor shall promptly provide written notice to the Owner. Contractor shall only be entitled to an adjustment in the Contract Sum to the extent that such acts or omissions continue after the Contractor's written notice to the Owner of such acts or omissions. The Owner's exercise of any of its rights or remedies under the Contract Documents (including, without limitation, ordering changes in the Work, or directing suspension, rescheduling or correction of the Work) regardless of the extent or frequency of the Owner's exercise of such rights or remedies, shall not be the basis of any Claim for an increase in the Contract Sum or Contract...
8.2.5 If the Contractor submits a progress report or any construction schedule indicating, or otherwise expressing an intention to achieve completion of the Work prior to any completion date required by the Contract Documents or expiration of the Contract Time, no liability of the Owner to the Contractor for any failure of the Contractor to so complete the Work shall be created or implied. Further, the Contractor acknowledges and agrees that even if Contractor intends or is able to complete the Work prior to the Contract Time, it shall assert no Claim and the Owner shall not be liable to Contractor for any failure of the Contractor, regardless of the cause of the failure, to complete the Work prior to the Contract Time.

8.3 Liquidated Damages

8.3.1 If Liquidated Damages are prescribed on the Bid Form and Special Conditions in the Contract Documents, the Owner may deduct from the Contract Sum and retain as Liquidated Damages, and not as penalty or forfeiture, the sum stipulated in the Contract Documents for each calendar day after the date specified for completion of the Work that the entire Work is not substantially complete and/or finally complete.

8.3.2 The Owner’s Representative shall establish the date of Substantial completion and the date of Final Completion of the Work which shall be conclusive and binding on the Owner and Contractor for the purpose of determining whether or not Liquidated Damages shall be assessed under terms hereof and the sum total amount due.

8.3.3 Liquidated Damages or any matter related thereto shall not relieve the Contractor or his surety of any responsibility or obligation under this Contract.

ARTICLE 9
PAYMENTS AND COMPLETION

9.1 Commencement, Prosecution, and Completion

9.1.1 The Contractor shall commence Work within five (5) days upon the date of a “Notice to Proceed” from the Owner or the date fixed in the Notice to Proceed. Contractor shall prosecute the Work with faithfulness and diligence, and the Contractor shall complete the Work within the Contract Time set forth in the Contract Documents.

9.1.2 The Owner will prepare and forward three (3) copies of the Contract and Performance Bond to the bidder to whom the contract for the Work is awarded and such bidder shall return two (2) properly executed prescribed copies of the Contract and Bond to the Owner.

9.1.3 The construction period, when specified in consecutive calendar days, shall begin when the Contractor receives notice requesting the instruments listed in below. Before the Owner will issue Notice to Proceed to permit the Contractor to begin Work, the Owner shall have received the following instruments, properly executed as described in the Contract Documents. The documents below shall have been received by the Owner within fifteen (15) days after receipt of request for documents:

1. Contract
2. Bond (See Article 11)
3. Insurance (See Article 11)
4. List of Subcontractors of any tier
5. Affirmative Action Plan (see Article 13.4)

9.1.4 In the event Contractor fails to provide Owner such documents, Contractor may not enter upon the site of the Work until such documents are provided. The date the Contractor is required to commence and complete the Work shall not be affected by the Owner denying Contractor access to the site as a result of Contractor’s failure to provide such documents and Contractor shall not be entitled to an adjustment of the Contract Time or Contract sum as a result of its failure to comply with the provisions of this Paragraph.

9.1.5 Contracts executed by partnerships shall be signed by all general partners of the partnership. Contracts signed by corporations shall be signed by the President or Vice President and the Secretary or Assistant Secretary. In case the Assistant Secretary or Vice President signs, it shall be so indicated by writing the word "Asst." or "Vice" in front of the words "Secretary" and "President". The corporate seal of the corporation shall be affixed. For all other types of entities, the Contractor and the person signing the Contract on behalf of Contractor represent and warrant that the person signing the Contract has the legal authority to bind Contractor to the Contract.

9.1.6 Any successful bidder which is a corporation organized in a state other than Missouri or any bidder doing business in the State of Missouri under a fictitious name shall furnish, at no cost to the Owner, no later than the time at which the executed Contract for Construction, the Payment Bond, and the Performance Bond are returned, a properly certified copy of its current Certificate of Authority and License to do business in the State of Missouri. No contract will be executed by the Owner until such certificate is furnished by the bidder, unless there already is on file with
the Owner a current certificate, in which event, no additional certificate will be required during the period of time for which such current certificate remains in effect.

9.1.7 Within fifteen (15) calendar days of the issuance of a Notice to Proceed, the Contractor shall submit one (1) signed copy of the following instruments. No payment will be processed until all of these instruments are received and approved by the Owner's Representative.

.1 Reproducible progress and payment schedule
.2 Contractor's Schedule of Values
.3 List of material suppliers
.4 Itemized breakdown of all labor rates for each classification. Overhead and profit shall not be included. Payroll cost shall include base rate salaries and wages plus the cost of fringe benefits required by agreement or custom and social security contributions, unemployment, payroll taxes and workers' or workmen's compensation insurance and other customary and legally required taxes paid by the Contractor or Subcontractors. Any item or expense outside of these categories is not allowed. The expense of performing Work after regular working hours, on Saturdays, Sundays or legal holidays shall not be included in the above, unless approved in writing and in advance by Owner.

.5 Itemized breakdown of anticipated equipment rates (breakout operator rate). Overhead and profit shall not be included. Breakdown for required equipment shall itemize (at a minimum) delivery/pick-up charge, hourly rate and hours used. Operator hours and rate shall not be included in the equipment breakdown. Contractor must use the most cost effective equipment available in the area and should not exceed the rates listed in the Rental Rate Blue Book for Construction Equipment (Blue Book). Contractor shall submit documentation for the Blue Book to support the rate being requested.

9.1.8 The Contractor shall be paid electronically using the Owner's web-based payment program with a direct electronic transfer from the Owner’s account into the Contractor’s account. The Contractor must submit the following information to the Owner’s Representative:

.1 Bank Transit Number for the Contractor’s bank into which the electronic deposit will be made.
.2 Bank Account Number for the Contractor’s account into which the electronic deposit will be made.
.3 Contractor’s E-Mail address so that formal notification of the deposit by the Owner can be provided.

9.2 Contract Sum

9.2.1 The Owner shall compensate Contractor for all Work described herein and in the Contract Documents the Contract Sum set forth in the Contract for Construction, subject to additions and deletions as provided hereunder.

9.3 Schedule of Values

9.3.1 Within fifteen (15) days after receipt of the Notice to Proceed, the Contractor shall submit to the Owner’s Representative a schedule of values allocated to various portions of the Work, prepared in such form and supported by such data to substantiate its accuracy as the Owner’s Representative may require. This schedule, unless objected to by the Owner’s Representative, shall be used as a basis for reviewing the Contractor's Applications for Payment. The values set forth in such schedule may, at the Owner’s option be used in any manner as fixing a basis for additions to or deletions from the Contract Sum.

9.3.2 The progress and payment schedule of values shall show the following:

.1 Enough detail as necessary to adequately evaluate the actual percent complete of any line item on a monthly basis, as determined by the Owner’s Representative.
.2 Line items, when being performed by a subcontractor or material supplier, shall correlate directly back to the subcontract or purchase order amount if requested by the Owner’s Representative.

9.4 Applications for Payment

9.4.1 The Contractor shall submit monthly to the Owner’s Representative and the Architect an itemized Application for Payment for operations completed in accordance with the Schedule of Values. Such application shall be supported by such data substantiating the Contractor's right to payment as the Owner’s Representative or Architect may require, such as copies of requisitions from Subcontractors and material suppliers, and reflecting retainage as provided for herein.

9.4.2 Such applications shall not include requests for payment of amounts the Contractor does not intend to pay to a Subcontractor or material supplier.

9.4.3 Progress payments shall be made on account of materials and equipment delivered to the site and incorporated in the Work. No payments will be made for materials and equipment stored at the Project site but not yet incorporated into the Work except as provided in Paragraph 9.4.4.

9.4.4 If approved in writing and in advance by Owner, progress payments may be made on account of materials and equipment delivered and suitably stored at the site for subsequent incorporation in the Work. Owner may in its sole discretion refuse to grant approval for payments for materials and equipment stored at the Project site but not yet incorporated in the Work. Any approval by Owner for payment for materials and equipment delivered and suitably
stored at the site, or stored offsite as noted below, for subsequent incorporation in the Work shall be conditioned upon Contractor’s demonstrating that such materials and equipment are adequately protected from weather, damage, vandalism and theft and that such materials and equipment have been inventoried and stored in accordance with procedures established by or approved by the Owner. Nothing in this clause shall imply or create any liability on the part of the Owner for the Contractor’s inventory and storage procedures or for any loss or damage to material, equipment or supplies stored on the site, whether incorporated into the work or not. In the event any such loss or damage occurs, the Contractor remains solely responsible for all costs associated with replacement of the affected materials, supplies and equipment including labor and incidental costs, and shall have no claim against the Owner for such loss.

No allowance shall be made in the project pay requests for materials not delivered to the site of the work and incorporated into the work, except as noted below. For the purposes of this Article, Offsite is defined as any location not owned or leased by the Owner. Contractor shall submit a list of materials that they are requesting payment for offsite storage within 60 days of Notice Proceed.

.1 Items considered to be major items of considerable magnitude, if suitably stored, may be allowed in project pay requests on the basis of ninety percent (90%) of invoices

.2 Determination of acceptable “major items of considerable magnitude” and “suitably stored” shall be made by the Owner’s Representative.

.3 Aggregate quantities of materials not considered unique to this project will not be considered for offsite storage payment.

.4 Contractor shall submit to the Owner’s Representative a list of the material for which application for payment for offsite storage is anticipated no less than forty-five days prior to the submission of the applicable pay request. The list shall include a material description, applicable division, quantity and discounts offered to the Owner for early payment. Contractor shall also submit the location the material will be stored and the method of protection.

.5 The storage facility shall be subject to approval by the Owner’s representative, shall be located within an acceptable distance of the project sites as established by the Owner’s Representative and all materials for the Owner’s project must be stored separately from all other items within the storage facility and shall be labeled and stored in the name of the Curators of the University of Missouri.

.6 The Owner’s representative shall be provided a minimum of two weeks time to visit the storage facility and inspect the stored material prior to submission of the pay request.

.7 Upon favorable inspection by the Owner’s Representative, the Contractor shall, at the Owner’s option, submit the appropriate UCC filing, transferring title of the material or equipment to The Curators of the University of Missouri.

.8 An invoice provided by the supplier shall be included with the applicable pay request.

.9 The contractor shall remain fully responsible for all items, until acceptance of the project by the Owner.

.10 The contractor shall reimburse all costs incurred by the Owner in inspecting and verifying all material stored offsite, including mileage, airfare, meals, lodging and time, charged at a reasonable hourly rate.

9.4.5 The Application for Payment shall constitute a representation by the Contractor to the Owner that the Work has progressed to the point indicated; the quality of the Work covered by the Application for Payment is in accordance with the Contract Documents; and the Contractor is entitled to payment in the amount requested.

9.4.6 The Contractor will be reimbursed for ninety-five percent (95%) of the value of all labor furnished and material installed and computed in the same manner, less all previous payments made. On projects where a bond is not required, the contractor will be reimbursed for ninety percent (90%) of the value of all labor furnished and material installed and computed in the same manner, less all previous payments made

9.5 Approval for Payment

9.5.1 The Owner’s Representative will, within fifteen (15) days after receipt of the Contractor's Application for Payment, either approve Contractor’s Application for Payment for such amount as the Owner’s Representative determines is properly due, or notify the Contractor of the Owner’s Representative’s reasons for withholding certification in whole or in part as provided in Section 9.6.

9.6 Decisions to Withhold Approval

9.6.1 The Owner’s Representative may decide not to certify payment and may withhold approval in whole or in part, to the extent reasonably necessary to protect the Owner. If the Owner’s Representative is unable to approve payment in the amount of the Application, the Owner’s Representative will notify the Contractor as provided in Paragraph 9.5.1. If the Contractor and Owner’s Representative cannot agree on a revised amount, the Owner’s Representative will promptly issue approval for payment for the amount for which the Owner’s Representative is able to determine is due Contractor. The Owner’s Representative may also decide not to approve payment or, because of subsequently discovered evidence or subsequent observations, may nullify the whole or a part of approval for payment previously issued, to such extent as may
be necessary in the Owner’s Representative opinion to protect the Owner from loss because of:

.1 defective Work not remedied or damage to completed Work;
.2 failure to supply sufficient skilled workers or suitable materials;
.3 third party claims filed or reasonable evidence indicating probable filing of such claims;
.4 failure of the Contractor to make payments properly to Subcontractors or for labor, materials or equipment, Owner may, at its sole option issue joint checks to subcontractors who have presented evidence that it has not been paid in accordance with the Contract;
.5 reasonable evidence that the Work cannot be completed for the unpaid balance of the Contract Sum;
.6 damage to the Owner or another contractor;
.7 reasonable evidence that the Work will not be completed within the Contract Time or an unsatisfactory rate of progress made by Contractor;
.8 Contractor's failure to comply with applicable Laws;
.9 Contractor’s or Subcontractor’s failure to comply with contract Prevailing Wage requirements; or
.10 Contractor's failure to carry out the Work in strict accordance with the Contract Documents.

9.6.2 When the above reasons for withholding approval are removed, approval will be made for amounts previously withheld.

9.7 Progress Payments

9.7.1 Based upon Applications for Payment submitted to the Owner by the Contractor and approvals issued by the Owner’s Representative, the Owner shall make progress payments on account of the Contract Sum to the Contractor as provided below and elsewhere in the Contract Documents.

9.7.2 The period covered by each Application for Payment shall be one (1) calendar month.

9.7.3 The Owner shall make payment to Contractor for amounts due and approved by Owner’s Representative not later than thirty (30) days after the Owner approves a properly detailed Application for Payment which is in compliance with the Contract Documents. The Owner shall not have the obligation to process or pay such Application for Payment until it receives an Application for Payment satisfying such requirements.

9.7.4 Based on the Schedule of Values submitted by Contractor, Applications for Payment submitted by Contractor shall indicate the actual percentage of completion of each portion of Contractor's Work as of the end of the period covered by the Application for Payment.

9.7.5 The Contractor shall promptly pay each Subcontractor and Supplier, upon receipt of payment from the Owner, out of the amount paid to the Contractor on account of such Subcontractor's or supplier's portion of the Work, the amount to which said Subcontractor or supplier is entitled, reflecting percentages actually retained from payments to the Contractor on account of each Subcontractor's or supplier's portion of the Work, in full compliance with state statute. The Contractor shall, by appropriate agreement with each Subcontractor or supplier, require each Subcontractor or supplier to make payments to Sub-subcontractors in similar manner.

9.7.6 Neither the Owner nor Architect shall have an obligation to pay or to see to the payment of money to a Subcontractor of any tier nor a laborer or employee of Contractor except to the extent required by law. Retainage provided for by the Contract Documents are to be retained and held for the sole protection of Owner, and no other person, firm or corporation shall have any claim or right whatsoever thereto.

9.7.7 An approval for payment by Owner’s Representative, a progress payment, or partial or entire use or occupancy of the Project by the Owner shall not constitute acceptance of Work not in accordance with the Contract Documents.

9.8 Failure of Payment

9.8.1 If the Owner is entitled to reimbursement or payment from the Contractor under or pursuant to the Contract Documents, such payment by Contractor shall be made promptly upon demand by the Owner. Notwithstanding anything contained in the Contract Documents to the contrary, if the Contractor fails to promptly make any payment due the Owner, or the Owner incurs any costs and expenses to cure any default of the Contractor or to correct defective Work, the Owner shall have an absolute right to offset such amount against the Contract Sum and may, in the Owner's sole discretion, elect either to: (1) deduct an amount equal to that to which the Owner is entitled from any payment then or thereafter due the Contractor from the Owner, or (2) issue a written notice to the Contractor reducing the Contract Sum by an amount equal to that to which the Owner is entitled.

9.9 Substantial Completion

9.9.1 Substantial Completion is the stage in the progress of the Work as defined in Paragraph 1.1.9 as certified by the Owner.

9.9.2 When the Contractor considers the Work, or a portion thereof which the Owner agrees to accept separately, is substantially complete, the Contractor shall notify the Owner and the Architect. The Owner’s Representative will make an inspection to determine whether the Work or designated
portion thereof is substantially complete. If the Owner’s Representative's inspection discloses any item which is not in accordance with the requirements of the Contract Documents, the Contractor shall complete or correct such item upon notification by the Owner’s Representative. The Contractor shall then submit a request for another inspection by the Owner’s Representative to determine Substantial Completion. When the Work or designated portion thereof is substantially complete, the Owner will issue a Certificate of Substantial Completion. Substantial Completion shall transfer from the Contractor to the Owner responsibilities for security, maintenance, heat, utilities, damage to the Work and insurance. In no event shall Contractor have more than thirty (30) days to complete all items on the Punch List and achieve Final Completion. Warranties required by the Contract Documents shall commence on the date of Substantial Completion or as agreed otherwise.

9.11.1 Upon receipt of written notice that the Work is ready for final inspection and acceptance and upon receipt of a final Application for Payment, the Owner’s Representative and the Architect will promptly make such inspection and, when the Owner’s Representative and Architect find the Work acceptable under the Contract Documents and the Contract fully performed, the Owner’s Representative will promptly issue a final approval for payment; otherwise, Owner’s Representative will return Contractor's Final Application for Payment to Contractor, indicating in writing the reasons for refusing to recommend final payment, in which case Contractor shall make the necessary corrections and resubmit the Application. Submission of a Final Application for Payment shall constitute a further representation that conditions listed in Paragraph 9.11.2 as precedent to the Contractor's being entitled to final payment have been fulfilled. All warranties and guarantees required under or pursuant to the Contract Documents shall be assembled and delivered by the Contractor to the Owner’s Representative as part of the final Application for Payment. The final approval for payment will not be issued by the Owner’s Representative until all warranties and guarantees have been received and accepted by the Owner.

9.11.2 The Owner will request the Contractor to submit the application for final payment along with a manually signed notarized letter on the Contractor's letterhead certifying that:

1. Labor costs, prevailing wage rates, fringe benefits and material costs have been paid.
2. Subcontractors of any tier and manufacturers furnishing materials and labor for the project have fully completed their Work and have been paid in full.
3. The project has been fully completed in accordance with the Contract Documents as modified by Change Orders.
4. The acceptance by Contractor of its Final Payment, by check or electronic transfer, shall be and operate as a release of all claims of Contractor against Owner for all things done or furnished or relating to the Work and for every act or alleged neglect of Owner arising out of the Work.

9.11.3 Final Payment constituting the entire unpaid balance due shall be paid by the Owner to the Contractor within thirty (30) days after Owner's receipt of Contractor's Final Application for Payment which satisfies all the requirements of the Contract Documents and Owner’s receipt of all information and documents set forth in Section 9.11.

9.11.4 No payment under this Contract, including but not limited to final payment, shall constitute acceptance by Owner of any Work or act not in accordance with the requirements of the Contract Documents.

9.11.5 No recourse shall be had against any member of the Board of Curators, or officer thereof, for any payment under the Contract or any claim based thereon.

ARTICLE 10
PROTECTION OF PERSONS AND PROPERTY

GC/27
08/18
10.1 Safety Precautions and Programs

10.1.1 The Contractor shall at all times conduct operations under this Contract in a manner to avoid the risk of bodily harm to persons or risk of damage to any property. The Contractor shall promptly take precautions which are necessary and adequate against conditions created during the progress of the Contractor's activities hereunder which involve a risk of bodily harm to persons or a risk of damage to property. The Contractor shall continuously inspect Work, materials, and equipment to discover and determine any such conditions and shall be solely responsible for discovery, determination, and correction of any such conditions. The Contractor shall comply with applicable safety laws, standards, codes, and regulations in the jurisdiction where the Work is being performed, specifically, but without limiting the generality of the foregoing, with rules regulations, and standards adopted pursuant to the Williams-Steiger Occupational Safety and Health Act of 1970 and applicable amendments.

10.1.2 All contractors, subcontractors and workers on this project are subject to the Construction Safety Training provisions 292.675 RSMo.

10.1.3 In the event the Contractor encounters on the site, material reasonably believed to be asbestos, polychlorinated biphenyl (PCB), lead, mercury, or other material known to be hazardous, which has not been rendered harmless, the Contractor shall immediately stop Work in the area affected and report the condition to the Owner's Representative and the Architect in writing. The Work in the affected area shall not thereafter be resumed except by written agreement of the Owner's Representative and Contractor if in fact the material is asbestos or polychlorinated biphenyl (PCB) and has not been rendered harmless. The Work in the affected area shall be resumed in the absence of asbestos or polychlorinated biphenyl (PCB), or when it has been rendered harmless by written agreement of the Owner's Representative and the Contractor. “Rendered Harmless” shall mean that levels of such materials are less than any applicable exposure standards, including but limited to OSHA regulations.

10.2 Safety Of Persons And Property

10.2.1 The Contractor shall take reasonable precautions for safety of, and shall provide protection to prevent damage, injury, or loss to:

1. students, faculty, staff, the public, construction personnel, and other persons who may be affected thereby;

2. the Work and materials and equipment to be incorporated therein, whether in storage on or off the site, under care, custody, or control of the Contractor or the Contractor's Subcontractors of any tier; and

.3 other property at the site or adjacent thereto, such as trees, shrubs, lawns, walks, pavements, roadways, structures, and utilities not designated for removal, relocation, or replacement in the course of construction.

10.2.2 The Contractor shall give notices and comply with applicable laws, ordinances, rules, regulations, and lawful orders of public authorities bearing on safety of persons or property or their protection from damage, injury, or loss.

10.2.3 The Contractor shall erect and maintain, as required by existing conditions and performance of the Contract, safeguards for safety and protection, including, but not limited to, posting danger signs and other warnings against hazards, promulgating safety regulations, and notifying owners and users of adjacent sites and utilities.

10.2.4 When use or storage of explosives or other hazardous materials or equipment or unusual methods are necessary for execution of the Work, the Contractor shall exercise the highest degree of care and carry on such activities under supervision of properly qualified personnel.

10.2.5 The Contractor shall promptly remedy damage and loss (other than damage or loss insured under property insurance required by the Contract Documents) to property referred to in Article 10 caused in whole or in part by the Contractor, a Subcontractor of any tier, or anyone directly or indirectly employed by any of them, or by anyone for whose acts they may be liable, and for which the Contractor is responsible under Article 10, except damage or loss attributable solely to acts or omissions of Owner or the Architect or anyone directly or indirectly employed by either of them, or by anyone for whose acts either of them may be liable, and not attributable to the fault or negligence of the Contractor. The foregoing obligations of the Contractor are in addition to the Contractor's other obligations stated elsewhere in the Contract.

10.2.6 The Contractor shall designate a responsible member of the Contractor's organization at the site whose duty shall be the prevention of accidents, and the maintaining, enforcing and supervising of safety precautions and programs. This person shall be the Contractor's superintendent unless otherwise designated by the Contractor in writing to the Owner's Representative and Architect. The Contractor shall hold regularly scheduled safety meetings to instruct Contractor personnel on safety practices, accident avoidance and prevention, and the Project Safety Program. The Contractor shall furnish safety equipment, and enforce the use of such equipment by it's employees and it's subcontractors of any tier.

10.2.7 The Contractor shall not load or permit any part of the construction or site to be loaded so as to endanger its safety.
10.2.8 The Contractor shall promptly report in writing to the Owner all accidents arising out of or in connection with the Work which cause death, lost time injury, personal injury, or property damage, giving full details and statements of any witnesses. In addition, if death, serious personal injuries, or serious property damages are caused, the accident shall be reported immediately by telephone or messenger to the Owner.

10.2.9 The Contractor shall promptly notify in writing to the Owner of any claims for injury or damage to personal property related to the work, either by or against the Contractor.

ARTICLE 11
INSURANCE & BONDS

11.1 Insurance
11.1.1 Contractor shall secure from the date of the Contract for Construction and maintain for such periods of time as set forth below, insurance of such types and in such amounts specified below, to protect Contractor, Owner and others against all hazards or risks of loss described below. The form of such insurance together with carriers thereof, in each case, shall be approved by Owner, but, regardless of such approval, it shall be the responsibility of Contractor to maintain the insurance coverages set forth herein.

11.1.2 The contractor shall not be allowed on the Owners property without proof of the insurance coverages set forth herein.

11.2 Commercial General Liability
11.2.1 Contractor shall secure and maintain from the date of the Contract and for a period of at least five (5) years from the date of Final Completion of the entire Work Commercial General Liability insurance (“CGL”) with a combined single limit of not less than $2,000,000 per occurrence, $5,000,000 general aggregate, $5,000,000 products and completed operations aggregate and $1,000,000 personal injury and advertising injury. General Aggregate should apply per project. An umbrella policy may be used to satisfy these limits. If the General Aggregate is not on a per project basis, the contractor shall provide an additional $2,000,000 general aggregate.

11.2.2 CGL insurance shall be written on a comprehensive form and shall cover claims and liability in connection with or resulting from the Contractor’s operations and activities under the Contract, for personal injuries, occupational sickness, disease, death or damage to property of others, including loss of use resulting therefrom, arising out of any operations or activities of the Contractor, its agents, or any Subcontractors of any tier or by anyone directly or indirectly employed by either of them.

11.2.3 CGL insurance shall include premises, operations, independent contractors, products-completed operations, personal injury and advertising injury and liability assumed under an insured contract (including the tort liability of another assumed in a business contract) coverages. In particular, and not by way of any limitation, the CGL insurance shall cover the Contractor’s indemnity obligations contained in the Contract Documents.

11.2.4 There shall be no endorsement or modification of the CGL policy limiting the scope of coverage for liability arising from blasting, explosion, collapse, or underground property damage.

11.2.5 “The Curators of the University of Missouri” shall be endorsed as an “additional insured” under the CGL policy. The additional insured status must be conveyed by using the ISO CG 2 10 (2004) edition or equivalent and the ISO CG 20 37 (2004) edition. The policy shall be endorsed to be primary coverage and any other insurance carried by the Owner shall be excess only and will not contribute with Contractors’ insurance. To confirm, the Endorsement should accompany the insurance certificate.

11.2.6 Contractor waives all rights against Owner and its agents, officers, representatives and employees for recovery of damages to the extent those damages are covered by the CGL policy required hereunder.

11.3 Licensed for Use Vehicle Liability
11.3.1 Contractor shall secure and maintain from the date of the Contract for Construction until the date of Final Completion of the entire Work, insurance, to be on comprehensive form, which shall protect Contractor against any and all claims for all injuries and all damage to property arising from the use of automobiles, trucks and motorized vehicles, in connection with the performance of Work under this Contract, and shall cover the operation on or off the site of the Work of all motor vehicles licensed for highway use whether they are owned, non-owned or hired. Such insurance shall include contractual liability coverage and shall provide coverage on the basis of the date of any accident. The liability limits under such policy shall not be less than $2,000,000 combined single limit for bodily injury and property damage per accident.

11.3.2 Contractor waives all rights against Owner and its agents, officers, directors and employees for recovery of damages to the extent such damages are covered by the automobile liability insurance required hereunder.

11.4 Workers’ Compensation Insurance
11.4.1 Contractor shall purchase and maintain workers’ compensation insurance and employers’ liability insurance...
which shall protect Contractor from claims for injury, sickness, disease or death of Contractor’s employees or statutory employees. The insurance policies required hereunder shall include an “all states” or “other states” endorsement. In case any Work is sublet, Contractor shall require any Subcontractor of any tier to provide the insurance coverages required under this Section 11.4.

11.4.2 Contractor’s workers’ compensation insurance coverage shall be in compliance with all applicable Laws, including the statutes of the State of Missouri. Contractor’s employers’ liability coverage limits shall not be less than $1,000,000 each accident for bodily injury by accident or $1,000,000 each employee for bodily injury by disease.

11.5 Liability Insurance General Requirements

11.5.1 All insurance coverages procured by Contractor shall be provided by agencies and insurance companies acceptable to and approved by Owner. Any insurance coverage shall be provided by insurance companies that are duly licensed to conduct business in the State of Missouri as an admitted carrier. The form and content of all insurance coverage provided by Contractor are subject to the approval of Owner. All required insurance coverages shall be obtained and paid for by Contractor. Any approval of the form, content or insurance company by Owner shall not relieve the Contractor from the obligation to provide the coverages required herein.

11.5.2 All insurance coverage procured by the Contractor shall be provided by insurance companies having policyholder ratings no lower than “A-” and financial ratings not lower than ”XI” in the Best's Insurance Guide, latest edition in effect as of the date of the Contract, and subsequently in effect at the time of renewal of any policies required by the Contract Documents. Insurance coverages required hereunder shall not be subject to a deductible amount on a per-claim basis of more than $10,000.00 and shall not be subject to a per-occurrence deductible of more than $25,000.00. Insurance procured by Contractor covering the additional insureds shall be primary insurance and any insurance maintained by Owner shall be excess insurance.

11.5.3 All insurance required hereunder shall provide that the insurer’s cost of providing the insureds a defense and appeal, including attorneys’ fees, shall be supplementary and shall not be included as part of the policy limits but shall remain the insurer’s separate responsibility. Contractor shall cause its insurance carriers to waive all rights of subrogation, except for Workers’ Compensation, against the Owner and its officers, employees and agents.

11.5.4 The Contractor shall furnish the Owner with certificates, Additional Insured endorsements, policies, or binders which indicate the Contractor and/or the Owner and other Contractors (where required) are covered by the required insurance showing type, amount, class of operations covered, effective dates and dates of expiration of policies prior to commencement of the work. Contractor is required to maintain coverages as stated and required to notify the University of a Carrier Change or cancellation within 2 business days. The University reserves the right to request a copy of the policy. Contractor fails to provide, procure and deliver acceptable policies of insurance or satisfactory certificates or other evidence thereof, the Owner may obtain such insurance at the cost and expense of the Contractor without notice to the Contractor.

11.5.5 With respect to all insurance coverages required to remain in force and affect after final payment, Contractor shall provide Owner additional certificates, policies and binders evidencing continuation of such insurance coverages along with Contractor’s application for final payment and shall provide certificates, policies and binders thereafter as requested by Owner.

11.5.6 The maintenance in full current force and effect of such forms and amounts of insurance and bonds required by the Contract Documents shall be a condition precedent to Contractor’s exercise or enforcement of any rights under the Contract Documents.

11.5.7 Failure of Owner to demand certificates, policies and binders evidencing insurance coverages required by the Contract Documents, approval by Owner of such certificates, policies and binders or failure of Owner to identify a deficiency from evidence that is provided by Contractor shall not be construed as a waiver of Contractor’s obligations to maintain the insurance required by the Contract Documents.

11.5.8 The Owner shall have the right to terminate the Contract if Contractor fails to maintain the insurance required by the Contract Documents.

11.5.9 If Contractor fails to maintain the insurance required by the Contract Document, Owner shall have the right, but not the obligation, to purchase said insurance at Contractor’s expense. If Owner is damaged by Contractor’s failure to maintain the insurance required by the Contract Documents, Contractor shall bear all reasonable costs properly attributable to such failure.

11.5.10 By requiring the insurance set forth herein and in the Contract Documents, Owner does not represent or warrant that coverage and limits will necessarily be adequate to protect Contractor, and such coverages and limits shall not be deemed as a limitation on Contractor’s liability under the indemnities granted to Owner in the Contract Documents.
11.5.11 If Contractor’s liability policies do not contain a standard separation of insureds provision, such policies shall be endorsed to provide cross-liability coverage.

11.5.12 If a part of the Work hereunder is to be subcontracted, the Contractor shall: (1) cover any and all Subcontractors in its insurance policies; (2) require each Subcontractor to secure insurance which will protect said Subcontractor and supplier against all applicable hazards or risks of loss designated in accordance with Article 11 hereunder; and (3) require each Subcontractor or supplier to assist in every manner possible in the reporting and investigation of any accident, and upon request, to cooperate with any insurance carrier in the handling of any claim by securing and giving evidence and obtaining the attendance of witnesses as required by any claim or suit.

11.5.13 It is understood and agreed that the insurance coverages required by the provisions of this Article 11 are required in the public interest and that the Owner does not assume any liability for acts of Contractor or Subcontractors of any tier or their employees in the performance of the Contract or Work.

11.6 Builder’s Risk Insurance

11.6.1 The Contractor shall purchase and maintain, in a company or companies lawfully authorized to do business in the State of Missouri, as an admitted carrier, builder’s risk insurance on the entire Work. Such insurance shall be written on a completed value form for the entire Work. The insurance shall apply on a replacement cost basis.

11.6.2 The insurance as required herein shall name as insureds the Owner, Contractor and all Subcontractors of any tier. The insurance policy shall contain a provision that the insurance will not be canceled, allowed to expire or materially changed until at least thirty (30) days prior written notice has been given to Owner.

11.6.3 The insurance as required herein shall cover the entire Work, including reasonable compensation for Architect’s services and expenses made necessary by an insured loss. Insured property shall include portions of the Work located away from the site (including all offsite stored materials) but intended for use at the site, and shall also cover portions of the Work in transit, including ocean transit. The policy shall include as insured property scaffolding, falsework, and temporary buildings located at the site. The policy shall cover the cost of removing debris, including demolition as may be made legally necessary by the operation of any law, ordinance or regulation.

11.6.4 The insurance required herein shall be on an all risk form and shall be written to cover all risks of physical loss or damage to the insured party and shall insure at least against the perils of fire and extended coverage, theft, vandalism, malicious mischief, collapse, lightning, earthquake, flood, frost, water damage, windstorm and freezing.

11.6.5 If there are any deductibles applicable to the insurance required herein, Contractor shall pay any part of any loss not covered because of the operation of such deductibles.

11.6.6 The insurance as required herein shall be maintained in effect until the earliest of the following dates:

.1 the date which all persons and organization who are insureds under the policy agree in writing that it shall be terminated;

.2 the date on which final payment of this Contract has been made by Owner to Contractor; or

.3 the date on which the insurable interests in the property of all insureds other than the Owner have ceased.

11.6.7 The Owner and Contractor waive all rights against (1) each other and any of their subcontractors of any tier, suppliers, agents and employees, each of the other, (2) the Architect and Architect’s consultants, and (3) separate contractors described in Article 6, if any, and any of their subcontractors of any tier, suppliers, agents and employees, for damages caused by fire or other perils to the extent covered by property insurance obtained pursuant to this Section 11.7 or other insurance applicable to the Work, except such rights as they have to proceeds of such insurance. The Owner or Contractor, as appropriate, shall require of the Architect, Architect’s consultants, separate contractors described in Article 6, if any, and the subcontractors of any tier, suppliers, agents and employees of any of them, by appropriate agreements, written where legally required for validity, similar waivers each in favor of other parties enumerated herein. The policies shall provide such waivers of subrogation by endorsement or otherwise. A waiver of subrogation shall be effective as to a person or entity even though that person or entity would otherwise have a duty of indemnification, contractual or otherwise, did not pay the insurance premium directly or indirectly, was at fault or was negligent in causing the loss and whether or not the person or entity had an interest in the property damaged.

11.6.8 A loss insured under Contractor’s property insurance shall be adjusted by the Owner in good faith and made payable to the Owner for the insureds, subject to requirements of the Contract Documents. The Contractor shall pay Subcontractors of any tier their just shares of insurance proceeds received by the Contractor, and by appropriate agreements, written where legally required for validity, shall require Subcontractors of any tier to make payments to their Sub-subcontractors in similar manner.

11.7 Bonds

GC/31
08/18
11.7.1 When the Contract sum exceeds Fifty Thousand Dollars ($50,000), the Contractor shall procure and furnish a Performance Bond and a Payment Bond in the form prepared by the Owner, each in an amount equal to one hundred percent (100%) of the Contract Sum, as well as adjustments to the Contract Sum. The Performance Bond shall secure and guarantee Contractor’s faithful performance of this Contract, including but not limited to Contractor’s obligation to correct defects after final payment has been made as required by the Contract Documents. The Performance Bond shall secure and guarantee payment of all persons performing labor on the Project under this Contract and furnishing materials in connection with this Contract. These Bonds shall be in effect through the duration of the Contract plus the Guaranty Period as required by the Contract Documents.

11.7.2 The bonds required hereunder shall be executed by a responsible surety licensed in the State of Missouri, with a Best’s rating of no less than A-/XI. The Contractor shall require the attorney in fact who executes the required bonds on behalf of the surety to affix thereto a certified and current copy of this power of attorney indicating the monetary limit of such power.

11.7.3 If the surety of any bond furnished by Contractor is declared bankrupt or becomes insolvent or its right to conduct business in the State of Missouri is terminated, or it ceases to meet the requirements of this paragraph, Contractor shall within ten (10) days substitute another bond and surety, both of which must be acceptable to Owner. If Contractor fails to make such substitution, Owner may procure such required bonds on behalf of Contractor at Contractor’s expense.

11.7.4 Upon the request of any person or entity appearing to be a potential beneficiary of bonds covering payment of obligations arising under the Contract, the Contractor shall promptly furnish a copy of the bonds to such person or entity.

11.7.5 The Contractor shall keep the surety informed of the progress of the Work, and, where necessary, obtain the surety's consent to or waiver of: (1) notice of changes in the Work; (2) request for reduction or release of retention; (3) request for final payment; and (4) any other material required by the surety. The Owner shall be notified by the Contractor, in writing, of all communications with the surety, as it relates to items one through four. The Owner may, in the Owner's sole discretion, inform surety of the progress of the Work, any defects in the Work, or any defaults of Contractor under the Contract Documents and obtain consents as necessary to protect the Owner's rights, interest, privileges and benefits under and pursuant to any bond issued in connection with the Work.

11.7.6 Contractor shall indemnify and hold harmless the Owner and any agents, employees, representative or member of the Board of Curators from and against any claims, expenses, losses, costs, including reasonable attorneys’ fees, as a result of any failure of Contractor to procure the bonds required herein.

ARTICLE 12
UNCOVERING AND CORRECTION OF THE WORK

12.1 Uncovering of the Work
12.1.1 If a portion of the Work is covered contrary to the Architect's request or to requirements specifically expressed in the Contract Documents, it shall, if required in writing by the Architect or the Owner's Representative, be uncovered for the Architect's observation and be replaced at the Contractor's expense without change in the Contract Time.

12.1.2 If a portion of the Work has been covered which the Architect or the Owner's Representative has not specifically requested to observe, prior to its being covered, the Architect or the Owner's Representative may request to see such Work, and it shall be uncovered by the Contractor. If such Work is in accordance with the Contract Documents, costs of uncovering and replacement shall, by appropriate Change Order, be charged to the Owner. If such Work is not in accordance with the Contract Documents, the Contractor shall pay such costs unless the condition was caused by the Owner or a separate contractor in which event the Owner will be responsible for payment of such costs.

12.2 Correction of the Work
12.2.1 The Architect or Owner’s Representative shall have the right to reject Work not in strict compliance with the requirements of the Contract Documents. The Contractor shall promptly correct Work rejected by the Architect or the Owner's Representative for failing to conform to the requirements of the Contract Documents, whether observed before or after final completion and whether or not fabricated, installed, or completely. If Work has been rejected by Architect or Owner's Representative, the Architect or Owner's Representative shall have the right to require the Contractor to remove it from the Project site and replace it with Work that strictly conforms to the requirements of the Contract Documents regardless if such removal and replacement results in “economic waste.” Contractor shall pay all claims, costs, losses and damages caused by or resulting from the correction, removal or replacement of defective Work, including but not limited to, all costs of repair or replacement of Work of others. The Contractor shall bear costs of correcting, removing and replacing such rejected Work, including additional testing and inspections and compensation for the Architect's services and expenses made necessary thereby. If prior to the date of final payment, the Contractor, a Subcontractor or anyone for whom either is responsible uses or damages any portion of
the Work, including, without limitation, mechanical, electrical, plumbing and other building systems, machinery, equipment or other mechanical device, the Contractor shall cause such item to be restored to “like new” condition at no expense to the Owner.

12.2.2 If, within twelve (12) months after the date of Final Completion of the Work or designated portion thereof, or after the date for commencement of warranties, or by terms of an applicable special warranty required by the Contract Documents, any of the Work is found not to be in strict accordance with the requirements of the Contract Documents, the Contractor shall correct or remove and replace such defective Work, at the Owner’s discretion. Such twelve (12) month period is referred to as the “Guarantee Period.” The obligations under this Paragraph 12.2.2 shall cover any repairs, removal and replacement to any part of the Work or other property caused by the defective Work.

12.2.3 The Contractor shall remove from the site portions of the Work which are not in accordance with the requirements of the Contract Documents and are neither corrected by the Contractor nor accepted by the Owner.

12.2.4 If the Contractor fails to correct nonconforming Work within a reasonable time, the Owner may correct or remove it and replace such nonconforming Work. If the Contractor does not proceed with correction of such nonconforming Work within a reasonable time fixed by written notice from the Owner, the Owner may take action to correct or remove the nonconforming work at the contractor’s expense.

12.2.5 The Contractor shall bear the cost of correcting destroyed or damaged Work or property, whether completed or partially completed, of the Owner or of others caused by the Contractor's correction or removal of Work which is not in accordance with the requirements of the Contract Documents.

12.2.6 Nothing contained in Article 12 shall be construed to establish a period of limitation with respect to other obligations that the Contractor might have under the Contract Documents. Establishment of the twelve (12) month Guarantee Period as described in Article 12 relates only to the specific obligation of the Contractor to correct, remove or replace the Work, and has no relationship to the time within which the obligation to comply with the Contract Documents may be sought to be enforced, nor to the time within which proceedings may be commenced to establish the Contractor's liability with respect to the Contractor's obligations under the Contract Documents. The requirements of Article 12 are in addition to and not in limitation of any of the other requirements of the Contract for warranties or conformance of the Work to the requirements of the Contract Documents.

12.3 Acceptance of Nonconforming Work
12.3.1 The Owner may accept Work which is not in accordance with the Contract Documents, instead of requiring its removal and correction, in its sole discretion. In such case the Contract Sum will be adjusted as appropriate and equitable. Such adjustment shall be made whether or not final payment has been made. Nothing contained herein shall impose any obligation upon the Owner to accept nonconforming or defective Work.

ARTICLE 13
MISCELLANEOUS PROVISIONS

13.1 Written Notice
13.1.1 All notices required to be given by the contractor under the terms of this Contract shall be made in writing. Written notice when served by the Owner will be deemed to have been duly served if delivered in person to the individual or a member of the firm or entity or to an office of the corporation for which it was intended, or if delivered at or sent to the last business address known to the party giving notice.

13.2 Rights and Remedies
13.2.1 Duties and obligations imposed by the Contract Documents, and rights and remedies available thereunder shall be in addition to and not a limitation of duties, obligations, rights, and remedies otherwise imposed or available by law.

13.2.2 No action or failure to act by the Owner, the Architect, or the Owner's Representative will constitute a waiver of a right or duty afforded to the Owner under the Contract Documents, nor will such action or failure to act constitute approval of or acquiescence in a breach thereunder, except as may be specifically agreed in writing.

13.2.3 The terms of this Contract and all representations, indemnifications, warranties and guarantees made in, required by or given in accordance with the Contract Documents, as well as all continuing obligations indicated in the Contract Documents, will survive final payment, completion and acceptance of the Work and termination or completion of the Work and shall remain in effect so long as the Owner is entitled to protection of its rights under applicable law.

13.2.4 Contractor shall carry out the Work and adhere to the current construction schedule during all disputes or disagreements with the Owner. No Work shall be delayed or postponed pending resolution of any disputes or disagreements except as the Owner and Contractor may otherwise agree to in writing.
13.3 Tests and Inspections

13.3.1 Tests, inspections, and approvals of portions of the Work required by the Contract Documents or by laws, ordinances, rules or regulations shall be made at an appropriate time. Unless otherwise provided, the Contractor shall make arrangements for such tests, inspections and approvals with an independent testing laboratory or entity acceptable to the Owner, and shall bear related costs of tests, inspections, and approvals. The Contractor shall give the Architect and the Owner's Representative timely notice of when and where tests and inspections are to be made so the Architect and/or the Owner's Representative may observe procedures.

13.3.2 If the Architect or the Owner's Representative determine that portions of the Work require additional testing, inspection or approval not included in the Contract Documents, or required by law, the Architect, or the Owner's Representative will instruct the Contractor to make arrangements for such additional testing, inspection, or approval by an entity acceptable to the Owner's Representative and the Contractor shall give timely notice to the Architect, and the Owner's Representative, of when and where tests and inspections are to be made so the Architect and/or the Owner's Representative may observe such procedures. The Owner will bear such costs except as provided elsewhere in Article 13.

13.3.3 If such procedures for testing, inspection, or approval under Article 13 reveal failure of the portions of the Work to comply with requirements established by the Contract Documents, the Contractor shall bear all costs made necessary by such failure including those of repeated procedures and compensation for the Architect's services and expenses.

13.3.4 Required certificates of testing, inspection, or approval shall, unless otherwise required by the Contract Documents, be secured by the Contractor and promptly delivered to the Owner's Representative and Architect.

13.3.5 Contractor shall take all necessary actions to ensure that all tests or inspections conducted pursuant to the Contract Documents shall be made promptly to avoid unreasonable delay in the Work.

13.3.6 Contractor shall arrange for and pay for all costs of all testing required by the Contract Documents or any applicable Laws for materials to be tested or certified at or on the place or premises of the source of the material to be supplied. The Owner shall have the right to require testing of all materials at the place of the source of the material to be supplied if not required by the Contract Documents or any applicable Laws. The Owner shall bear the costs of such tests and inspections not required by the Contract Documents or by applicable Laws unless prior defective Work provides Architect or Owner with a reasonable belief that additional defective Work may be found, in which case Contractor shall be responsible for all costs of tests and inspections ordered by the Owner or Architect, whether or not such tests or inspection reveals that Work is in compliance with the Contract Documents.

13.4 Nondiscrimination in Employment Equal Opportunity

13.4.1 The University serves from time to time as a contractor for the United States government. Accordingly, the provider of goods and/or services shall comply with federal laws, rules and regulations applicable to subcontractors of government contracts including those relating to equal employment opportunity and affirmative action in the employment of minorities (Executive Order 11246), women (Executive Order 11375), persons with disabilities (29 USC 706) and Executive Order 11758, and certain veterans (38 USC 4212 formerly [2012]) contracting with business concerns with small disadvantaged business concerns (Publication L. 95-507). Contract clauses required by the Government in such circumstances are incorporated herein by reference.

13.5 Supplier Diversity Goal Program

13.5.1 The Contractor shall subcontract with diverse firms no less than the amount pledged in the Contractor's Bid and/or the amount accepted by the Owner.

13.5.2 If the Contractor must remove any diverse subcontractor of any tier, the Contractor shall replace the diverse subcontractor of any tier with another diverse subcontractor(s) of equal dollar value to the diverse supplier removed. The Contractor shall immediately notify the Owner’s Representative in writing of the Contractor’s intent to remove any, and the Contractor’s plan to maintain subcontracts with diverse firms of no less than amount pledged in the Contractor’s Bid and/or the amount accepted by the Owner. All changes of diverse subcontractor of any tier shall be approved by the Director of Facilities Planning & Development.

13.5.3 If the Contractor fails to meet or maintain the contractor’s Supplier Diversity subcontracting pledge, the Contractor shall immediately notify in writing the Owner’s Representative, and the Director of Facilities Planning & Development. Such notice shall include a description of the Contractor’s good faith effort to comply with their Supplier Diversity subcontracting pledge.

13.5.4 If the Director of Facilities Planning & Development finds the Contractor has failed to comply in good faith with the Owner’s Supplier Diversity goal program, the Director may take appropriate action, including but not limited to, declaring the Contractor ineligible to participate in any contracts with the Owner for a period not to exceed six (6) months, and/or directing that the Contractor's actions be
declared a material breach of the Contract and that the Contract be terminated.

13.5.5 The Contractor and his subcontractors shall develop, implement, maintain, and submit in writing to the Director of Facilities Planning & Development, an affirmative action program if at least fifty (50) persons in the aggregate are employed under this contract. If less than fifty (50) persons in the aggregate are to be employed under this contract, the Contractor shall submit, in lieu of the written affirmative action program, a properly executed "Affidavit for Affirmative Action" in the form as included in the Contract Documents. For the purpose of this section, an "Affirmative Action Program" means positive actions to influence all employment practices (including, but not limited to, recruiting, hiring, promoting, and training) in providing equal employment opportunity regardless of race, color, sex, national origin, religion, age (where the person affected is between 40 and 70), disabled and Vietnam-era veteran status, and handicapped otherwise qualified status. Such affirmative action program shall include:

.1 A written policy statement committing the total organization to affirmative action and assigning management responsibilities and procedures for evaluation and dissemination.

.2 The identification of a person designated to handle affirmative action.

.3 The establishment of non-discriminatory selection standards, objective measures to analyze recruitment, an upward mobility system, a wage and salary structure, and standards applicable to lay-off, recall, discharge, demotion, and discipline.

.4 The exclusion of discrimination from collective bargaining agreements.

.5 Performance of an internal audit of the reporting system to monitor execution and to provide for future planning.

13.5.6 In the enforcement of this non-discrimination requirement, the Owner may use any reasonable procedures available, including but not limited to: requests, reports, site visits, and inspection of relevant documents of Contractors and Subcontractors of any tier. The contractor shall submit a final Affidavit of Supplier Diversity Participation for each diverse firm at the end of the project stating the actual amount paid to the diverse firm.

13.6 Wage Rates (If the contract amount is less than $75,000, the requirements of this section will not apply. Any contract adjustments that increase the contract above $75,000 will be subject to this section.)

13.6.1 The Contractor shall pay workers employed in the execution of this contract in full each week and not less than the predetermined wage rates and overtime for work of a similar character that have been made a part of this Contract. These rates are determined by the University of Missouri Director of Facilities Planning and Development. The rates are based on wage rates published in the Annual Wage Orders of the Missouri Department of Labor and Industrial Relations (MDLIR). The Contractor is to use MDLIR 8 CSR 30-3.020; .030; .040, .060 in determining the appropriate occupational titles and rates for workers used in the execution of this contract. All determinations and/or interpretations regarding wage rates and classification of workers will be made by the office of the University of Missouri Director of Facilities Planning and Development. The Contractor is responsible for the payment of the aggregate of the Basic Hourly Rate and the Total Fringe Benefits to the workers on the project. Fringe benefit payments may be made to the worker in cash, or irrevocably made by a Contractor or Subcontractor to a trustee or to a third person pursuant to a fund, plan or program, or pursuant to an enforceable commitment, or any combination thereof, to carry out a financially responsible plan or program which was communicated in writing to the workmen affected, for medical or hospital care, pensions on retirement or death, compensation for injuries or illness resulting from occupational activity, or insurance to provide any of the foregoing, for unemployment benefits, life insurance, disability and sickness insurance, accident insurance, for vacation and holiday pay, for defraying costs of apprenticeship or other similar programs, or for other bona fide fringe benefits, but only where the Contractor or Subcontractor is not required by other federal or state law to provide any of the benefits as referenced in §290.210(5) RSMo 1994. Pay for travel, mileage, meals, bonuses, or other expenses are not fringe benefits and cannot be considered part of the workers wage rate. The Contractor shall not make any deductions for food, sleeping accommodations, transportation, use of small tools, uniforms, or anything of any kind or description, unless the Contractor and employee enter into an agreement in writing at the beginning of the worker's term of employment, and such agreement is approved by the Owner. In the event the contract contains more than one wage determination the Contractor shall comply with both.

13.6.2 The Contractor shall submit to the Owner with the Contractor's periodic pay request, certified payroll records for labor performed by the Contractor and Subcontractors of any tier. The Contractor shall submit all required certified payroll information records electronically in pdf format using the Owner's web-based payment program. The certified payroll forms shall contain the name, address, personal identification number, and occupational title of the workers as well as the hours they work each day. The Owner's acceptance of certified payroll records does not in any way relieve the Contractor of any responsibility for the payment of prevailing wages to workers on the project. The Contractor shall also maintain copies of the certified payroll
records. The Owner may, at any time, request copies of, and/or inspect all of the Contractor's payroll records for the Work to verify compliance. The Contractor shall furnish the Owner copies of payroll records within 10 days of the Owner's written request. The Contractor shall provide copies of workers I-9 forms within 24 hours of written notice. (If applicable, and required by Owner, the Contractor will demonstrate that the Contractor is enrolled and participating in a federal work authorization program with respect to the employees working in connection with this project.) Such payroll records shall be maintained in accordance with Article 13.7.1 and shall be available for inspection for two (2) years after final completion of the Work. The contractor further agrees, in the event the records are not presented as requested, he will abide by any decision made by the Owner regarding underpayment of wages to workers and amounts owed them as well as liquidated damages for underpayment of wages. Falsification of the certified payroll records may result in the debarment of the contractor or subcontractor from future work with the University.

13.6.3 The acquisition of products or services is subject to the supplier's conformance to the rules and regulations of the President's Committee on Equal Employment Opportunity (41 CFR, Ch. 60).

13.6.4 The Contractor shall comply with the Copeland Regulations of the Secretary of Labor (29 CFR, Part 3), which are incorporated herein by reference. In addition, the Weekly Statement of Compliance required by these Regulations shall also contain a statement that the applicable fringe benefits paid are equal to or greater than those set forth in the minimum wage decision.

13.6.5 Contractor acknowledges that violation of the requirements of Article 13.6 result in additional costs to Owner, including, but not limited to, cost of construction delays, of additional work for Owner's staff and legal expense. The cost of Contractor's violation of the provisions of Article 13.6 would be and is difficult to determine and establish. In the event that Contractor fails to comply with the provisions of this Article 13.6, Owner shall be entitled to retain or recover from the Contractor, as liquidated damages and not as a penalty, the sum of Fifty Dollars ($50.00) per day per individual who is paid less than the prevailing wage, to approximate the investigative cost resulting to the Owner for such violations. To approximate the delay costs, Owner shall be entitled to retain or recover from the Contractor, as liquidated damages and not as a penalty, the sum of One Hundred Dollars ($100.00) per day for each day the Contract cannot be closed out and final payment made because of Contractor's failure to comply with the provisions of this Article 13.6. Such liquidated damages shall be collected regardless of whether the Work has been completed. The liquidated damages and other amounts set forth in this Article 13.6 shall be in addition to all other liquidated damages the Owner may be entitled as set forth in the Contract Documents.

13.6.6 The Owner may deduct liquidated damages described Article 13 and the amounts set forth in Article 13 from any unpaid amounts then or thereafter due the Contractor under the Contract. Any liquidated damages not so deducted from any unpaid amounts due the Contractor shall be payable to the Owner at the demand of the Owner.

13.6.7 The Contractor shall specifically incorporate the obligations of Article 13 into the subcontracts, supply agreements and purchase orders for the Work and require the same of any Subcontractors of any tier.

13.6.8 Contractor acknowledges and recognizes that a material factor in its selection by the Owner is the Contractor's willingness to undertake and comply with the requirements of this Article 13.6. If Contractor fails to comply with the provisions of this Article 13.6, Owner may, in its sole discretion, immediately terminate the Contract upon written notice. The rights and remedies of Owner provided herein shall not be exclusive and are in addition to other rights and remedies provided by law or under this Contract.

13.6.9 Only such workers who are individually registered in a bona fide apprenticeship program approved by the U.S. Department of Labor, Office of Apprenticeship can be paid less than the journeyman rate of pay. “Entry Level Workers; must be registered apprentices. The apprenticeship ratio will be one to one with a journeyman of the same classification. Any worker not registered as an apprentice per this section will be paid as a journeyman.

13.6.10 The Contractor shall post the wage rates for the contract in a conspicuous place at the field office on the project. On projects where there is no field office the Contractor may post the wage rates at their local office, as long as they provide a copy of the wage rates to a worker upon request. The wage rates shall be kept in a clearly legible condition for the duration of the project.

13.6.11 Neither the Contractor, nor any Subcontractor of any tier, nor any person hired by them or acting on their behalf, shall request or demand that workers pay back, return, donate, contribute or give any part, or all, of said workers wages, salary, or any thing of value, upon the statement, representation or understanding that failure to comply with such request or demand will prevent such worker from procuring or retaining employment. The exception being to an agent or representative of a duly constituted labor organization acting in the collection of dues or assessments of such organization.
13.6.12 No contractor or subcontractor may directly or indirectly receive a wage subsidy, bid supplement, or rebate for employment on this project if such wage subsidy, bid supplement, or rebate has the effect of reducing the wage rate paid by the employer on a given occupational title below the prevailing wage rate as provided in contract. In the event a wage subsidy, bid supplement, or rebate is provided or received, the entity receiving such subsidy, supplement, or rebate shall report the date and amount of such subsidy, supplement, or rebate to the University within thirty days of receipt of payment. This disclosure report shall be a matter of public record. Any employer not in compliance with this Article shall owe to the University double the dollar amount per hour that the wage subsidy, bid supplement, or rebate has reduced the wage rate paid by the employer below the prevailing wage rate for each hour that work was performed.

13.6.13 Time and one half overtime will be paid on all hours over 10 hours per day or 40 hours per week. The wage rate is the total of the “Basic Hourly Rate” plus “Total Fringe Benefits” or the “public works contracting minimum wage”. For all work performed on a Sunday or Holiday, not less than twice the prevailing hourly rate of pay or public works contracting minimum wage will apply. Holidays are as follows: January first, the last Monday in May, July fourth, the first Monday in September, November 11, the fourth Thursday in November, December twenty-fifth. If any holiday falls on a Sunday, the following Monday shall be considered a holiday.

13.7 Records
13.7.1 The Owner, or any parties it deems necessary, shall have access to and the right to examine any accounting or other records of the Contractor involving transactions and Work related to this Contract for five (5) years after final payment or five (5) years after the final resolution of any on going disputes at the time of final payment. All records shall be maintained in accordance with generally accepted accounting procedures, consistently applied. Subcontractors of any tier shall be required by Contractor to maintain records and to permit audits as required of Contractor herein.

13.8 Codes and Standards
13.8.1 The Work shall be performed to comply with the International Code Council (ICC) Codes, and the codes and standards noted below. The latest editions and supplements of these Codes and Standards in effect on the date of the execution of the Contract for Construction shall be applicable unless otherwise designated in the Contract Documents. Codes and standards required by accreditation agencies will also be used unless the ICC requirements are more stringent. In the event that special design features and/or construction systems are not covered in the ICC codes, the applicable edition of the National Fire Protection Association (NFPA) family of standards and/or the NFPA 101 Life Safety Code shall be used.

1. ICC International Building Code and reference standards
2. ICC International Plumbing Code
3. ICC International Mechanical Code
4. NFPA 70 National Electric Code (NEC)
5. Americans with Disabilities Act – Standards for Accessible Design
7. NFPA 101 Life Safety Code (as noted above)
8. American Concrete Institute (ACI)
9. American National Standards Institute (ANSI)
10. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE)
11. American Refrigeration Institute (ARI)
14. National Electrical Manufacturers Association (NEMA)
15. Underwriter's Laboratories, Inc. (UL), Federal Specifications
16. Williams Steiger Occupational Safety and Health Act of 1970 (OSHA)

13.9 General Provisions
13.9.1 Any specific requirement in this Contract that the responsibilities or obligations of the Contractor also apply to a Subcontractor is added for emphasis and are also hereby deemed to include a Subcontractor of any tier. The omission of a reference to a Subcontractor in connection with any of the Contractor's responsibilities or obligations shall not be construed to diminish, abrogate or limit any responsibilities or obligations of a Subcontractor of any tier under the Contract Documents or the applicable subcontract.

13.9.2 This Contract shall be interpreted, construed, enforced and regulated under and by the laws of the State of Missouri. Whenever possible, each provision of this Contract shall be interpreted in a manner as to be effective and valid under applicable law. If, however, any provision of this Contract, or a portion thereof, is prohibited by law or found invalid under any law, only such provision or portion thereof shall be ineffective, without invalidating or affecting the remaining provisions of this Contract or valid portions of such provision, which are hereby deemed severable. Contractor and Owner further agree that in the event any provision of this Contract, or a portion thereof, is prohibited by law or found

GC/37
08/18
invalid under any law, this Contract shall be reformed to replace such prohibited or invalid provision or portion thereof with a valid and enforceable provision which comes as close as possible to expressing the intention of the prohibited or invalid provision.

13.9.3 Contractor and Owner each agree that the State of Missouri Circuit Court for the County where the Project is located shall have exclusive jurisdiction to resolve all Claims and any issue and disputes between Contractor and Owner. Contractor agrees that it shall not file any petition, complaint, lawsuit or legal proceeding against Owner in any other court other than the State of Missouri Circuit Court for the County where the Project is located.

13.9.4 Owner’s total liability to Contractor and anyone claiming by, through, or under Contractor for any Claim, cost, loss, expense or damage caused in part by the fault of Owner and in part by the fault of Contractor or any other entity or individual shall not exceed the percentage share that Owner’s fault bears to the total fault of Owner, Contractor and all other entities and individuals as determined on the basis of comparative fault principles.

13.9.5 Contractor agrees that Owner shall not be liable to Contractor for any special, indirect, incidental, or consequential damage whatsoever, whether caused by Owner’s negligence, fault, errors or omissions, strict liability, breach of contract, breach of warranty or other cause or causes whatsoever. Such special, indirect, incidental or consequential damages include, but are not limited to loss of profits, loss of savings or revenue, loss of anticipated profits, labor inefficiencies, idle equipment, home office overhead, and similar types of damages.

13.9.6 Nothing contained in this Contract or the Contract Documents shall create any contractual relationship with or cause of action in favor of a third party against the Owner.

13.9.7 No member or officer of the Board of Curators of the University incurs or assumes any individual or personal liability under the Contract or by reason of the default of the Owner in the performance of any terms thereof. Contractor releases and discharges all members or officers of the Board of Curators of the University from any liability as a condition of and as consideration for the award of the Contract to Contractor.

13.9.8 The Contractor hereby binds itself, its partners, successors, assigns and legal representatives to the Owner in respect to covenants, agreements and obligations contained in the Contract Documents. Contractor shall not assign the Contract or proceeds hereof without written consent of the Owner. If Contractor attempts to make such an assignment without such consent, it shall be void and confer no rights on third parties, and Contractor shall nevertheless remain legally responsible for all obligations under the Contract. The Owner’s consent to any assignment is conditioned upon Contractor entering into a written assignment which contains the following language: “it is agreed that the funds to be paid to the assignee under this assignment are subject to performance by the Contractor and to claims and to liens for services rendered or materials supplied for the performance of the Work required in said Contract in favor of all persons, firms, corporations rendering such services or supplying such materials.”

13.10 Debarment and Suspension Certification

The contractor certifies to the best of its knowledge and belief that it and its principals are not presently debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded from covered transactions by any Federal department or agency in accordance with Executive Order 12549 (2/18/86).

ARTICLE 14
TERMINATION OR SUSPENSION OF THE CONTRACT

14.1 Termination by Owner for Cause

14.1.1 In addition to other rights and remedies granted to Owner under the Contract Documents and by law, the Owner may terminate the Contract if the Contractor:
 .1 refuses or fails to supply enough properly skilled workers, superintendents, foremen, or managers;
 .2 refuses or fails to supply sufficient or proper materials;
 .3 fails to make payment to Subcontractors for materials or labor in accordance with the respective agreements between the Contractor and the Subcontractors;
 .4 disregards laws, ordinances, rules, or regulations or orders of a public authority having jurisdiction;
 .5 disregards the authority of the Owner’s Representative or Architect;
 .6 breaches any warranty or representations made by the Contractor under or pursuant to the Contract Documents;
 .7 fails to furnish the Owner with assurances satisfactory to the Owner evidencing the Contractor's ability to complete the Work in compliance with all the requirements of the Contract Documents;
 .8 fails after commencement of the Work to proceed continuously with the construction and completion of the Work for more than ten (10) days, except as permitted under the Contract Documents;
 .9 fails to maintain a satisfactory rate of progress with the Work or fails to comply with approved progress schedules; or
 .10 violates in any substantial way any provisions of the Contract Documents.

14.1.2 When any of the above reasons exist, the Owner may, without prejudice to any other rights or remedies of the Owner,
terminate this Contract by delivering a written notice of
termination to Contractor and Contractor’s surety, and may:
1. take possession of the site and of all materials,
equipment, tools, and construction equipment and
machinery thereon owned by the Contractor;
2. accept assignment of subcontracts pursuant to
Paragraph 5.3; and
3. finish the Work by whatever reasonable method
the Owner may deem expedient, including turning
the Work over to the surety.

14.1.3 The Contractor, in the event of a termination
under Section 14.1, shall not be entitled to receive any
further payments under the Contract until the Work is
completed in its entirety. Then, if the unpaid balance
under the Contract shall exceed all expenses of the Owner
in finishing the Work, including additional compensation
for the Architects services and expenses made necessary
thereby, such excess will be paid to the Contractor; but, if
such expenses of Owner to finish the Work shall exceed
the unpaid balance, the Contractor and its surety shall be
liable for, and shall pay the difference and any damages
to the Owner. The obligation of the Contractor and its
surety for payment of said amounts shall survive
termination of the Contract.

14.1.4 In exercising the Owner's right to secure
completion of the Work under any of the provisions
hereof, the Owner shall have the right to exercise the
Owner's sole discretion as to the manner, methods, and
reasonableness of costs of completing the Work.

14.1.5 The rights of the Owner to terminate pursuant to
Article 14.1 will be cumulative and not exclusive and
shall be in addition to any other remedy provided by law
or the Contract Documents.

14.1.6 Should the Contractor fail to achieve Final
Completion of the Work within thirty (30) calendar days
following the date of Substantial Completion, the Owner
can exercise its rights under Article 14.1.

14.2 Suspension by the Owner for Convenience
14.2.1 The Owner may, without cause, order the
Contractor in writing to suspend, delay, or interrupt the
Work in whole or in part for such period of time as the
Owner may determine.

14.2.2 An adjustment will be made to the Contract Sum
for increases in the cost of performance of the Contract
caus ed by suspension, delay or interruption. However, in
the event of a suspension under this Article 14.2,
Contractor hereby waives and forfeits any claims for
payment of any special, indirect, incidental or
consequential damages such as lost profits, loss of
savings or revenue, loss of anticipated profits, idle labor
or equipment, home office overhead, and similar type
damages. No adjustment will be made to the extent:
1. that performance is, was, or would have been so
suspended, delayed or interrupted by another cause
for which the Contractor in whole or in part is
responsible, or
2. that an equitable adjustment is made or denied under
another provision of this Contract.

14.3 Owner’s Termination for Convenience
14.3.1 The Owner may, at any time, terminate the Contract
in whole or in part for the Owner's convenience and without
cause. Termination by the Owner under this Paragraph shall
be by a notice of termination delivered to the Contractor
specifying the extent of termination and the effective date.

14.3.2 Upon receipt of a notice of termination for
convenience, the Contractor shall immediately, in accordance
with instructions from the Owner, proceed with performance of
the following duties regardless of delay in determining or
adjusting amounts due under this Paragraph:
1. cease operation as specified in the notice;
2. place no further orders and enter into no further
subcontracts for materials, labor, services or facilities
except as necessary to complete Work not terminated;
3. terminate all subcontracts and orders to the extent
they relate to the Work terminated;
4. proceed to complete the performance of Work not
terminated; and
5. take actions that may be necessary, or that the Owner
may direct, for the protection and preservation of the
terminated Work.

14.3.3 Upon such termination, the Contractor shall recover
as its sole remedy payment for Work properly performed in
connection with the terminated portion of the Work prior to
the effective date of termination and for items properly and timely
fabricated off the Project site, delivered and stored in
accordance with the Owner's instructions and for all Owner
approved claims, costs, losses and damages incurred in
settlement of terminated contracts with Subcontractors and
suppliers. The Contractor hereby waives and forfeits all other
claims for payment and damages, including, without limitation,
appeared profits, consequential damages and other economic
losses.

14.3.4 The Owner shall be credited for (1) payments
previously made to the Contractor for the terminated portion of
the Work, (2) claims which the Owner has against the
Contractor under the Contract and (3) the value of the
materials, supplies, equipment or other items that are to be
disposed of by the Contractor that are part of the Contract
Sum.

14.3.5 Upon determination by a court that termination of
Contractor or its successor in interest pursuant to Paragraph
14.1 was wrongful, such termination will be deemed converted
to a termination for convenience pursuant to Paragraph 14.3, and Contractor's sole and exclusive remedy for wrongful termination is limited to recovery of the payments permitted for termination for convenience as set forth in Paragraph 14.3.
SECTION 1.E
SPECIAL CONDITIONS

1. DEFINITIONS

a. Drawings:
 Drawings referred to in and accompanying Project Manual consist of Drawings prepared
 by and bearing name of below defined Architect, bearing the title "LAFFERRE HALL – 3RD

b. Architect:
 TreanorHL
 1040 Vermont Street
 Lawrence, KS 66044
 785.842.4858

c. Mechanical, Plumbing, and Fire Protection Engineer:
 Ross & Baruzzini
 6 South Old Orchard Avenue
 St. Louis, MO 63119
 314.918.8383

d. Electrical Engineer:
 Antella Consulting Engineering
 1600 Genessee Street, Suite 260
 Kansas City, MO 64102
 816.421.0950

e. Other Definitions: See Article 1, General Conditions.

2. SPECIAL SCHEDULING REQUIREMENTS

a. Refer to the bid form.

3. SCOPE OF WORK

a. The Contractor shall furnish all labor, materials, tools, equipment necessary for, and
 incidental to, construction of this project as indicated on Drawings and specified herein.

b. Work shall include everything requisite and necessary to finish work properly,
 notwithstanding that every item of labor or materials or accessories required to make
 project complete may not be specifically mentioned.

c. General Description of Work:

(1) Project consists of fitout of third floor shell space to create multiple laboratories
 and associated support spaces.

(2) Demolition shall consist of selective removal of existing construction as shown on
 Drawings and as required for new work and includes, but is not limited to gyp. bd.
 partitions, lighting, HVAC components and piping

(3) Architectural work shall consist of gyp. bd. partitions; floor, wall, and ceiling finishes,
 doors and hardware; interior glazing; fixed and moveable casework; modular cleanroom, and other work as indicated.

(4) Mechanical work shall consist of new mechanical equipment, ductwork, and
plumbing systems as indicated. Work will include modifications to existing ductwork, steam, condensate, domestic water, chilled water, heating hot water, DI water, natural gas, lab vacuum, and sanitary sewer. Systems installed to include all required joints, guides, anchors, thermal insulation, etc. Direct-digital controls will be provided for all temperature control functions in the building, with reporting to a central building energy management control system. The central building energy management control system shall be Johnson Controls.

(5) Electrical work shall consist of new power and lighting throughout the renovated areas as indicated. Existing Fire alarm system is modified as required for new space configuration. New panelboards are provided for the renovated area and are fed from the existing 3CDPL1.

(6) Fire protection work shall consist of new wet-pipe sprinkler system throughout the areas indicated, as well as an FM-200 dry-system at the equipment room.

4. LOCATION

Work shall be performed under this Contract on campus of the University of Missouri - Columbia Campus, at the third floor of the Lafferre Hall Engineering Building.

5. NUMBER OF CONSTRUCTION DOCUMENTS

The Owner's Representative will furnish the Contractor a digital copy of executed Contract and a complete sets of Drawings and Specifications in digital PDF format.

a. Hardcopy prints of any documents (bid or explanatory) will be printed at the Contractor's expense through a printer of their choosing.

b. The Owner will furnish explanatory and changed Drawings in digital PDF format to Contractor as issued during project.

6. SUBMITTALS

a. The Contractor shall submit for approval to the Architect, equipment lists and Shop Drawings, as expediently as possible. Failure of the Contractor to submit Shop Drawings in a timely manner will result in the Owner holding back Contractor payments. (See General Conditions)

b. The material and equipment lists shall be submitted and approved before any material or equipment is purchased and shall be corrected to as-built conditions before the completion of the project.

c. The Contractor shall submit electronic versions of all required Shop Drawings, material and equipment lists. The Contractor shall upload all Shop Drawings to a secure information sharing website determined by the Owner notifying the Owner and Consultant that these shop drawings are available for review. Each submittal shall have the General Contractors digital stamp affixed to the first page signifying their review and acceptance. Review comments, approvals, and rejections will be posted on this same site with notification to the contractor. Submittals requiring a professional seal shall be submitted hard copy with a manual seal affixed.

(1) The Contractor shall identify each submittal item with the following:

(a) Project Title and Location
(b) Project Number
(c) Supplier’s Name
(d) Manufacturer’s Name
(e) Contract Specification Section and Article Number
(f) Contract Drawing Number
(g) Acrobat file name: Spec Section_Times Submitted-Spec Title: 033000_01-Cast In Place Concrete.pdf

(2) Reference the accompanying Shop Drawing and Submittal Log at the end of this section (1.E.3) for required submittal information.

d. The Contractor shall submit to the Architect one (1) bound copy plus one PDF copy of all required Operating Instructions and Service Manuals for the Architect’s and the Owner’s sole use prior to completing 50% of the adjusted contract. Payments beyond 50% of the contract amount may be withheld until all Operating Instructions and Service Manuals are received as referenced in the accompanying Operating Instructions and Service Manual Log at the end of this section (1.E.4).

e. The Contractor shall submit to the Owner’s Representative all items referenced in the accompanying Closeout Log (1.E.5) within 30 days following substantial completion of the work. The Owner’s Representative will maintain the closeout log and include as an agenda item at all coordination meetings.

7. NOTIFICATION

Before beginning Demolition Work or service outages, the Contractor shall provide, at minimum, seventy-two (72) hours advance notice to Owner’s Representative for purpose of verifying utility locations including, but not limited to, gas, telecommunications, electric, water, steam, sewer, and nitrogen. Contractor shall minimize the number of outages, minimize the length of outages and related work shall be continuous until the utility is restored.

8. USE OF PREMISES

a. Access: Access to construction site shall be as indicated on Drawings and as directed by the Owner’s Representative.

b. Owner will occupy the premises during the entire construction period, with the exception of areas under construction as indicated on drawings. Cooperate fully with Owner during construction operations to minimize conflicts and facilitate Owner operations.

c. Maintain existing building in a secure, weather tight condition throughout construction. Temporary protection shall be provided by the Contractor as needed to maintain indoor environment and adequately protect and maintain public use of, and access to occupied portions of the building for the duration of the Project. All provisions for temporary protection of occupied areas and existing construction to remain shall be installed prior to beginning demolition or construction activities.

d. Maintain access to existing stairs, walkways, corridors, and other adjacent occupied or used facilities at all times. Do not close or obstruct walkways, corridors, or other occupied or used facilities without written permission from Owner and authorities having jurisdiction.

e. Parking:

(1) The Owner will issue Contractor two (2) service vehicle parking permits to park in location directed by the Owner’s Representative. The permits will be issued at no cost to the contractor up to the contract completion date. After the contract completion date, the permits will be re-issued on an as available basis at the contractor’s expense. These permits are to be used for general contractor or subcontractor owned and labeled vehicles only. Personal vehicles are prohibited from use of these permits. Violation of this requirement may result in ticketing and/or towing at the vehicle owner’s expense and suspension of progress payments.
(2) Parking of personal vehicles within project access/lay down/staging areas is prohibited. Violation of this requirement may result in ticketing and/or towing at the vehicle owner’s expense and suspension of progress payments.

(3) Parking or driving on sidewalks, landscaped areas, within fire and service lanes or generally in areas not designated for vehicular traffic is prohibited except as allowed in the contract documents. Violation of this requirement may result in ticketing and/or towing at the vehicle owner’s expense and suspension of progress payments.

(4) Free parking for contractor employees is available in the Ashland Road Contractor lot on an as available basis. This space is for use by contractor employees for parking their personal vehicles only and is not to be used for staging or storage.

(5) Vendor Permits may be purchased by contractor management personnel on an as available basis by contacting the Parking and Transportation office in the Turner Avenue Parking Structure. These permits will allow contractor management personnel to park in various University lots while conducting business on University construction projects.

(6) Temporary University parking permits may be purchased by contractor employees for use with their personal vehicles on an as available basis by contacting the Parking and Transportation office in the Turner Avenue Parking Structure.

(7) Conley Avenue between Missouri Avenue and University Avenue and Hitt Street between University Avenue and the Memorial Union are designated for pedestrian use only during the work week between the hours of 8:15 AM and 3:45 PM. Unless otherwise indicated in the contract documents, this area is strictly off limits to vehicular traffic without authorization from the Owner’s Representative.

f. Storage of materials: The Contractor shall store all materials within project limits. The Contractor shall confine apparatus, materials, and operation of workers to location established by the Owner’s Representative. The Contractor shall not unreasonably encumber premises with materials. In addition, storage trailer locations may be available within 1-1/2 miles of project site as directed by the Owner’s Representative. Storage trailer locations shall be subject to approval by the Owner’s Representative and are available to the Contractor without cost.

d. Utilities: Drinking water, water required to carry on work, and 120 volt electrical power required for small tool operation may be obtained without cost to the Contractor from existing utilities at locations designated by the Owner’s Representative. Provisions for obtaining power, including temporary extensions, shall be furnished and maintained by the Contractor. Upon completion of work such extensions shall be removed and any damage caused by use of such extensions shall be repaired to satisfaction of the Owner’s Representative, at no cost to the Owner.

e. Restroom: Existing third floor toilet facilities adjacent to the project area (Rooms C3216 and C3217) will be available for use by the Contractor. Failure of the Contractor to maintain restrooms in a clean condition will be cause for the Contractor’s discontinued use of the restroom.

f. Smoking is prohibited at the University of Missouri and all properties owned, operated, leased or controlled by the University of Missouri. Violation of the policy is defined as smoking any tobacco products, including e-cigarettes.
g. Landfill: The Contractor shall not use the Owner's landfill. Dumping or disposal of excavated or demolition materials on Owner’s property shall not be permitted. The Contractor shall remove and legally dispose of excavated or demolished materials off the Owner’s property.

h. Care of Project Work Site: The contractor shall be responsible for maintaining the construction site in a reasonably neat and orderly condition by regular cleaning of the premises as determined by the Owner’s Representative.

i. Discharge to Sewer Request: The University of Missouri’s MS4 permit and NPDES Storm Water Discharge Permits along with the City of Columbia’s POTW Operating Permit as well as local ordinances, and state and federal environmental regulations prohibit hazardous materials from being disposed into either the storm water or sanitary sewer systems. Unless specifically approved, all chemical products such as paints, dyes, lawn care products, maintenance products, and oil is are prohibited from drain disposal. Any product, including contaminated water, being discarded into the storm water or sanitary sewer systems requires written approval from the Owner through a formal “Discharge to Sewer Request” form obtained at Discharge to Sewer Request Form. The contractor should submit the form to the Owner’s Representative, not to the Department of Environmental Health and Safety as the form indicates.

j. Artifacts Found During Construction: Contractors shall immediately notify the Owner’s Representative when artifacts are uncovered or found during the demolition or construction process. Artifacts include, but are not limited to, tools, drawings (construction or other), photographs, books and other objects/devices which may hold historical importance/significance. Do not remove or disturb the object(s) in question. Artifacts are not considered part of demolished materials and shall remain the property of the University of Missouri.

k. “Permit Required Confined Space” Entry Communication and Coordination:
(See OSHA 1926 subpart aa – Construction Confined Space for the definition of “permit required confined spaces” - Note: OSHA does not apply to the University. However, the University will provide a list of all known “permit required confined spaces”)

There are no known “permit required confined spaces” within the project limits. Each contractor shall conduct a survey to confirm whether or not any confined spaces exist within the project limits. It is incumbent upon each contractor to list all “permit required spaces”.

The Contractor shall notify the Owner’s Representative if 1) conditions change resulting in a non-permit required confined space being reclassified to a “permit required confined space” after evaluation of the space by a competent person; 2) a space previously thought to be non-permit required space is classified as a “permit required confined space”; or 3) during the course of construction a “permit required confined space” is created after evaluation by a competent person.

The Contractor shall submit to the Owner’s Representative a copy of the cancelled confined space entry permit and a written report summarizing the permit space program followed and all hazards confronted or created during entry operations. This information shall be submitted within one week of cancelling the permit.

9. PROTECTION OF OWNER’S PROPERTY

a. The Contractor shall be responsible for repair of damage to building exterior and interior, drives, curbs, streets, walks, grass, shrubbery and trees, which was caused by workmen or equipment employed during progress of work. All such repairs shall be made to satisfaction of the Owner’s Representative, at no cost to the Owner, or reimburse the
Owner if the Owner elects to make repairs. For landscape damage, the Owner shall make such repairs. Compensation for these repairs shall be determined by the Owner's Representative using the "Valuation of Landscape Trees, Shrubs, and other Plants" as published by the International Society of Arboriculture, as last revised.

b. Finishes: Existing finishes not specifically noted to be removed shall remain in place and be protected from damage resulting directly or indirectly from any and all construction and/or demolition activity. Existing construction to remain which is damaged by the Contractor and/or his Subcontractors shall be repaired or replaced with similar and/or superior material to the satisfaction of the Owner at no additional cost to the Owner. If the Owner elects to make repairs, Contractor shall reimburse Owner for the cost of the repairs.

c. Construction Project Fencing:

(1) Fencing requirements, as indicated on Drawings, shall be constructed of 9 or 11-gauge chain link not less than six (6) feet in height and not more than 2-inch mesh with self-supporting, ballasted posts spaced not more than ten (10) feet apart. Fenced in area shall have access gates and all gates shall be lockable.

(2) Fence screening fabric shall be used on all perimeter fencing. Fabric shall be green or black in color, full height of the project fence, securely attached and properly maintained throughout the duration of the project.

(3) Using existing landmarks, lamp posts, trees or other Owner property for support of fencing is strictly prohibited unless a written waiver is obtained from Owner's Representative.

(4) Use of ribbon, snow fence, chicken wire, rope, and wooden barricades as fencing is prohibited.

(5) Fencing shall be maintained in an "as-installed" condition throughout the life of the project.

(6) The Contractor may use used fencing provided it is in good condition and is satisfactory to the Owner's Representative.

d. Preserving and Protecting Existing Vegetation:

(1) Protection and compensation for damages:

(a) Trees and shrubs within work area designated to remain shall be protected from damage during construction by fixed chain link fencing or armoring as indicated on Drawings or specified herein. Plant protection devices shall be installed before work has begun and shall be maintained for duration of work unless otherwise directed by Owner's Representative.

10. SUBSTITUTIONS and EQUALS

a. Substitutions are defined in General Conditions article 3.11.8 for and Equals are defined General Conditions Article 3.12.

b. Substitutions and/or Equals of the item(s) listed below will be allowed only prior to receipt of bids provided that a written request for approval has been received by both the Architect and the Owner at least ten calendar days prior to the date for receipt of Bids. All other substitution and/or Equals items shall follow the procedures set forth in the General Conditions.
Item	Specification Section
Aluminum Windows | 08 5113
Acoustical Ceiling Tile | 09 5113
Laboratory Fume Hoods | 11 5313
Laminar Flow Hood | 11 5353
Metal Laboratory Casework | 12 3553
Modular Cleanroom | 13 0300
Laboratory Worksurfaces | 12 3653
Chilled Water & Heating Hot Water Control Valves | 23 0900
Laboratory Air Volume Control Products | 23 3419
Lighting Controls | 26 0923
Lighting | 26 5119

To be considered, bidder’s proposal shall include a complete description of the proposed substitution and/or equal and a comparison of significant qualities of the proposed substitution and/or equal with those specified including drawings, performance and test data, and other information necessary for an evaluation. The Architect’s decision on the approval or disapproval of a proposed substitution and/or equal shall be final.

c. If the Architect and Owner approve a proposed substitution prior to receipt of Bids, such approval will be set forth in an Addendum. Bidders shall not rely upon approval made in any other manner.
d. No substitutions and/or equal will be allowed for the following items:

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock Cylinders [Best]</td>
<td>08 7100</td>
</tr>
<tr>
<td>Fire Alarm [Gamewell FCI E-3 Series]</td>
<td>28 3111</td>
</tr>
</tbody>
</table>

11. CODES AND STANDARDS

The Contractor shall comply with applicable codes and standards as listed in General Conditions. The following codes and standards shall also apply:

a. City of Columbia - Sewer Line Installation Standards - Department of Public Works

“All sanitary sewer construction shall be in accordance with the City of Columbia Specifications and Standards and in conformance with the rules and regulations of the Missouri Clean Water Commission.”

12. PRE-BID INSPECTION

All pre-bid inspections of work areas shall be scheduled with pre-bid inspection guide, telephone: (573) 882-2228.
13. ROOF WARRANTY REQUIREMENT
 a. Owner has an existing roof warranty on roof of Lafferre Hall which is included at the end of this section. The Contractor shall verify roofing manufacturer and warranty provider. The Contractor shall use a licensed applicator of existing roofing system to make and repair roof penetrations in order for the Owner's existing warranty to remain in full force and effect.

<table>
<thead>
<tr>
<th>Roof System Manufacturer:</th>
<th>Firestone Building Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof Type:</td>
<td>EPDM</td>
</tr>
<tr>
<td>Installer:</td>
<td>Weathercraft of Cedar City (02368)</td>
</tr>
<tr>
<td>Manufacturer’s Warranty:</td>
<td>20 Years</td>
</tr>
<tr>
<td>Warranty No.:</td>
<td>RO110081 (65,400 s.f.)</td>
</tr>
<tr>
<td>Substantial Completion:</td>
<td>12/14/16</td>
</tr>
<tr>
<td>Expiration Date:</td>
<td>12/14/36</td>
</tr>
</tbody>
</table>

14. MODIFICATIONS TO INFORMATION TO BIDDERS
 a. Information to Bidders:
 (1) Referenced Information to Bidders, Page IFB/6.
 Add new Article 15.9.2 as follows:

 15.9.2.1 Within 48 hours of the receipt of bids, the apparent low bidder shall submit to the Director of Facilities Planning and Development an “Affidavit of Supplier Diversity Participation” for every diverse subcontract or supplier the bidder intends to award work to on the contract. The affidavit will be signed by both the bidder and the diverse firm.

15. MODIFICATIONS TO GENERAL CONDITIONS
 a. General Conditions:
 (1) Reference: General Conditions Article 11.2.1 Commercial General Liability.

 Delete in the first sentence of 11.2.1: "$2,000,000 per occurrence, $5,000,000 in general aggregate, $5,000,000 products and completed operations aggregate and $1,000,000 personal injury and advertising injury"

 and insert: "$2,000,000 per occurrence, $10,000,000 in general aggregate, $10,000,000 products and completed operations aggregate and $1,000,000 personal injury and advertising injury"

16. PROJECT SCHEDULING

The project scheduling specification for the project are included immediately after the Special Conditions. For this project the Contractor shall meet the following scheduling requirements:

Contractor Schedule – Contractor is responsible for the schedule and he may provide with in-house personnel or hire a third party scheduling consultant. See Contractor Schedule Specification included in these documents.

17. PROJECT COORDINATION
 a. Coordinate construction operations included in various Sections of these Specifications to assure efficient and orderly installation of each part of the Work. Coordinate construction operations included under different Sections that depend on each other for proper installation, connection, and operation.
(1) Schedule construction operations in the sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.

(2) Coordinate installation of different components to assure maximum accessibility for required maintenance, service, and repair.

(3) Make provisions to accommodate items scheduled for later installation.

b. Coordination Drawings: Within thirty (30) days of Notice to Proceed provide coordination drawings for the integration of the Work, including work first shown in detail on shop drawings or product data. Show sequencing and relationship of separate units of work which must interface in a restricted manner to fit in the space provided, or function as indicated.

(1) Show the interrelationship of components shown on separate shop drawings.

(2) Indicate required installation sequences.

(3) Call attention in advance to Architect of any dimensional or detail information needed to complete the coordination drawings.

18. BUILDING SYSTEM COMMISSIONING

a. Contractor shall provide all personnel and equipment required to complete the commissioning activities referenced in the Commissioning Plan. The requirements of the commissioning plan shall be completed in their entirety before substantial completion and submitted as referenced in the Closeout Log.

b. The contractor shall designate a competent person, separate from the superintendent or Project Manager, to act as the contractor’s commissioning coordinator. The commissioning coordinator is responsible for planning, scheduling, coordinating, conducting and verifying all commissioning activities required by the commissioning plan and ensuring all building systems are complete, operable and ready for use by the Owner. At a minimum, building ventilation systems, chilled/hot water generation systems, hydronic distribution systems, power distributions systems and fire detection and alarm systems, as applicable.

19. MECHANICAL, ELECTRICAL, PLUMBING (MEP) PRE-INSTALLATION MEETING(S)

a. Before the start of MEP installation, the Owner’s Representative will convene an MEP pre-installation meeting. Meeting participants to include contractor (including MEP subcontractors), Owner’s Representative and additional contractor and University operational staff invited by the Owner’s Representative. Topics will include, steam piping, chilled water piping, sprinkler piping, hot water piping, electrical system, cable tray, duct, telephone/data wiring, control wiring. Additional meetings will be conducted as required for the review of coordination drawings and scope specific installations. Cross section drawings of corridor ceilings and other congested areas will be of highest priority and will be reviewed prior to the start of installations in the affected areas. Meeting minutes and sign-up sheet will be transcribed by contractor and distributed to attendees.

20. WARRANTY WALKTHROUGH

Contractor shall attend a walk-thru with the Owner at 11 months after acceptance to review and document any warranty items to be addressed as part of the 12 month warranty stated in article 3.1 of the General Conditions.

END OF SECTION
SECTION 1.E.1
SCHEDULING SPECIFICATION

1. GENERAL
 a) Time is of the essence for this contract. The time frames spelled out in this contract are essential to the success of this project. The University understands that effective schedule management, in accordance with the General Conditions and these Special Conditions is necessary to insure that the critical milestone and end dates spelled out in the contract are achieved.

 b) Related Documents
 Drawings and general provisions of the Contract, including General Conditions' Article 3.17 shall apply to this Section.

 c) Stakeholders
 A Stakeholder is anyone with a stake in the outcome of the Project, including the University, the University Department utilizing the facility, the Design Professionals, the Contractor and subcontractors.

 d) Weather
 (1) Contractor acknowledges that there will be days in which work cannot be completed due to the weather, and that a certain number of these lost days are to be expected under normal weather conditions in Missouri.

 (2) Rather than speculate as to what comprises “normal” weather at the location of the project, Contractor agrees that it will assume a total of 44 lost days due to weather over the course of a calendar year, and include same in its as planned schedule. For projects of less than a calendar year, lost weather days should be prorated for the months of construction in accordance with the following schedule.

 (3) Anticipated weather days for allocation/proration only. For projects lasting 12 months or longer, the 44 days per year plus whatever additional months are included will constitute normal weather.

Jan – 5 days	Feb – 5 days	Mar – 4 days	Apr – 4 days
May – 3 days	Jun – 3 days	Jul – 2 days	Aug – 2 days
Sep – 3 days	Oct – 4 days	Nov – 4 days	Dec – 5 days

2. SCHEDULING PROCESS
 a) The intent of this section is to insure that a well-conceived plan, that addresses the milestone and completion dates spelled out in these documents, is developed with input from all stakeholders in the project. Input is limited to all reasonable requests that are consistent with the requirements of the contract documents, and do not prejudice the Contractor’s ability to perform its work consistent with the contract documents.

 Further, the plan must be documented in an understandable format that allows for each stakeholder in the project to understand the plan for the construction and/or renovation contained in the Project.

 b) Contractor Requirements
 (1) Schedule Development
 Contractor shall prepare the Project Schedule using Primavera P3 or Oracle P6.

 (2) Schedule Development
 Within 4 weeks of the NTP, contractor shall prepare a schedule, in CPM format, that reflects the contractor’s and each subcontractors plan for performing the contract work.

 Contractor shall review each major subcontractor’s schedule with the sub and obtain the subcontractor’s concurrence with the schedule, prior to submitting to the University.
(3) Schedule Updates.
(a) Schedule Updates will be conducted once a month, at a minimum. Actual Start and Finish dates should be recorded regularly during the month. Percent Complete, or Remaining Duration shall be updated as of the data date, just prior to Contractor’s submittal of the update data.
(b) Contractor will copy the previous months schedule and will input update information into the new monthly update version.
(c) Contractor will meet with the Owner’s Representative to review the draft of the updated schedule. At this meeting, Owner’s Representative and Contractor will:
 (i) Review out of sequence progress, making adjustments as necessary,
 (ii) Add any fragments necessary to describe changes or other impacts to the project schedule and
 (iii) Review the resultant critical and near critical paths to determine any impact of the occurrences encountered over the last month.

(4) Schedule Narrative
After finalization of the update, the Contractor will prepare a Narrative that describes progress for the month, impacts to the schedule and an assessment as to the Contractor’s entitlement to a time extension for occurrences beyond its control during the month and submit in accordance with this Section.

(5) Progress Meetings
(a) Review the updated schedule at each monthly progress meeting. Payments to the Contractor may be suspended if the progress schedule is not adequately updated to reflect actual conditions.
(b) Submit progress schedules to subcontractors to permit coordinating their progress schedules to the general construction work. Include 4 week look ahead schedules to allow subs to focus on critical upcoming work.

3. CRITICAL PATH METHOD (CPM)
a) This Section includes administrative and procedural requirements for the critical path method (CPM) of scheduling and reporting progress of the Work.
b) Refer to the General and Special Conditions and the Agreement for definitions and specific dates of Contract Time.
c) Critical Path Method (CPM): A method of planning and scheduling a construction project where activities are arranged based on activity relationships and network calculations determine when activities can be performed and the critical path of the Project.
d) Critical Path: The longest continuous chain of activities through the network schedule that establishes the minimum overall project duration.
e) Network Diagram: A graphic diagram of a network schedule, showing the activities and activity relationships.
f) Activity: A discrete part of a project that can be identified for planning, scheduling, monitoring, and controlling, the construction project. Activities included in a construction schedule consume time and resources.
g) Critical activities are activities on the critical path.
h) Predecessor activity is an activity that must be completed before a given activity can be started.
i) Milestone: A key or critical point in time for reference or measurement.
j) Float or Slack Time: The measure of leeway in activity performance. Accumulative float time is not for the exclusive use or benefit of the Owner or Contractor, but is a project resource available to both parties as needed to meet contract milestones and the completion date.
k) Total float is herein defined as the measure of leeway in starting or completing an activity without adversely affecting the planned project completion date.
l) Weather: Adverse weather that is normal for the area must be taken into account in the Contractor’s Project Schedule. See 1.d.3, above.
m) Force Majeure Event: Any event that delays the project but is beyond the control and/or contractual responsibility of either party.
Schedule shall including the following, in addition to Contractor’s work.

1. Phasing: Provide notations on the schedule to show how the sequence of the Work is affected by the following:
 a) Requirements for phased completion and milestone dates.
 b) Work by separate contractors.
 c) Work by the Owner.
 d) Coordination with existing construction.
 e) Limitations of continued occupancies.
 f) Uninterruptible services.
 g) Partial occupancy prior to Substantial Completion.
 h) Area Separations: Use Activity Codes to identify each major area of construction for each major portion of the Work. For the purposes of this Article, a “major area” is a story of construction, a separate building, or a similar significant construction element.

4. TIME EXTENSION REQUESTS

a) Refer to General Conditions of the Contract for Construction, Article 4.7 Claims for Additional Time.

b) Changes or Other Impacts to the Contractor’s Work Plan
 The Owner will consider and evaluate requests for time extensions due to changes or other events beyond the control of the Contractor on a monthly basis only, with the submission of the Contractor’s updated schedule, in conjunction with the monthly application for payment. The Update must include:
 1) An activity depicting the event(s) impacting the Contractors work plan shall be added to the CPM schedule, using the actual start date of the impact, along with actually required predecessors and successors.
 2) After the addition of the impact activity(ies), the Contractor will identify subsequent activities on the critical path, with finish to start relationships that can be realistically adjusted to overlap using good, standard construction practice.
 a) If the adjustments above result in the completion date being brought back within the contract time period, no adjustment will be made in the contract time.
 b) If the adjustments above still result in a completion date beyond the contract completion date, the delay shall be deemed excusable and the contract completion date shall be extended by the number of days indicated by the analysis.
 c) Contractor agrees to continue to utilize its best efforts to make up the time caused by the delays. However the Contractor is not expected to expend costs not contemplated in its contract, in making those efforts.

c) Questions of compensability of any delays shall be held until the actual completion of the project. If the actual substantial completion date of the project based on excusable delays, excluding weather delays, exceeds the original contract completion date, AND there are no delays that are the responsibility of the contractor to consider, the delays days shall be considered compensable. The actual costs, if any, of the Contractor’s time sensitive jobsite supervision and general conditions costs, shall be quantified and a change order issued for these costs.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Date Rec'd</th>
<th>Date Sent to Cons.</th>
<th>Date Ret'd</th>
<th>Remarks</th>
<th>Date Ret'd</th>
<th>Cont'r Copies To Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS-2</td>
<td>Construction Schedule</td>
<td>02/19/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02/19/19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contractor:

- Project Number: CP181761
- Project: Lafferre Hall - 3rd Floor - Lab 8 Cleanroom Shell Space Fitout
- Shop Drawing and Submittal Log

Bid Documents

July 22, 2019
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Contractor</th>
<th>Date Rec’d</th>
<th>#</th>
<th>Date Sent to Cons.</th>
<th>Date Ret’d</th>
<th>Remarks</th>
<th>Date ret’d</th>
<th>Cont’r</th>
<th>Copies To Owner</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>064116</td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td>079005</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer’s Installation Instructions</td>
<td></td>
</tr>
<tr>
<td>079500</td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samples for Initial Selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samples for Verification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Schedule</td>
<td></td>
</tr>
<tr>
<td>081113</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation Instructions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer’s Certificate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schedule</td>
<td></td>
</tr>
<tr>
<td>084113</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>Date Rec'd</td>
<td>Date Sent to Cons.</td>
<td>Date Ret'd</td>
<td>Remarks</td>
<td># of Copies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>--------------------</td>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>096723</td>
<td></td>
</tr>
<tr>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td>096513</td>
<td></td>
</tr>
<tr>
<td>Samples for Verification</td>
<td></td>
</tr>
<tr>
<td>096113</td>
<td></td>
</tr>
<tr>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>095116</td>
<td></td>
</tr>
<tr>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>095000</td>
<td></td>
</tr>
<tr>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>Operating and Maintenance Manuals</td>
<td></td>
</tr>
<tr>
<td>Product Test Reports</td>
<td></td>
</tr>
<tr>
<td>Keying Schedule</td>
<td></td>
</tr>
<tr>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>Door Hardware Schedule</td>
<td></td>
</tr>
<tr>
<td>087100</td>
<td></td>
</tr>
<tr>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>084113</td>
<td></td>
</tr>
<tr>
<td>Samples for Initial Selection</td>
<td></td>
</tr>
<tr>
<td>084113</td>
<td></td>
</tr>
<tr>
<td>Samples for Initial Selection</td>
<td></td>
</tr>
<tr>
<td>084113</td>
<td></td>
</tr>
<tr>
<td>Samples for Initial Selection</td>
<td></td>
</tr>
</tbody>
</table>

Description

- File: Product Schedule
- Date Rec'd: 096723
- Remarks: Samples
- # of Copies: 096513
- Date Sent to Cons.: 096116
- Date Ret'd: 095000
- Description: Operating and Maintenance Manuals
- Description: Samples for Initial Selection
- Date Rec'd: 087100
- Remarks: Shop Drawings
- Date Ret'd: 084113

File Details

- File: Product Data
- Date Rec'd: 096723
- Remarks: Samples
- # of Copies: 096513
- Date Sent to Cons.: 096116
- Date Ret'd: 095000
- Description: Operating and Maintenance Manuals
- Description: Samples for Initial Selection
- Date Rec'd: 087100
- Remarks: Shop Drawings
- Date Ret'd: 084113
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Contractor</th>
<th>Date Rec’d</th>
<th>#</th>
<th>Date Sent to Cons.</th>
<th>Date Ret’d</th>
<th>Remarks</th>
<th>Date ret’d</th>
<th>Cont’r</th>
<th>Copies To Owner</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>096723</td>
<td>Samples for Initial Selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samples for Verification</td>
<td></td>
</tr>
<tr>
<td>096813</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Schedule</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample Warranty</td>
<td></td>
</tr>
<tr>
<td>099000</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Certification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Results of testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer’s Instructions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance Materials</td>
<td></td>
</tr>
<tr>
<td>101100</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Date Rec'd</td>
<td>Date Sent to Cons.</td>
<td>Date Ret'd</td>
<td>Remarks</td>
<td>Contractor</td>
<td>Copies To Owner</td>
<td>File</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>Product Data</td>
<td>122113</td>
<td></td>
</tr>
<tr>
<td>Qualification Data</td>
<td></td>
</tr>
<tr>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>Product Data</td>
<td>116000</td>
<td></td>
</tr>
<tr>
<td>Maintenance Materials</td>
<td></td>
</tr>
<tr>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>Product Data</td>
<td>113313</td>
<td></td>
</tr>
<tr>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>Product Data</td>
<td>104413</td>
<td></td>
</tr>
<tr>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>Product Data</td>
<td>102600</td>
<td></td>
</tr>
<tr>
<td>Samples For Verification</td>
<td></td>
</tr>
<tr>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>Product Data</td>
<td>1011100</td>
<td></td>
</tr>
<tr>
<td>Maintenance Materials</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Contractor</td>
<td>Date Rec’d</td>
<td>#</td>
<td>Date Sent to Cons.</td>
<td>Date Ret’d</td>
<td>Remarks</td>
<td>Date ret’d</td>
<td>Cont’r</td>
<td>Copies To Owner</td>
<td>File</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>---</td>
<td>--------------------</td>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>122113</td>
<td>Samples for Verification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Window-Treatment Schedule</td>
<td></td>
</tr>
<tr>
<td>123553</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samples for Verification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Test Reports</td>
<td></td>
</tr>
<tr>
<td>123661</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samples for Verification</td>
<td></td>
</tr>
<tr>
<td>130300</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samples for Verification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural Analysis</td>
<td></td>
</tr>
<tr>
<td>Date Rec'd</td>
<td>Date Sent to Cons.</td>
<td>Date Ret'd</td>
<td>Contractor Copies To Owner File Remarks</td>
<td># Copies</td>
<td>Date Rec'd</td>
<td>Section Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211313</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delegated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approved Standpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualification Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Submit 1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Contractor</td>
<td>Date Rec’d</td>
<td>Date Sent to Cons.</td>
<td>Date Ret’d</td>
<td>Remarks</td>
<td>Date ret’d</td>
<td>Cont’r</td>
<td>Copies To Owner</td>
<td>File</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>--------------------</td>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>----------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>211313</td>
<td>Approved Sprinkler Piping Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fire-Hydrant Flow Test Report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Quality-Control Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation and Maintenance Data</td>
<td></td>
</tr>
<tr>
<td>212200</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delegated-Design Submittal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design Data</td>
<td></td>
</tr>
<tr>
<td>220500</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>220523</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>220529</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delegated-Design Submittal</td>
<td></td>
</tr>
<tr>
<td>220553</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment Label Schedule</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Date Rec'd</td>
<td>Date Sent to Cons.</td>
<td>Date Ret'd</td>
<td>Remarks</td>
<td>Cont'r</td>
<td>Copies To Owner</td>
<td>File</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve Numbering Scheme</td>
<td>220553</td>
<td></td>
</tr>
<tr>
<td>Valve Schedules</td>
<td>220719</td>
<td></td>
</tr>
<tr>
<td>Water Sampling Test Reports</td>
<td>221116</td>
<td>2019-07-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Quality Control Data</td>
<td>221117</td>
<td></td>
</tr>
<tr>
<td>Shop Drawings</td>
<td>221119</td>
<td>2019-07-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Test Report</td>
<td>221118</td>
<td>2019-07-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualification Data</td>
<td>221117</td>
<td>2019-07-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shop Drawings</td>
<td>221119</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Contractor</td>
<td>Date Rec’d</td>
<td>#</td>
<td>Date Sent to Cons.</td>
<td>Date Ret’d</td>
<td>Remarks</td>
<td>Date Ret’d</td>
<td>Cont’r</td>
<td>Copies To Owner</td>
<td>File</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>----</td>
<td>-------------------</td>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>221119</td>
<td>Operation and Maintenance Data</td>
<td></td>
</tr>
<tr>
<td>221316</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Quality-Control Reports</td>
<td></td>
</tr>
<tr>
<td>221319</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>224000</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation and Maintenance Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warranty</td>
<td></td>
</tr>
<tr>
<td>226113</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brazing Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Quality-Control Reports</td>
<td></td>
</tr>
<tr>
<td>226213</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brazing Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Quality-Control Reports</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Date</td>
<td>Cont'r</td>
<td>Copies</td>
<td>Remarks</td>
<td>Date Rec'd</td>
<td>Date Sent to Cons.</td>
<td>Date Ret'd</td>
<td>Contractor</td>
<td>File</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------</td>
<td>------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>230700</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>305729</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>230523</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>230700</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>230519</td>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td>230519</td>
<td>Coordination Drawings</td>
<td></td>
</tr>
<tr>
<td>230500</td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>230500</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>230529</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>230523</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>226700</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Contractor</td>
<td>Date Rec’d</td>
<td>#</td>
<td>Date Sent to Cons.</td>
<td>Date Ret’d</td>
<td>Remarks</td>
<td>Date ret’d</td>
<td>Cont’r</td>
<td>Copies To Owner</td>
<td>File</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>---</td>
<td>--------------------</td>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>230900</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schematic Flow Diagrams</td>
<td></td>
</tr>
<tr>
<td>232113</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation and Maintenance Data</td>
<td></td>
</tr>
<tr>
<td>233113</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Quality-Control Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Record Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coordination Drawings</td>
<td></td>
</tr>
<tr>
<td>233300</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation and Maintenance Data</td>
<td></td>
</tr>
<tr>
<td>233419</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Certifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer’s Installation Instructions</td>
<td></td>
</tr>
</tbody>
</table>

SDSL - 12
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>File</th>
<th>Copies To Owner</th>
<th>Date Rec'd</th>
<th>Contractor Remarks</th>
<th>Date to Sent Cons.</th>
<th>Date Rec'd</th>
<th>Remarks</th>
<th>Date Rec'd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>233419</td>
<td>Wiring Diagrams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233713</td>
<td>Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238123</td>
<td>Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238216</td>
<td>Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260519</td>
<td>Operation and Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>23419</td>
<td>Wiring Diagrams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234219</td>
<td>Operation and Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

July 22, 2019
Bid Documents
Lafferre Hall – 3rd Floor – Lab 8 Classroom Shell Space Fitout
MU Project #CP181761
SDSL - 13

Bid Documents

Lafferre Hall – 3rd Floor – Lab 8 Classroom Shell Space Fitout
MU Project #CP181761
SDSL - 13
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Contractor</th>
<th>Date Rec’d</th>
<th>#</th>
<th>Date Sent to Cons.</th>
<th>Date Ret’d</th>
<th>Remarks</th>
<th>Date ret’d</th>
<th>Cont’r</th>
<th>Copies To Owner</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>260519</td>
<td>Field Quality-Control Reports</td>
<td></td>
</tr>
<tr>
<td>260526</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coordination Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Quality-Control Reports</td>
<td></td>
</tr>
<tr>
<td>260529</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delegated-Design Submittal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coordination Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seismic Qualification Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Welding Qualifications</td>
<td></td>
</tr>
<tr>
<td>260533</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coordination Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seismic Qualifications Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source Quality-Control Reports</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Contactor</td>
<td>Date</td>
<td># to Coin.</td>
<td>Date</td>
<td>Remarks</td>
<td>Copies</td>
<td>Owner Copy File</td>
<td>Date</td>
<td>Retd.</td>
<td>Date</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Product Data</td>
<td>260533</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reports</td>
<td>260548</td>
<td></td>
<td>Product Data</td>
<td>16. 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Quality Control</td>
<td>260544</td>
<td></td>
<td>Product Data</td>
<td>16. 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Welding Certificates</td>
<td>260548</td>
<td></td>
<td>Product Data</td>
<td>16. 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification Data</td>
<td>260548</td>
<td></td>
<td>Product Data</td>
<td>16. 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delegated-Design Drawings</td>
<td>260548</td>
<td></td>
<td>Product Data</td>
<td>16. 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coordination Drawings</td>
<td>260548</td>
<td></td>
<td>Product Data</td>
<td>16. 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Submission Qualification Data</td>
<td>260548</td>
<td></td>
<td>Product Data</td>
<td>16. 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delegated-Design Drawings</td>
<td>260548</td>
<td></td>
<td>Product Data</td>
<td>16. 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td>260536</td>
<td></td>
<td>Product Data</td>
<td>16. 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identification Schedule</td>
<td>260548</td>
<td></td>
<td>Product Data</td>
<td>16. 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Contractor</td>
<td>Date Rec’d</td>
<td>#</td>
<td>Date Sent to Cons.</td>
<td>Date Ret’d</td>
<td>Remarks</td>
<td>Date ret’d</td>
<td>Cont’r</td>
<td>Copies To Owner</td>
<td>File</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------</td>
<td>------------</td>
<td>------------</td>
<td>---</td>
<td>--------------------</td>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>260553</td>
<td>Delegated-Design Submittal</td>
<td></td>
</tr>
<tr>
<td>260572</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Action Submittals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Certificates</td>
<td></td>
</tr>
<tr>
<td>260573</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Action Submittals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Certificates</td>
<td></td>
</tr>
<tr>
<td>260574</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study Submittals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Certificates</td>
<td></td>
</tr>
<tr>
<td>260923</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Quality-Control Reports</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>File No.</td>
<td>Copies To Owner</td>
<td>Date Received</td>
<td>Date Sent to Cons.</td>
<td>Date Ret'd</td>
<td>Remarks</td>
<td>Contractor File</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>-----------------</td>
<td>--------------</td>
<td>--------------------</td>
<td>------------</td>
<td>---------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td>260923</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Data</td>
<td>262416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Data</td>
<td>262726</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Data</td>
<td>262813</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Data</td>
<td>262816</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Data</td>
<td>265119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td>262416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Panel Schedules</td>
<td>262416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification Data</td>
<td>262815</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification Data</td>
<td>262816</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification Data</td>
<td>265119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td>265119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2690923</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

July 22, 2019
Bid Documents

Lafferre Hall - 3rd Floor - Lab & Classroom Shell Space Fitout

MU Project #CP181761
Bid Documents

Lafferre Hall - 3rd Floor - Lab & Classroom Shell Space Fitout
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Contractor</th>
<th>Date Rec’d</th>
<th>#</th>
<th>Date Sent to Cons.</th>
<th>Date Ret’d</th>
<th>Remarks</th>
<th>Date ret’d</th>
<th>Cont’r</th>
<th>Copies To Owner</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>265119</td>
<td>Product Schedule</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coordination Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seismic Qualification Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample Warranty</td>
<td></td>
</tr>
<tr>
<td>265219</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Schedule</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seismic Qualification Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample Warranty</td>
<td></td>
</tr>
<tr>
<td>270544</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>270544</td>
<td>LEED Submittals</td>
<td></td>
</tr>
<tr>
<td>283111</td>
<td>Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Quality Control Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation and Software and Firmware</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Documentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installer Qualification</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Rec'd</th>
<th>Date Sent to Cons.</th>
<th>Date Return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Copies To Owner</th>
<th>Copies To Owner</th>
<th>Copies To Owner</th>
<th>Copies To Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Owner</th>
<th>Contractor</th>
<th>Date to Send</th>
<th>Date Received</th>
<th>Remarks</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bid Documents</th>
<th>MU Project #CP181761</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lafferre Hall – 3rd Floor – Lab & Classroom Shell Space Fitout</td>
</tr>
</tbody>
</table>

July 22, 2019
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Catalog Data</th>
<th>Wiring Diagrams</th>
<th>Installation Instructions</th>
<th>Parts List</th>
<th>Service & Maintenance Instructions</th>
<th>Performance Curves</th>
<th>Availability</th>
<th>Startup Operating Instructions</th>
<th>Bonded Abrasive Polished Concrete Floors</th>
<th>Horizontal Louver Blinds</th>
<th>Fire Protection Cabine</th>
<th>Visual Display Units</th>
<th>Product Data</th>
<th>Painting and Coating</th>
<th>The Carrying</th>
<th>Resilient Flooring</th>
<th>Gypsum Board Assemblies</th>
<th>Acoustical Panel Ceilings</th>
<th>Service Drawings</th>
<th>Door Hardware</th>
<th>Aluminum-Framed Storefronts</th>
<th>Hollow Metal Doors and Frames</th>
<th>Joint Seals</th>
<th>033543</th>
</tr>
</thead>
<tbody>
<tr>
<td>122113</td>
<td>Bonded Abrasive Polished Concrete Floors</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104413</td>
<td>Fire Protection Cabine</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101100</td>
<td>Visual Display Units</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>900060</td>
<td>Product Data</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>900060</td>
<td>Painting and Coating</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>896813</td>
<td>The Carrying</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96060</td>
<td>Resilient Flooring</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96060</td>
<td>Resilient Base and Accessories</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95113</td>
<td>Acoustical Panel Ceilings</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92116</td>
<td>Gypsum Board Assemblies</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>871100</td>
<td>Shop Drawings</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>871100</td>
<td>Door Hardware</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84113</td>
<td>Aluminum-Framed Storefronts</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81113</td>
<td>Hollow Metal Doors and Frames</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79005</td>
<td>Joint Seals</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>033543</td>
<td>Bonded Abrasive Polished Concrete Floors</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Catalog Data</td>
<td>Wiring Diagrams</td>
<td>Installation Instructions</td>
<td>Service & Maintenance Instructions</td>
<td>Parts List & Availability</td>
<td>Performance Curves</td>
<td>Startup & Operating Instructions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>-------------------------------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>123553. 13</td>
<td>Metal Laboratory Casework</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>123661. 16</td>
<td>Solid Surfacing Countertops</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>130300</td>
<td>Cleanroom</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>210500</td>
<td>Common Work Results</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>211200</td>
<td>Fire-Suppression Standpipes</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>211200</td>
<td>Shop Drawings</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>211313</td>
<td>Shop Drawings</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>211313</td>
<td>Wet-Pipe Sprinkler Systems</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>212200</td>
<td>Shop Drawings</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>212200</td>
<td>Clean-Agent Fire-Extinguisher Systems</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>220500</td>
<td>Common Work Results for Plumbing</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>220553</td>
<td>Valve Schedules</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>221119</td>
<td>Domestic Water Piping Specialties</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>224000</td>
<td>Plumbing Fixtures</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>230500</td>
<td>Basic Mechanical Materials and Methods</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>230519</td>
<td>Meters and Gages</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
Catalog Data

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Catalog</th>
</tr>
</thead>
<tbody>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breakers</td>
<td>262816</td>
</tr>
<tr>
<td>262813</td>
<td>Fuses</td>
<td>262813</td>
</tr>
<tr>
<td>262416</td>
<td>Shop Drawings</td>
<td>262416</td>
</tr>
<tr>
<td>262416</td>
<td>Panel Boards</td>
<td>262416</td>
</tr>
<tr>
<td>260923</td>
<td>Lighting Control Devices</td>
<td>260923</td>
</tr>
<tr>
<td>260573</td>
<td>Overcurrent Protective Device Study</td>
<td>260573</td>
</tr>
<tr>
<td>260553</td>
<td>Self-Adhesive Labels</td>
<td>260553</td>
</tr>
<tr>
<td>260553</td>
<td>Identification for Electrical Systems</td>
<td>260553</td>
</tr>
<tr>
<td>260526</td>
<td>Grounding and Bonding for Electrical Systems</td>
<td>260526</td>
</tr>
<tr>
<td>238216</td>
<td>Duct-Mounted Coils</td>
<td>238216</td>
</tr>
<tr>
<td>238123</td>
<td>Computer-Room Air Conditioners</td>
<td>238123</td>
</tr>
<tr>
<td>233419</td>
<td>Laboratory Mechanical Systems</td>
<td>233419</td>
</tr>
<tr>
<td>233000</td>
<td>Duct Accessories</td>
<td>233000</td>
</tr>
<tr>
<td>232213</td>
<td>Hydraulic Piping</td>
<td>232213</td>
</tr>
<tr>
<td>230950</td>
<td>Fan Duct Monitoring Systems</td>
<td>230950</td>
</tr>
<tr>
<td>230900</td>
<td>Control Systems</td>
<td>230900</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>230900</td>
</tr>
</tbody>
</table>

Parts List & Availability

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Catalog</th>
</tr>
</thead>
<tbody>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breakers</td>
<td>262816</td>
</tr>
<tr>
<td>262813</td>
<td>Fuses</td>
<td>262813</td>
</tr>
<tr>
<td>262416</td>
<td>Shop Drawings</td>
<td>262416</td>
</tr>
<tr>
<td>262416</td>
<td>Panel Boards</td>
<td>262416</td>
</tr>
<tr>
<td>260923</td>
<td>Lighting Control Devices</td>
<td>260923</td>
</tr>
<tr>
<td>260573</td>
<td>Overcurrent Protective Device Study</td>
<td>260573</td>
</tr>
<tr>
<td>260553</td>
<td>Self-Adhesive Labels</td>
<td>260553</td>
</tr>
<tr>
<td>260553</td>
<td>Identification for Electrical Systems</td>
<td>260553</td>
</tr>
<tr>
<td>260526</td>
<td>Grounding and Bonding for Electrical Systems</td>
<td>260526</td>
</tr>
<tr>
<td>238216</td>
<td>Duct-Mounted Coils</td>
<td>238216</td>
</tr>
<tr>
<td>238123</td>
<td>Computer-Room Air Conditioners</td>
<td>238123</td>
</tr>
<tr>
<td>233419</td>
<td>Laboratory Mechanical Systems</td>
<td>233419</td>
</tr>
<tr>
<td>233000</td>
<td>Duct Accessories</td>
<td>233000</td>
</tr>
<tr>
<td>232213</td>
<td>Hydraulic Piping</td>
<td>232213</td>
</tr>
<tr>
<td>230950</td>
<td>Fan Duct Monitoring Systems</td>
<td>230950</td>
</tr>
<tr>
<td>230900</td>
<td>Control Systems</td>
<td>230900</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>230900</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Catalog Data</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>262816</td>
<td>Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>265119</td>
<td>LED Interior Lighting</td>
<td></td>
</tr>
<tr>
<td>265219</td>
<td>Emergency and Exit Lighting</td>
<td></td>
</tr>
<tr>
<td>283111</td>
<td>Digital, Addressable Fire-Alarm System</td>
<td>x</td>
</tr>
<tr>
<td># of Copies</td>
<td>Description</td>
<td>Section</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>CPM Initials</td>
<td>Contractor/Subcontractor</td>
<td>Date Read</td>
</tr>
<tr>
<td>Remarks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contractor:

Project Number: CP181761

Project: Lafferre Hall - 3rd Floor - Lab & Cleanroom Shell Space Fitout

CLOSEOUT LOG

July 22, 2019

MU Project: CP181761

Lafferre Hall - 3rd Floor - Lab & Cleanroom Shell Space Fitout
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Contractor/Subcontractor</th>
<th>Date Rec’d</th>
<th># of Copies</th>
<th>CPM Initials</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>087100</td>
<td>DOOR HARDWARE Operating and Maintenance Manuals Warranty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95113</td>
<td>ACOUSTICAL PANEL CEILINGS Maintenance Data Extra Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>096513</td>
<td>RESILIENT BASE AND ACCESSORIES Warranty Extra Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>096723</td>
<td>RESINOUS FLOORING Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>096813</td>
<td>TILE CARPETING Maintenance Data Warranty Extra Materials Precautions for Cleaning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>099000</td>
<td>PAINTING AND COATINGS Warranty Extra Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101100</td>
<td>VISUAL DISPLAY UNITS Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116000</td>
<td>LABORATORY EQUIPMENT Warranty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122113</td>
<td>HORIZONTAL LOUVER BLINDS Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Contractor/Subcontractor</td>
<td>Date Rec'd</td>
<td>CPM Initials</td>
<td>Copies</td>
<td># of Copies</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---------------------------</td>
<td>------------</td>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>230900</td>
<td>CONTROL SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230100</td>
<td>BASIC MECHANICAL REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224000</td>
<td>PLUMBING FIXTURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22119</td>
<td>DOMESTIC WATER PIPING SPECIALISTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212200</td>
<td>CLEAN-AGENT FIRE EXTINGUISHERS SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211313</td>
<td>WET-PIPE SPRINKLER SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130300</td>
<td>CLEANROOM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12361</td>
<td>SOLID SURFACING COUNTERTOPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12353</td>
<td>METAL LABORATORY CASEWORK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Contractor/Subcontractor</td>
<td>Date Rec'd</td>
<td># of Copies</td>
<td>CPM Initials</td>
<td>Remarks</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>230950</td>
<td>FACILITY MONITORING SYSTEMS Warranty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233419</td>
<td>LABORATORY MECHANICAL SYSTEMS Warranty Extra Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238123</td>
<td>COMPUTER-ROOM AIR CONDITIONERS Warranty Extra Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260526</td>
<td>GROUNDING AND BONDING FOR ELECTRICAL Operating and Maintenance Manuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260573</td>
<td>OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY Operating and Maintenance Manuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260574</td>
<td>OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY Operating and Maintenance Manuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260923</td>
<td>LIGHTING CONTROL DEVICES Operating and Maintenance Manuals Warranty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262416</td>
<td>PANELBOARDS Operating and Maintenance Manuals Warranty Keys Extra Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td># of Copies</td>
<td>Date Rec'd</td>
<td>CPM Initials</td>
<td>Contractor/Subcontractor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIRING DEVICES Operating and Maintenance Manuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUSES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCLOSSED SWITCHES AND CIRCUIT BREAKERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED INTERIOR LIGHTING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMERGENCY AND EXIT LIGHTING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating and Maintenance Manuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warranty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating and Maintenance Manuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warranty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating and Maintenance Manuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warranty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating and Maintenance Manuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warranty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating and Maintenance Manuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warranty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating and Maintenance Manuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warranty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating and Maintenance Manuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warranty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THIS PAGE INTENTIONALLY LEFT BLANK
CP181761 Laffere 3rd Floor Fitout Commissioning Check List

Commissioning Items by CSI Division

<table>
<thead>
<tr>
<th>Verified by:</th>
<th>Name</th>
<th>Firm</th>
<th>Date</th>
<th>Coord</th>
<th>Documentation Required</th>
<th>Owner Witness Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Building System Commissioning

Commissioning Agent - Conduct pre-installation meetings per specifications.

- **Meeting Minutes**: ✓

17300 Execution

Ensure temperature and humidity levels of space comply with manufacturers written instructions

- ✓

24119 Selective Demolition

Return adjacent areas to condition existing before demolition operations began

- Pre-construction video or digital photos: □

33543 Bonded Abrasive Polished Concrete Floors

Perform Field Quality Control section of specifications

- Test Report: ✓

64116 Plastic-Laminate-Faced Architectural cabinets

Check all cabinet doors and drawers for smooth operation, correct hardware, fit & finish

- □

81113 Hollow Metal Doors and Frames

Check and readjust all operating finish hardware and doors

- Itemized list of doors: □

7/21/2019
<table>
<thead>
<tr>
<th>Commissioning Items by CSI Division</th>
<th>Verified by:</th>
<th>Firm</th>
<th>Date compl</th>
<th>Coord Initial</th>
<th>Documentation Required</th>
<th>Owner Witness Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>84113 Aluminum Entrances and Storefronts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notify Owner When Section of Work Is Ready For Infiltration Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87100 Door Hardware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check and adjust all latchsets, locksets and exit devices for proper operation per Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Furnish Extra Material as specified. Maintenance Tools</td>
<td></td>
<td></td>
<td></td>
<td>Transmittal</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Hold Pre-installation Conference as specified.</td>
<td></td>
<td></td>
<td></td>
<td>Meeting Minutes</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Verify door closures comply with ADA requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify that all fire doors close and latch positively</td>
<td></td>
<td></td>
<td></td>
<td>test report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92116 Gypsum Board Assemblies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify fire rating compliance is maintained, including all wall penetrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95113 Acoustical Panel Ceilings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete all above ceiling inspections prior to installation of tiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Furnish extra material as specified</td>
<td></td>
<td></td>
<td></td>
<td>Transmittal</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

7/21/2019
<table>
<thead>
<tr>
<th>Commissioning Items by CSI Division</th>
<th>Verified by:</th>
<th>Firm</th>
<th>Date compl</th>
<th>Coord Initial</th>
<th>Documentation Required</th>
<th>Owner Witness Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>96723 Resinous Flooring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build Mockup as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inspection Report</td>
<td>✓</td>
</tr>
<tr>
<td>96813 Tile Carpeting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furnish Extra material as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transmittal</td>
<td>✓</td>
</tr>
<tr>
<td>Protect installed flooring per specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99000 Painting and Coating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build Mockup as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inspection Report</td>
<td>✓</td>
</tr>
<tr>
<td>101100 Visual Display Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Adjust and clean per specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115313 Laboratory Fume Hoods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hold Preinstallation meeting as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meeting Minutes</td>
<td>✓</td>
</tr>
<tr>
<td>Provide Extra Material as specified (touch up kit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transmittal</td>
<td>✓</td>
</tr>
<tr>
<td>Provide factory training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sign in sheet</td>
<td>✓</td>
</tr>
<tr>
<td>Commissioning Items by CSI Division</td>
<td>Verified by:</td>
<td>Firm</td>
<td>Date compl</td>
<td>Coord Initial</td>
<td>Documentation Required</td>
<td>Owner Witness Required</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
<td>------</td>
<td>------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Test hoods per specification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>116000 Laboratory Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hold Preinstallation meeting as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meeting Minutes</td>
<td>✓</td>
</tr>
<tr>
<td>Perform Demonstration section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sign-in Sheet</td>
<td>✓</td>
</tr>
<tr>
<td>123553 Metal Laboratory Casework</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furnish extra material as specified (Touch up kit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transmittal</td>
<td>✓</td>
</tr>
<tr>
<td>Hold Pre-Installation meeting as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meeting Minutes</td>
<td>✓</td>
</tr>
<tr>
<td>130300 Cleanroom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furnish extra material as specified.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transmittal</td>
<td>✓</td>
</tr>
<tr>
<td>Hold Pre-Installation meeting as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meeting Minutes</td>
<td>✓</td>
</tr>
<tr>
<td>Perform Demonstration section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sign-in sheet</td>
<td>✓</td>
</tr>
<tr>
<td>211200 Fire-Suppression Standpipes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Demonstration section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sign-in sheet</td>
<td>✓</td>
</tr>
</tbody>
</table>

7/21/2019
<table>
<thead>
<tr>
<th>Commissioning Items by CSI Division</th>
<th>Verified by:</th>
<th>Firm</th>
<th>Date compl</th>
<th>Coord Initial</th>
<th>Documentation Required</th>
<th>Owner Witness Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Report NFPA 13 Certification</td>
<td>✓</td>
</tr>
<tr>
<td>211313</td>
<td>Wet-Pipe Sprinkler System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordinate operation with fire alarm test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NFPA 13 certification</td>
<td>✓</td>
</tr>
<tr>
<td>Furnish extra material as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transmittal</td>
<td>✓</td>
</tr>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Report NFPA 13 Certification</td>
<td>✓</td>
</tr>
<tr>
<td>212200</td>
<td>Clean-Agent Fire Extinguishing Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furnish extra material as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transmittal</td>
<td>✓</td>
</tr>
<tr>
<td>Perform Demonstration section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sign-in Sheet</td>
<td>✓</td>
</tr>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td>✓</td>
</tr>
<tr>
<td>220500</td>
<td>Common Work Results for Plumbing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hold MEP pre-installation meeting(s).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meeting Minutes and Sign-up Sheet</td>
<td>✓</td>
</tr>
<tr>
<td>Train End Users on the operation of all equipment they will use.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sign-in sheet</td>
<td>✓</td>
</tr>
<tr>
<td>Commissioning Items by CSI Division</td>
<td>Verified by:</td>
<td>Date compl</td>
<td>Coord Initial</td>
<td>Documentation Required</td>
<td>Owner Witness Required</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>General Duty Valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check valves for leaks and replace in necessary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>Identification for Plumbing Piping and Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install valve tags on valves and control devices per specifications</td>
<td></td>
<td></td>
<td></td>
<td>Valve Schedule framed/posted</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Plumbing Piping Insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Verify all valve stems are extended and accessible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>Domestic Water Piping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flush, chlorinate, and reflush the potable water system. Take water sample at farthest point in system and perform test by approved lab.</td>
<td></td>
<td></td>
<td></td>
<td>test report from water testing lab</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Provide pressure testing per Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td>test report</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Laboratory Water Piping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide pressure testing per Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

7/21/2019
<table>
<thead>
<tr>
<th>Commissioning Items by CSI Division</th>
<th>Verified by:</th>
<th>Firm</th>
<th>Date compl</th>
<th>Coord Initial</th>
<th>Documentation Required</th>
<th>Owner Witness Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>221119 Domestic Water Piping Specialties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Demonstration section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sign-in Sheet</td>
<td>✓</td>
</tr>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td>✓</td>
</tr>
<tr>
<td>Perform Startup Service for Water Softener section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Startup Report</td>
<td>✓</td>
</tr>
<tr>
<td>Provide Extra material as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transmittal</td>
<td>✓</td>
</tr>
<tr>
<td>221316 Storm, Sanitary Waste and Vent Piping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform leak test per Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>test report</td>
<td>✓</td>
</tr>
<tr>
<td>224000 Plumbing Fixtures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjust and Test All Fixtures Per "Field Quality Control" section of spec. Clean and flush all floor drains and verify positive drainage, free of blockage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>test report</td>
<td>✓</td>
</tr>
<tr>
<td>226113 Compressed-Air Piping for Laboratory Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct cleaning and pressure testing per specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>written test reports</td>
<td>✓</td>
</tr>
<tr>
<td>226213 Vacuum Piping for Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td>✓</td>
</tr>
<tr>
<td>Commissioning Items by CSI Division</td>
<td>Verified by:</td>
<td>Firm</td>
<td>Date compl</td>
<td>Coord Initial</td>
<td>Documentation Required</td>
<td>Owner Witness Required</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------------</td>
<td>------</td>
<td>------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>226700 Deionized Water Piping for Laboratory Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td>✔</td>
</tr>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230500 Basic Mechanical Materials and Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meeting Minutes</td>
<td>✔</td>
</tr>
<tr>
<td>Hold MEP pre-installation meeting(s.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230519 Meters and Gages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify calibration, adjustment and cleanliness of specified meters and gauges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☐</td>
</tr>
<tr>
<td>230523 Valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test and adjust valves per specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☐</td>
</tr>
<tr>
<td>230700 Mechanical Insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inspection Report</td>
<td>✔</td>
</tr>
<tr>
<td>Ensure Mechanical fasteners are installed as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify all valve stems and damper shafts are extended and accessible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☐</td>
</tr>
<tr>
<td>Verify all valves & damper controls are extended and accessible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☐</td>
</tr>
<tr>
<td>7/21/2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commissioning Items by CSI Division</td>
<td>Verified by:</td>
<td>Firm</td>
<td>Date compl</td>
<td>Coord Initial</td>
<td>Documentation Required</td>
<td>Owner Witness Required</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
<td>------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>230900 Control Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibrate/fine tune circuits & equipment to achieve specified sequence of operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check and record amp draw on supply transformers of I/O panels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td></td>
</tr>
<tr>
<td>Ensure shipping material has been removed from thermostats and other control devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post laminated control diagram in mechanical room</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify all panel covers are installed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify method of labeling used for identification has been defined to the Owners Representative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230950 Facility Monitoring Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Acceptance of Completed FMS Installation section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Startup Report</td>
<td></td>
</tr>
<tr>
<td>Provide factory training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sign in sheet</td>
<td></td>
</tr>
<tr>
<td>230990 Testing, Adjusting, and Balancing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordinate temperature control testing and adjusting with temperature controls contractor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensure pre-test requirements as specified in paragraph 1.2C have been completed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commissioning Items by CSI Division</td>
<td>Verified by:</td>
<td>Date compl</td>
<td>Coord Initial</td>
<td>Documentation Required</td>
<td>Owner Witness Required</td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Hold Pre-Balancing conference as specified</td>
<td>Name</td>
<td>Firm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notify Owner's Representative 14 days prior to the scheduled date for balancing the system.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232113
Hydronic Piping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain, flush and refill system with clean water. Clean and set automatic fill valves for required system pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flush per specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure test piping per Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233113
Metal Ducts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>test for duct leakage per "Testing" section of spec. Ducts shall meet leakage requirement prior to testing and balancing. At Least leakage class of 4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233300
Duct Accessories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrate Proper Operation of All Fire Dampers per NFPA-90A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233419
Laboratory Mechanical Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Demonstration section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7/21/2019
<table>
<thead>
<tr>
<th>Commissioning Items by CSI Division</th>
<th>Verified by:</th>
<th>Firm</th>
<th>Date compl</th>
<th>Coord Initial</th>
<th>Documentation Required</th>
<th>Owner Witness Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td>✓</td>
</tr>
<tr>
<td>Provide extra material as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transmittal</td>
<td>✓</td>
</tr>
<tr>
<td>233600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Terminal Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct Training per specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sign-in Sheet</td>
<td>✓</td>
</tr>
<tr>
<td>Notify owner’s rep after fully installing a representative unit (in-place mockup) for approval. Coordinate and cooperate with owner’s commissioning of the boxes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237323</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer-Room Air Conditioners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Demonstration section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sign-in Sheet</td>
<td>✓</td>
</tr>
<tr>
<td>238123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer-Room Air Conditioners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td>✓</td>
</tr>
<tr>
<td>Provide Spare Material as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transmittal</td>
<td>✓</td>
</tr>
<tr>
<td>238216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duct Mounted Coils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td>✓</td>
</tr>
<tr>
<td>Commissioning Items by CSI Division</td>
<td>Verified by:</td>
<td>Firm</td>
<td>Date compl</td>
<td>Coord Initial</td>
<td>Documentation Required</td>
<td>Owner Witness Required</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------</td>
<td>------</td>
<td>------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>260500 Common Work Results for Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train all End Users on the equipment they will use on a periodic basis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sign-in Sheet</td>
<td>☑</td>
</tr>
<tr>
<td>260519 Low-Voltage Electrical Power Conductors And Cables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td>☑</td>
</tr>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260526 Grounding and Bonding for Electrical Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>test reports</td>
<td>☑</td>
</tr>
<tr>
<td>Conduct grounding tests per Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260536 Cable Trays for Electrical/Communications Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Reports</td>
<td>☑</td>
</tr>
<tr>
<td>Perform tests as described in "Field Quality Control" section of spec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260548 Seismic Controls for Electrical Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Reports</td>
<td>☑</td>
</tr>
<tr>
<td>Perform tests as described in "Field Quality Control" section of spec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260553 Identification for Electrical Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify all equipment, panels, conduits and conductors are correctly labeled.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☐</td>
</tr>
<tr>
<td>Commissioning Items by CSI Division</td>
<td>Verified by:</td>
<td>Firm</td>
<td>Date compl</td>
<td>Coord Initial</td>
<td>Documentation Required</td>
<td>Owner Witness Required</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
<td>------</td>
<td>------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260572</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overcurrent Protective Device Short-Circuit Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factory certified technician to set electronic overcurrent devices to approved coordination study setpoints</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inspection Report</td>
<td>✓</td>
</tr>
<tr>
<td>Train owners representatives in setting of overcurrent devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sign-up Sheet</td>
<td>✓</td>
</tr>
<tr>
<td>260574</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overcurrent Protective Device Arcflash Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform 'Testing' section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td>✓</td>
</tr>
<tr>
<td>Place arcflash labels on equipment as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>SKM data to be e-mailed to MU Commissioning Engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SKM Data</td>
<td>✓</td>
</tr>
<tr>
<td>260923</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting Control Devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Field Quality Control and Commissioning sections of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>field report</td>
<td>✓</td>
</tr>
<tr>
<td>Provide factory training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sign-in Sheet</td>
<td>✓</td>
</tr>
<tr>
<td>262416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panelboards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform checks per "Field Quality Control" and "Testing" section of spec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td>✓</td>
</tr>
</tbody>
</table>

7/21/2019
<table>
<thead>
<tr>
<th>Commissioning Items by CSI Division</th>
<th>Verified by:</th>
<th>Date compl</th>
<th>Coord Initial</th>
<th>Documentation Required</th>
<th>Owner Witness Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>262726 Wiring Devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check all GFI receptacles for proper operation (including test and reset)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operate All Devices per "Field Quality Control" section of spec to verify correct operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262813 Fuses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for continuity and short circuits prior to energization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262816 Enclosed Switches and Circuit Breakers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform tests per "Field Quality Control" section of spec</td>
<td></td>
<td></td>
<td>Test Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide Extra Material as specified</td>
<td></td>
<td></td>
<td>Transmittal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265119 LED Interior Lighting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furnish Extra Material as specified</td>
<td></td>
<td></td>
<td>Transmittal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td>Test Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265219 Emergency and Exit Lighting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illuminate emergency lights for 90 minutes on battery power.</td>
<td></td>
<td></td>
<td>Test Report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7/21/2019
<table>
<thead>
<tr>
<th>Commissioning Items by CSI Division</th>
<th>Verified by:</th>
<th>Firm</th>
<th>Date compl</th>
<th>Coord Initial</th>
<th>Documentation Required</th>
<th>Owner Witness Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Report</td>
<td>✓</td>
</tr>
<tr>
<td>283111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital, Addressable Fire-Alarm System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Field Quality Control section of specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NFPA 72 Certification</td>
<td>✓</td>
</tr>
<tr>
<td>Pretest system and fill in pretest checklist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pretest checklist</td>
<td>☐</td>
</tr>
<tr>
<td>Provide factory training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sign-in Sheet</td>
<td>✓</td>
</tr>
<tr>
<td>Test system operation of pull stations horns/strobes by factory trained representative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Written certification of fire alarm system per NFPA</td>
<td>✓</td>
</tr>
<tr>
<td>Verify operation of each notification device</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Verify smoke dampers installed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

7/21/2019
Construction Management Checklist for Energizing Utilities
(Contractor to initial each item upon completion and provide completed form to the Owner's Representative prior to energizing utility.

Water – turned on to the first valve past Energy Management's last valve.

- Review all piping and equipment being turned on for proper installation and completed testing.
- Insulation installed (preferred but not required).
- Meter properly installed, working, and in readable location.
- Contractor has swabbed out with chlorine all piping from the backflow preventer to the source while installing.
- All bacteriological tests have been completed and passed.
- Backflow preventer installed and tested. (will need water pressure to test)
- Pressure test completed in piping being turned on.
- Contractor has method to communicate “Services On” to other contractor personnel and Owner's personnel.

Steam – turned on to the first valve past Energy Management’s last valve.

- Review all piping, equipment, valves, reducing stations, relief valves, etc. for proper installation and complete testing.
- Piping protected from the weather.
- Insulation must be installed.
- All hangers and bolts have been installed.
- Meter installed, working and in readable location. (Don’t need metasys to turn on.)
- All needed traps are installed and able to be tested as they are turned on.
- Condensate system is installed and operating including the pumping system.
- Pressure test completed in piping being turned on.
- Contractor has method to communicate “Services On” to other contractor personnel and Owner's personnel.

Condensate – turned on to the first valve past Energy Management’s last valve.

- Review all piping and equipment being turned on for proper installation and completed testing.
- Insulation installed (preferred but not required)
- Pressure test completed in piping being turned on.
- Contractor has method to communicate “Services On” to other contractor personnel and Owner's personnel.

Electric – turned on to the first breaker past 13.8kV transformer.

- Review all wiring and equipment being turned on for proper installation and completed testing
- GFCI set and tested.
- Breakers set and tested.
- All needed permanent grounds are installed.
- Meter installed, working and in readable location.
- Main switchgear protected from the weather.
- Contractor has method to communicate “Services On” to other contractor personnel and Owner's personnel.

Chilled Water – turned on to the first valve inside of building.

- Review all piping and equipment being turned on for proper installation and completed testing.
- Insulation must be installed.
- Meter installed, working and connected to Metasys.
- Building pump and automatic isolation/control valve must be installed and under control.
- Chillers are installed, automatic loop pump isolation must be installed.
- Control valves must be installed and automatically controlled on all loads.
- Contractor has method to communicate “Services On” to other contractor personnel and Owner's personnel.

2/8/2005
Please see following website for suggested commissioning forms:

https://www.cf.missouri.edu/cf/pdc/commissioning-forms
INDEX OF DRAWINGS

GENERAL
G000 COVER
G100 LIFE SAFETY CODE - CORE AND SHELL
G100.1 LIFE SAFETY CODE - CORE AND SHELL
G100.2 LIFE SAFETY CODE - FIRST FLOOR
G100.3 LIFE SAFETY CODE - SECOND FLOOR
G100.4 LIFE SAFETY CODE - THIRD FLOOR

ARCHITECTURAL
A001 PARTITION TYPES, ABBREVIATIONS, SYMBOLS, AND STAGING
A103 THIRD FLOOR PLAN
A153 THIRD FLOOR REFLECTED CEILING PLAN
A552 ENLARGED PLANS, ELEVATIONS, SECTIONS, AND DETAILS
A601 DOOR, WINDOW, AND FRAME TYPES & SCHEDULE
A713 THIRD FLOOR FINISH PLAN & SCHEDULE
A724 INTERIOR ELEVATIONS

LAB EQUIPMENT
Q001 LABORATORY CASEWORK GENERAL INFORMATION
Q002 LABORATORY DETAILS
Q103 THIRD FLOOR LABORATORY PLAN
Q125 THIRD FLOOR - SOUTHEAST
Q126 THIRD FLOOR - NORTHEAST
Q127 THIRD FLOOR - WEST
Q203 LABORATORY ELEVATIONS
Q204 LABORATORY ELEVATIONS & EQUIPMENT SCHEDULE

PLUMBING & FIRE PROTECTION
PFP000 PLUMBING AND FIRE PROTECTION SYMBOLS AND ABBREVIATIONS
FP013 FIRE PROTECTION THIRD FLOOR EXISTING AND DEMO PLAN
FP103 FIRE PROTECTION THIRD FLOOR PLAN
FP401 FIRE PROTECTION ENLARGED PLANS
FP501 FIRE PROTECTION DETAILS
P012 PLUMBING SECOND FLOOR DEMO PLAN
P013 PLUMBING THIRD FLOOR DEMO PLAN
P102 PLUMBING SECOND FLOOR PLAN
P103 PLUMBING THIRD FLOOR PLAN
P401 PLUMBING ENLARGED PLANS
P402 PLUMBING RISER DIAGRAMS
P601 PLUMBING DETAILS AND SCHEDULES

MECHANICAL
M000 MECHANICAL SYMBOLS & ABBREVIATIONS
MD103.1 MECHANICAL THIRD FLOOR DUCTWORK DEMO PLAN
MD103.2 MECHANICAL THIRD FLOOR PIPING DEMO PLAN
M103.1 MECHANICAL THIRD FLOOR DUCTWORK NEW WORK PLAN
M103.2 MECHANICAL THIRD FLOOR PIPING NEW WORK PLAN
M104 MECHANICAL ALTERNATES
M113 AIR BALANCE PLAN
M500 MECHANICAL DETAILS
M501 MECHANICAL DETAILS
M600 MECHANICAL SCHEDULES
M700 SEQUENCE OF OPERATION
M701 MECHANICAL CONTROLS

ELECTRICAL
E001 GENERAL NOTES, SYMBOLS AND DETAILS
ED101 THIRD FLOOR - ELECTRICAL DEMOLITION
E201 THIRD FLOOR - LIGHTING PLAN
E301 THIRD FLOOR - POWER PLAN
E302 THIRD FLOOR - RCP POWER PLAN
E401 THIRD FLOOR - HVAC POWER PLAN
E601 ELECTRICAL DETAILS
E602 ELECTRICAL DETAILS
E701 PARTIAL RISER DIAGRAM
E702 PARTIAL ONE-LINE DIAGRAM
E801 ELECTRICAL SCHEDULES
E802 PANELBOARD SCHEDULES
E803 PANELBOARD SCHEDULES
E804 PANELBOARD SCHEDULES
FA101 THIRD FLOOR - FIRE ALARM PLAN

END OF SECTION
SECTION 1.G

PREVAILING WAGE RATES

Annual Wage Order No. 25

Boone County

effective 8/28/2018

These are the wage rates applicable to this project in accordance with 13.6.1 of the general conditions. Overtime provisions are specified under 13.6.13

<table>
<thead>
<tr>
<th>OCCUPATIONAL TITLE</th>
<th>BASIC HOURLY RATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asbestos Worker (H&F) Insulator</td>
<td>$55.87</td>
</tr>
<tr>
<td>Boilermaker</td>
<td>$67.29</td>
</tr>
<tr>
<td>Bricklayer</td>
<td>$48.19</td>
</tr>
<tr>
<td>Carpenter, Pile Driver, Millwright, Lather, Linoleum Layer</td>
<td>$43.25</td>
</tr>
<tr>
<td>Cement Mason, Plasterer</td>
<td>$41.45</td>
</tr>
<tr>
<td>Communication Technician</td>
<td>$50.23</td>
</tr>
<tr>
<td>Electrician (Inside Wireman)</td>
<td>$50.23</td>
</tr>
<tr>
<td>Electrician (Outside-Line Construction/Lineman)</td>
<td>$66.35</td>
</tr>
<tr>
<td>Elevator Constructor</td>
<td>$80.35</td>
</tr>
<tr>
<td>Glazier</td>
<td>$40.30</td>
</tr>
<tr>
<td>Ironworker</td>
<td>$55.45</td>
</tr>
<tr>
<td>Laborer, 1st Semi Skilled Laborer, 2nd Semi Skilled Laborer</td>
<td>$37.55</td>
</tr>
<tr>
<td>Mason, Marble Mason, Marble Finisher, Terrazzo Worker, Terrazzo Finisher, Tile Setter, Tile Finisher</td>
<td>$35.29</td>
</tr>
<tr>
<td>Operating Engineer</td>
<td>$56.33</td>
</tr>
<tr>
<td>Painter</td>
<td>$36.67</td>
</tr>
<tr>
<td>Plumber, Pipefitter</td>
<td>$59.60</td>
</tr>
<tr>
<td>Roofer/Waterproofer</td>
<td>$45.59</td>
</tr>
<tr>
<td>Sheet Metal Worker</td>
<td>$49.43</td>
</tr>
<tr>
<td>Sprinkler Fitter - Fire Protection</td>
<td>$57.26</td>
</tr>
<tr>
<td>Truck Driver</td>
<td>$36.00</td>
</tr>
</tbody>
</table>

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 1.H

ALTERNATES

Base Bid may be increased in accordance with following Additive Alternate proposal(s) as Owner may elect:

1. Additive Alternate No. 1: Provide stair access and openings C3201B and C3201C between Computational Lab C3201 and Stair W3039. Remove, replace, and provide new finishes, services, ductwork, and other components as indicated on Drawings. Provide HVAC system to serve Equipment Room C3201A. Refer to Drawings for additional information.

2. Additive Alternate No. 2: Provide FM-200 fire suppression system to serve Equipment Room C3201A. Refer to Drawings for additional information..

END OF SECTION
SECTION 01 7300 - EXECUTION

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:
1. Installation of the Work.
2. Cutting and patching.
3. Progress cleaning.
4. Protection of installed construction.
B. Related Requirements:
1. Section 02 4119 “Selective Demolition” for demolition and removal of selected portions of the building.

1.03 DEFINITIONS
A. Cutting: Removal of in-place construction necessary to permit installation or performance of other work.
B. Patching: Fitting and repair work required to restore construction to original conditions after installation of other work.

1.04 QUALITY ASSURANCE
A. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.
1. Structural Elements: When cutting and patching structural elements, notify Architect of locations and details of cutting and await directions from Architect before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection.
2. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.

PART 2 - PRODUCTS

2.01 MATERIALS
A. General: Comply with requirements specified in other Sections.
B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.
1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Architect for the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.01 EXAMINATION
A. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.
1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.
2. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.
3. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.

B. Written Report: Where a written report listing conditions detrimental to performance of the Work is required by other Sections, include the following:
 1. Description of the Work.
 2. List of unacceptable installation tolerances.
 3. Recommended corrections.

C. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.02 PREPARATION

A. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

B. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.

3.03 INSTALLATION

A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 1. Make vertical work plumb and make horizontal work level.
 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.

B. Comply with manufacturer’s written instructions and recommendations for installing products in applications indicated.

C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.

D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.

E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.

F. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.

G. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.

H. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.
 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Architect.
 2. Allow for building movement, including thermal expansion and contraction.

I. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.

J. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.
3.04 CUTTING AND PATCHING

A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.

1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.

B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.

C. Temporary Support: Provide temporary support of work to be cut.

D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.

E. Adjacent Occupied Areas: Where interference with use of adjoining areas or interruption of free passage to adjoining areas is unavoidable, coordinate cutting and patching according to requirements in Division 1 Section 1.E Special Conditions.

F. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to prevent interruption to occupied areas.

G. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.

1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.

2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.

3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.

4. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.

5. Proceed with patching after construction operations requiring cutting are complete.

H. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.

1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.

2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.

a. Clean piping, conduit, and similar features before applying paint or other finishing materials.

b. Restore damaged pipe covering to its original condition.

3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.

a. Where patching occurs in a painted surface, prepare substrate and apply primer and intermediate paint coats appropriate for substrate over the patch, and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.
4. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.

5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.

I. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.05 PROGRESS CLEANING

A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.

2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F.

3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.

a. Use containers intended for holding waste materials of type to be stored.

B. Site: Maintain Project site free of waste materials and debris.

C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.

1. Remove liquid spills promptly.

2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.

D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.

E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.

F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.

G. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.

H. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.

I. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.06 PROTECTION OF INSTALLED CONSTRUCTION

A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.

B. Comply with manufacturer's written instructions for temperature and relative humidity.

END OF SECTION 01 7300
PART 1 - GENERAL
1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section includes administrative and procedural requirements for the following:
 1. Salvaging nonhazardous demolition and construction waste.
 2. Recycling nonhazardous demolition and construction waste.
 3. Disposing of nonhazardous demolition and construction waste.
B. Related Requirements:
 1. Section 02 4119 "Selective Demolition" for disposition of waste resulting from partial demolition of buildings, structures, and site improvements.

1.03 DEFINITIONS
A. Construction Waste: Building and site improvement materials and other solid waste resulting from construction, remodeling, renovation, or repair operations. Construction waste includes packaging.
B. Demolition Waste: Building and site improvement materials resulting from demolition or selective demolition operations.
C. Disposal: Removal off-site of demolition and construction waste and subsequent sale, recycling, reuse, or deposit in landfill or incinerator acceptable to authorities having jurisdiction.
D. Recycle: Recovery of demolition or construction waste for subsequent processing in preparation for reuse.
E. Salvage: Recovery of demolition or construction waste and subsequent sale or reuse in another facility.
F. Salvage and Reuse: Recovery of demolition or construction waste and subsequent incorporation into the Work.

1.04 QUALITY ASSURANCE
A. Regulatory Requirements: Comply with hauling and disposal regulations of authorities having jurisdiction.

1.05 WASTE MANAGEMENT PLAN
A. General: Develop a waste management plan.
B. Track waste quantities by weight by utilizing truck tickets at landfill and at recycling location.
C. Turn in waste ticket receipt totals for waste and recycled materials on a monthly basis along with applications for payment.

PART 2 - EXECUTION
2.01 PLAN IMPLEMENTATION
A. General: Implement approved waste management plan. Provide handling, containers, storage, signage, transportation, and other items as required to implement waste management plan during the entire duration of the Contract.
B. Training: Train workers, subcontractors, and suppliers on proper waste management procedures, as appropriate for the Work.
 1. Distribute waste management plan to everyone concerned within seven days of submittal return.
 2. Distribute waste management plan to entities when they first begin work on-site. Review plan procedures and locations established for salvage, recycling, and disposal.
C. Site Access and Temporary Controls: Conduct waste management operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 1. Designate and label specific areas on Project site necessary for separating materials that are to be salvaged, recycled, reused, donated, and sold.

2.02 SALVAGING DEMOLITION WASTE
A. Salvaged Items for Reuse in the Work: Salvage items for reuse and handle as follows:
 1. Clean salvaged items.
 2. Pack or crate items after cleaning. Identify contents of containers with label indicating elements, date of removal, quantity, and location where removed.
 3. Store items in a secure area until installation.
 4. Protect items from damage during transport and storage.
 5. Install salvaged items to comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make items functional for use indicated.

B. Salvaged Items for Sale and Donation: Not permitted on Project site.

2.03 RECYCLING DEMOLITION and CONSTRUCTION WASTE, GENERAL
A. General: Recycle paper and beverage containers used by on-site workers, as well as construction and demolition waste to the extent feasible without incurring additional costs to the Project.

2.04 DISPOSAL OF WASTE
A. General: Except for items or materials to be salvaged, recycled, or otherwise reused, remove waste materials from Project site and legally dispose of them in a landfill or incinerator acceptable to authorities having jurisdiction.
 1. Except as otherwise specified, do not allow waste materials that are to be disposed of to accumulate on-site.
 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.

B. Burning: Do not burn waste materials.

C. Disposal: Remove waste materials from Owner's property and legally dispose of them.

END OF SECTION 01 7419
SECTION 02 4119 - SELECTIVE DEMOLITION

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
 1. Demolition and removal of selected portions of building or structure.
 2. Salvage of existing items to be reused or recycled.
B. Related Requirements:
 1. Section 01 7300 "Execution" for cutting and patching procedures.

1.03 DEFINITIONS
A. Remove: Detach items from existing construction and legally dispose of them off-site unless indicated to be removed and salvaged or removed and reinstalled.
B. Remove and Salvage: Carefully detach from existing construction, in a manner to prevent damage, and deliver to Owner.
C. Remove and Reinstall: Detach items from existing construction, prepare for reuse, and reinstall where indicated.
D. Existing to Remain: Existing items of construction that are not to be permanently removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.04 MATERIALS OWNERSHIP
A. Unless otherwise indicated, demolition waste becomes property of Contractor.
B. Historic items, relics, antiques, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, and other items of interest or value to Owner that may be uncovered during demolition remain the property of Owner.
 1. Carefully salvage in a manner to prevent damage and promptly return to Owner.

1.05 INFORMATIONAL SUBMITTALS
A. Inventory: Submit a list of items to be removed and salvaged and deliver to Owner prior to start of demolition.
B. Predemolition Photographs or Video: Submit before Work begins.

1.06 CLOSEOUT SUBMITTALS
A. Inventory: Submit a list of items that have been removed and salvaged.

1.07 FIELD CONDITIONS
A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.
B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.
D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 1. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.
E. Storage or sale of removed items or materials on-site is not permitted.
F. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
1. Maintain fire-protection facilities in service during selective demolition operations.

PART 2 - PRODUCTS

2.01 PERFORMANCE REQUIREMENTS

A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.

B. Standards: Comply with ANSI/ASSE A10.6 and NFPA 241.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Verify that utilities have been disconnected and capped before starting selective demolition operations.

B. Review record documents of existing construction provided by Owner. Owner does not guarantee that existing conditions are same as those indicated in record documents.

C. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.

D. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.

E. Survey of Existing Conditions: Record existing conditions by use of preconstruction photographs or preconstruction videotapes.
 1. Inventory and record the condition of items to be removed and salvaged. Provide photographs or video of conditions that might be misconstrued as damage caused by salvage operations.

3.02 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.
 1. Comply with requirements for existing services/systems interruptions specified in Section 01 1000 "Summary."

B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off indicated utility services and mechanical/electrical systems serving areas to be selectively demolished.
 1. Owner will arrange to shut off indicated services/systems when requested by Contractor.
 2. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
 3. Disconnect, demolish, and remove fire-suppression systems, plumbing, and HVAC systems, equipment, and components indicated to be removed.
 a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 b. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 c. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 d. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 e. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
 f. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
g. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.

3.03 PREPARATION
A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 1. Comply with requirements for access and protection specified in Section 01 5000 "Temporary Facilities and Controls."
B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
 1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.
 2. Provide temporary weather protection, during interval between selective demolition of existing construction on exterior surfaces and new construction, to prevent water leakage and damage to structure and interior areas.
 3. Protect walls, ceilings, floors, and other existing finish work that are to remain or that are exposed during selective demolition operations.
 4. Cover and protect furniture, furnishings, and equipment that have not been removed.

3.04 SELECTIVE DEMOLITION, GENERAL
A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 1. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.
 2. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
 3. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain fire watch and portable fire-suppression devices during flame-cutting operations.
 4. Maintain adequate ventilation when using cutting torches.
 5. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
 6. Dispose of demolished items and materials promptly.
B. Removed and Salvaged Items:
 1. Transport items to Owner's storage area designated by Owner.
 2. Protect items from damage during transport and storage.
C. Removed and Reinstalled Items:
 1. Clean and repair items to functional condition adequate for intended reuse.
 2. Pack or crate items after cleaning and repairing. Identify contents of containers.
 3. Protect items from damage during transport and storage.
 4. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.
3.05 DISPOSAL OF DEMOLISHED MATERIALS

A. General: Except for items or materials indicated to be reused, salvaged, reinstalled, or otherwise indicated to remain Owner’s property, remove demolished materials from Project site and legally dispose of them in an EPA-approved landfill.

1. Do not allow demolished materials to accumulate on-site.
2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
4. Comply with requirements specified in Section 01 7419 “Construction Waste Management and Disposal.”

B. Burning: Do not burn demolished materials.

C. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

3.06 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION 02 4119
SECTION 03 3543
BONDED ABRASIVE POLISHED CONCRETE FLOORS

PART 1 – GENERAL

1.01 SECTION INCLUDES
A. Products and procedures for bonded abrasive polishing concrete floors using multi-step wet/dry mechanical process, and accessories indicated, specified, or required to complete polishing.

1.02 DEFINITIONS
A. Terminology: As defined by the Concrete Polishing Association of America (CPAA).
 1. Polished Concrete: The act of changing a concrete floor surface, with or without aggregate exposure, to achieve a specified level of gloss.
 2. Bonded Abrasive Polished Concrete: The multi-step operation of mechanically grinding, honing, polishing of a concrete floor surface with bonded abrasives to cut a concrete floor surface and to refine each cut to the maximum potential to achieve a specified level of finished gloss as defined by the CPAA.

1.03 SUBMITTALS
A. Product Data: Manufacturer's technical literature for each product indicated, specified, or required. Include manufacturer's technical data, application instructions, and recommendations.
B. Installer Qualifications: Data for company, principal personnel, experience, and training specified in PART 1 “Quality Assurance” Article.
C. Field Quality Control – Dynamic Coefficient of Friction Test Reports: Reports of testing specified in PART 3 “Field Quality Control” Article.
D. Field Quality Control – Static Coefficient of friction test reports: report of testing specified in Part 3 “Field Quality Control” article.
E. Maintenance Data: For inclusion in maintenance manual required by Division One.
 1. Include instructions for maintenance of installed work, including methods and frequency recommended for maintaining optimum condition under anticipated use.
 2. Include precautions against cleaning products and methods which may be detrimental to finishes and performance.

1.04 QUALITY ASSURANCE
A. Polisher Qualifications:
 1. Experience: Company experienced in performing specified work similar in design, products, and extent to scope of this Project; with a record of successful in-service performance; and with sufficient production capability, facilities, and personnel to produce specified work.
 2. Supervision: Maintain competent supervisor who is at Project during times specified work is in progress, and is currently certified as Craftsman - Level I or higher by CPAA.
 3. Manufacturer Qualification: Approved by manufacturer to apply liquid applied products.
B. Walkway Auditor: Certified by CPAA or NFSI to test bonded abrasive polished concrete floors for dynamic and static coefficient of friction according to ANSI B101.1 and B101.3.
C. Coefficient of Friction: Achieve following coefficient of friction by field quality control testing in accordance to the following standards:
 1. ANSI B101.1 Static Coefficient of Friction - Achieve a minimum of .42 for level floor surfaces.
 2. ANSI B101.3 Dynamic Coefficient of Friction - Achieve a minimum of .35 for level floor surfaces.
D. Field Mock-up: Before performing work of this Section, provide following field mock-up to verify selections made under submittals and to demonstrate aesthetic effects of polishing. Approval does not constitute approval of deviations from Contract Documents, unless Architect specifically approves deviations in writing.
1. Form, reinforce, and cast concrete slab for 10 foot square field mock-up.
2. Concrete shall be same mix design as scheduled for Project.
3. Placement and finishing work shall be performed by same personnel as will place and finish concrete for Project.
4. Mock-up shall be representative of work to be expected.
5. Perform grinding, honing, and polishing work as scheduled for Project using same personnel as will perform work for Project.
6. Approval is for following aesthetic qualities:
 a. Compliance with approved submittals.
 b. Compliance with specified aggregate exposure.
 c. Compliance with specified finished gloss level.
7. Obtain Architect’s approval before starting work on Project.
8. Protect and maintain approved field mock-ups during construction in an undisturbed condition as a standard for judging completed work.

1.05 ADMINISTRATIVE REQUIREMENTS
A. Pre-Installation of Concrete Conference: Prior to placing concrete for areas scheduled for polishing, conduct conference at Project to comply with requirements of applicable Division One.
1. Required Attendees:
 a. Owners Representative.
 b. Architect.
 c. Contractor, including supervisor.
 d. Concrete producer.
 e. Concrete finisher, including supervisor.
 f. Concrete polisher, including supervisor.
 g. Technical representative of liquid applied product manufacturers.
 h. Walkway auditor.
2. Minimum Agenda: Demonstrate understanding of work required by reviewing and discussing procedures for, but not limited to, following:
 a. Tour field mock-up and representative areas of required work, discuss and evaluate for compliance with Contract Documents, including substrate conditions, surface preparations, sequence of procedures, and other preparatory work performed by other installers.
 b. Review Contract Document requirements.
 c. Review approved submittals and field mock-up.
 d. Review procedures, including, but not limited to:
 e. 1) Protection of concrete substrate during construction and prior to polishing process
 2) Project phasing and scheduling for each step of grinding, honing and polishing operations including, but not limited to:
 (a) Quality of qualified personnel committed to project.
 (b) Quality and size of grinders committed to project.
 (c) Proper disposal of concrete slurry and/or concrete dust.
 3) Details of each step of grinding, honing, and polishing operations.
 f. Application of liquid applied products.
 g. Protecting polished concrete floors after polishing work is complete.
 h. Reports: Record discussions, including decisions and agreements reached, and furnish copy of record to each party attending.
3. Reports: Record discussions, including decisions and agreements reached, and furnish copy of record to each party attending.

1.06 DELIVERY, STORAGE, AND HANDLING
A. Deliver materials in manufacturer’s sealed packaging, including application instructions.
1.07 FIELD CONDITIONS
 A. Damage and Stain Prevention: Take precautions to prevent damage and staining of concrete surfaces to be polished.
 1. Prohibit use of markers, spray paint, and soapstone.
 2. Prohibit improper application of liquid membrane film forming curing compounds.
 3. Prohibit vehicle parking over concrete surfaces.
 4. Prohibit pipe-cutting operations over concrete surfaces.
 5. Prohibit storage of any items over concrete surfaces for not less than 28 days after concrete placement.
 6. Prohibit ferrous metals storage over concrete surfaces.
 7. Protect from petroleum, oil, hydraulic fluid, or other liquid dripping from equipment working over concrete surfaces.
 8. Protect from acids and acidic detergents contacting concrete surfaces.
 9. Protect from painting activities over concrete surfaces.
 B. Environmental Limitations: Comply with manufacturer's written instructions for substrate temperature, ambient temperature, moisture, ventilation, and other conditions affecting liquid applied product application.

PART 2 – PRODUCTS
2.01 LIQUID APPLIED PRODUCTS
 A. Liquid Densifier: An Aqueous solution of Silicon Dioxide dissolved in one of the following Hydroxides that penetrates into the concrete surface and reacts with the Calcium Hydroxide to provide a permanent chemical reaction that hardens and densifies the wear surface of the cementitious portion of the concrete.
 1. Sodium Silicate
 2. Potassium Silicate
 3. Lithium Silicate
 4. Alkalis solution of Colloidal Silicates or Silica

2.02 ACCESSORIES
 A. Repair Material: Designed to repair cracks and surface imperfections. Material must have sufficient bonding capabilities to adhere after the polishing to the concrete surface and provide abrasion resistance equal to or greater than the surrounding concrete substrate.
 B. Grout Material: Thin mortar used for filling spaces. Acceptable products:
 1. Epoxy, urethane, poluyrea, or polyaspartic resins.
 2. Latex or acrylic binders mixed with cement dust from previous grinding steps.
 3. Silicate binders mixed with cement dust from previous grinding steps.
 C. Protective Cover: Non-woven, puncture and tear resistant, polypropylene fibers laminated with a multi-ply, textured membrane, not less than 18 mils in thickness.

2.03 POLISHING EQUIPMENT
 A. Field Grinding and Polishing Equipment:
 1. A multiple head, counter rotating, walk behind or ride on machine, of various size and weights, with diamond tooling affixed to the head for the purpose of grinding concrete. Excludes janitorial maintenance equipment.
 2. If dry grinding, honing, or polishing, use dust extraction equipment with flow rate suitable for dust generated, with squeegee attachments.
 3. If wet grinding, honing, or polishing, use slurry extraction equipment suitable for slurry removal and containment prior to proper disposal.
 B. Edge Grinding and Polishing Equipment: Hand-held or walk-behind machines which produces same results, without noticeable differences, as field grinding and polishing equipment.
 C. Burnishing Equipment: High speed walk-behind or ride-on machines capable of generating 1000 to 2000 revolutions per minute and with sufficient head pressure of not less than 20 pounds to raise floor temperature by 20 degrees F.
D. Diamond Tooling: Abrasive tools that contain industrial grade diamonds within a bonded matrix (such as metallic, resinous or ceramic,) that are attached to rotating heads to refine the concrete substrate.
 1. Bonded Abrasive: Abrasive medium held within a bonding that erodes away to expose new abrasive medium as it is used.
 2. Metal Bond Tooling: Diamond tooling containing industrial grade diamonds with a metallic bonded matrix that is attached to rotating heads to refine the concrete substrate. Provide levels of soft, medium, and hard metallic matrices that are matched with contrasting concrete substrates (i.e. hard matrix/soft concrete, medium matrix/medium concrete, soft matrix/hard concrete) for grinding and early honing stages of the polishing process.
 3. Resin Bond Tooling: Diamond tooling containing industrial grade diamonds within a resinous bonded matrix (poly-phenolic, ester-phenolic, thermoplastic-phenolic) attached to rotating heads to refine the concrete substrate. Use resin bond tooling for the later honing and polishing stages of the polishing process.
 4. Hybrid Tooling: Diamond tooling containing metal bond and resin bond with the characteristics of both types of tooling. Use this type for either transitional tooling from metal bond tools to resin bond tools or as a first cut tool on smooth concrete surfaces.
 5. Transitional Tooling: Diamond tooling used to refine the scratch pattern of metal bond tooling prior to the application of resin bond tooling to extend the life of resin bond tooling and to create a better foundation for the polishing process.
 6. Abrasive Pad: An abrasive pad, that has the capability of refining the concrete surface on a microscopic level that may or may not contain industrial grade diamonds.

PART 3 – EXECUTION
3.01 EXAMINATION
 A. Acceptance of Surfaces and Conditions:
 1. Examine substrates to be polished for compliance with requirements and other conditions affecting performance.
 a. Concrete Finished Floor Flatness: Floors should have overall values of flatness, F(F) 50; and of levelness, F(L) 30; with minimum local values of flatness, F(F) 35; and of levelness, F(L) 20
 B. Proceed only when unsatisfactory conditions have been corrected in a manner complying with Contract Documents.
 C. Starting work within a particular area will be construed as acceptance of surface conditions.

3.02 PREPARATION
 A. Cleaning Concrete Surfaces:
 1. Prepare and clean concrete surfaces.
 2. Provide sound concrete surfaces free of laitance, glaze, efflorescence, curing compounds, form-release agents, dust, dirt, grease, oil, paint splatter, and other contaminants incompatible with liquid applied products and polishing.

3.03 POLISHING CONCRETE FLOORS
 A. Perform all polishing procedures to ensure a consistent appearance from wall to wall.
 B. Initial Grinding:
 1. Use grinding equipment with metal or semi-metal bonded tooling.
 2. Begin grinding in one direction using sufficient size equipment and diamond tooling to meet specified aggregate exposure class.
 3. Make sequential passes with each pass perpendicular to previous pass using finer grit tool with each pass, up to 100 grit metal bonded tooling.
 4. Achieve maximum refinement with each pass before proceeding to finer grit tools.
 5. Clean floor thoroughly after each pass using dust extraction equipment properly fitted with squeegee attachment or walk behind auto scrubber suitable to remove all visible loose debris and dust.
 6. Continue grinding until aggregate exposure matches approved field mock-ups.
C. Treating Surface Imperfections:
 1. Mix patching compound or grout material with dust created by grinding operations, manufacturer's tint, or sand to match color of adjacent concrete surfaces.
 2. Fill surface imperfections including, but not limited to, holes, surface damage, small and micro cracks, air holes, pop-outs, and voids with grout to eliminate micro pitting in finished work.
 3. Work compound and treatment until color differences between concrete surface and filled surface imperfections are not reasonably noticeable when viewed from 10 feet away under lighting conditions that will be present after construction.

D. Liquid Densifier Application: Apply undiluted to point of rejection, remove excess liquid, and allow curing according to manufacturer's instructions.

E. Grout Grinding:
 1. Use grinding equipment and appropriate grit and bond diamond tooling.
 2. Apply grout, forced into the pore structure of the concrete substrate, to fill surface imperfections.
 3. Clean floor thoroughly after each pass using dust extraction equipment properly fitted with squeegee attachment or walk behind auto scrubber suitable to remove all visible loose debris and dust.

F. Honing:
 1. Use grinding equipment with hybrid or resin bonded tooling.
 2. Hone concrete in one direction starting with a 100 grit tooling and make as many sequential passes as required to remove scratches, each pass perpendicular to previous pass, up to 400 grit tooling reaching maximum refinement with each pass before proceeding to finer grit tooling.
 3. Clean floor thoroughly after each pass using dust extraction equipment properly fitted with squeegee attachment or walk behind auto scrubber suitable to remove all visible loose debris and dust.

G. Polishing:
 1. Use polishing equipment with resin-bonded tooling.
 2. Begin polishing in one direction starting with 800 grit tooling.
 3. Make sequential passes with each pass perpendicular to previous pass using finer grit tooling with each pass until the specified level of gloss has been achieved.
 4. Achieve maximum refinement with each pass before proceeding to finer grit pads.
 5. Clean floor thoroughly after each pass using dust extraction equipment properly fitted with squeegee attachment or walk behind auto scrubber suitable to remove all visible loose debris and dust.
 6. Stain Protection: Uniformly apply and remove excessive liquid according to manufacturer's instructions. Final film thickness should be less than .05 mils after cure.
 7. Final Polish: Using burnishing equipment and finest grit abrasive pads, burnish to uniform reflective sheen matching approved field mock-up.

H. Final Polished Concrete Floor Finish:
 1. Aggregate Exposure Class C – Medium Aggregate Finish: Remove not more than 1/8 inch of concrete surface by grinding and polishing resulting in majority of exposure displaying medium aggregate with no, or small amount of, large aggregate at random locations.

I. Finished Gloss Level 2 – Medium Gloss Appearance:
 1. Procedure: Not less than 4 step process with full refinement of each diamond tool with one application of densifier.
 2. Gloss Measurement: Determine the specular gloss by incorporating the following:
 a. Reflective Clarity Reading: Not less than 55 according to ASTM D5767 prior to the application of sealers.
 b. Reflective Sheen Reading: Not less than 25 according to ASTM D523 prior to the application of sealers.
3.04 FIELD QUALITY CONTROL
 A. Field Testing: Engage a qualified walkway auditor to perform field testing to determine if polished concrete floor finish complies with specified coefficient of friction;
 1. ANSI B101.1 for static coefficient of friction
 2. ANSI B101.3 for dynamic coefficient of friction

3.05 CLOSEOUT ACTIVITIES
 A. Maintenance Training: Train Owner's designated personnel in proper procedures for maintaining polished concrete floor.

3.06 PROTECTION
 A. Covering: After completion of polishing, protect polished floors from subsequent construction activities with protective covering.

END OF SECTION
SECTION 04 2000
UNIT MASONRY

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Concrete Block.
B. Clay Facing Brick.
C. Mortar and Grout.

1.02 SUBMITTALS
A. See Division One for submittal procedures.
B. Product Data: Provide data for dampproofing, masonry units, fabricated wire reinforcement, mortar, and masonry accessories.
C. Manufacturer's Certificate: Certify that masonry units meet or exceed specified requirements.

1.03 QUALITY ASSURANCE
A. Comply with ACI 530/530.1/ERTA - Building Code Requirements and Specification for Masonry Structures and Related Commentaries; American Concrete Institute International; 2011.
B. Fire Rated Assemblies: Conform to applicable code for requirements for fire rated masonry construction.
C. Comply with provisions of the Brick Industry Association (BIA) Technical Notes on Brick Construction, except where exceeded by requirements of the contract documents.
D. Comply with provisions of National Concrete Masonry Association (NCMA) Tek Notes, except where exceeded by requirements of the contract documents.

1.04 DELIVERY, STORAGE, AND HANDLING
A. Deliver, handle, and store masonry units by means that will prevent mechanical damage and contamination by other materials.

PART 2 PRODUCTS

2.01 CONCRETE MASONRY UNITS
A. Concrete Block: Comply with referenced standards and as follows:
 1. Size: Standard units with nominal face dimensions of 16 x 8 and nominal depths (6, 8 and 12) as indicated on the drawings for specific locations.
 2. Special Shapes: Provide non-standard blocks configured for corners, lintels, headers, and other detailed conditions.
 3. Load-Bearing and Non Load Bearing Units: ASTM C90, lightweight.
 a. Both hollow and solid block. All block hollow except 4 inch nominal
 b. Exposed faces: Manufacturer's standard color and texture.

2.02 BRICK UNITS
A. Facing Brick: ASTM C216, Type FBS, Grade SW, with a rating of "no efflorescence" when tested according to ASTM C67.

2.03 MORTAR AND GROUT MATERIALS
A. Portland Cement: ASTM C150, Type I.
 1. Not more than 0.60 percent alkali.
B. Hydrated Lime: ASTM C207, Type N.
C. Mortar Aggregate: ASTM C144.
E. Water: Clean and potable.
2.04 LINTELS
 A. Provide masonry or precast concrete lintels where shown and where openings of more than 12 inches for brick size units and 24 inches for block size units without structural steel or other supporting lintels. Design and reinforce lintels to support gravity load above opening.
 B. Steel lintels:
 1. Fabricate from ASTM A36 type steel.
 2. Fabricate loose steel lintels from steel angles of size indicated.

2.05 MORTAR AND GROUT MIXES
 A. Mortar for Unit Masonry: ASTM C270, using the Proportion Specification.
 1. All masonry block: Type S.
 2. Facing brick masonry: Type S.
 B. Grout: ASTM C476. Consistency required to fill completely volumes indicated for grouting; fine grout for spaces with smallest horizontal dimension of 2 inches or less; coarse grout for spaces with smallest horizontal dimension greater than 2 inches.
 C. Admixtures: Use admixtures only if approved by Architect in writing. Add to mixture at manufacturer's recommended rate and in accordance with manufacturer's instructions; mix uniformly.
 D. Mixing: Use mechanical batch mixer and comply with referenced standards.

PART 3 EXECUTION

3.01 EXAMINATION
 A. Verify that field conditions are acceptable and are ready to receive masonry.
 B. Verify that related items provided under other sections are properly sized and located.
 C. Verify that built-in items are in proper location, and ready for roughing into masonry work.

3.02 PREPARATION
 A. Provide temporary bracing during installation of masonry work. Maintain in place until building structure provides permanent bracing.

3.03 COURSING
 A. Establish lines, levels, and coursing to match existing.

3.04 PLACING AND BONDING
 A. Lay solid masonry units in full bed of mortar, with full head joints, uniformly jointed with other work.
 B. Lay hollow masonry units with face shell bedding on head and bed joints.
 C. Buttering corners of joints or excessive furrowing of mortar joints is not permitted.
 D. Remove excess mortar and mortar smears as work progresses.
 E. Do not shift or tap masonry units after mortar has achieved initial set. Where adjustment must be made, remove mortar and replace.
 F. Perform job site cutting of masonry units with proper tools to provide straight, clean, unchipped edges. Prevent broken masonry unit corners or edges.

3.05 LINTELS
 A. Install loose steel lintels over openings.
 B. Install reinforced unit masonry or precast lintels over openings where steel lintels are not indicated.
 1. Do not splice reinforcing bars.
 2. Support and secure reinforcing bars from displacement. Maintain position within 1/2 inch of dimensioned position.
 3. Place and consolidate grout fill without displacing reinforcing.
4. Allow masonry lintels to attain specified strength before removing temporary supports.
C. Maintain minimum 8 inch bearing on each side of opening.

3.06 GROUTED COMPONENTS

A. Lap splices minimum distance shown on structural drawings. Tie together with specified Rebar Lap-Joint Ties.
B. Support and secure reinforcing bars from displacement with specified positioners. Maintain position within 1/2 inch of dimensioned position.
C. Place and consolidate grout fill without displacing reinforcing.
D. At bearing locations, fill masonry cores with grout for a minimum 12 inches either side of opening, or as shown on Structural Drawings, Whichever is greater.

3.18 CLEANING

A. Remove excess mortar and mortar droppings.
B. Replace defective mortar. Match adjacent work.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
 A. Section Includes:
 1. Preassembled steel stairs.
 2. Steel tube handrails attached to walls adjacent to metal stairs.
 B. Related Requirements:
 1. Section 03 3000 "Cast-in-Place Concrete" for concrete fill for stair treads and platforms.
 2. Section 05 5213 "Pipe and Tube Railings" for pipe and tube railings.

1.03 COORDINATION
 A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.
 B. Coordinate installation of anchorages for metal stairs. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.
 C. Coordinate locations of hanger rods and struts with other work so that they do not encroach on required stair width and are within the fire-resistance-rated stair enclosure.

1.04 ACTION SUBMITTALS
 A. Product Data: For metal pan stairs and the following:
 1. metal-pan-stair treads.
 2. Paint products.
 B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 C. Delegated-Design Submittal: For stairs and railings, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.05 INFORMATIONAL SUBMITTALS
 A. Welding certificates.

1.06 QUALITY ASSURANCE
 A. Installer Qualifications: Fabricator of products.
 B. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.01 PERFORMANCE REQUIREMENTS
 A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 4000 "Quality Requirements," to design stairs and railings.
 B. Structural Performance of Stairs: Metal stairs shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated:
 1. Uniform Load: 100 lbf/sq. ft..
 2. Concentrated Load: 300 lbf applied on an area of 4 sq. in..
 3. Uniform and concentrated loads need not be assumed to act concurrently.
 4. Limit deflection of treads, platforms, and framing members to L/360 or 1/4 inch, whichever is less.
C. Structural Performance of Railings: Railings shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated:
 1. Handrails:
 a. Uniform load of 50 lbf/ft. applied in any direction.
 b. Concentrated load of 200 lbf applied in any direction.
 c. Uniform and concentrated loads need not be assumed to act concurrently.

2.02 METALS
 A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For components exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.
 B. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
 C. Uncoated, Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, either commercial steel, Type B, or structural steel, Grade 25, unless another grade is required by design loads; exposed.
 D. Uncoated, Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, either commercial steel, Type B, or structural steel, Grade 30, unless another grade is required by design loads.

2.03 FASTENERS
 A. General: Provide zinc-plated fasteners with coating complying with ASTM B 633 or ASTM F 1941, Class Fe/Zn 12 for exterior use, and Class Fe/Zn 5 where built into exterior walls. Select fasteners for type, grade, and class required.
 B. Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A; with hex nuts, ASTM A 563; and, where indicated, flat washers.
 C. Anchor Bolts: ASTM F 1554, Grade 36, of dimensions indicated; with nuts, ASTM A 563; and, where indicated, flat washers.
 D. Post-Installed Anchors: Torque-controlled expansion anchors or chemical anchors capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488/E 488M, conducted by a qualified independent testing agency.
 1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5, unless otherwise indicated.

2.04 MISCELLANEOUS MATERIALS
 A. Shop Primers: Provide primers that comply with Section 09 9113 "Exterior Painting" and Section 09 9123 "Interior Painting."
 B. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.
 1. Use primer containing pigments that make it easily distinguishable from zinc-rich primer.
 C. Concrete Materials and Properties: Comply with requirements in Section 03 3000 "Cast-in-Place Concrete" for normal-weight, air-entrained, ready-mix concrete with a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.

2.05 FABRICATION, GENERAL
 A. Provide complete stair assemblies, including metal framing, hangers, struts, railings, clips, brackets, bearing plates, and other components necessary to support and anchor stairs and platforms on supporting structure.
 1. Join components by welding unless otherwise indicated.
 2. Use connections that maintain structural value of joined pieces.
 B. Preassembled Stairs: Assemble stairs in shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation.
C. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.

D. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.

E. Form exposed work with accurate angles and surfaces and straight edges.

F. Weld connections to comply with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Weld exposed corners and seams continuously unless otherwise indicated.
 5. At exposed connections, finish exposed welds to comply with NOMMA's "Voluntary Joint Finish Standards" for Type 3 welds: partially dressed weld with spatter removed.

G. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) screws or bolts unless otherwise indicated. Locate joints where least conspicuous.

2.06 STEEL-FRAMED STAIRS

A. NAAMM Stair Standard: Comply with "Recommended Voluntary Minimum Standards for Fixed Metal Stairs" in NAAMM AMP 510, "Metal Stairs Manual," Commercial Class, unless more stringent requirements are indicated.

B. Stair Framing:
 1. Fabricate stringers of steel plates.
 2. Construct platforms of steel plate or channel headers and miscellaneous framing members as needed to comply with performance requirements indicated.
 3. Weld or bolt stringers to headers; weld or bolt framing members to stringers and headers. If using bolts, fabricate and join so bolts are not exposed on finished surfaces.

C. Metal Stairs: Form risers, treads, and platforms to configurations shown from steel sheet of thickness needed to comply with performance requirements, but not less than 0.067 inch.
 1. Steel Sheet: Uncoated cold-rolled steel sheet.
 2. Attach risers and treads to stringers with brackets made of steel angles or bars. Weld brackets to stringers and attach metal pans to brackets by welding, riveting, or bolting.
 3. Shape metal pans to include nosing integral with riser.
 4. At Contractor's option, provide stair assemblies with metal pan sub-treads filled with reinforced concrete during fabrication.

2.07 STAIR RAILINGS

A. Steel Tube Railings: Fabricate railings to comply with requirements indicated for design, dimensions, details, finish, and member sizes, including wall thickness of tube, and anchorage, but not less than that needed to withstand indicated loads.

B. Welded Connections: Fabricate railings with welded connections. Cope components at connections to provide close fit, or use fittings designed for this purpose. Weld all around at connections, including at fittings.
 1. Finish welds to comply with NOMMA's "Voluntary Joint Finish Standards" for Type 3 welds: partially dressed weld with spatter removed as shown in NAAMM AMP 521.

C. Form changes in direction of railings as follows:
 1. By flush bends or by inserting prefabricated flush-elbow fittings.
D. For changes in direction made by bending, use jigs to produce uniform curvature for each repetitive configuration required. Maintain cross section of member throughout entire bend without buckling, twisting, cracking, or otherwise deforming exposed surfaces of components.

E. Close exposed ends of railing members with prefabricated end fittings.

F. Provide wall returns at ends of wall-mounted handrails unless otherwise indicated. Close ends of returns unless clearance between end of rail and wall is 1/4 inch or less.

G. Brackets, Flanges, Fittings, and Anchors: Provide wall brackets, end closures, flanges, miscellaneous fittings, and anchors for interconnecting components and for attaching to other work. Furnish inserts and other anchorage devices for connecting to concrete or masonry work.
 1. For nongalvanized railings, provide nongalvanized ferrous-metal fittings, brackets, fasteners, and sleeves, except galvanize anchors embedded in exterior masonry and concrete construction.
 2. Provide type of bracket with flange tapped for concealed anchorage to threaded hanger bolt and that provides 1-1/2-inch clearance from inside face of handrail to finished wall surface.

H. Fillers: Provide fillers made from steel plate, or other suitably crush-resistant material, where needed to transfer wall bracket loads through wall finishes to structural supports. Size fillers to suit wall finish thicknesses and to produce adequate bearing area to prevent bracket rotation and overstressing of substrate.

2.08 FINISHES

A. Finish metal stairs after assembly.

B. Preparation for Shop Priming: Prepare uncoated ferrous-metal surfaces to comply with SSPC-SP 3, "Power Tool Cleaning."

C. Apply shop primer to uncoated surfaces of metal stair components, except those with galvanized finishes and those to be embedded in concrete or masonry unless otherwise indicated. Comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.

PART 3 - EXECUTION

3.01 INSTALLING METAL STAIRS

A. Fastening to In-Place Construction: Provide anchorage devices and fasteners where necessary for securing metal stairs to in-place construction. Include threaded fasteners for concrete and masonry inserts, through-bolts, lag bolts, and other connectors.

B. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal stairs. Set units accurately in location, alignment, and elevation, measured from established lines and levels and free of rack.

C. Install metal stairs by welding stair framing to base plates anchored to existing floor structure with post-installed anchors.

D. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.

E. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations.

F. Field Welding: Comply with requirements for welding in "Fabrication, General" Article.

3.02 INSTALLING RAILINGS

A. Attach handrails to wall with wall brackets. Locate brackets as indicated or, if not indicated, at spacing required to support structural loads. Secure wall brackets to building construction as required to comply with performance requirements as follows:
 1. For steel-framed partitions, use hanger or lag bolts set into wood backing between studs. Coordinate with stud installation to locate backing members.
3.03 ADJUSTING AND CLEANING

A. Touchup Painting: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint are specified in Section 09 9113 "Exterior Painting" and Section 09 9123 "Interior Painting."

END OF SECTION 05 5113
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 06 1000
ROUGH CARPENTRY

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Non-structural dimension lumber framing.
B. Fire retardant treated wood materials.
C. Communications and electrical room mounting boards.
D. Concealed wood blocking, nailers, and supports.
E. Miscellaneous wood nailers, furring, and grounds.

1.02 SUBMITTALS
A. See Division One for Submittal Procedures.
B. Product Data: Provide technical data on application instructions and wall sheathing.

1.03 DELIVERY, STORAGE, AND HANDLING
A. General: Cover wood products to protect against moisture. Support stacked products to prevent deformation and to allow air circulation.
B. Fire Retardant Treated Wood: Prevent exposure to precipitation during shipping, storage, or installation.

PART 2 PRODUCTS

2.01 GENERAL REQUIREMENTS
A. Dimension Lumber: Comply with PS 20 and requirements of specified grading agencies.
 1. If no species is specified, provide any species graded by the agency specified; if no grading agency is specified, provide lumber graded by any grading agency meeting the specified requirements.
 2. Grading Agency: Any grading agency whose rules are approved by the Board of Review, American Lumber Standard Committee (www.alsc.org) and who provides grading service for the species and grade specified; provide lumber stamped with grade mark unless otherwise indicated.
 3. Lumber of other species or grades is acceptable provided structural and appearance characteristics are equivalent to or better than products specified.
B. Lumber fabricated from old growth timber is not permitted.

2.02 DIMENSION LUMBER
A. Sizes: Nominal sizes as indicated on drawings or required for proper completion of work, S4S.
B. Moisture Content: S-dry or MC19.
C. Miscellaneous Framing, Blocking, Nailers, Grounds, and Furring:
 1. Lumber: S4S, No. 2 or Standard Grade.
 2. Boards: Standard or No. 3.

2.03 CONSTRUCTION PANELS
A. Communications and Electrical Room Mounting Boards: PS 1 A-D plywood, or medium density fiberboard; 3/4 inch thick; flame spread index of 25 or less, smoke developed index of 450 or less, when tested in accordance with ASTM E84.

2.04 ACCESSORIES
A. Fasteners and Anchors:
 2. Drywall Screws: Bugle head, hardened steel, power driven type, length three times thickness of sheathing.
3. Anchors: Purpose designated of size and spacing required by field conditions.
 B. Sealants: Specified in Section 07 90 05, Joint Sealers.

2.05 FACTORY WOOD TREATMENT
 A. Treated Lumber and Plywood: Comply with requirements of AWPA U1 - Use Category System for wood treatments determined by use categories, expected service conditions, and specific applications.
 1. Fire-Retardant Treated Wood: Mark each piece of wood with producer’s stamp indicating compliance with specified requirements.
 B. Fire Retardant Treatment:
 1. Interior Type A: AWPA U1, Use Category UCFA, Commodity Specification H, low temperature (low hygroscopic) type, chemically treated and pressure impregnated; capable of providing a maximum flame spread rating of 25 when tested in accordance with ASTM E84, with no evidence of significant combustion when test is extended for an additional 20 minutes.
 a. Kiln dry wood after treatment to a maximum moisture content of 19 percent for lumber and 15 percent for plywood.
 b. Treat rough carpentry items as indicated.
 c. Do not use treated wood in applications exposed to weather or where the wood may become wet.

PART 3 EXECUTION
3.01 PREPARATION
 A. Coordinate installation of rough carpentry members specified in other sections.

3.02 INSTALLATION - GENERAL
 A. Select material sizes to minimize waste.
 B. Reuse scrap to the greatest extent possible; clearly separate scrap for use on site as accessory components, including: shims, bracing, and blocking.
 C. Where treated wood is used on interior, provide temporary ventilation during and immediately after installation sufficient to remove indoor air contaminants.

3.03 BLOCKING, NAILERS, AND SUPPORTS
 A. Provide framing and blocking members as indicated or as required to support finishes, fixtures, specialty items, and trim.

3.04 INSTALLATION OF CONSTRUCTION PANELS
 A. Communications and Electrical Room Mounting Boards: Secure with screws to studs with edges over firm bearing; space fasteners at maximum 24 inches on center on all edges and into studs in field of board.
 1. At fire-rated walls, install board over wall board indicated as part of the fire-rated assembly.
 2. Where boards are indicated as full floor-to-ceiling height, install with long edge of board parallel to studs.
 3. Install adjacent boards without gaps.
 4. Size and Location: As indicated on drawings.

END OF SECTION
SECTION 06 4116
PLASTIC-LAMINATE-FACED ARCHITECTURAL CABINETS

PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes:
1. Plastic-laminate-faced architectural cabinets.
2. Wood furring, blocking, shims, and hanging strips for installing plastic-laminate-faced architectural cabinets unless concealed within other construction before cabinet installation.

B. Related Requirements:
1. Section 06 10 00 “Rough Carpentry” for wood furring, blocking, shims, and hanging strips required for installing cabinets and concealed within other construction before cabinet installation.

1.02 ACTION SUBMITTALS
A. Product Data: For each type of product, including, panel products, high-pressure decorative laminate, and cabinet hardware and accessories.
B. Shop Drawings: Show location of each item, dimensioned plans and elevations, large-scale details, attachment devices, and other components.
1. Show locations and sizes of furring, blocking, and hanging strips, including concealed blocking and reinforcement specified in other Sections.
2. Show locations and sizes of cutouts and holes for electrical switches and outlets installed in architectural plastic-laminate cabinets.
C. Samples for Verification:
1. Plastic laminates, for each type, color, pattern, and surface finish and specified edge material applied to one edge.
2. Thermoset decorative panels, for each color, pattern, and surface finish, with edge banding on one edge.

1.03 INFORMATIONAL SUBMITTALS
A. Qualification Data: For fabricator.
B. Product Data:
1. Exposed Hardware.

1.04 QUALITY ASSURANCE
A. Fabricators Qualifications: Shop that employs skilled workers who custom fabricate products similar to those required for this Project and whose products have a record of successful in-service performance in a minimum of five (5) completed projects, which are similar in material, design, and extent to that indicated for this Project. If requested, provide project name and contact information.
B. Installer Qualifications: An experienced installer who has completed successful installations of products as specified in this section which are similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance. Lead foreman for the firm shall have completed a minimum of five (5) successful projects as specified which are similar in material, design, and extent to that indicated for this Project.

1.05 DELIVERY, STORAGE, AND HANDLING
A. Do not deliver cabinets until painting and similar operations that could damage woodwork have been completed in installation areas. If cabinets must be stored in other than installation areas, store only in areas where environmental conditions comply with requirements specified in “Field Conditions” Article.
1.06 FIELD CONDITIONS
A. Environmental Limitations: Do not deliver or install cabinets until building is enclosed, wet work is complete, and HVAC system is operating and maintaining temperature and relative humidity at occupancy levels during the remainder of the construction period.
B. Field Measurements: Where cabinets are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication, and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
 1. Locate concealed framing, blocking, and reinforcements that support cabinets by field measurements before being enclosed, and indicate measurements on Shop Drawings.
C. Established Dimensions: Where cabinets are indicated to fit to other construction, establish dimensions for areas where cabinets are to fit. Provide allowance for trimming at site, and coordinate construction to ensure that actual dimensions correspond to established dimensions.

1.07 COORDINATION
A. Coordinate sizes and locations of framing, blocking, furring, reinforcements, and other related units of Work specified in other Sections to ensure that cabinets can be supported and installed as indicated.

PART 2 - PRODUCTS
2.01 PLASTIC-LAMINATE-FACED ARCHITECTURAL CABINETS
A. Quality Standard: Unless otherwise indicated, comply with the “Architectural Woodwork Standards” for grades of architectural plastic-laminate cabinets indicated for construction, finish, installation, and other requirements.
B. Grade: Custom.
C. Type of Construction: Frameless.
D. Cabinet, Door, and Drawer Front Interface Style: Flush overlay.
E. High-Pressure Decorative Laminate: NEMA LD 3, grades as indicated or if not indicated, as required by woodwork quality standard.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Abet Laminati, Inc.
 b. Formica Corporation
 c. Lamin-Art, Inc.
 d. Panolam Industries International, Inc.
 e. Wilsonart International; Div.of Premark International, Inc.
F. Laminate Cladding for Exposed Surfaces:
 1. Horizontal Surfaces: Grade HGS.
 2. Vertical Surfaces: Grade HGS.
 3. Edges: Grade HGS.
G. Concealed Backs of Panels with Exposed Plastic-Laminate Surfaces: High-pressure decorative laminate, NEMA LD 3, Grade BKL.
H. Drawer Construction: Fabricate with exposed fronts fastened to subfront with mounting screws from interior of body.
 1. Join subfronts, backs, and sides with glued rabbeted joints supplemented by mechanical fasteners.
I. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:
 1. As selected by Architect from laminate manufacturer's full range in the following categories:
2.02 WOOD MATERIALS
A. Wood Products: Provide materials that comply with requirements of referenced quality standard for each type of woodwork and quality grade specified unless otherwise indicated.
 1. Wood Moisture Content: 8 to 13 percent.
B. Softwood Plywood: DOC PS 1, veneer-core plywood.
C. Thermoset Decorative Panels: Cabinet grade plywood finished with thermally fused, melamine-impregnated decorative paper and complying with requirements of NEMA LD 3, Grade VGL, for test methods 3.3, 3.4, 3.6, 3.8, and 3.10.

2.03 CABINET HARDWARE AND ACCESSORIES
A. Frameless Concealed Hinges (European Type): BHMA A156.9, B01602, 100 degrees of opening, self-closing.
B. Wire Pulls: Back mounted, solid metal, 4 inches long, 5/16 inch in diameter.
C. Shelf Rests: BHMA A156.9, B04013; metal.
D. Drawer Slides: BHMA A156.9.
 1. Grade 1 and Grade 2: Side mounted; full-extension type; zinc-plated steel with polymer rollers.
 2. Grade 1HD-100 and Grade 1HD-200: Side mounted; full-extension type; zinc-plated-steel ball-bearing slides.
 3. For drawers not more than 3 inches high and not more than 24 inches wide, provide Grade 2.
 4. For drawers more than 3 inches high but not more than 6 inches high and not more than 24 inches wide, provide Grade 1.
 5. For drawers more than 6 inches high or more than 24 inches wide, provide Grade 1HD-100.
E. Door Locks: BHMA A156.11, E07121.
F. Drawer Locks: BHMA A156.11, E07041.
G. Door and Drawer Silencers: BHMA A156.11, E07041.
H. Exposed Hardware Finishes: For exposed hardware, provide finish that complies with BHMA A156.18 for BHMA finish number indicated.
 1. Satin Chromium Plated: BHMA 626 for brass or bronze base; BHMA 652 for steel base.
 2. Satin Stainless Steel: BHMA 630.
I. For concealed hardware, provide manufacturer’s standard finish that complies with product class requirements in BHMA A156.9.

2.04 MISCELLANEOUS MATERIALS
A. Furring, Blocking, Shims, and Hanging Strips: Softwood or hardwood lumber, kiln dried to less than 15 percent moisture content.
B. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage. Provide metal expansion sleeves or expansion bolts for post-installed anchors. Use nonferrous-metal or hot-dip galvanized anchors and inserts at inside face of exterior walls and at floors.
C. Adhesives: Do not use adhesives that contain urea formaldehyde.

2.05 FABRICATION
A. Fabricate cabinets to dimensions, profiles, and details indicated.
B. Complete fabrication, including assembly and hardware application, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for
shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.

C. Shop-cut openings to maximum extent possible to receive hardware, appliances, electrical work, and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.

PART 3 - EXECUTION
3.01 PREPARATION
A. Before installation, condition cabinets to average prevailing humidity conditions in installation areas.
B. Before installing cabinets, examine shop-fabricated work for completion and complete work as required.

3.02 INSTALLATION
A. Grade: Install cabinets to comply with same grade as item to be installed.
B. Assemble cabinets and complete fabrication at Project site to the extent that it was not completed in the shop.
C. Install cabinets level, plumb, true, and straight. Shim as required with concealed shims. Install level and plumb to a tolerance of 1/8 inch in 96 inches.
D. Scribe and cut cabinets to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.
E. Anchor cabinets to anchors or blocking built in or directly attached to substrates. Secure with countersunk, concealed fasteners and blind nailing. Use fine finishing nails or finishing screws for exposed fastening, countersunk and filled flush with woodwork.
 1. Use filler matching finish of items being installed.
F. Cabinets: Install without distortion so doors and drawers fit openings properly and are accurately aligned. Adjust hardware to center doors and drawers in openings and to provide unencumbered operation. Complete installation of hardware and accessory items as indicated.
 1. Install cabinets with no more than 1/8 inch in 96-inchesag, bow, or other variation from a straight line.
 2. Fasten wall cabinets through back, near top and bottom, and at ends not more than 16 inches o.c. with No. 10 wafer-head screws sized for not less than 1-1/2-inchpenetration into wood framing, blocking, or hanging strips.

3.03 ADJUSTING AND CLEANING
A. Repair damaged and defective cabinets, where possible, to eliminate functional and visual defects; where not possible to repair, replace woodwork. Adjust joinery for uniform appearance.
B. Clean, lubricate, and adjust hardware.
C. Clean cabinets on exposed and semi exposed surfaces.

END OF SECTION 06 4116
SECTION 07 9005
JOINT SEALERS

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Sealants, joint backing, and bond breakers.

1.02 SUBMITTALS
A. See Division One, for submittal procedures.
B. Product Data: Provide data indicating sealant chemical characteristics, performance criteria, substrate preparation, limitations, and color availability.
C. Samples: Submit two sets of samples, 1/4 inch dia. x 2 inch in size illustrating Manufacturer's full range of sealant colors.
D. Manufacturer's Installation Instructions: Indicate special procedures.

1.03 QUALITY ASSURANCE
A. Maintain one copy of each referenced document covering installation requirements on site.
B. Manufacturer Qualifications: Company specializing in manufacturing the Products specified in this section with minimum ten years documented experience.

1.04 FIELD CONDITIONS
A. Maintain temperature and humidity recommended by the sealant manufacturer during and after installation.

1.05 WARRANTY
A. Correct defective work within a two year period after Date of Substantial Completion.
B. Warranty: Include coverage for installed sealants and accessories which fail to achieve airtight seal and watertight seal, exhibit loss of adhesion or cohesion, or do not cure.

PART 2 PRODUCTS

2.01 SEALANTS
A. Type I-1 - General Purpose Interior Sealant: Acrylic emulsion latex; ASTM C834, Type OP, Grade NF single component, paintable.
 1. Color: To be selected by Architect from manufacturer's standard range.
 2. Applications: Use for:
 a. Interior wall and ceiling control joints.
 b. Joints between door and window frames and wall surfaces.
 c. Other interior joints for which no other type of sealant is indicated.
B. Type I-2 - Bathroom/Tile Sealant: Silicone; ASTM C920, Uses I, M and A; single component, mildew resistant.
 1. Applications: Use for:
 a. Joints between plumbing fixtures and floor and wall surfaces.
 b. Joints between kitchen and bathroom countertops and wall surfaces.
C. Type I-3 - Acoustical Sealant: Butyl or acrylic sealant; ASTM C920, Grade NS, Class 12-1/2, Uses M and A; single component, solvent release curing, non-skinning.
 1. Applications: Use for concealed locations only:
 a. Sealant bead between top stud runner and structure and between bottom stud track and floor.

2.02 ACCESSORIES
A. Primer: Non-staining type, recommended by sealant manufacturer to suit application.
B. Joint Cleaner: Non-corrosive and non-staining type, recommended by sealant manufacturer; compatible with joint forming materials.
C. Joint Backing: Round foam rod compatible with sealant; closed cell polyethylene; oversized 30 to 50 percent larger than joint width; Standard Backer Rod manufactured by Sandell Manufacturing Company, Inc; www.sandellmfg.com.
 1. Substitutions: See Division One.
D. Bond Breaker: Pressure sensitive tape recommended by sealant manufacturer to suit application.

PART 3 EXECUTION

3.01 EXAMINATION
 A. Verify that substrate surfaces and joint openings are ready to receive work.
 B. Verify that joint backing and release tapes are compatible with sealant.

3.02 PREPARATION
 A. Remove loose materials and foreign matter that could impair adhesion of sealant.
 B. Clean and prime joints in accordance with manufacturer's instructions.
 C. Perform preparation in accordance with manufacturer's instructions and ASTM C1193.
 D. Protect elements surrounding the work of this section from damage or disfigurement.

3.03 INSTALLATION
 A. Perform work in accordance with sealant manufacturer's requirements for preparation of surfaces and material installation instructions.
 B. Perform installation in accordance with ASTM C1193.
 C. Mask joints if necessary to keep adjacent surfaces not scheduled to receive sealant clean.
 D. Perform acoustical sealant application work in accordance with ASTM C919.
 E. Measure joint dimensions and size joint backers to achieve width-to-depth ratio, neck dimension, and surface bond area as recommended by manufacturer.
 F. Install bond breaker where joint backing is not used.
 G. Install sealant free of air pockets, foreign embedded matter, ridges, and sags.
 H. Apply sealant within recommended application temperature ranges. Consult manufacturer when sealant cannot be applied within these temperature ranges.
 I. Tool joints flush.

3.04 CLEANING
 A. Clean adjacent surfaces of excess sealant and smears as a result of this work, before the sealant cures.
 B. Repair joints that have shrunk, sagged, run, and that have thin spots or other defects.
 C. Leave adjacent surfaces in as good or better condition as they were before sealant operations.

3.05 PROTECTION
 A. Protect sealants until cured.

3.06 SCHEDULE
 A. See Drawings for designated sealant joints.
 B. Interior Joints for Which No Other Sealant is Indicated: Type I-1.
 C. Joints Between Plumbing Fixtures and Walls and Floors, and Between Countertops and Walls: Type I-2.
 D. In STC-Rated Walls, Between Metal Stud Track/Runner and Adjacent Construction and Between Outlet Boxes and Gypsum Board: Type I-3.

END OF SECTION
SECTION 07 9500 - EXPANSION CONTROL

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
 1. Interior expansion control systems.

1.03 ACTION SUBMITTALS
A. Shop Drawings: For each expansion control system specified. Include plans, elevations, sections, details, splices, rollout requirement, attachments to other work, and line diagrams showing entire route of each expansion control system. Where expansion control systems change planes, provide isometric or clearly detailed drawing depicting how components interconnect.
B. Samples for Initial Selection: For each type of expansion control system indicated.
 1. Include manufacturer's color charts showing the full range of colors and finishes available for each exposed metal and elastomeric seal material.
C. Samples for Verification: For each type of expansion control system indicated, full width by 6 inches long in size.
D. Product Schedule: Prepared by or under the supervision of the supplier. Include the following information in tabular form:
 1. Manufacturer and model number for each expansion control system.
 2. Nominal joint width.
 4. Product options.

PART 2 - PRODUCTS

2.01 SYSTEM DESCRIPTION
A. General: Provide expansion control systems of design, basic profile, materials, and operation indicated. Provide units with capability to accommodate variations in adjacent surfaces.
 1. Furnish units in longest practicable lengths to minimize field splicing. Install with hairline mitered corners where expansion control systems change direction or abut other materials.
 2. Include factory-fabricated closure materials and transition pieces, T-joints, corners, curbs, cross-connections, and other accessories as required to provide continuous expansion control systems.

2.02 INTERIOR EXPANSION CONTROL SYSTEMS
A. Source Limitations: Obtain expansion control systems from single source from single manufacturer.
B. Floor-to-Floor:
 1. Design Criteria:
 a. Nominal Joint Width: As indicated on Drawings.
 b. Type of Movement: Thermal.
 c. Load Capacity:
 1) Uniform Load: 150 lb/sq. ft..
 3) Maximum Deflection: 0.5 inch.
 2. Type: Cover plate.
a. Cover-Plate Design: Plain.
b. Metal: Stainless steel.
 1) Finish: Manufacturer's standard.

C. Wall-to-Wall:
1. Design Criteria:
 a. Nominal Joint Width: As indicated on Drawings.
 b. Type of Movement: Thermal.
2. Type: Cover plate.
 1) Finish: Manufacturer's standard.

D. Ceiling-to-Ceiling:
1. Design Criteria:
 a. Nominal Joint Width: As indicated on Drawings.
 b. Type of Movement: Thermal.
2. Type: Cover plate.
 1) Finish: Manufacturer's standard.

2.03 MATERIALS
A. Stainless Steel: ASTM A 240/A 240M or ASTM A 666, Type 304 for plates, sheet, and strips.
 1. Remove tool and die marks and stretch lines or blend into finish.
B. Accessories: Manufacturer's standard anchors, clips, fasteners, set screws, spacers, and other accessories compatible with material in contact, as indicated or required for complete installations.

2.04 GENERAL FINISH REQUIREMENTS
A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
C. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.05 STAINLESS-STEEL FINISHES
A. Surface Preparation: Remove tool and die marks and stretch lines, or blend into finish.
B. Polished Finishes: Grind and polish surfaces to produce uniform finish, free of cross scratches.
 1. Run grain of directional finishes with long dimension of each piece.
 2. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.

PART 3 - EXECUTION
3.01 EXAMINATION
A. Examine surfaces where expansion control systems will be installed for installation tolerances and other conditions affecting performance of work.
 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION
A. Prepare substrates according to expansion control system manufacturer's written instructions.
B. Coordinate and furnish anchorages, setting drawings, and instructions for installing expansion control systems. Provide fasteners of metal, type, and size to suit type of construction indicated and to provide for secure attachment of expansion control systems.

3.03 INSTALLATION

A. Comply with manufacturer's written instructions for storing, handling, and installing expansion control systems and materials unless more stringent requirements are indicated.

B. Metal Frames: Perform cutting, drilling, and fitting required to install expansion control systems.
 1. Install in true alignment and proper relationship to joints and adjoining finished surfaces measured from established lines and levels.
 2. Adjust for differences between actual structural gap and nominal design gap due to ambient temperature at time of installation. Notify Architect where discrepancies occur that will affect proper expansion control system installation and performance.
 3. Cut and fit ends to accommodate thermal expansion and contraction of metal without buckling of frames.
 4. Install frames in continuous contact with adjacent surfaces.
 a. Shimming is not permitted.
 5. Locate anchors at interval recommended by manufacturer, but not less than 3 inches from each end and not more than 24 inches o.c.

C. Terminate exposed ends of expansion control systems with field- or factory-fabricated termination devices.

3.04 PROTECTION

A. Do not remove protective covering until finish work in adjacent areas is complete. When protective covering is removed, clean exposed metal surfaces to comply with manufacturer's written instructions.

B. Protect the installation from damage by work of other Sections. Where necessary due to heavy construction traffic, remove and properly store cover plates or seals and install temporary protection over expansion control systems. Reinstall cover plates or seals prior to Substantial Completion of the Work.

END OF SECTION 07 9500
HOLLOW METAL DOORS AND FRAMES

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Non-fire-rated steel doors and frames.
B. Fire rated steel doors and frames.
C. Steel glazing frames.
D. Accessories.

1.02 SUBMITTALS
A. See Division One, for submittal procedures.
B. Product Data: Materials and details of design and construction, hardware locations, reinforcement type and locations, anchorage and fastening methods, and finishes; and one copy of referenced grade standard.
C. Shop Drawings: Details of each opening, showing elevations, glazing, frame profiles, and identifying location of different finishes, if any.
D. Installation Instructions: Manufacturer's published instructions, including any special installation instructions relating to this project.
E. Manufacturer's Certificate: Certification that products meet or exceed specified requirements.
F. Schedule: Provide a schedule of hollow metal work using same reference numbers for details and openings as those on the Drawings. Coordinate with final Door Hardware Schedule.

1.03 QUALITY ASSURANCE
A. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum five years experience.
B. Maintain at the project site a copy of all reference standards dealing with installation.

1.04 DELIVERY, STORAGE, AND HANDLING
A. Store in accordance with Steel Door Institute Publication SDI-100.
B. Protect with resilient packaging; avoid humidity build-up under coverings; prevent corrosion.

PART 2 PRODUCTS

2.01 MANUFACTURERS
A. Steel Doors and Frames:
 4. Substitutions: See Division One.

2.02 DOORS AND FRAMES
A. Requirements for All Doors and Frames:
 2. Door Edge Profile: Beveled on both edges.
 4. Glazed Lights: Non-removable stops on non-secure side; sizes and configurations as indicated on drawings.
 6. Hardware Preparation: In accordance with BHMA A156.115, with reinforcement welded in place, in addition to other requirements specified in door grade standard.
 7. Finish: Factory primed; for field finishing.
B. Combined Requirements: If a particular door and frame unit is indicated to comply with more than one type of requirement, comply with all the specified requirements for each type; for instance, an exterior door that is also indicated as being sound-rated must comply with the
requirements specified for exterior doors and for sound-rated doors; where two requirements conflict, comply with the most stringent.

2.03 STEEL DOORS

A. Interior Doors, Non-fire rated:
 1. Grade: ANSI A250.8 Level 3- Extra Heavy Duty, physical performance Level (Swing Test)B, Model 2 (16 ga), seamless.
 2. Core: Manufacturers standard.
 5. Finish: Factory primed for field finishing.
 6. Panels: Same construction, performance, and finish as doors.

B. Interior Doors, Fire-Rated:
 1. Grade: ANSI A250.8 Level 3- Extra Heavy Duty, physical performance Level (Swing Test)B, Model 2 (16 ga), seamless.
 2. Fire Rating: As indicated on Door and Frame Schedule, tested in accordance with UL 10C ("positive pressure").
 a. Provide units listed and labeled by UL (Underwriters Laboratories) - UL (BMD).
 b. Attach fire rating label to each fire rated unit.

2.04 STEEL FRAMES

A. General:
 1. Finish: Factory primed, for field finishing.
 2. Provide mortar guard/ dust boxes for hardware cut-outs in all frames.
 3. Frames in Masonry Walls: Size to suit masonry coursing with head member 4 inches high to fill opening without cutting masonry units.
 4. Frames Wider than 48 Inches: Reinforce with steel channel fitted tightly into frame head, flush with top.

B. Interior Door Frames, Non-Fire-Rated: Face welded type.
 1. Grade: ANSI A250.8 Level 3 (16ga).

C. Interior Door Frames, Fire-Rated: Face welded type.
 1. Fire Rating: Same as door, labeled.
 2. Grade: ANSI A250.8 Level 3 (16ga).

D. Frames for Interior Glazing or Borrowed Lights: Construction and face dimensions to match door frames, and as indicated on drawings.

2.05 ACCESSORY MATERIALS

A. Glazing: As specified in Section 08 80 00, factory installed.

B. Removable Stops: Formed sheet steel, shape as indicated on drawings, mitered or butted corners; prepared for countersink style tamper proof screws.

D. Silencers: Resilient rubber, fitted into drilled hole; 3 on strike side of single door, 3 on center mullion of pairs, and 2 on head of pairs without center mullions.

E. Temporary Frame Spreaders: Provide for all factory- or shop-assembled frames.

F. Mineral-Fiber Insulation: ASTM C 665, Type I (blankets without membrane facing) consisting of fibers manufactured from slag or rockwool; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively; passing ASTM E 136 for combustion characteristics.

2.06 FINISH MATERIALS

A. Primer: Rust-inhibiting, complying with ANSI A250.10, door manufacturer’s standard.

B. Bituminous Coating: Asphalt emulsion or other high-build, water-resistant, resilient coating.
PART 3 EXECUTION

3.01 EXAMINATION
 A. Verify existing conditions before starting work.
 B. Verify that opening sizes and tolerances are acceptable.

3.02 PREPARATION
 A. Coat inside of frames to be installed in masonry or to be grouted, with bituminous coating, prior to installation.

3.03 INSTALLATION
 A. Install in accordance with the requirements of the specified door grade standard Steel Door Institute Publication SDI 122.
 B. In addition, install fire rated units in accordance with NFPA 80.
 C. Coordinate frame anchor placement with wall construction.
 D. Coordinate installation of hardware.
 E. Coordinate installation of glazing.
 F. Coordinate installation of electrical connections to electrical hardware items.
 G. Touch up damaged factory finishes.
 H. Metal-Stud Partitions: Solidly pack mineral-fiber insulation inside frames.

3.04 TOLERANCES
 A. Clearances: As specified in ANSI A250.8.
 B. Maximum Diagonal Distortion: 1/16 in measured with straight edge, corner to corner.

3.05 ADJUSTING
 A. Adjust for smooth and balanced door movement.

3.06 SCHEDULE
 A. Refer to Door and Frame Schedule and Interior Glazing Schedule on the Drawings.

END OF SECTION
SECTION 08 4113 - ALUMINUM-FRAMED STOREFRONTS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
 A. Section Includes:
 1. Interior storefront framing.

1.03 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components
 and profiles, and finishes.
 B. Shop Drawings: For aluminum-framed storefronts. Include plans, elevations, sections, full-size
data, and attachments to other work.
 C. Samples for Initial Selection: For units with factory-applied color finishes.
 D. Samples for Verification: For each type of exposed finish required, in manufacturer's standard
sizes.

1.04 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For aluminum-framed storefronts to include in maintenance manuals.

1.05 QUALITY ASSURANCE
 A. Installer Qualifications: An entity that employs installers and supervisors who are trained and
approved by manufacturer.
 B. Product Options: Information on Drawings and in Specifications establishes requirements for
aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated
by dimensions, arrangements, alignment, and profiles of components and assemblies as they
relate to sightlines, to one another, and to adjoining construction.
 1. Do not change intended aesthetic effects, as judged solely by Architect, except with
Architect's approval. If changes are proposed, submit comprehensive explanatory data to
Architect for review.

1.06 WARRANTY
 A. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or
replace aluminum that shows evidence of deterioration of factory-applied finishes within
specified warranty period.
 1. Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.01 PERFORMANCE REQUIREMENTS
 A. General Performance: Comply with performance requirements specified, as determined by
testing of aluminum-framed storefronts representing those indicated for this Project without
failure due to defective manufacture, fabrication, installation, or other defects in construction.
 1. Aluminum-framed storefronts shall withstand movements of supporting structure
including, but not limited to, story drift, twist, column shortening, long-term creep, and
deflection from uniformly distributed and concentrated live loads.
 2. Failure also includes the following:
 a. Thermal stresses transferring to building structure.
b. Glass breakage.
c. Noise or vibration created by wind and thermal and structural movements.
d. Loosening or weakening of fasteners, attachments, and other components.

2.02 MANUFACTURERS
A. Basis-of-Design Product: Subject to compliance with requirements, provide Kawneer Trifab 400 Framing System or comparable product by one of the following:
1. Efco
2. Manko
3. Oldcastle
B. Source Limitations: Obtain all components of aluminum-framed entrance and storefront system, including framing

2.03 FRAMING
A. Framing Members: Manufacturer's extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.
2. Glazing System: Retained mechanically with gaskets on four sides.
3. Glazing Plane: Middle
B. Backer Plates: Manufacturer's standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.
C. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.
D. Materials:
1. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 a. Sheet and Plate: ASTM B 209.
 b. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221.
 c. Extruded Structural Pipe and Tubes: ASTM B 429/B 429M.
 d. Structural Profiles: ASTM B 308/B 308M.

2.04 GLAZING
A. Glazing: Comply with Section 08 8000 "Glazing."
B. Glazing Gaskets: Manufacturer's standard sealed-corner pressure-glazing system of black, resilient elastomeric glazing gaskets, setting blocks, and shims or spacers.
C. Glazing Sealants: As recommended by manufacturer.

2.05 ACCESSORIES
A. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
2. Reinforce members as required to receive fastener threads.
B. Anchors: Three-way adjustable anchors with minimum adjustment of 1 inch that accommodate fabrication and installation tolerances in material and finish compatible with adjoining materials and recommended by manufacturer.

2.06 FABRICATION
A. Form or extrude aluminum shapes before finishing.
B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.

C. Fabricate components that, when assembled, have the following characteristics:
 1. Profiles that are sharp, straight, and free of defects or deformations.
 2. Accurately fitted joints with ends coped or mitered.
 3. Physical and thermal isolation of glazing from framing members.
 4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 5. Provisions for field replacement of glazing from interior.
 6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.

D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.

E. Storefront Framing: Fabricate components for assembly using shear-block system.

2.07 ALUMINUM FINISHES

A. High-Performance Organic Finish: Two-coat fluoropolymer finish complying with AAMA 2604 and containing not less than 70 percent PVDF or FEVE resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION

A. Prepare surfaces that are in contact with structural sealant according to sealant manufacturer's written instructions to ensure compatibility and adhesion. Preparation includes, but is not limited to, cleaning and priming surfaces.

3.03 INSTALLATION

A. General:
 1. Comply with manufacturer's written instructions.
 2. Do not install damaged components.
 3. Fit joints to produce hairline joints free of burrs and distortion.
 4. Rigidly secure nonmovement joints.
 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
 6. Seal perimeter and other joints watertight unless otherwise indicated.

B. Metal Protection:
 1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.
 2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.

C. Install components plumb and true in alignment with established lines and grades.

3.04 ERECTION TOLERANCES

A. Erection Tolerances: Install aluminum-framed storefronts to comply with the following maximum tolerances:
1. Plumb: 1/8 inch in 10 feet; 1/4 inch in 40 feet.
2. Level: 1/8 inch in 20 feet; 1/4 inch in 40 feet.
3. Alignment:
 a. Where surfaces abut in line or are separated by reveal or protruding element up to 1/2 inch wide, limit offset from true alignment to 1/16 inch.
 b. Where surfaces are separated by reveal or protruding element from 1/2 to 1 inch wide, limit offset from true alignment to 1/8 inch.
 c. Where surfaces are separated by reveal or protruding element of 1 inch wide or more, limit offset from true alignment to 1/4 inch.
4. Location: Limit variation from plane to 1/8 inch in 12 feet; 1/2 inch over total length.

END OF SECTION 08 4113
SECTION 08 7100
DOOR HARDWARE

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes commercial door hardware for the following:
 1. Swinging doors.
 2. Other doors to the extent indicated.

B. Door hardware includes, but is not necessarily limited to, the following:
 1. Mechanical door hardware.
 2. Electromechanical door hardware.
 3. Cylinders specified for doors in other sections.

C. Related Sections:
 1. Division 08 Section “Hollow Metal Doors and Frames” (Bid Package #3).

D. Codes and References: Comply with the version year adopted by the Authority Having Jurisdiction.
 6. NFPA 105 - Installation of Smoke Door Assemblies.
 7. UL/ULC and CSA C22.2 – Standards for Automatic Door Operators Used on Fire and Smoke Barrier Doors and Systems of Doors.
 8. State Building Codes, Local Amendments.

E. Standards: All hardware specified herein shall comply with the following industry standards:
 1. ANSI/BHMA Certified Product Standards - A156 Series
 2. UL10C – Positive Pressure Fire Tests of Door Assemblies

1.2 SUBMITTALS

A. Product Data: Manufacturer's product data sheets including installation details, material descriptions, dimensions of individual components and profiles, operational descriptions and finishes.

B. Door Hardware Schedule: Prepared by or under the supervision of supplier, detailing fabrication and assembly of door hardware, as well as procedures and diagrams. Coordinate the final Door Hardware Schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.
 1. Format: Comply with scheduling sequence and vertical format in DHI's "Sequence and Format for the Hardware Schedule."
 2. Organization: Organize the Door Hardware Schedule into door hardware sets indicating complete designations of every item required for each door or opening. Organize door hardware sets in same order as in the Door Hardware Sets at the end of Part 3. Submittals that do not follow the same format and order as the Door Hardware Sets will be rejected and subject to resubmission.
 3. Content: Include the following information:
 a. Type, style, function, size, label, hand, and finish of each door hardware item.
 b. Manufacturer of each item.
c. Fastenings and other pertinent information.

d. Location of door hardware set, cross-referenced to Drawings, both on floor plans and in door and frame schedule.

e. Explanation of abbreviations, symbols, and codes contained in schedule.

f. Mounting locations for door hardware.

g. Door and frame sizes and materials.

h. Warranty information for each product.

4. Submittal Sequence: Submit the final Door Hardware Schedule at earliest possible date, particularly where approval of the Door Hardware Schedule must precede fabrication of other work that is critical in the Project construction schedule. Include Product Data, Samples, Shop Drawings of other work affected by door hardware, and other information essential to the coordinated review of the Door Hardware Schedule.

C. Shop Drawings: Details of electrified access control hardware indicating the following:

1. Wiring Diagrams: Upon receipt of approved schedules, submit detailed system wiring diagrams for power, signaling, monitoring, communication, and control of the access control system electrified hardware. Differentiate between manufacturer-installed and field-installed wiring. Include the following:

 a. Elevation diagram of each unique access controlled opening showing location and interconnection of major system components with respect to their placement in the respective door openings.

 b. Complete (risers, point-to-point) access control system block wiring diagrams.

 c. Wiring instructions for each electronic component scheduled herein.

2. Electrical Coordination: Coordinate with related sections the voltages and wiring details required at electrically controlled and operated hardware openings.

D. Keying Schedule: Key schedule will be prepared by the Owner.

E. Informational Submittals:

1. Product Test Reports: Indicating compliance with cycle testing requirements, based on evaluation of comprehensive tests performed by manufacturer and witnessed by a qualified independent testing agency.

F. Operating and Maintenance Manuals: Provide manufacturers operating and maintenance manuals for each item comprising the complete door hardware installation in quantity as required in Division 01, Closeout Submittals.

1.3 QUALITY ASSURANCE

A. Manufacturers Qualifications: Engage qualified manufacturers with a minimum 5 years of documented experience in producing hardware and equipment similar to that indicated for this Project and that have a proven record of successful in-service performance.

B. Installer Qualifications: A minimum 3 years documented experience installing both standard and electrified door hardware similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.

C. Door Hardware Supplier Qualifications: Experienced commercial door hardware distributors with a minimum 5 years documented experience supplying both mechanical and electromechanical hardware installations comparable in material, design, and extent to that indicated for this Project. Supplier recognized as a factory direct distributor by the manufacturers of the primary materials with a warehousing facility in Project's vicinity. Supplier to have on staff a certified Architectural Hardware Consultant (AHC) available during the course of the Work to consult with Contractor, Architect, and Owner concerning both standard and electromechanical door hardware and keying.
D. Source Limitations: Obtain each type and variety of door hardware specified in this section from a single source unless otherwise indicated.
 1. Electrified modifications or enhancements made to a source manufacturer’s product line by a secondary or third party source will not be accepted.
 2. Provide electromechanical door hardware from the same manufacturer as mechanical door hardware, unless otherwise indicated.
E. Each unit to bear third party permanent label demonstrating compliance with the referenced standards.
F. Pre-Submittal Conference: If requested by the Architect, conduct verification conference in compliance with requirements in Division 01 Section “Project Meetings” with attendance by certified Architectural Hardware Consultant, Contractor, Owner and Architect to review hardware schedule as specified. The outcome of the meeting is to verify function, operation, components of each opening and any proposed changes.
G. Pre-Installation Conference: Conduct coordination conference in compliance with requirements in Division 01 Section "Project Meetings" with attendance by representatives of Supplier(s), Installer(s), and Contractor(s) to review proper methods and the procedures for receiving, handling, and installing door hardware.
 1. Prior to installation of door hardware, conduct a project specific training meeting to instruct the installing contractors’ personnel on the proper installation and adjustment of their respective products. Product training to be attended by installers of door hardware (including electromechanical hardware) for aluminum, hollow metal and wood doors. Training will include the use of installation manuals, hardware schedules, templates and physical product samples as required.
 2. Inspect and discuss electrical roughing-in, power supply connections, and other preparatory work performed by other trades.
 3. Review sequence of operation narratives for each unique access controlled opening.
 4. Review and finalize construction schedule and verify availability of materials.
 5. Review the required inspecting, testing, commissioning, and demonstration procedures

1.4 DELIVERY, STORAGE, AND HANDLING
A. Inventory door hardware on receipt and provide secure lock-up and shelving for door hardware delivered to Project site. Do not store electronic access control hardware, software or accessories at Project site without prior authorization.
B. Tag each item or package separately with identification related to the final Door Hardware Schedule, and include basic installation instructions with each item or package.
C. Deliver, as applicable, permanent keys, cylinders, cores, access control credentials, software and related accessories directly to Owner via registered mail or overnight package service. Instructions for delivery to the Owner shall be established at the "Keying Conference”.

1.5 COORDINATION
A. Templates: Obtain and distribute to the parties involved templates for doors, frames, and other work specified to be factory prepared for installing standard and electrified hardware. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing hardware to comply with indicated requirements.
B. Door Hardware and Electrical Connections: Coordinate the layout and installation of scheduled electrified door hardware and related access control equipment with required connections to source power junction boxes, low voltage power supplies, detection and monitoring hardware, and fire and detection alarm systems.
C. Door and Frame Preparation: Doors and corresponding frames are to be prepared, reinforced and pre-wired (if applicable) to receive the installation of the specified electrified, monitoring, signaling and access control system hardware without additional in-field modifications.
D. Permanent Cores: Permanent cores will be provided (furnished and installed) by the Owner.

1.6 WARRANTY
A. General Warranty: Reference Division 01, General Requirements. Special warranties specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.

B. Warranty Period: Written warranty, executed by manufacturer(s), agreeing to repair or replace components of standard and electrified door hardware that fails in materials or workmanship within specified warranty period after final acceptance by the Owner. Failures include, but are not limited to, the following:
 1. Structural failures including excessive deflection, cracking, or breakage.
 2. Faulty operation of the hardware.
 3. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 4. Electrical component defects and failures within the systems operation.

C. Standard Warranty Period: One year from date of Substantial Completion, unless otherwise indicated.

1.7 MAINTENANCE SERVICE
A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.

B. Maintenance Service: Beginning at Substantial Completion, provide six months' full maintenance by skilled employees of door hardware Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper door hardware operation. Provide parts and supplies as used in the manufacture and installation of original products.

PART 2 - PRODUCTS
2.1 SCHEDULED DOOR HARDWARE
A. General: Provide door hardware for each door to comply with requirements in Door Hardware Sets and each referenced section that products are to be supplied under.

B. Designations: Requirements for quantity, item, size, finish or color, grade, function, and other distinctive qualities of each type of door hardware are indicated in the Door Hardware Sets at the end of Part 3. Products are identified by using door hardware designations.

C. Named Manufacturer's Products: Product designation and manufacturer are listed for each door hardware type required for the purpose of establishing requirements. Manufacturers' names are abbreviated in the Door Hardware Schedule.

D. Substitutions: Requests for substitution and product approval for inclusive mechanical and electromechanical door hardware in compliance with the specifications must be submitted in writing and in accordance with the procedures and time frames outlined in Division 01, Substitution Procedures. Approval of requests is at the discretion of the architect, owner, and their designated consultants.

2.2 HINGES
A. Hinges: BHMA A156.1. Provide template-produced hinges for hinges installed on hollow-metal doors and hollow-metal frames.

B. Antifriction-Bearing Hinges:
 2. Bearing Material: Ball bearing.
 3. Grade 1 (heavy weight).
 4. Base and Pin Metal:
a. Exterior Hinges: Brass with stainless-steel pin body and brass protruding heads.
b. Interior Hinges: Steel with steel pin, unless scheduled otherwise.
c. Hinges for Fire-Rated Assemblies: Steel with steel pin, unless scheduled otherwise.

5. Pins: As scheduled.
6. Tips: Flat button.
7. Corners: Square.

C. Acceptable Manufacturers:
 1. Ives (IV)
 3. Stanley Hardware (ST).

2.3 POWER TRANSFER DEVICES

A. Electrified Quick Connect Transfer Hinges: Provide electrified transfer hinges with Molex™ standardized plug connectors and sufficient number of concealed wires (up to 12) to accommodate the electrified functions specified in the Door Hardware Sets. Connectors plug directly to through-door wiring harnesses for connection to electric locking devices and power supplies. Wire nut connections are not acceptable.

 1. Acceptable Manufacturers:
 a. Von Duprin (VO)- CON Option.
 b. McKinney Products (MK) - QC (# wires) Option.
 c. Stanley Hardware (ST) – C Option.

2.4 DOOR OPERATING TRIM

A. Flush Bolts and Surface Bolts: ANSI/BHMA A156.3 and A156.16, Grade 1, certified.
 1. Manual flush bolts to be furnished with top rod of sufficient length to allow bolt location approximately six feet from the floor.
 2. Furnish dust proof strikes for bottom bolts.
 3. Surface bolts to be minimum 8” in length and U.L. listed for labeled fire doors and U.L. listed for windstorm components where applicable.
 4. Provide related accessories (mounting brackets, strikes, coordinators, etc.) as required for appropriate installation and operation.
 5. Acceptable Manufacturers:
 a. Ives (IV).
 b. Rockwood Manufacturing (RO).
 c. Trimco (TC).

2.5 CYLINDERS AND KEYING

A. General: Cylinder manufacturer to have minimum (10) years experience designing secured master key systems and have on record a published security keying system policy.

B. Cylinders provided under this section must accept 7-pin SFIC Best core.

C. Cylinders: Original manufacturer cylinders complying with the following:
 1. Mortise Type: Threaded cylinders with rings and cams to suit hardware application. Cylinder shall accommodate Owner provided core.
 2. Rim Type: Cylinders with back plate, flat-type vertical or horizontal tailpiece, and raised trim ring. Cylinder shall accommodate Owner provided core.
 3. Bored-Lock Type: Cylinders with tailpieces to suit locks. Cylinder shall accommodate Owner provided core.
4. Mortise and rim cylinder collars to be solid and recessed to allow the cylinder face to be flush and be free spinning with matching finishes.

5. Keys: Provided by the Owner.

D. Permanent Cores: Permanent cores will be provided (furnished and installed) by the Owner.
 1. Construction Cores: Construction cores, if required, are to be provided by the Contractor.

2.6 MECHANICAL LOCKS AND LATCHING DEVICES

A. Cylindrical Locksets, Grade 1 (Heavy Duty): ANSI/BHMA A156.2, Series 4000, Grade 1 certified cylindrical (bored) locksets furnished in the functions as specified in the Hardware Sets. Lock chassis fabricated of heavy gauge steel, zinc dichromate plated, with through-bolted application. Furnish with solid cast levers, standard 2 3/4” backset, and 1/2” (3/4” at rated paired openings) throw brass or stainless steel latchbolt. Locks are to be non-handed and fully field reversible.
 1. Lockset is to accommodate Best 7 pin SFIC core.
 2. Acceptable Manufacturers:
 b. Sargent Manufacturing (SA) – 10 Line.
 c. Schlage (SC) – ND Series.

2.7 LOCK AND LATCH STRIKES

A. Strikes: Provide manufacturer’s standard strike with strike box for each latch or lock bolt, with curved lip extended to protect frame, finished to match door hardware set, unless otherwise indicated, and as follows:
 1. Flat-Lip Strikes: For locks with three-piece antifriction latchesbolts, as recommended by manufacturer.

B. Standards: Comply with the following:
 2. Strikes for Bored Locks and Latches: BHMA A156.2.
 3. Strikes for Auxiliary Deadlocks: BHMA A156.5.
 4. Dustproof Strikes: BHMA A156.16.

2.8 ELECTRIC STRIKES

A. Standard Electric Strikes: Heavy duty, cylindrical and mortise lock electric strikes conforming to ANSI/BHMA A156.31, Grade 1, UL listed for both Burglary Resistance and for use on fire rated door assemblies.
 1. Acceptable Manufacturers:
 a. Von Duprin (VO) (Basis-of-Design).
 b. HES (HS).
 c. Substitutions: See Division One.

2.9 CONVENTIONAL EXIT DEVICES

A. General Requirements: All exit devices specified herein shall meet or exceed the following criteria:
 1. At doors not requiring a fire rating, provide devices complying with NFPA 101 and listed and labeled for “Panic Hardware” according to UL305. Provide proper fasteners as required by manufacturer including sex nuts and bolts at openings specified in the Hardware Sets.
 2. Where exit devices are required on fire rated doors, provide devices complying with NFPA 80 and with UL labeling indicating “Fire Exit Hardware”. Provide devices with the proper fasteners for installation as tested and listed by UL. Consult manufacturer’s catalog and template book for specific requirements.
a. Fire Exit Removable Mullions: Provide keyed removable mullions for use with fire exit devices complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire and panic protection, based on testing according to UL 305 and NFPA 252. Mullions to be used only with exit devices for which they have been tested.

3. Except on fire rated doors, provide exit devices with hex key dogging device to hold the pushbar and latch in a retracted position. Provide optional keyed cylinder dogging on devices where specified in Hardware Sets.

4. Devices must fit flat against the door face with no gap that permits unauthorized dogging of the push bar. The addition of filler strips is not acceptable except in any case where the door light extends behind the device as in a full glass configuration.

5. Flush End Caps: Provide heavy weight impact resistant flush end caps made of architectural metal in the same finish as the devices as in the Hardware Sets. Plastic end caps will not be acceptable.

 a. Lock Trim Design: As indicated in Hardware Sets, provide finishes and designs to match that of the specified locksets. Provided free-wheeling type trim where indicated.
 b. Where function of exit device requires a cylinder, provide a cylinder (Rim or Mortise) as specified in Hardware Sets.

7. Vertical Rod Exit Devices: Provide and install interior surface top and bottom vertical rod exit devices, unless indicated as Less Bottom Rod (LBR).

8. Vertical Rod Exit Device Bottom Rod Strike: Manufacturer's standard flush floor model.

10. Rail Sizing: Provide exit device rails factory sized for proper door width application.

11. Through Bolt Installation: For exit devices and trim as indicated in Door Hardware Sets.

B. Conventional Push Rail Exit Devices (Heavy Duty): ANSI/BHMA A156.3, Grade 1 certified panic and fire exit hardware devices furnished in the functions specified in the Hardware Sets.
 Acceptable Manufacturers:
 a. Von Duprin (VD) - 99 XP Series (Basis-of-Design).
 b. Sargent Manufacturing (SA) - 80 Series.
 c. PHI (Stanley Security Solutions) – Precision Apex Series.

2.10 ELECTROMECHANICAL CONVENTIONAL EXIT DEVICES

A. Electrified Conventional Push Rail Devices (Heavy Duty): Subject to same compliance standards and requirements as mechanical exit devices, electrified devices to be of type and design as specified below. Include any specific controllers when conventional power supplies are not sufficient to provide the proper inrush current.
 1. Acceptable Manufacturers:
 a. Von Duprin (VD) - 99 Series (Basis-of-Design).
 b. Sargent Manufacturing (SA) - 80 Series.

B. Electrified Options: As indicated in hardware sets, provide electrified exit device options including: electric latch retraction, outside door trim control, exit alarm, latchbolt monitoring, lock/unlock status monitoring, touchbar monitoring and request-to-exit signaling. Unless otherwise indicated, provide electrified exit devices standard as fail secure.

2.11 DOOR CLOSERS

A. All door closers specified herein shall meet or exceed the following criteria:
1. General: Door closers to be from one manufacturer, matching in design and style, with the same type door preparations and templates regardless of application or spring size. Closers to be non-handed with full sized covers including installation and adjusting information on inside of cover.

2. Standards: Closers to comply with UL-10C and UBC 7-2 for Positive Pressure Fire Test and be U.L. listed for use of fire rated doors.

3. Cycle Testing: Provide closers which have surpassed 10 million cycles in a test witnessed and verified by UL.

4. Size of Units: Comply with manufacturer's written recommendations for sizing of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Where closers are indicated for doors required to be accessible to the physically handicapped, provide units complying with ANSI ICC/A117.1.

5. Closer Arms: Provide heavy duty, forged steel closer arms unless otherwise indicated in Hardware Sets.
 a. Where closers are indicated to have mechanical dead-stop, provide heavy duty arms and brackets with an integral positive stop.
 b. Where closers are indicated to have mechanical hold open, provide heavy duty units with an additional built-in mechanical holder assembly designed to hold open against normal wind and traffic conditions. Holder to be manually selectable to on-off position.
 c. Where closers are indicated to have a cushion-type stop, provide heavy duty arms and brackets with spring stop mechanism to cushion door when opened to maximum degree.
 d. Closers shall not be installed on exterior or corridor side of doors; where possible install closers on door for optimum aesthetics. Provide drop plates or other accessories as required for proper mounting.

6. Closer Accessories: Provide door closer accessories including custom templates, special mounting brackets, spacers and drop plates, and through-bolt or security type fasteners as specified in the door Hardware Sets.

B. Door Closers, Surface Mounted (Large Body Cast Iron): ANSI/BHMA A156.4, Grade 1 surface mounted, heavy duty door closers with complete spring power adjustment, sizes 1 thru 6; and fully operational adjustable according to door size, frequency of use, and opening force. Closers to be rack and pinion type, one piece cast iron body construction, with adjustable backcheck and separate non-critical valves for closing sweep and latch speed control.

1. Acceptable Manufacturers:
 a. LCN Closers (LC) - 4040XP Series (Basis-of-Design).
 b. Sargent Manufacturing (SA) - 281 Series.

2.12 ARCHITECTURAL TRIM

A. Door Protective Trim
1. General: Door protective trim units to be of type and design as specified below or in the Hardware Sets.
2. Size: Fabricate protection plates (kick, armor, or mop) not more than 2" less than door width (LDW) on stop side of single doors and 1" LDW on stop side of pairs of doors, and not more than 1" less than door width on pull side. Coordinate and provide proper width and height as required where conflicting hardware dictates. Height to be as specified in the Hardware Sets.
3. Metal Protection Plates: ANSI/BHMA A156.6 certified metal protection plates (kick, armor, or mop), beveled on four edges (B4E), fabricated from the following:
 a. Stainless Steel: 300 series, 050-inch thick, with countersunk screw holes (CSK).
4. **Fasteners:** Provide manufacturer’s designated fastener type as specified in the Hardware Sets.

5. **Metal Door Edging:** Door protection edging fabricated from a minimum .050-inch thick metal sheet, formed into an angle or “U” cap shapes, surface or mortised mounted onto edge of door. Provide appropriate leg overlap to account for protection plates as required. Height to be as specified in the Hardware Sets.

6. **Acceptable Manufacturers:**
 a. Ives (IV) (Basis-of-Design).
 b. Rockwood Manufacturing (RO).
 c. Trimco (TC).

2.13 DOOR STOPS AND HOLDERS

A. **General:** Door stops and holders to be of type and design as specified below or in the Hardware Sets.

B. **Door Stops and Bumpers:** ANSI/BHMA A156.16, Grade 1 certified door stops and wall bumpers. Provide wall bumpers, either convex or concave types with anchorage as indicated, unless floor or other types of door stops are specified in Hardware Sets. Do not mount floor stops where they will impede traffic. Where floor or wall bumpers are not appropriate, provide overhead type stops and holders.

 1. **Acceptable Manufacturers:**
 a. Ives (IV).
 b. Rockwood Manufacturing (RO).
 c. Trimco (TC).

C. **Overhead Door Stops and Holders:** ANSI/BHMA A156.6, Grade 1 certified overhead stops and holders to be surface types as indicated in Hardware Sets. Track, slide, arm and jamb bracket to be constructed of extruded bronze and shock absorber spring of heavy tempered steel. Provide non-handed design with mounting brackets as required for proper operation and function.

 1. **Acceptable Manufacturers:**
 a. Glynn Johnson (GJ).
 b. Rixson Door Controls (RF).
 c. Sargent Manufacturing (SA).

2.14 ARCHITECTURAL SEALS

A. **General:** Thresholds, weatherstripping, and gasket seals to be of type and design as specified below or in the Hardware Sets. Provide continuous weatherstrip gasketing on exterior doors and provide smoke, light, or sound gasketing on interior doors where indicated. At exterior applications provide non-corrosive fasteners and elsewhere where indicated.

B. **Smoke Labeled Gasketing:** Assemblies complying with NFPA 105 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for smoke control ratings indicated, based on testing according to UL 1784.

 1. Provide smoke labeled perimeter gasketing at all smoke labeled openings.

C. **Fire Labeled Gasketing:** Assemblies complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire ratings indicated, based on testing according to UL-10C.

 1. Provide intumescent seals as indicated to meet UL10C Standard for Positive Pressure Fire Tests of Door Assemblies, and UBC 7-2, Fire Tests of Door Assemblies.

D. **Sound-Rated Gasketing:** Assemblies that are listed and labeled by a testing and inspecting agency, for sound ratings indicated, based on testing according to ASTM E 1408.
E. Replaceable Seal Strips: Provide only those units where resilient or flexible seal strips are easily replaceable and readily available from stocks maintained by manufacturer.

F. Acceptable Manufacturers:
 1. National Guard Products (NG).
 2. Pemko Manufacturing (PE).

2.15 FABRICATION
A. Fasteners: Provide door hardware manufactured to comply with published templates generally prepared for machine, wood, and sheet metal screws. Provide screws according to manufacturers recognized installation standards for application intended.

2.16 FINISHES
A. Standard: Designations used in the Hardware Sets and elsewhere indicate hardware finishes complying with ANSI/BHMA A156.18, including coordination with traditional U.S. finishes indicated by certain manufacturers for their products.

 B. Provide quality of finish, including thickness of plating or coating (if any), composition, hardness, and other qualities complying with manufacturer’s standards, but in no case less than specified by referenced standards for the applicable units of hardware.

 C. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine scheduled openings, with Installer present, for compliance with requirements for installation tolerances, labeled fire door assembly construction, wall and floor construction, and other conditions affecting performance.

 B. Notify architect of any discrepancies or conflicts between the door schedule, door types, drawings and scheduled hardware. Proceed only after such discrepancies or conflicts have been resolved in writing.

3.2 PREPARATION
A. Hollow Metal Doors and Frames: Comply with ANSI/DHI A115 series.

3.3 INSTALLATION
A. Install each item of mechanical and electromechanical hardware and access control equipment to comply with manufacturer’s written instructions and according to specifications.

 1. Installers are to be trained and certified by the manufacturer on the proper installation and adjustment of fire, life safety, and security products including: hanging devices; locking devices; closing devices; and seals.

 B. Mounting Heights: Mount door hardware units at heights indicated in following applicable publications, unless specifically indicated or required to comply with governing regulations:

 3. Where indicated to comply with accessibility requirements, comply with ANSI A117.1 “Accessibility Guidelines for Buildings and Facilities.”

 4. Provide blocking in drywall partitions where wall stops or other wall mounted hardware is located.
C. Retrofitting: Install door hardware to comply with manufacturer's published templates and written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work specified in Division 9 Sections. Do not install surface-mounted items until finishes have been completed on substrates involved.

D. Thresholds: Set thresholds for exterior and acoustical doors in full bed of sealant complying with requirements specified in Division 7 Section "Joint Sealants."

3.4 FIELD QUALITY CONTROL

A. Field Inspection: Prior to the substantial completion the Manufactures' representative of the locksets and exit devices will perform a final inspection of installed door hardware and provide a report documenting whether work complies, with or deviates from requirements, including whether door hardware is properly installed, operating and adjusted.

3.5 ADJUSTING

A. Initial Adjustment: Adjust and check each operating item of door hardware and each door per the manufacturer’s requirements and ANSI/BHMA A156 Series. Ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended.
 1. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.
 2. Electric Strikes: Adjust horizontal and vertical alignment of keeper to properly engage lock bolt.
 3. Door Closers: Adjust door closers immediately upon installation. Adjust in exact conformance with manufacturer’s printed instructions. Advance backcheck to eliminate shock at dead stop. Set closer latching speed to assure unassisted positive latching. Degree of swing of door for self-limiting closers shall be maximum available.
 4. Adjust all exit devices immediately upon installation. Adjust in exact conformance with manufacturers’ printed instructions.
 5. Seal weather protection components attached to the exterior sides of doors and frames, such as drip caps and weather-stripping, in place with clear silicone caulk in such a manner as to ensure a continuously filled seam throughout the joinery.
 6. Cut and fit weatherstripping accurately to provide the greatest possible continuity of the contact element. Adjust closer template as required.

B. At completion of the installation and prior to Substantial Completion, make final adjustments to door closures and other items of hardware. Leave all hardware clean and fully operable. Should any item be found to be defective, it shall be repaired or replaced as directed.

C. Occupancy Adjustment: Approximately six (6) months after date of Substantial Completion, Installer's Architectural Hardware Consultant shall examine and readjust as follows:
 1. Examine and readjust each item of door hardware as necessary to ensure function of doors, door hardware, and electrified door hardware.
 2. Consult with and instruct Owner's personnel on recommended maintenance procedures.
 3. Replace door hardware items that have deteriorated or failed due to faulty design, materials, or installation of door hardware units.
 4. Prepare a written report of current and predictable problems (of substantial nature) in the performance of the hardware.

3.6 CLEANING AND PROTECTION

A. Protect all hardware stored on construction site in a covered and dry place. Protect exposed hardware installed on doors during the construction phase. Install any and all hardware at the latest possible time frame.

B. Clean adjacent surfaces soiled by door hardware installation.
C. Clean operating items as necessary to restore proper finish. Provide final protection and maintain conditions that ensure door hardware is without damage or deterioration at time of owner occupancy.

3.7 DEMONSTRATION
A. Instruct Owner's maintenance personnel to adjust, operate, and maintain mechanical and electromechanical door hardware.

3.8 DOOR HARDWARE SCHEDULE
A. The hardware sets represent the design intent and direction of the owner and architect. Discrepancies, conflicting hardware and missing items should be brought to the attention of the architect with corrections made prior to the bidding process. Omitted items not included in a hardware set should be scheduled with the appropriate additional hardware required for proper application and functionality.

HARDWARE SCHEDULE
HARDWARE GROUP NO. 01
For use on Door # (s):
C3212
Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>PANIC HARDWARE</td>
<td>LD-99-L-17</td>
<td>626</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER</td>
<td>CYLINDER AS REQ'D</td>
<td>626</td>
<td>BES</td>
</tr>
<tr>
<td>1</td>
<td>ELECTRIC STRIKE</td>
<td>6111 FSE CON 12/24 VAC/VDC</td>
<td>✓ 630</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP CUSH</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE</td>
<td>8400 10" X 2" LDW B-CS</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>488SBK PSA</td>
<td>BK</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>MOTION SENSOR</td>
<td>SCANII 12/24 VDC</td>
<td>✓ WHT</td>
<td>SCE</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CONTACT</td>
<td>BY OWNER</td>
<td>✓ WHT</td>
<td>SCE</td>
</tr>
<tr>
<td>1</td>
<td>POWER SUPPLY</td>
<td>PS902 900-2RS</td>
<td>LGR</td>
<td>SCE</td>
</tr>
<tr>
<td>1</td>
<td>CARD ACCESS</td>
<td>BY OTHERS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HARDWARE GROUP NO. 02

For use on Door #s:
C3203.1 C3205.2 C3206.1

Provide each PR door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>HINGE 5BB1HW 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>POWER TRANSFER EPT10 CON</td>
<td>689</td>
<td>VON</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AUTO FLUSH BOLT FB31P</td>
<td>630</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DUST PROOF STRIKE DP1/DP2 AS REQ'D</td>
<td>626</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>WIRE HARNESS CON WIRE HARNESS LENGTH AS BLK VON</td>
<td>689</td>
<td>*</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>ELEC PANIC RX-QEL-9975-L-NL-17-CON 24 VDC</td>
<td>626</td>
<td>VON</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER CYLINDER AS REQ'D</td>
<td>626</td>
<td>BES</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>COORDINATOR COR X FL</td>
<td>628</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MOUNTING BRACKET MB1/MB2</td>
<td>689</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SURFACE CLOSER 4040XP CUSH</td>
<td>689</td>
<td>LCN</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>KICK PLATE 8400 10" X 1" LDW B-CS</td>
<td>630</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GASKETING 488SBK PSA</td>
<td>626</td>
<td>BK</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>ASTRAGAL 383AA</td>
<td>630</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>2</td>
<td>DOOR CONTACT BY OWNER</td>
<td>640</td>
<td>WHT</td>
<td>SCE</td>
</tr>
<tr>
<td>1</td>
<td>POWER SUPPLY PS902 900-2RS</td>
<td>630</td>
<td>LGR</td>
<td>SCE</td>
</tr>
<tr>
<td>1</td>
<td>CARD ACCESS BY OTHERS</td>
<td>630</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 03

For use on Door #s:
C3203.2 C3205.1 C3206.2 C3222.1

Provide each PR door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>HINGE 5BB1HW 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AUTO FLUSH BOLT FB31P</td>
<td>630</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DUST PROOF STRIKE DP1/DP2 AS REQ'D</td>
<td>626</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PANIC HARDWARE 9975-L-17</td>
<td>626</td>
<td>VON</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER CYLINDER AS REQ'D</td>
<td>626</td>
<td>BES</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>COORDINATOR COR X FL</td>
<td>628</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MOUNTING BRACKET MB1/MB2</td>
<td>689</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SURFACE CLOSER 4040XP CUSH</td>
<td>689</td>
<td>LCN</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>KICK PLATE 8400 10" X 1" LDW B-CS</td>
<td>630</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GASKETING 488SBK PSA</td>
<td>626</td>
<td>BK</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>ASTRAGAL 383AA</td>
<td>630</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>2</td>
<td>DOOR CONTACT BY OWNER</td>
<td>640</td>
<td>WHT</td>
<td>SCE</td>
</tr>
</tbody>
</table>
HARDWARE GROUP NO. 04
For use on Door #(...):
\[C3201A \quad C3202 \quad C3207\]
Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>EA HINGE 5BB1HW 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA CLASSROOM LOCK 9K37R 14D</td>
<td>626</td>
<td>BES</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA ELECTRIC STRIKE 6211 FSE</td>
<td>✓ 630</td>
<td>VON</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA SURFACE CLOSER 4040XP RW/PA</td>
<td>689</td>
<td>LCN</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA KICK PLATE 8400 10" X 2" LDW B-CS</td>
<td>630</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA OH STOP 90S</td>
<td>630</td>
<td>GLY</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA GASKETING 488SBK PSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA DOOR CONTACT BY OWNER</td>
<td>✓ WHT</td>
<td>SCE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA POWER SUPPLY PS902 900-2RS</td>
<td>LGR</td>
<td>SCE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA CARD ACCESS BY OTHERS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 05
For use on Door #(...):
\[C3201 \quad C3223\]
Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>EA HINGE 5BB1HW 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA STOREROOM LOCK 9K37D 14D</td>
<td>626</td>
<td>BES</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA ELECTRIC STRIKE 6211 FSE</td>
<td>✓ 630</td>
<td>VON</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA SURFACE CLOSER 4040XP CUSH</td>
<td>689</td>
<td>LCN</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA KICK PLATE 8400 10" X 2" LDW B-CS</td>
<td>630</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA WALL STOP WS406/407CCV</td>
<td>630</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA GASKETING 488SBK PSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA DOOR CONTACT BY OWNER</td>
<td>✓ WHT</td>
<td>SCE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA POWER SUPPLY PS902 900-2RS</td>
<td>LGR</td>
<td>SCE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA CARD ACCESS BY OTHERS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 05A
For use on Door #(...):
\[W3039A\]
Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>EA HINGE 5BB1HW 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA STOREROOM LOCK 9K37D 14D</td>
<td>626</td>
<td>BES</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA KICK PLATE 8400 10" X 2" LDW B-CS</td>
<td>630</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA WALL STOP WS406/407CCV</td>
<td>630</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EA GASKETING 488SBK PSA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HARDWARE GROUP NO. 06
For use on Door #s: C3222.2 C3222.3 C3222.4
Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CYLINDER</td>
<td>CYLINDER AS REQ'D</td>
<td>626</td>
<td>BES</td>
</tr>
<tr>
<td>1</td>
<td>PANIC HARDWARE</td>
<td>33A-L-06</td>
<td>626</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>NOTE</td>
<td>REMAINDER OF HARDWARE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 07
For use on Door #s: C3208
Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCK</td>
<td>9K37R 14D</td>
<td>626</td>
<td>BES</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP RW/PA</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE</td>
<td>8400 10" X 2" LDW B-CS</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP</td>
<td>WS406/407CCV</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>3</td>
<td>SILENCER</td>
<td>SR64</td>
<td>GRY</td>
<td>IVE</td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 07A
For use on Door #s: C3201B
Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCK</td>
<td>9K37R 14D</td>
<td>626</td>
<td>BES</td>
</tr>
<tr>
<td>1</td>
<td>OH STOP</td>
<td>90S</td>
<td>630</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP RW/PA</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE</td>
<td>8400 10" X 2" LDW B-CS</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>3</td>
<td>SILENCER</td>
<td>SR64</td>
<td>GRY</td>
<td>IVE</td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 07B
For use on Door #s: W3039
Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>PASSAGE SET</td>
<td>9K30N 14D</td>
<td>626</td>
<td>BES</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP RW/PA</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE</td>
<td>8400 10" X 2" LDW B-CS</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP</td>
<td>WS406/407CCV</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>3</td>
<td>SILENCER</td>
<td>SR64</td>
<td>GRY</td>
<td>IVE</td>
</tr>
</tbody>
</table>
HARDWARE GROUP NO. 08
For use on Door #(#s):
C3222A
Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCK</td>
<td>9K37R 14D</td>
<td>626</td>
<td>BES</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP CUSH</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE</td>
<td>8400 10" X 2" LDW B-CS</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>488SBK PSA</td>
<td>BK</td>
<td>ZER</td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 09
For use on Door #(#s):
C3210 C3211 C3216 C3221
Provide each PR door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>AUTO FLUSH BOLT</td>
<td>FB31P</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>DUST PROOF STRIKE</td>
<td>DP1/DP2 AS REQ'D</td>
<td>626</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCK</td>
<td>9K37D 14D</td>
<td>626</td>
<td>BES</td>
</tr>
<tr>
<td>2</td>
<td>WIRE HARNESS</td>
<td>CON WIRED HARNESS LENGTH AS REQ'D</td>
<td>BLK</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER</td>
<td>CYLINDER AS REQ'D</td>
<td>626</td>
<td>BES</td>
</tr>
<tr>
<td>1</td>
<td>ELECTRIC STRIKE</td>
<td>6223 FSE CON 12/16/24/28</td>
<td>630</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>COORDINATOR</td>
<td>COR X FL</td>
<td>628</td>
<td>IVE</td>
</tr>
<tr>
<td>2</td>
<td>MOUNTING BRACKET</td>
<td>MB1/MB2</td>
<td>689</td>
<td>IVE</td>
</tr>
<tr>
<td>2</td>
<td>SURFACE CLOSER</td>
<td>4040XP CUSH</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>2</td>
<td>KICK PLATE</td>
<td>8400 10" X 1" LDW B-CS</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>488SBK PSA</td>
<td>BK</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>ASTRAGAL</td>
<td>383AA</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>2</td>
<td>DOOR CONTACT</td>
<td>BY OWNER</td>
<td>WHT</td>
<td>SCE</td>
</tr>
<tr>
<td>1</td>
<td>POWER SUPPLY</td>
<td>PS902 900-2RS</td>
<td>LGR</td>
<td>SCE</td>
</tr>
<tr>
<td>1</td>
<td>CARD ACCESS</td>
<td>BY OTHERS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

END OF SECTION 08 7100
SECTION 08 8000
GLAZING

PART 1 GENERAL

1.01 SECTION INCLUDES
 A. Glass and glazing.
 B. Glazing compounds and accessories.

1.02 SUBMITTALS
 A. See Division One, for submittal procedures.
 B. Product Data on Glass Types: Provide structural, physical and environmental characteristics, size limitations, special handling or installation requirements.

1.03 QUALITY ASSURANCE
 A. Perform Work in accordance with GANA Glazing Manual and GANA Sealant Manual for glazing installation methods.
 B. Installer Qualifications: Company specializing in performing the work of this section approved by manufacturer.

1.04 FIELD CONDITIONS
 A. Do not install glazing when ambient temperature is less than 50 degrees F.
 B. Maintain minimum ambient temperature before, during and 24 hours after installation of glazing compounds.

PART 2 PRODUCTS

2.01 GLAZING TYPES
 A. Type S1 - Single Safety Glazing: Non-fire-rated.
 1. Applications: Provide this type of glazing in the following locations:
 a. Glazed lites in doors, except fire doors.
 b. Glazed sidelights to interior doors, except in fire-rated walls and partitions.
 c. Glazed view windows and panels in partitions, except in fire-rated walls and partitions.
 d. Other locations required by applicable federal, state, and local codes and regulations.
 e. Other locations indicated on the drawings.
 2. Type: Fully tempered float glass as specified.
 3. Tint: Clear.
 4. Thickness: 1/4 inch.
 5. Glazing Method: Interior wet/dry method, tape and sealant.

2.02 GLASS MATERIALS
 A. Float Glass Manufacturers:
 5. Substitutions: Refer to Section 01 60 00 - Product Requirements.
 B. Float Glass: All glazing is to be float glass unless otherwise indicated.
 1. Annealed Type: ASTM C1036, Type I, transparent flat, Class 1 clear, Quality Q3 (glazing select).
 3. Thicknesses: 1/4” unless otherwise noted.
2.03 GLAZING COMPOUNDS
A. Manufacturers:
 5. Substitutions: See Division One.
B. Silicone Sealant: Single component; neutral curing; capable of water immersion without loss of properties; non-bleeding, non-staining; ASTM C 920, Type S, Grade NS, Class 25, Uses M, A, and G; cured Shore A hardness of 15 to 25; color as selected.

2.04 GLAZING ACCESSORIES
A. Setting Blocks: Neoprene, 80 to 90 Shore A durometer hardness, ASTM C864 Option I. Length of 0.1 inch for each square foot of glazing or minimum 4 inch x width of glazing rabbet space minus 1/16 inch x height to suit glazing method and pane weight and area.
B. Spacer Shims: Neoprene, 50 to 60 Shore A durometer hardness, ASTM C 864 Option I. Minimum 3 inch long x one half the height of the glazing stop x thickness to suit application, self-adhesive on one face.
C. Glazing Tape: Preformed butyl compound with integral resilient tube spacing device; 10 to 15 Shore A durometer hardness; coiled on release paper; size as recommended by the manufacturer for the application; black color.
 1. Manufacturers:
 c. Substitutions: See Division One.
D. Glazing Gaskets: Resilient silicone extruded shape to suit glazing channel retaining slot; ASTM C864 Option I; Black color.

PART 3 EXECUTION
3.01 EXAMINATION
A. Verify that openings for glazing are correctly sized and within tolerance.
B. Verify that surfaces of glazing channels or recesses are clean, free of obstructions that may impede moisture movement, weeps are clear, and ready to receive glazing.

3.02 PREPARATION
A. Clean contact surfaces with solvent and wipe dry.
B. Seal porous glazing channels or recesses with substrate compatible primer or sealer.
C. Prime surfaces scheduled to receive sealant.
D. Install sealants in accordance with ASTM C1193 and GANA Sealant Manual.
E. Install sealant in accordance with manufacturer’s instructions.

3.03 INSTALLATION - INTERIOR WET/DRY METHOD (TAPE AND SEALANT)
A. Cut glazing tape to length and install against permanent stops, projecting 1/16 inch (1.6 mm) above sight line.
B. Place setting blocks at 1/4 points with edge block no more than 6 inches from corners.
C. Rest glazing on setting blocks and push against tape to ensure full contact at perimeter of pane or unit.
D. Install removable stops, spacer shims inserted between glazing and applied stops at 24 inch intervals, 1/4 inch below sight line.
E. Fill gaps between pane and applied stop with Silicone sealant, as specified in to depth equal to bite on glazing, to uniform and level line.
F. Trim protruding tape edge.

3.04 CLEANING
A. Remove glazing materials from finish surfaces.
B. Remove labels after Work is complete.
C. Clean glass and adjacent surfaces.

3.06 PROTECTION
A. After installation, mark pane with an 'X' by using removable plastic tape or paste.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
PART 1 GENERAL

1.01 SECTION INCLUDES
A. Metal stud wall framing.
B. Metal channel ceiling framing.
C. Cementitious backing board.
E. Gypsum wallboard.
F. Joint treatment and accessories.

1.02 SUBMITTALS
A. See Division One, for submittal procedures.
B. Product Data: Provide data on metal framing, gypsum board, accessories, and joint finishing system.
C. Product Data: Provide manufacturer’s data on partition head to structure connectors, showing compliance with requirements.

1.03 QUALITY ASSURANCE
A. Installer Qualifications: Company specializing in performing gypsum board application and finishing, with minimum 5 years of documented experience.
B. Copies of Documents at Site: Maintain at the project site a copy of each referenced document that prescribes execution requirements.

PART 2 PRODUCTS

2.01 GYPSUM BOARD ASSEMBLIES
A. Provide completed assemblies complying with ASTM C840 and GA-216.
 1. See PART 3 for finishing requirements.
C. Fire Rated Assemblies: Provide completed assemblies complying with applicable code. Locations and ratings as shown on drawings. Comply with the following assembly numbers where applicable.
 1. ICC IBC Item Numbers: Comply with applicable requirements of ICC IBC for the particular assembly.
 2. Gypsum Association File Numbers: Comply with requirements of GA-600 for the particular assembly.
 3. UL Assembly Numbers: Provide construction equivalent to that listed for the particular assembly in the current UL Fire Resistance Directory.

2.02 METAL FRAMING MATERIALS
A. Manufacturers - Metal Framing, Connectors, and Accessories:
 4. Substitutions: See Division One.
B. Non-Loadbearing Framing System Components: ASTM C645; galvanized sheet steel, of size and properties necessary to comply with ASTM C754 for the spacing indicated, with maximum deflection of wall framing of L/360 at 5 psf. Use 20 gage (0.0329) inch minimum.
 1. Studs: “C” shaped with flat or formed webs with knurled faces.
 2. Runners: U shaped, sized to match studs.
 3. Ceiling Channels: C shaped.
E. Ceiling Hangers: Type and size as specified in ASTM C754 for spacing required.

F. Partition Head to Structure Connections: Provide mechanical anchorage devices that accommodate deflection using slotted holes, screws and anti-friction bushings, preventing rotation of studs while maintaining structural performance of partition.
 1. Structural Performance: Maintain lateral load resistance and vertical movement capacity required by applicable code, when evaluated in accordance with AISI North American Specification for the Design of Cold-Formed Steel Structural Members.

G. Deflection and Firestop Track:
 1. Provide mechanical anchorage devices as described above that accommodate deflection while maintaining the fire-rating of the wall assembly.
 2. Acceptable Products:
 a. "Posi Clip" by Fire Trak Corporation.
 b. "The System" by Metal-Lite, Inc.
 c. Substitutions: See Division One.

2.03 BOARD MATERIALS

A. Manufacturers - Gypsum-Based Board:
 4. Substitutions: See Division One.

B. Gypsum Wallboard: Paper-faced Type X, gypsum panels as defined in ASTM C1396/C1396M; sizes to minimize joints in place; ends square cut.
 1. Application: Use for vertical surfaces and ceilings, unless otherwise indicated.

C. Mold-Resistant Paper-Faced Products:
 1. Georgia-Pacific Gypsum; ToughRock Mold-Guard Type X Gypsum Wallboard.
 2. National Gypsum Company; Gold Bond Brand XP, Type X Gypsum Board.
 3. USG Corporation; Sheetrock Brand Mold Tough Type X Gypsum Panels.

 1. Application: High-traffic areas indicated.
 2. Mold Resistance: Score of 10, when tested in accordance with ASTM D3273.
 3. Paper-Faced Type: Gypsum wallboard as defined in ASTM C1396/C1396M.
 4. Type: Fire-resistance rated Type X, UL or WH listed.
 5. Thickness: 5/8 inch (16 mm).
 7. Products:
 a. Georgia-Pacific Gypsum; DensArmor Plus® Fireguard® Abuse-Resistant Interior Panel.
 b. National Gypsum Company; Gold Bond Hi-Abuse Brand XP Wallboard.
 c. USG SHEETROCK® BRAND MOLD TOUGH® AR FIRECODE® X.
 d. Substitutions: See Division One.

H. ACCESSORIES
 1. Acoustic Insulation: Specified in Section 07 21 00.
 2. Acoustic Sealant: As specified in Section 07 90 05.
 3. Finishing Accessories: ASTM C1047, rigid plastic, unless otherwise indicated.
 a. Types: As detailed or required for finished appearance including:
 1) Tear Away L Beads
 2) Tear Away XTL Beads
 3) Pullaway L Beads
 4) Archway Tear Away L Beads
5) Shower Beads
6) Flat Tear Aways

b. Special Shapes: In addition to conventional corner bead and control joints, provide U-bead, L-bead, and LC-bead at exposed panel edges as detailed or required for finished appearance.
c. Manufacturers - Finishing Accessories:

4. Joint Materials: ASTM C475 and as recommended by gypsum board manufacturer for project conditions.
5. Screws for Attachment to Steel Members Less Than 0.03 inch in Thickness, to Wood Members, and to Gypsum Board: ASTM C1002; self-piercing tapping type.
6. Screws for Attachment to Steel Members From 0.033 to 0.112 inch in Thickness: ASTM C954; steel drill screws for application of gypsum board to loadbearing steel studs.
7. Anchorage to Substrate: Tie wire, nails, screws, and other metal supports, of type and size to suit application; to rigidly secure materials in place.

PART 3 EXECUTION
3.01 EXAMINATION
A. Verify that project conditions are appropriate for work of this section to commence.

3.02 FRAMING INSTALLATION
A. Metal Framing: Install in accordance with ASTM C754 and manufacturer's instructions.
B. Suspended Ceilings and Soffits: Space framing and furring members as indicated.
 1. Level ceiling system to a tolerance of 1/1200.
 2. Laterally brace entire suspension system.
C. Studs: Space studs at 16" o.c. unless otherwise noted.
 1. Extend partition framing to structure in all locations.
 2. Partitions Terminating at Structure: Attach top runner to structure, maintain clearance between top of studs and structure, and connect studs to track using specified mechanical devices in accordance with manufacturer's instructions; verify free movement of top of stud connections; do not leave studs unattached to track.
D. Standard Wall Furring: Install at locations shown on drawings, not more than 4 inches from floor and ceiling lines and abutting walls. Secure in place on alternate channel flanges at maximum 16 inches on center.
 1. Orientation: Horizontal or vertical as shown on drawings or required by job conditions.
E. Furring for Fire Ratings: Install as required for fire resistance ratings indicated and to GA-600 requirements.
F. Blocking: Install mechanically fastened steel channel blocking for support of:
 1. Wall mounted cabinets.
 2. Toilet accessories.
 3. Wall mounted door hardware.
 4. Other items requiring blocking for support

3.03 BOARD INSTALLATION
A. Comply with ASTM C 840, GA-216, and manufacturer's instructions. Install to minimize butt end joints, especially in highly visible locations.
B. Single-Layer Non-Rated: Install gypsum board in most economical direction, with ends and edges occurring over firm bearing.
C. Exterior Sheathing: Comply with ASTM C1280. Install sheathing horizontally, with edges butted tight and ends occurring over firm bearing.
 1. Seal joints, cut edges, and holes with water-resistant sealant.
D. Cementitious Backing Board: Install over steel framing members and plywood substrate where indicated, in accordance with ANSI A108.11 and manufacturer’s instructions.

E. Installation on Metal Framing: Use screws for attachment of all gypsum board.

3.04 SHAFT WALL INSTALLATION

A. Shaft Wall Framing: Install in accordance with manufacturer’s installation instructions.

B. Shaft Wall Liner: Cut panels to accurate dimension and install sequentially between special friction studs.

3.05 ACOUSTIC ACCESSORIES INSTALLATION

A. Acoustic Insulation: Place tightly within spaces, around cut openings, behind and around electrical and mechanical items within partitions, and tight to items passing through partitions.

B. Acoustic Sealant Specified in Section 07 90 05, Joint Sealers: Install as follows:
 1. Place one bead continuously on substrate before installation of perimeter framing members.
 2. Place continuous bead at perimeter of each layer of gypsum board.
 3. Seal around all penetrations by conduit, pipe, ducts, and rough-in boxes, except where firestopping is provided.

3.06 INSTALLATION OF TRIM AND ACCESSORIES

A. Control Joints: Place control joints consistent with lines of building spaces and as directed.
 1. Not more than 30 feet apart on walls and ceilings over 50 feet long.

B. Corner Beads: Install at external corners, using longest practical lengths.

C. Edge Trim: Install at locations where gypsum board abuts dissimilar materials and as indicated.

3.07 JOINT TREATMENT

B. Finish gypsum board in accordance with levels defined in ASTM C840, as follows:
 1. Level 4: Walls and ceilings to receive paint finish or wall coverings, unless otherwise indicated.
 2. Level 1: Wall areas above finished ceilings, whether or not accessible in the completed construction.
 3. Level 5: Walls scheduled to be coated with a gloss or semi-gloss finish.

C. Tape, fill, and sand exposed joints, edges, and corners to produce smooth surface ready to receive finishes.
 1. Feather coats of joint compound so that camber is maximum 1/32 inch.

D. Where Level 5 finish is indicated, spray apply high build drywall surfacer over entire surface after joints have been properly treated; achieve a flat and tool mark-free finish.

3.08 TOLERANCES

A. Maximum Variation of Finished Gypsum Board Surface from True Flatness: 1/8 inch in 10 feet in any direction.

END OF SECTION
SECTION 09 5113
ACOUSTICAL PANEL CEILINGS

PART 1 - GENERAL

1.01 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Samples for Verification: For each component indicated and for each exposed finish required, prepared on Samples of size indicated below.
 1. Acoustical Panel: Set of 6-inch-square Samples of each type, color, pattern, and texture.

1.02 CLOSEOUT SUBMITTALS
A. Maintenance Data: For finishes to include in maintenance manuals.

1.03 MAINTENANCE MATERIAL SUBMITTALS
A. Acoustical Ceiling Panels: Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Acoustical Ceiling Panels: Provide two (2) unopened boxes of each type of full-size panels.

1.04 DELIVERY, STORAGE, AND HANDLING
A. Deliver acoustical panels, suspension-system components, and accessories to Project site in original, unopened packages and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.
B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.
C. Handle acoustical panels carefully to avoid chipping edges or damaging units in any way.

1.05 FIELD CONDITIONS
A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weatherproof, wet work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

PART 2 - PRODUCTS

2.01 PERFORMANCE REQUIREMENTS
A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: Comply with ASTM E 1264 for Class A materials.
 2. Smoke-Developed Index: 50 or less.

2.02 ACOUSTICAL PANELS, GENERAL
A. Source Limitations: Obtain each type of acoustical ceiling panel and supporting suspension system from single source from single manufacturer.
B. Acoustical Panel Standard: Provide manufacturer's standard panels of configuration indicated that comply with ASTM E 1264 classifications as designated by types, patterns, acoustical ratings, and light reflectance unless otherwise indicated.
 1. Mounting Method for Measuring NRC: Type E-400; plenum mounting in which face of test specimen is 15-3/4 inches away from test surface according to ASTM E 795.
C. Acoustical Panel Colors and Patterns: Match appearance characteristics indicated for each product type.

2.03 ACOUSTICAL PANELS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CertainTeed Corp.
2. Chicago Metallic Corporation
3. USG Interiors, Inc.; Subsidiary of USG Corporation

B. Basis-of-Design Product APC-1: Subject to compliance with requirements, provide ULTIMA Square Edge ULTIMA Square Lay-in Fine Texture by Armstrong World Industries, Inc. or comparable product:
 2. LR: Not less than 0.90.
 3. NRC: Not less than 0.70.
 4. CAC: Not less than 35.
 5. Edge/Joint Detail: Square.
 7. Modular Size: 24 by 24 inches.
 8. Broad Spectrum Antimicrobial Fungicide and Bactericide Treatment: Provide acoustical panels treated with manufacturer's standard antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D 3273 and evaluated according to ASTM D 3274 or ASTM G 21.

C. Basis-of-Design Product APC-2: Subject to compliance with requirements, provide OPTIMA® Health Zone™ Square Lay-in fine texture by Armstrong World Industries, Inc. or comparable product:
 2. LR: Not less than 0.86.
 3. NRC: Not less than 0.95.
 4. CAC: Not less than 29.
 5. Edge/Joint Detail: Square.
 6. Thickness: 1 1/2 inch.
 7. Modular Size: 24 by 24 inches.
 8. Broad Spectrum Antimicrobial Fungicide and Bactericide Treatment: Provide acoustical panels treated with manufacturer's standard antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D 3273 and evaluated according to ASTM D 3274 or ASTM G 21.
 9. Where indicated in Drawings, backload panels with basis-of-design product CORTEGA® Square Lay-in medium texture by Armstrong World Industries, Inc. or comparable product with CAC not less than 35.

2.04 METAL SUSPENSION SYSTEMS, GENERAL

A. Metal Suspension-System Standard: Provide manufacturer's standard direct-hung metal suspension systems of types, structural classifications, and finishes indicated that comply with applicable requirements in ASTM C 635/C 635M.

B. Attachment Devices: Size for five times the design load indicated in ASTM C 635/C 635M, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.
 1. Anchors in Concrete: Anchors of type and material indicated below, with holes or loops for attaching hangers of type indicated and with capability to sustain, without failure, a load equal to the design load, as determined by testing according to ASTM E 488 or ASTM E 1512 as applicable, conducted by a qualified testing and inspecting agency.
 a. Type: Post-installed expansion anchors.
 b. Corrosion Protection: Carbon-steel components zinc plated to comply with ASTM B 633, Class Fe/Zn 5 (0.005 mm) for Class SC 1 service condition.
2. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hangers of type indicated and with capability to sustain, without failure, a load equal to the design load, as determined by testing according to ASTM E 1190, conducted by a qualified testing and inspecting agency.

C. Wire Hangers, Braces, and Ties: Provide wires complying with the following requirements:
 2. Size: Select wire diameter so its stress at three times hanger design load (ASTM C 635/C 635M, Table 1, "Direct Hung") will be less than yield stress of wire but provide not less than 0.106-inch-diameter wire.

D. Hold-Down Clips: Where indicated, provide manufacturer’s standard hold-down clips spaced 24” o.c. on all cross tees.

2.05 METAL SUSPENSION SYSTEM
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Armstrong World Industries, Inc.
 2. CertainTeed Corp.
 3. Rockfon, LLC
 4. USG Interiors, Inc.; Subsidiary of USG Corporation

B. Wide-Face, Capped, Double-Web, Steel Suspension System: Main and cross runners roll formed from cold-rolled steel sheet; prepainted, electrolytically zinc coated, or hot-dip galvanized according to ASTM A 653/A 653M, not less than G30 coating designation; with prefinished 15/16-inch-wide metal caps on flanges.
 1. Structural Classification: Heavy-duty system.
 2. End Condition of Cross Runners: Override (stepped) type.
 3. Face Design: Flat, flush.

2.06 METAL EDGE MOLDING TRIM
A. Basis-of-Design Product: Subject to compliance with requirements, provide AXIOM - Classic Trim by Armstrong World Industries, Inc. or comparable product by one of the following:
 1. CertainTeed Corp.
 2. Rockfon, LLC
 3. USG Interiors, Inc.; Subsidiary of USG Corporation

B. Size: 6” nominal height.
C. Color: Match metal suspension system.

PART 3 - EXECUTION
3.01 EXAMINATION
A. Examine substrates, areas, and conditions, including structural framing to which acoustical panel ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and with requirements for installation tolerances and other conditions affecting performance of acoustical panel ceilings.

B. Examine acoustical panels before installation. Reject acoustical panels that are wet, moisture damaged, or mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.02 PREPARATION
A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders and comply with layout shown on reflected ceiling plans.

3.03 INSTALLATION
A. General: Install acoustical panel ceilings to comply with ASTM C 636/C 636M and seismic design requirements indicated, according to manufacturer’s written instructions and CISCA’s “Ceiling Systems Handbook.”

B. Suspend ceiling hangers from building’s structural members and as follows:
1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
2. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, counters playing, or other equally effective means.
3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacing required to support standard suspension-system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.
4. Secure wire hangers to ceiling-suspension members and to supports above with a minimum of three tight turns. Connect hangers directly either to structures or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.
5. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, post installed mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.
6. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.
7. Do not attach hangers to steel deck tabs.
8. Do not attach hangers to steel roof deck. Attach hangers to structural members.
9. Space hangers not more than 48 inches o.c. along each member supported directly from hangers unless otherwise indicated; provide hangers not more than 8 inches from ends of each member.
10. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards and publications.

C. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.
1. Screw attach moldings to substrate at intervals not more than 16 inches o.c. and not more than 3 inches from ends, leveling with ceiling suspension system to a tolerance of 1/8 inch in 12 feet. Miter corners accurately and connect securely.
2. Do not use exposed fasteners, including pop rivets, on moldings and trim.

D. Install suspension-system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.

E. Install acoustical panels with undamaged edges and fit accurately into suspension-system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide a neat, precise fit.
1. For square-edged panels, install panels with edges fully hidden from view by flanges of suspension-system runners and moldings.

3.04 CLEANING
A. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension-system members. Comply with manufacturer’s written instructions for cleaning and...
touchup of minor finish damage. Remove and replace ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION 09 5113
PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes:
 1. Resilient base.

1.02 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Samples: For each exposed product and for each color and texture specified, not less than 12 inches long.
C. Product Schedule: For resilient base and accessory products. Use same designations indicated on Drawings.

1.03 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. One full box of each type, color, pattern, and size of resilient product installed.

1.04 DELIVERY, STORAGE, AND HANDLING
A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg for more than 90 deg F.

1.05 FIELD CONDITIONS
A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 95 deg F, in spaces to receive resilient products during the following time periods:
 1. 48 hours before installation.
 2. During installation.
 3. 48 hours after installation.
B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.
C. Install resilient products after other finishing operations, including painting, have been completed.

1.06 WARRANTY
A. Topical Vapor Barrier Special Warranty: Warranty is to include moisture related failures, including finish floor materials and labor.
 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.01 RUBBER BASE (RB)
A. Basis-of-Design Manufacturer: Subject to compliance with requirements, provide Tarkett/Johnsonite or comparable product by one of the following:
 1. Armstrong World Industries, Inc.
 2. Burke Mercer Flooring Products; Division of Burke Industries, Inc.
 3. Roppe Corporation, USA
B. Material Requirement: Type TS (rubber, vulcanized thermoset).
C. Manufacturing Method: Group I (solid, homogeneous) or Group II (layered). Product Standard: ASTM F 1861.
D. Style: Cove (base with toe) at all locations.
E. Thickness: 0.125 inch.
F. Height: 4 inches.
G. Lengths: Cut lengths 48 inches long.
H. Outside Corners: Job formed or preformed.
I. Inside Corners: Job formed or preformed.
J. Colors: As indicated by manufacturer’s designations.

2.02 INSTALLATION MATERIALS
A. Adhesives: Water-resistant type recommended by resilient-product manufacturer for resilient products and substrate conditions indicated.

PART 3 - EXECUTION
3.01 EXAMINATION
A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.
B. Proceed with installation only after unsatisfactory conditions have been corrected.
 1. Installation of resilient products indicates acceptance of surfaces and conditions.

3.02 PREPARATION
A. Prepare substrates according to manufacturer’s written instructions to ensure adhesion of resilient products.

3.03 RESILIENT BASE INSTALLATION
A. Comply with manufacturer’s written instructions for installing resilient base.
B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.
C. Install resilient base in lengths as long as practical without gaps at seams and with tops of adjacent pieces aligned.
D. Do not stretch resilient base during installation.
E. On masonry surfaces or other similar irregular substrates, fill voids along top edge of resilient base with manufacturer’s recommended adhesive filler material.
F. Preformed Corners: Install preformed corners before installing straight pieces.
G. Job-Formed Corners:
 1. Outside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 6 inches in length.
 a. Form without producing discoloration (whitening) at bends.
 2. Inside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 6 inches in length.

3.04 CLEANING AND PROTECTION
A. Comply with manufacturer’s written instructions for cleaning and protecting resilient products.
B. Perform the following operations immediately after completing resilient-product installation:
 1. Remove adhesive and other blemishes from exposed surfaces.
 2. Sweep and vacuum horizontal surfaces thoroughly.
 3. Damp-mop horizontal surfaces to remove marks and soil.
C. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.
D. Cover resilient products subject to wear and foot traffic until Substantial Completion.

END OF SECTION 09 6513
SECTION 09 6723 - RESINOUS FLOORING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
 A. Section Includes:
 1. Resinous flooring systems to include integral cove base.

1.03 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated. Include manufacturer’s technical data, application instructions, and recommendations for each resinous flooring component required.
 B. Samples for Initial Selection: For each type of exposed finish required.
 C. Samples for Verification: For each resinous flooring system required, 6 inches square, applied to a rigid backing by Installer for this Project.

1.04 INFORMATIONAL SUBMITTALS
 A. Installer Certificates: Signed by manufacturer certifying that installers comply with specified requirements.
 B. Material Certificates: For each resinous flooring component, from manufacturer.
 C. Material Test Reports: For each resinous flooring system.

1.05 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For resinous flooring to include in maintenance manuals.

1.06 QUALITY ASSURANCE
 A. Installer Qualifications: Manufacturer’s authorized representative who is trained and approved for installation of flooring systems required for this Project.
 1. Engage an installer who is certified in writing by resinous flooring manufacturer as qualified to apply resinous flooring systems indicated.
 2. Engage an installer who has a minimum of ten years of experience installing resinous flooring and who has completed a minimum of ten successful installations of products as specified which are similar in material, design and extent to what indicated for this project and whose work has resulted in construction with a record of successful in-service performance within the past five years.
 3. Supervisor/foreman: Full-time supervisor/foreman who has a minimum of five years experience with the installation of resinous flooring of which three years is as a full-time supervisor/foreman. Supervisor/foreman to be on the job site during all times that resinous flooring installation is in progress.
 B. Source Limitations: Obtain primary resinous flooring materials, including primers, resins, hardening agents, grouting coats, and topcoats, from single source from single manufacturer. Provide secondary materials, including patching and fill material, joint sealant, and repair materials, of type and from source recommended by manufacturer of primary materials.
 C. Mockups: Apply mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 1. Apply full-thickness mockups on 48-inch-square floor area selected by Architect.
 a. Include 48-inch length of integral cove base with inside corner.
 2. Simulate finished lighting conditions for Architect’s review of mockups.
 3. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
 D. Preinstallation Conference: Conduct conference at Project site.
1.07 DELIVERY, STORAGE, AND HANDLING
A. Deliver materials in original packages and containers, with seals unbroken, bearing manufacturer’s labels indicating brand name and directions for storage and mixing with other components.

1.08 PROJECT CONDITIONS
A. Environmental Limitations: Comply with resinous flooring manufacturer’s written instructions for substrate temperature, ambient temperature, moisture, ventilation, and other conditions affecting resinous flooring application.
B. Lighting: Provide permanent lighting or, if permanent lighting is not in place, simulate permanent lighting conditions during resinous flooring application.
C. Close spaces to traffic during resinous flooring application and for not less than 24 hours after application unless manufacturer recommends a longer period.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. Basis-of-Design Product: Subject to compliance with requirements, provide “Industrial LB System” by Desco or comparable product by one of the following:
 1. Tnemec
 2. Stonhard

2.02 RESINOUS FLOORING
A. System Characteristics:
 1. Color and Pattern: As selected by Architect from manufacturer’s full range.
 2. Wearing Surface: Orange-peel texture.
 3. Overall System Thickness: 3/16 inch.
B. Body Coats:
 1. Binder and all successive grout and topcoats shall be 100% solids clear/epoxy resin. Ceramic coated quartz aggregates are to be used to achieve all color. No pigmented epoxy base or topcoats allowed.
C. System Physical Properties: Provide resinous flooring system with the following minimum physical property requirements when tested according to test methods indicated:
 1. Compressive Strength: 10,000 psi per ASTM C 579.
 2. Tensile Strength: 2,250 psi minimum according to ASTM C 307.
 3. Flexural Strength: 4,000 psi per ASTM C 580.
 5. Bond Strength (ASTM D-4541): 425 psi
 6. Abrasion Resistance: 0.08 gm maximum weight loss per ASTM D 4060.
 7. Flammability: Self-extinguishing per ASTM D 635.

2.03 ACCESSORIES
A. Patching and Fill Material: Resinous product of or approved by resinous flooring manufacturer and recommended by manufacturer for application indicated.
B. Primer: Type recommended by manufacturer for substrate and body coats indicated.
 1. Formulation Description: High solids epoxy resin.
C. Reinforcing Membrane: Flexible epoxy formulation that is recommended by manufacturer for substrate and primer and body coats indicated and that prevents substrate cracks from reflecting through resinous flooring.
1. Formulation Description: 100 percent solids.

D. Patching and Fill Material: Resinous product of or approved by resinous flooring manufacturer and recommended by manufacturer for application indicated.

E. Metal Cove Base Top Trim: Provide manufacturer’s recommended stainless-steel receiver/screed trim.

F. Stop Strip: Provide manufacturer’s recommended zinc stop strip.

PART 3 - EXECUTION

3.01 PREPARATION

A. General: Prepare and clean substrates according to resinous flooring manufacturer’s written instructions for substrate indicated. Provide clean, dry substrate for resinous flooring application.

B. Concrete Substrates: Provide sound concrete surfaces free of laitance, glaze, efflorescence, curing compounds, form-release agents, dust, dirt, grease, oil, and other contaminants incompatible with resinous flooring.

1. Roughen concrete substrates as follows:
 a. Shot-blast surfaces with an apparatus that abrades the concrete surface, contains the dispensed shot within the apparatus, and recirculates the shot by vacuum pickup.

2. Repair damaged and deteriorated concrete according to resinous flooring manufacturer’s written instructions.

3. Verify that concrete substrates are dry and moisture-vapor emissions are within acceptable levels according to manufacturer’s written instructions.
 a. Perform relative humidity test using in situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.

4. Alkalinity and Adhesion Testing: Verify that concrete substrates have pH within acceptable range. Perform tests recommended by manufacturer. Proceed with application only after substrates pass testing.

C. Resinous Materials: Mix components and prepare materials according to resinous flooring manufacturer's written instructions.

D. Use patching and fill material to fill holes and depressions in substrates according to manufacturer's written instructions.

E. Treat control joints and other nonmoving substrate cracks to prevent cracks from reflecting through resinous flooring according to manufacturer's written instructions.

3.02 APPLICATION

A. General: Apply components of resinous flooring system according to manufacturer's written instructions to produce a uniform, monolithic wearing surface of thickness indicated. Surfacing shall be tightly compacted, trowel-applied.

1. Cure resinous flooring components according to manufacturer's written instructions. Prevent contamination during application and curing processes.

2. At substrate expansion and isolation joints, comply with resinous flooring manufacturer's written instructions.

B. Apply primer over prepared substrate at manufacturer's recommended spreading rate.

C. Apply waterproofing membrane, where indicated, in manufacturer's recommended thickness.

1. Apply waterproofing membrane to integral cove base substrates.

D. Apply reinforcing membrane to substrate cracks.

E. Integral Cove Base: Apply cove base mix to wall surfaces before applying flooring. Apply according to manufacturer’s written instructions and details including those for taping, mixing, priming, troweling, sanding, and topcoating of cove base. Round internal and external corners.
1. Integral Cove Base: 4 inches high with 1” radius cove.
 a. Trowel apply vertical cove base.
 b. Hand sand cove base.
 c. Apply three coats of resin to assure a smooth surface and cove.
 d. Do not allow resin to puddle in cove.

F. Apply troweled or screeded body coats in thickness indicated for flooring system. Hand or power trowel and grout to fill voids. When cured, remove trowel marks and roughness using method recommended by manufacturer.

G. Apply grout coat, of type recommended by resinous flooring manufacturer, to fill voids in surface of final body coat and to produce wearing surface indicated.

H. Apply topcoats in number indicated for flooring system and at spreading rates recommended in writing by manufacturer.

3.03 PROTECTION

A. Protect resinous flooring from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by resinous flooring manufacturer.

END OF SECTION 09 6723
SECTION 09 6813
TILE CARPETING

PART 1 - GENERAL

1.01 SUMMARY

A. Section includes modular carpet tile.
B. Related Requirements:
 1. Section 02 41 19 "Selective Demolition" for removing existing floor coverings.
 2. Section 09 65 13 "Resilient Base and Accessories" for resilient wall base and accessories installed with carpet tile.

1.02 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include manufacturer's written data on physical characteristics, durability, and fade resistance.
 2. Include installation recommendations for each type of substrate.
B. Samples: For each of the following products and for each color and texture required. Label each sample with manufacturer's name, material description, color, pattern, and designation indicated on Drawings and in schedules.
 2. Exposed Edge, Transition, and Other Accessory Stripping: 12-inch-long Samples.
C. Product Schedule: For carpet tile. Use same designations indicated on Drawings.

1.03 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.
B. Product Test Reports: For carpet tile, for tests performed by a qualified testing agency.
C. Sample Warranty: For special warranty.

1.04 CLOSEOUT SUBMITTALS

A. Maintenance Data: For carpet tiles to include in maintenance manuals. Include the following:
 1. Methods for maintaining carpet tile, including cleaning and stain-removal products and procedures and manufacturer's recommended maintenance schedule.
 2. Precautions for cleaning materials and methods that could be detrimental to carpet tile.

1.05 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Carpet Tile: Full-size units equal to 5 percent of amount installed for each type indicated, but not less than 10 sq. yd..

1.06 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer who is certified by the International Certified Floorcovering Installers Association at the Commercial II certification level.
B. Fire-Test-Response Ratings: Where indicated, provide carpet tile identical to those of assemblies tested for fire response according to NFPA 253 by a qualified testing agency.

1.07 DELIVERY, STORAGE, AND HANDLING

A. Comply with CRI 104.

1.08 FIELD CONDITIONS

A. Comply with CRI 104 for temperature, humidity, and ventilation limitations.
B. Environmental Limitations: Do not deliver or install carpet tiles until spaces are enclosed and weathertight, wet work in spaces is complete and dry, and ambient temperature and humidity conditions are maintained at occupancy levels during the remainder of the construction period.
C. Do not install carpet tiles over concrete slabs until slabs have cured and are sufficiently dry to bond with adhesive and concrete slabs have pH range recommended by carpet tile manufacturer.

D. Where demountable partitions or other items are indicated for installation on top of carpet tiles, install carpet tiles before installing these items.

1.09 WARRANTY

A. Special Warranty for Carpet Tiles: Manufacturer agrees to repair or replace components of carpet tile installation that fail in materials or workmanship within specified warranty period.
 1. Warranty does not include deterioration or failure of carpet tile due to unusual traffic, failure of substrate, vandalism, or abuse.
 2. Failures include, but are not limited to, more than 10 percent edge raveling, snags, runs, dimensional stability, excess static discharge, loss of tuft bind strength, loss of face fiber, and delamination.
 3. Warranty Period: 15 years from date of Substantial Completion.

B. Special Warranty Topical Vapor Barrier: Manufacturer agrees to repair or replace components of carpet tile installation that fail due to moisture related failures.

C. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.01 CARPET TILE (CPT*)

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings.

2.02 INSTALLATION ACCESSORIES

A. Trowelable Leveling and Patching Compounds: Latex-modified, hydraulic-cement-based formulation provided or recommended by carpet tile manufacturer.

B. Metal Edge/Transition Strips: Stainless steel of profile and width shown, of height required to protect exposed edge of carpet, and of maximum lengths to minimize running joints.
 1. Basis of Design: Schluter Systems
 2. Finish: Brushed Stainless Steel

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for maximum moisture content, alkalinity range, installation tolerances, and other conditions affecting carpet tile performance. Examine carpet tile for type, color, pattern, and potential defects.

B. Concrete Subfloors: Verify that concrete slabs comply with ASTM F 710 and the following:
 1. Slab substrates are dry and free of curing compounds, sealers, hardeners, and other materials that may interfere with adhesive bond. Determine adhesion and dryness characteristics by performing bond and moisture tests recommended by carpet tile manufacturer.
 2. Subfloor finishes comply with requirements specified in Section 03 30 00 "Cast-in-Place Concrete" for slabs receiving carpet tile.
 3. Subfloors are free of cracks, ridges, depressions, scale, and foreign deposits.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION

A. General: Comply with CRI 104, Section 6.2, "Site Conditions; Floor Preparation," and with carpet tile manufacturer's written installation instructions for preparing substrates indicated to receive carpet tile installation.

B. Use trowelable leveling and patching compounds, according to manufacturer's written instructions, to fill cracks, holes, depressions, and protrusions in substrates. Fill or level cracks,
holes and depressions 1/8 inch wide or wider and protrusions more than 1/32 inch unless more stringent requirements are required by manufacturer's written instructions.

C. Remove coatings, including curing compounds, and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, without using solvents. Use mechanical methods recommended in writing by carpet tile manufacturer.

D. Broom and vacuum clean substrates to be covered immediately before installing carpet tile.

3.03 CARPET TILE INSTALLATION

A. General: Comply with CRI 104, Section 14, "Carpet Modules," and with carpet tile manufacturer's written installation instructions.

B. Installation Method: Full-spread adhesive as recommended in writing by carpet tile manufacturer.

C. Maintain dye lot integrity. Do not mix dye lots in same area.

D. Cut and fit carpet tile to butt tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, edgings, thresholds, and nosings. Bind or seal cut edges as recommended by carpet tile manufacturer.

E. Extend carpet tile into toe spaces, door reveals, closets, open-bottomed obstructions, removable flanges, alcoves, and similar openings.

F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on finish flooring as marked on subfloor. Use nonpermanent, nonstaining marking device.

G. Install pattern parallel to walls and borders.

3.04 CLEANING AND PROTECTION

A. Perform the following operations immediately after installing carpet tile:
 1. Remove yarns that protrude from carpet tile surface.
 2. Vacuum carpet tile using commercial machine with face-beater element.

B. Protect installed carpet tile to comply with CRI 104, Section 16, "Protecting Indoor Installations."

C. Protect carpet tile against damage from construction operations and placement of equipment and fixtures during the remainder of construction period. Use protection methods indicated or recommended in writing by carpet tile manufacturer.

END OF SECTION 09 6813
SECTION 09 9000
PAINTING AND COATING

PART 1 GENERAL
1.01 SECTION INCLUDES
A. Surface preparation.
B. Field application of paints including designated floors.
C. Specified testing of substrates.
D. Scope: Finish all interior surfaces exposed to view, unless fully factory-finished and unless otherwise indicated, including the following:
 1. Both sides and edges of plywood backboards for electrical and telecom equipment before installing equipment.
 2. Mechanical and Electrical:
 a. In finished areas, paint all insulated and exposed pipes, conduit, boxes, insulated and exposed ducts, hangers, brackets, collars and supports, mechanical equipment, and electrical equipment, unless otherwise indicated.
E. Do Not Paint or Finish the Following Items:
 1. Items fully factory-finished unless specifically so indicated; materials and products having factory-applied primers are not considered factory finished.
 2. Items indicated to receive other finishes.
 3. Items indicated to remain unfinished.
 4. Fire rating labels, equipment serial number and capacity labels, and operating parts of equipment.
 5. Non-metallic roofing and flashing.
 6. Stainless steel, anodized aluminum, bronze, tere, and lead items.
 7. Glass.
 8. Acoustical materials, unless specifically so indicated.
 9. Concealed pipes, ducts, and conduits.

1.02 DEFINITIONS
A. Conform to ASTM D16 for interpretation of terms used in this section.

1.03 SUBMITTALS
A. See Division One, for submittal procedures.
B. Product Data: Provide complete list of all products to be used, with the following information for each:
 1. Manufacturer's name, product name and/or catalog number, and general product category (e.g. "alkyd enamel").
 2. Cross-reference to specified paint system(s) product is to be used in; include description of each system.
 3. Manufacturer's installation instructions.
 4. If proposal of substitutions is allowed under submittal procedures, explanation of all substitutions proposed.
C. Samples: Submit two painted samples, illustrating selected colors for each color and system selected with specified coats cascaded. Submit on tempered hardboard, 12x12 inch in size.
D. Certification: By manufacturer that all paints and coatings comply with VOC limits specified.
E. Certification: By manufacturer that all paints and coatings do not contain any of the prohibited chemicals specified; GreenSeal GS-11 certification is not required but if provided shall constitute acceptable certification.
F. Results of all required testing.
H. Manufacturer's Instructions: Indicate special surface preparation procedures and substrate conditions requiring special attention.

I. Maintenance Data: Submit data on cleaning, touch-up, and repair of painted and coated surfaces.

J. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
 1. Extra Paint and Coatings: 1 gallon of each color; store where directed.
 2. Label each container with color in addition to the manufacturer's label.

1.04 QUALITY ASSURANCE
 A. Manufacturer Qualifications: Company specializing in manufacturing the products specified, with minimum ten years documented experience.
 B. Applicator Qualifications: Company specializing in performing the type of work specified with minimum five years documented experience.

1.05 MOCK-UP
 A. Provide panels, 2 feet long by 2 feet wide, illustrating each paint and coating color, texture, and finish. Apply the same number of coats as specified.
 B. Locate where directed.
 C. Mock-up may remain as part of the work.

1.06 DELIVERY, STORAGE, AND HANDLING
 A. Deliver products to site in sealed and labeled containers; inspect to verify acceptability.
 B. Container Label: Include manufacturer's name, type of paint, brand name, lot number, brand code, coverage, surface preparation, drying time, cleanup requirements, color designation, and instructions for mixing and reducing.
 C. Paint Materials: Store at minimum ambient temperature of 45 degrees F and a maximum of 90 degrees F, in ventilated area, and as required by manufacturer's instructions.

1.07 FIELD CONDITIONS
 A. Do not apply materials when surface and ambient temperatures are outside the temperature ranges required by the paint product manufacturer.
 B. Follow manufacturer's recommended procedures for producing best results, including testing of substrates, moisture in substrates, and humidity and temperature limitations.
 C. Do not apply exterior coatings during rain or snow, or when relative humidity is outside the humidity ranges required by the paint product manufacturer.
 D. Minimum Application Temperatures for Latex Paints: 45 degrees F for interiors; 50 degrees F for exterior; unless required otherwise by manufacturer's instructions.
 E. Provide lighting level of 80 ft candles measured mid-height at substrate surface.

PART 2 PRODUCTS

2.01 MANUFACTURERS
 A. Provide all paint and coating products used in any individual system from the same manufacturer; no exceptions.
 B. Paints:
 C. Primer Sealers: Same manufacturer as top coats.
 D. Block Fillers: Same manufacturer as top coats.
 E. Substitutions: See Division One.
2.02 PAINTS AND COATINGS - GENERAL

A. Paints and Coatings: Ready mixed, unless intended to be a field-catalyzed coating.
 1. Provide paints and coatings of a soft paste consistency, capable of being readily and uniformly dispersed to a homogeneous coating, with good flow and brushing properties, and capable of drying or curing free of streaks or sags.
 2. Provide materials that are compatible with one another and the substrates indicated under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.
 3. For opaque finishes, tint each coat including primer coat and intermediate coats, one-half shade lighter than succeeding coat, with final finish coat as base color.
 4. Supply each coating material in quantity required to complete entire project's work from a single production run.
 5. Do not reduce, thin, or dilute coatings or add materials to coatings unless such procedure is specifically described in manufacturer's product instructions.

B. Primers: Where the manufacturer offers options on primers for a particular substrate, use primer categorized as "best" by the manufacturer.

C. Volatile Organic Compound (VOC) Content:
 1. Provide coatings that comply with the most stringent requirements specified in the following:
 2. Determination of VOC Content: Testing and calculation in accordance with 40 CFR 59, Subpart D (EPA Method 24), exclusive of colorants added to a tint base and water added at project site; or other method acceptable to authorities having jurisdiction.

D. Chemical Content: The following compounds are prohibited:
 1. Aromatic Compounds: In excess of 1.0 percent by weight of total aromatic compounds (hydrocarbon compounds containing one or more benzene rings).
 2. Acrolein, acrylonitrile, antimony, benzene, butyl benzyl phthalate, cadmium, di (2-ethylhexyl) phthalate, di-n-butyl phthalate, di-n-octyl phthalate, 1,2-dichlorobenzene, diethyl phthalate, dimethyl phthalate, ethylbenzene, formaldehyde, hexavalent chromium, isophorone, lead, mercury, methyl ethyl ketone, methyl isobutyl ketone, methylene chloride, naphthalene, toluene (methylbenzene), 1,1,1-trichloroethane, vinyl chloride.

E. Flammability: Comply with applicable code for surface burning characteristics.

F. Colors: As indicated on drawings in finish schedule.
 1. Extend colors to surface edges; colors may change at any edge as directed by Architect.
 2. In finished areas, finish pipes, ducts, conduit, and equipment the same color as the wall/ceiling they are mounted on/under.

2.03 PAINT SYSTEMS - INTERIOR

A. All Interior Surfaces Indicated to be Painted, Unless Otherwise Indicated including gypsum board, concrete, concrete masonry, shop primed steel, and galvanized steel:
 1. Two top coats and one coat primer:
 2. Eggshell: MPI gloss level 3; use this sheen at all locations.
 3. Top Coat Product(s):
 a. Sherwin-Williams Pre-Catalyzed Waterbased Epoxy.
 4. Primer(s): As recommended by manufacturer of top coats.

B. Heavy Duty Vertical Surfaces including gypsum board and concrete masonry:
 1. Applications: EPT-# per Finish Schedule.
 2. Two top coats and one coat primer; primer may be omitted if top coat manufacturer approves.
 3. Top Coat Product(s):
 4. Primer(s): As recommended by manufacturer of top coats.
C. Dry Fall: Exposed structure and overhead-mounted services, including concrete, shop primed
steel deck, structural steel, metal fabrications, galvanized ducts, galvanized conduit, galvanized
piping, and other similar exposed to view items. Where partial suspended ceiling exists in room
or space, extend dry fall horizontally 2'-0" min. beyond edge of ceiling.
1. Shop primer by others.
2. One top coat color in finish schedule on drawings.
3. Eggshell: MPI gloss level 3; use this sheen at all locations.
4. Top Coat Product(s):

2.05 ACCESSORY MATERIALS
 A. Accessory Materials: Provide all primers, sealers, cleaning agents, cleaning cloths, sanding
 materials, and clean-up materials required to achieve the finishes specified whether specifically
 indicated or not; commercial quality.
 B. Patching Material: Latex filler.
 C. Fastener Head Cover Material: Latex filler.

PART 3 EXECUTION
3.01 EXAMINATION
 A. Do not begin application of coatings until substrates have been properly prepared.
 B. Verify that surfaces are ready to receive work as instructed by the product manufacturer.
 C. Examine surfaces scheduled to be finished prior to commencement of work. Report any
 condition that may potentially affect proper application.
 D. If substrate preparation is the responsibility of another installer, notify Architect of unsatisfactory
 preparation before proceeding.
 E. Test shop-applied primer for compatibility with subsequent cover materials.
 F. Moisture Testing: Measure moisture content of surfaces using an electronic moisture meter. Do
 not apply finishes unless moisture content of surfaces are below the following maximums:
 1. Gypsum Wallboard: 12 percent.
 2. Masonry, Concrete, and Concrete Unit Masonry: 12 percent.
 3. Concrete Floors and Traffic Surfaces: Moisture vapor transmission testing and Internal
 relative humidity testing is not required, consistent with the concrete waterproofing
 admixture manufacturers warranty against moisture related flooring failures specified in
 Section 03 30 53, Miscellaneous Cast-In-Place Concrete.
 G. ASTM D4263, Standard Test Indicating Moisture by the Plastic Sheet Method: Perform one test
 area per 500 s.f. or portion thereof. These tests are required for compliance with warranty
 requirements of the concrete waterproofing admixture manufacturers warranty against moisture
 related flooring failures specified in Section 03 30 53, Miscellaneous Cast-In-Place Concrete.

3.02 PREPARATION
 A. Clean surfaces thoroughly and correct defects prior to coating application.
 B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best
 result for the substrate under the project conditions.
 C. Remove or repair existing coatings that exhibit surface defects.
 D. Remove or mask surface appurtenances, including electrical plates, hardware, light fixture trim,
 escutcheons, and fittings, prior to preparing surfaces or finishing.
 E. Seal surfaces that might cause bleed through or staining of topcoat.
 F. Remove mildew from impervious surfaces by scrubbing with solution of tri-sodium phosphate
 and bleach. Rinse with clean water and allow surface to dry.
 G. Concrete and Unit Masonry Surfaces to be Painted: Remove dirt, loose mortar, scale, salt or
 alkali powder, and other foreign matter. Remove oil and grease with a solution of tri-sodium
phosphate; rinse well and allow to dry. Remove stains caused by weathering of corroding metals with a solution of sodium metasilicate after thoroughly wetting with water. Allow to dry.

H. Gypsum Board Surfaces to be Painted: Fill minor defects with filler compound. Spot prime defects after repair.

I. Concrete Floors:
 1. Clean floors of dust, solvents, paint, wax, oil, grease, asphalt, residual adhesive, adhesive removers, film-forming curing compounds, sealing compounds, alkaline salts, excessive laitance, mold, mildew, and other materials that might prevent adhesive bond.
 2. Do not use solvents or other chemicals for cleaning.
 3. Coordinate with concrete waterproofing admixture specified in Section 03 30 53, Miscellaneous Cast-In-Place Concrete.
 4. Prepare floor substrates for installation of flooring in accordance with requirements and recommendations of manufacturer.
 5. Fill and smooth surface cracks, grooves, depressions, control joints and other non-moving joints, and other irregularities with patching compound.
 6. Do not fill expansion joints, isolation joints, or other moving joints.

J. Galvanized Surfaces to be Painted: Remove surface contamination and oils and wash with solvent. Apply coat of etching primer.

K. Corroded Steel and Iron Surfaces to be Painted: Prepare using at least SSPC-PC 2 (hand tool cleaning) or SSPC-SP 3 (power tool cleaning) followed by SSPC-SP 1 (solvent cleaning).

L. Uncorroded Uncoated Steel and Iron Surfaces to be Painted: Remove grease, mill scale, weld splatter, dirt, and rust. Where heavy coatings of scale are evident, remove by hand or power tool wire brushing or sandblasting; clean by washing with solvent. Apply a treatment of phosphoric acid solution, ensuring weld joints, bolts, and nuts are similarly cleaned. Prime paint entire surface; spot prime after repairs.

M. Shop-Primed Steel Surfaces to be Finish Painted: Sand and scrape to remove loose primer and rust. Feather edges to make touch-up patches inconspicuous. Clean surfaces with solvent. Prime bare steel surfaces. Re-prime entire shop-primed item.

3.03 APPLICATION
A. Remove unfinished louvers, grilles, covers, and access panels on mechanical and electrical components and paint separately.
B. Apply products in accordance with manufacturer’s instructions.
C. Where adjacent sealant is to be painted, do not apply finish coats until sealant is applied.
D. Do not apply finishes to surfaces that are not dry. Allow applied coats to dry before next coat is applied.
E. Apply each coat to uniform appearance.
F. Dark Colors and Deep Clear Colors: Regardless of number of coats specified, apply as many coats as necessary for complete hide.
G. Sand metal surfaces lightly between coats to achieve required finish.
H. Vacuum clean surfaces of loose particles. Use tack cloth to remove dust and particles just prior to applying next coat.
I. Reinstall electrical cover plates, hardware, light fixture trim, escutcheons, and fittings removed prior to finishing.

3.04 CLEANING
A. Collect waste material that could constitute a fire hazard, place in closed metal containers, and remove daily from site.

3.05 PROTECTION
A. Protect finished coatings until completion of project.
B. Touch-up damaged coatings after Substantial Completion.

END OF SECTION
SECTION 10 1100
VISUAL DISPLAY UNITS

PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes:
 1. Visual display board assemblies.

1.02 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, finishes, and accessories for visual display units.
B. Shop Drawings: For visual display units.
 1. Include plans, elevations, sections, details, and attachment to other work.
 2. Show locations of panel joints. Show locations of field-assembled joints for factory-fabricated units too large to ship in one piece.
C. Samples for Verification: For each type of visual display unit indicated.
 1. Visual Display Panel: Not less than 8-1/2 by 11 inches, with facing, core, and backing indicated for final Work. Include one panel for each type, color, and texture required.

1.03 CLOSEOUT SUBMITTALS
A. Maintenance Data: For visual display units to include in maintenance manuals.

1.04 QUALITY ASSURANCE
A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.05 DELIVERY, STORAGE, AND HANDLING
A. Deliver factory-fabricated visual display units completely assembled in one piece. If dimensions exceed maximum manufactured unit size, or if unit size is impracticable to ship in one piece, provide two or more pieces with joints in locations indicated on approved Shop Drawings.

1.06 PROJECT CONDITIONS
A. Environmental Limitations: Do not deliver or install visual display units until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, work above ceilings is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
B. Field Measurements: Verify actual dimensions of construction contiguous with visual display units by field measurements before fabrication.
 1. Allow for trimming and fitting where taking field measurements before fabrication might delay the Work.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. Source Limitations: Obtain each type of visual display unit from single source from single manufacturer.

2.02 PERFORMANCE REQUIREMENTS
A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 50 or less.

2.03 VISUAL DISPLAY BOARDS (MB)
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. AARCO Products, Inc.
2. Best-Rite Manufacturing.
3. Claridge Products and Equipment, Inc.; Series 3 (Basis-of-Design)
4. Egan Visual Inc.
5. PolyVision Corporation; a Steelcase company.

B. Visual Display Board Assembly: factory fabricated.
1. Assembly: markerboard.
2. Corners: Square.
3. Width: As indicated on Drawings.
4. Height: As indicated on Drawings.
5. Mounting Method: Direct to wall.

C. Markerboard Panel: Porcelain-enamel-faced markerboard panel on core indicated.

D. Aluminum Frames and Trim: Fabricated from not less than 0.062-inch-thick, extruded aluminum; standard size and shape.
1. Aluminum Finish: Clear anodic finish.

E. Joints: Make joints only where total length exceeds maximum manufactured length. Fabricate with minimum number of joints, as indicated on approved Shop Drawings.

F. Chalktray: Manufacturer's standard; continuous.
1. Box Type: Extruded aluminum with slanted front, grooved tray, and cast-aluminum end closures.

G. Display Rail: Manufacturer's standard, extruded-aluminum display rail with plastic-impregnated-cork insert, end stops, and continuous paper holder, designed to hold accessories.
1. Size: 2 inches high by full length of visual display unit.
2. Tackboard Insert Color: As selected by Architect from full range of industry colors.
3. Aluminum Color: Match finish of visual display assembly trim.

H. Markerboard Panels
1. Porcelain-Enamel Markerboard Panels: Balanced, high-pressure, factory-laminated markerboard assembly of three-ply construction, consisting of moisture-barrier backing, core material, and porcelain-enamel face sheet with low-gloss finish. Laminate panels under heat and pressure with manufacturer's standard, flexible waterproof adhesive.
 a. Manufacturer's Standard Core: Minimum 1/4 inch thick, with manufacturer's standard moisture-barrier backing.

2.04 GENERAL FINISH REQUIREMENTS
A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
C. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.05 ALUMINUM FINISHES
A. Clear Anodic Finish: AAMA 611, AA-M12C22A31, Class II, 0.010 mm or thicker.
PART 3 - EXECUTION

3.01 EXAMINATION
A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances, surface conditions of wall, and other conditions affecting performance of the Work.
B. Examine walls and partitions for proper preparation and backing for visual display units.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION
A. Comply with manufacturer's written instructions for surface preparation.
B. Clean substrates of substances, such as dirt, mold, and mildew, that could impair the performance of and affect the smooth, finished surfaces of visual display boards.
C. Prepare surfaces to achieve a smooth, dry, clean surface free of flaking, unsound coatings, cracks, defects, projections, depressions, and substances that will impair bond between visual display units and wall surfaces.

3.03 INSTALLATION
A. General: Install visual display surfaces in locations and at mounting heights indicated on Drawings, or if not indicated, at heights indicated below. Keep perimeter lines straight, level, and plumb. Provide grounds, clips, backing materials, adhesives, brackets, anchors, trim, and accessories necessary for complete installation.
B. Field-Assembled Visual Display Board Assemblies: Coordinate field-assembled units with grounds, trim, and accessories indicated. Join parts with a neat, precision fit.
 1. Make joints only where total length exceeds maximum manufactured length. Fabricate with minimum number of joints, as indicated on approved Shop Drawings.
 2. Where size of visual display board assemblies or other conditions require support in addition to normal trim, provide structural supports or modify trim as indicated or as selected by Architect from manufacturer's standard structural support accessories to suit conditions indicated.
C. Prior to initial use, remove peel-coat and clean surface thoroughly in accordance with manufacturer's written instructions.
D. Visual Display Board Assembly Mounting Heights: Install visual display units at mounting heights indicated on Drawings, or if not indicated, at heights indicated below.
 1. Mounting Height: 36 inches above finished floor to top of chalk tray

3.04 CLEANING AND PROTECTION
A. Clean visual display units according to manufacturer's written instructions. Attach one removable cleaning instructions label to visual display unit in each room.
B. Touch up factory-applied finishes to restore damaged or soiled areas.
C. Cover and protect visual display units after installation and cleaning.

END OF SECTION 10 1100
SECTION 10 2600
WALL PROTECTION

PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes:
 1. Corner guards.

1.02 ACTION SUBMITTALS
A. Product Data: Include construction details, material descriptions, impact strength, dimensions of individual components and profiles, and finishes for each impact-resistant wall protection unit.
B. Shop Drawings: For each impact-resistant wall protection unit showing locations and extent. Include sections, details, and attachments to other work.

1.03 PROJECT CONDITIONS
A. Environmental Limitations: Do not deliver or install impact-resistant wall protection units until building is enclosed and weatherproof, wet work is complete and dry, and HVAC system is operating and maintaining temperature at 70 deg F for not less than 72 hours before beginning installation and for the remainder of the construction period.

PART 2 - PRODUCTS

2.01 MATERIALS
A. Stainless-Steel Sheet: ASTM A 240/A 240M.
B. Fasteners: Aluminum, nonmagnetic stainless-steel, or other noncorrosive metal screws, bolts, and other fasteners compatible with items being fastened. Use security-type fasteners where exposed to view.

2.02 CORNER GUARDS
A. Surface-Mounted, Metal Corner Guards - CG1: Fabricated from one-piece, formed metal with formed edges; with 90-degree turn to match wall condition.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Balco, Inc.
 b. Construction Specialties, Inc.
 c. IPC Door and Wall Protection Systems; Division of InPro Corporation.
 2. Basis-of-Design Product: Subject to compliance with requirements, provide Acrovyn; CO Series or comparable product by one of the following:
 a. Balco, Inc.
 b. Construction Specialties, Inc.
 c. IPC Door and Wall Protection Systems; Division of InPro Corporation.
 3. Material: Stainless steel, Type 304.
 a. Thickness: Minimum 0.0625 inch.
 b. Finish: Directional satin, No. 4.
 4. Wing Size: Nominal 3-1/2 by 3-1/2 inches.
B. Flush-Mounted, Resilient, Plastic Corner Guards - CG2: Assembly consisting of snap-on plastic cover that is flush with adjacent wall surface, installed over continuous retainer; including mounting hardware; fabricated with 90- or 135-degree turn to match wall condition; full wall height.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Basis-of-Design Product: Subject to compliance with requirements, provide Acrovyn; FS-20N or comparable product by one of the following:
 a. Acrovyn, a Construction Specialties company.

TreanorHL
ST7028.1901.00
b. Arden
c. InPro
d. Balco
e. Pawling

3. Cover: Extruded rigid plastic, minimum 0.078-inch wall thickness; as follows:
 a. Profile: Nominal 2-inch-long leg and 1/4-inch corner radius.
 b. Height: As indicated on drawings.
 c. Color and Texture: As selected by Architect from manufacturer's full range.

4. Retainer Clips: Manufacturer's standard impact-absorbing clips.

C. Surface-Mounted, Metal End Wall Guards – CG3: Fabricated from one-piece, formed metal with
 formed edges; with 90-degree turn to match wall condition.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited to,
 the following:
 2. Basis-of-Design Product: Subject to compliance with requirements, provide Acrovyn;
 SCO Series or comparable product by one of the following:
 a. Balco, Inc.
 b. Construction Specialties, Inc.
 c. IPC Door and Wall Protection Systems; Division of InPro Corporation.
 3. Material: Stainless steel, Type 304.
 a. Thickness: Minimum 0.0625 inch.
 b. Finish: Directional satin, No. 4.
 4. Wing Size: Nominal 3-1/2 standard legs for end wall conditions.

2.03 FABRICATION
 A. Fabricate impact-resistant wall protection units to comply with requirements indicated for
 design, dimensions, and member sizes, including thicknesses of components.
 B. Fabricate components with tight seams and joints with exposed edges rolled. Provide surfaces
 free of wrinkles, chips, dents, uneven coloration, and other imperfections. Fabricate members
 and fittings to produce flush, smooth, and rigid hairline joints.

2.04 METAL FINISHES
 A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for
 recommendations for applying and designating finishes.
 1. Remove tool and die marks and stretch lines, or blend into finish.
 2. Grind and polish surfaces to produce uniform finish, free of cross scratches.
 3. Run grain of directional finishes with long dimension of each piece.
 4. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign
 matter and leave surfaces chemically clean.
 B. Protect finishes on exposed surfaces from damage by applying a strippable, temporary
 protective covering before shipping.

PART 3 - EXECUTION

3.01 EXAMINATION
 A. Examine substrates and wall areas, with Installer present, for compliance with requirements for
 installation tolerances, fire rating, and other conditions affecting performance of work.
 B. Examine walls to which impact-resistant wall protection will be attached for blocking, grounds,
 and other solid backing that have been installed in the locations required for secure attachment
 of support fasteners.
1. For impact-resistant wall protection units attached with adhesive or foam tape, verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION
A. Complete finishing operations, including painting, before installing impact-resistant wall protection system components.
B. Before installation, clean substrate to remove dust, debris, and loose particles.

3.03 INSTALLATION
A. General: Install impact-resistant wall protection units level, plumb, and true to line without distortions. Do not use materials with chips, cracks, voids, stains, or other defects that might be visible in the finished Work.

1. Provide splices, mounting hardware, anchors, and other accessories required for a complete installation.
 a. Provide anchoring devices to withstand imposed loads.
 b. Adjust top caps as required to ensure tight seams.

3.04 CLEANING
A. Immediately after completion of installation, clean plastic covers and accessories using a standard, ammonia-based, household cleaning agent.
B. Remove excess adhesive using methods and materials recommended in writing by manufacturer.

END OF SECTION 10 2600
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 10 4413
FIRE PROTECTION CABINETS

PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes:
 1. Fire-protection cabinets for the following:
 a. Portable fire extinguishers.
B. Related Requirements:
 1. Section 10 44 16 "Fire Extinguishers."

1.02 ACTION SUBMITTALS
A. Product Data: For each type of product. Show door hardware, cabinet type, trim style, and panel style. Include roughing-in dimensions and details showing recessed-, semi-recessed-, or surface-mounting method and relationships of box and trim to surrounding construction.
B. Shop Drawings: For fire-protection cabinets. Include plans, elevations, sections, details, and attachments to other work.

1.03 COORDINATION
A. Coordinate size of fire-protection cabinets to ensure that type and capacity of fire extinguishers indicated are accommodated.
B. Coordinate sizes and locations of fire-protection cabinets with wall depths.

PART 2 - PRODUCTS

2.01 FIRE-PROTECTION CABINET (FEC)
A. Cabinet Type: Suitable for fire extinguisher.
 1. Products: Subject to compliance with requirements,
 a. J.L. Industries, Inc., a division of Activar Construction Products Group; Ambassador Series (Basis-of-Design)
 b. Larsen's Manufacturing Company
 c. Potter Roemer LLC
B. Cabinet Construction: Nonrated.
C. Cabinet Material: Cold-rolled steel sheet.
D. Semi-recessed Cabinet: One-piece combination trim and perimeter door frame overlapping surrounding wall surface with exposed trim face and wall return at outer edge (backbend).
 1. Rolled-Edge Trim: 2-1/2-inch backbend depth.
E. Cabinet Trim Material: Steel sheet.
F. Door Material: Steel sheet.
G. Door Style: Fully glazed, frameless, backless, acrylic panel.
H. Door Glazing: Acrylic sheet.
 1. Acrylic Sheet Color: Clear transparent acrylic sheet.
I. Door Hardware: Manufacturer's standard door-operating hardware of proper type for cabinet type, trim style, and door material and style indicated.
 1. Provide projecting door pull and friction latch.
 2. Provide continuous hinge, of same material and finish as trim, permitting door to open 180 degrees.
J. Materials:
 1. Cold-Rolled Steel: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B.
 a. Finish: Baked enamel or powder coat.
 b. Color: As selected by Architect from full range of industry colors and color densities.
 2. Transparent Acrylic Sheet: ASTM D 4802, Category A-1 (cell-cast sheet), 3 mm thick, with Finish 1 (smooth or polished).

2.02 FABRICATION
A. Fire-Protection Cabinets: Provide manufacturer's standard box (tub) with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated.
 1. Weld joints and grind smooth.
 2. Provide factory-drilled mounting holes.
B. Cabinet Doors: Fabricate doors according to manufacturer's standards, from materials indicated and coordinated with cabinet types and trim styles.
1. Fabricate door frames with tubular stiles and rails and hollow-metal design, minimum 1/2 inch thick.
2. Miter and weld perimeter door frames.
C. Cabinet Trim: Fabricate cabinet trim in one piece with corners mitered, welded, and ground smooth.

2.03 GENERAL FINISH REQUIREMENTS
B. Protect mechanical finishes on exposed surfaces of fire-protection cabinets from damage by applying a strippable, temporary protective covering before shipping.
C. Finish fire-protection cabinets after assembly.
D. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION
3.01 EXAMINATION
A. Examine walls and partitions for suitable framing depth and blocking where semi-recessed cabinets will be installed.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION
A. Prepare recesses for semi-recessed fire-protection cabinets as required by type and size of cabinet and trim style.

3.03 INSTALLATION
A. General: Install fire-protection cabinets in locations and at mounting heights indicated or, if not indicated, at heights acceptable to authorities having jurisdiction.
B. Fire-Protection Cabinets: Fasten cabinets to structure, square and plumb.

3.04 ADJUSTING AND CLEANING
A. Remove temporary protective coverings and strippable films, if any, as fire-protection cabinets are installed unless otherwise indicated in manufacturer's written installation instructions.
B. Adjust fire-protection cabinet doors to operate easily without binding. Verify that integral locking devices operate properly.
C. On completion of fire-protection cabinet installation, clean interior and exterior surfaces as recommended by manufacturer.
D. Touch up marred finishes or replace fire-protection cabinets that cannot be restored to factory-finished appearance. Use only materials and procedures recommended or furnished by fire-protection cabinet and mounting bracket manufacturers.
E. Replace fire-protection cabinets that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 10 4413
SECTION 11 5313
LABORATORY FUME HOODS

PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes:
1. Bench-top laboratory fume hoods.
2. Piping and wiring within fume hoods for service fittings, light fixtures, fan switches, and other electrical devices included with fume hoods.
3. Fume hood base cabinets.
4. Work tops within fume hoods.
5. Laboratory sinks and cup sinks in fume hoods.

B. Related Requirements:
1. Section 06 1053 "Miscellaneous Rough Carpentry" for wood blocking for anchoring fume hoods.
2. Section 09 2216 "Non-Structural Metal Framing" for reinforcements in metal-framed partitions for anchoring fume hoods.
3. Section 09 6513 "Resilient Base and Accessories" for resilient base applied to fume hood base cabinets.
4. Section 12 3553.13 “Metal Laboratory Casework” for base cabinets beneath fume hoods.
5. Section 23 0593 "Testing, Adjusting, and Balancing for HVAC" for field quality-control testing of fume hoods.
6. Section 23 0900 "Instrumentation and Control for HVAC" for VAV controls for fume hood exhaust.

1.02 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.03 COORDINATION
A. Coordinate layout and installation of framing and reinforcements for lateral support of fume hoods.
B. Coordinate installation of fume hoods with laboratory casework and other laboratory equipment.

1.04 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: For laboratory fume hoods.
1. Include plans, elevations, sections, and attachment details.
2. Indicate details for anchoring fume hoods to permanent building construction including locations of blocking and other supports.
3. Indicate locations and types of service fittings together with associated service supply connection required.
4. Indicate duct connections, electrical connections, and locations of access panels.
5. Include roughing-in information for mechanical, plumbing, and electrical connections.
6. Show adjacent walls, doors, windows, other building components, laboratory casework, and other laboratory equipment. Indicate clearances from the above items.
7. Include layout of fume hoods in relation to lighting fixtures and air-conditioning registers and grilles.
8. Include coordinated dimensions for laboratory equipment specified in other Sections.
C. Samples: For fume hood exterior finishes, interior lining, and epoxy work tops.

1.05 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish complete touchup kit for each type and color of fume hood finish provided. Include fillers, primers, paints, and other materials necessary to perform permanent repairs to damaged fume hood finish.

1.06 DELIVERY, STORAGE, AND HANDLING
A. Protect finished surfaces during handling and installation with protective covering of polyethylene film or another suitable material.
1.07 FIELD CONDITIONS
A. Environmental Limitations: Do not deliver or install fume hoods until building is enclosed, wet work and utility roughing-in are complete, and HVAC system is operating and maintaining temperature and relative humidity at occupancy levels during the remainder of the construction period.
B. Locate concealed framing, blocking, and reinforcements that support fume hoods by field measurements before being enclosed, and indicate measurements on Shop Drawings.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. Fume Hoods with VAV Control and Steel Exterior:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Basis-of-Design Product: Subject to compliance with requirements, provide Kewaunee; H05 Supreme Air Fume Hood or comparable product by one of the following:
 a. Mott Manufacturing Ltd.
 b. Bedcolab
 c. Labconco
 B. Source Limitations: Obtain laboratory fume hoods from single manufacturer.
 1. Obtain laboratory fume hoods from same source from same manufacturer as laboratory casework.
 C. Product Designations: Drawings indicate sizes, types, and configurations of fume hoods by referencing designated manufacturer's catalog numbers. Other manufacturers' fume hoods of similar sizes, types, and configurations, and complying with the Specifications, may be considered. See Section 016000 "Product Requirements."

2.02 PERFORMANCE REQUIREMENTS
A. Containment: Provide fume hoods that comply with the following when tested according to ASHRAE 110:
 1. As-Manufactured (AM) Rating: AM 0.01 (0.01 ppm).
 2. As-Installed (AI) Rating: AI 0.10 (0.10 ppm).
 3. Average Face Velocity: 100 fpm plus or minus 10 percent with sashes @ 18” open.
 4. Face-Velocity Variation: Not more than 10 percent of average face velocity across the face opening with sashes fully open.
 5. Sash Position: 18” open.
 6. Release Rate: 4.0 L/min.

2.03 FUME HOODS
A. Product Standards: Comply with SEFA 1, "Laboratory Fume Hoods - Recommended Practices.” Provide fume hoods UL listed and labeled for compliance with UL 1805.
B. Restricted-Bypass Fume Hoods: Provide restricted-bypass fume hoods. Partial compensating bypass above the sash opens after sash is closed to less than 20 percent open. Design partial bypass to maintain exhaust capacity of at least 25 cfm per sq. ft. of work surface regardless of sash position.
C. VAV Control: Equip fume hoods with an electronic control unit with a sensing device that monitors face velocity, and a motorized damper on the exhaust connection that maintains a constant face velocity by controlling air volume in response to control unit. Equip units with manual override switch that opens motorized damper to provide maximum exhaust capacity regardless of sash position.
 1. Provide output transmitter on electronic control unit that produces zero- to 10-V dc signal proportional to fume hood exhaust volume for interface with building's HVAC control system.
 2. Provide electronic control unit that also monitors sash position and anticipates changes in face velocity caused by abrupt changes in sash position.

2.04 MATERIALS
A. Steel Sheet: Cold-rolled, commercial steel (CS) sheet, complying with ASTM A 1008/A 1008M; matte finish; suitable for exposed applications.
B. Glass-Fiber-Reinforced Polyester: Polyester laminate with a chemical-resistant gel coat on exposed faces and having a flame-spread index of 25 or less according to ASTM E 84.
C. Glass: Clear, laminated tempered glass complying with ASTM C 1172, Kind LT, Condition A, Type I, Class I, Quality-Q3; with two plies not less than 3.0 mm thick and with clear, polyvinyl butyral interlayer.
 1. Ultraclear Glass: Glass plies each have visible light transmission not less than 91 percent.
 3. Permanently mark safety glass with certification label of the manufacturer. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Fasteners: Provide stainless-steel fasteners where exposed to fumes.

2.05 FABRICATION

A. General: Assemble fume hoods in factory to greatest extent possible. Disassemble fume hoods only as necessary for shipping and handling limitations. Fume hoods shall be capable of being partly disassembled as necessary to permit movement through a 35-by-79-inch door opening.

B. Steel Exterior: Fabricate from steel sheet, 0.048 inch thick, with component parts screwed together to allow removal of end panels, front fascia, and airfoil and to allow access to plumbing lines and service fittings. Apply chemical-resistant finish to interior and exterior surfaces of component parts before assembly.

C. Ends: Fabricate with double-wall end panels without projecting corner posts or other obstructions to interfere with smooth, even airflow. Close area between double walls at front of fume hood and as needed to house sash counterbalance weights, utility lines, and remote-control valves.

D. Splay top and sides of face opening to provide an aerodynamic shape to ensure smooth, even flow of air into fume hood.

E. Interior Lining: Provide the following unless otherwise indicated:
 1. Glass-fiber-reinforced polyester, not less than 3/16 inch thick.

F. Lining Assembly: Unless otherwise indicated, assemble with stainless-steel fasteners or epoxy adhesive, concealed where possible. Seal joints by filling with chemical-resistant sealant during assembly.
 1. Fasten lining components to a rigid frame assembly fabricated from stainless steel and to which exterior panels are attached.
 2. Punch fume hood lining side panels to receive service fittings and remote controls. Provide removable plug buttons for holes not used for indicated fittings.

G. Molded Glass-Fiber-Reinforced Polyester Lining: Molded unit consisting of end panels, back panel, preset rear baffle, and top bonded together into a single piece; reinforced to form a rigid assembly to which exterior is attached.
 1. Punch fume hood lining side panels to receive service fittings and remote controls. Provide removable plugs for holes not used for indicated fittings.

H. Stainless-Steel Lining Assembly: Welded unit consisting of end panels, back panel, top, and work top; reinforced to form a rigid assembly to which exterior is attached.

I. Exhaust Plenum: Full width of fume hood and with adequate volume to provide uniform airflow from hood, of same material as hood lining, and with duct stub for exhaust connection.
 1. Duct-Stub Material: 316 stainless steel with chemical-resistant finish.

J. Sashes: Provide operable sashes of type indicated.
 1. Fabricate from 0.048-inch-thick steel sheet, with chemical-resistant finish. Form into four-sided frame with bottom corners welded and finished smooth. Make top member removable for glazing replacement. Set glazing in chemical-resistant, U-shaped gaskets.
 2. Glaze with laminated safety glass.
 3. Glaze with 0.236-inch-thick polycarbonate glazing.
 4. Counterbalance vertical-sliding sash with sash weight and stainless-steel cable system to hold sash in place regardless of position. Provide ball-bearing sheaves, plastic glides in stainless-steel guides, and stainless-steel lift handles. Provide rubber bumpers at top and bottom of each sash unit.
5. Fabricate sashes from 0.236-inch-thick, unframed polycarbonate sliding in polypropylene tracks. Counterbalance sashes with PVC-encased weights hung from polypropylene ropes that run over polypropylene pulleys.

K. Airfoil: Unless otherwise indicated, provide airfoil at bottom of fume hood face opening with 1-inch space between airfoil and work top. Sash closes on top of airfoil, leaving 1-inch opening for air intake. Airfoil directs airflow across work top to remove heavier-than-air gases and to prevent reverse airflow.
 1. Fabricate airfoil from 316 stainless steel.

L. Light Fixtures: Provide vaporproof, two-tube, rapid-start, fluorescent light fixtures, of longest practicable length; complete with tubes at each fume hood. Shield tubes from hood interior with 1/4-inch-thick laminated glass or 3-mm-thick tempered glass, sealed into hood with chemical-resistant rubber gaskets. Provide units with fluorescent tubes easily replaceable from outside of fume hood.
 1. Provide fluorescent tubes with color temperature of 3500 K and minimum color-rendering index of 85.

M. Filler Strips: Provide as needed to close spaces between fume hoods or fume hood base cabinets and adjacent building construction. Fabricate from same material and with same finish as fume hoods or fume hood base cabinets, as applicable.

N. Ceiling Extensions: Provide filler panels matching fume hood exterior to enclose space above fume hoods at front and sides of fume hoods and extending from tops of fume hoods to ceiling.

O. Finished Back Panels: Where rear surfaces of fume hoods are exposed to view, provide finished back panels matching rest of fume hood enclosure.

P. Comply with requirements in other Sections for installing water and laboratory gas service fittings, piping, electrical devices, and wiring. Install according to Shop Drawings. Securely anchor fittings, piping, and conduit to fume hoods unless otherwise indicated.

2.06 FUME HOOD BASE CABINETS, WORK TOPS, and SERVICE FITTINGS
A. Comply with Provide metal base cabinets in finish matching fume hood exterior finish.
B. Work Tops: Epoxy.
 1. Work-Top Configuration: Raised (marine) edge with beveled edge and corners.
 2. Where acid storage cabinets are indicated beneath fume hoods, provide holes in work tops as need to accommodate cabinet vents.
 3. Where epoxy sinks occur in epoxy work tops, provide integral sinks bonded to tops with invisible joint line.
C. Cup Sinks: Epoxy, 3-by-6-inch oval.

2.07 CHEMICAL-RESISTANT FINISH
A. General: Prepare, treat, and finish welded assemblies after welding. Prepare, treat, and finish components that are to be assembled with mechanical fasteners before assembling. Prepare, treat, and finish concealed surfaces same as exposed surfaces.
B. Preparation: Clean steel surfaces, other than stainless steel, of mill scale, rust, oil, and other contaminants. After cleaning, apply a conversion coating suited to the organic coating to be applied over it.
C. Chemical-Resistant Finish: Immediately after cleaning and pretreating, apply fume hood manufacturer's standard two-coat, chemical-resistant, baked-on finish consisting of prime coat and thermosetting topcoat. Comply with coating manufacturer's written instructions for applying and baking to achieve a minimum dry film thickness of 2 mils.
 1. Chemical and Physical Resistance of Finish System: Finish complies with acceptance levels of cabinet surface finish tests in SEFA 8M. Acceptance level for chemical spot test shall be no more than four Level 3 conditions.
 2. Colors for Fume Hood Finish: As selected by Architect from manufacturer's full range.

2.08 ACCESSORIES
A. Airflow Indicator and Alarm: Provide each fume hood with manufacturer's standard airflow indicator with audible and visual alarm that activates when airflow sensor reading is outside of preset range.
B. Airflow Alarm: Provide fume hoods with audible and visual alarm that activates when airflow sensor reading is outside of preset range.
 1. Provide with thermal-anemometer airflow sensor.
2. Provide with reset and test switches.
3. Provide with switch that silences audible alarm and automatically resets when airflow returns to within preset range.
C. Sash Lock: Provide fume hoods with sash locks to limit hood opening 18" above closed position. Sash locks can be manually released to open sash fully for cleaning fume hood and for placing large apparatus within fume hood. Locks to be provided with alarms with manual override. Alarm to sound again after 4 minutes of override.
D. Presence Sensor: Provide fume hoods with presence sensor mounted on the front of the hood to reduce airflow from 100 fpm to 60 fpm when no one is standing within 2 feet of the hood.
E. Control Integration: Fume hood alarms, sensors, and controls shall be integral to the lab HVAC control system.

PART 3 - EXECUTION
3.01 EXAMINATION
A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of fume hoods.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION
A. General: Install fume hoods according to manufacturer's written instructions. Install level, plumb, and true; shim as required, using concealed shims, and securely anchor to building and adjacent laboratory casework. Securely attach access panels but provide for easy removal and secure reattachment. Where fume hoods abut other finished work, apply filler strips and scribe for accurate fit, with fasteners concealed where practical.
B. Comply with requirements in Section 12 35 53.13 "Metal Laboratory Casework" for installing fume hood base cabinets, work tops, and sinks.
C. Comply with requirements for installing water and laboratory gas service fittings and electrical devices.
1. Install fittings according to Shop Drawings, installation requirements in SEFA 2.3, and manufacturer's written instructions. Set bases and flanges of sink and work top-mounted fittings in sealant recommended by manufacturer of sink or work-top material. Securely anchor fittings to fume hoods unless otherwise indicated.

3.03 ADJUSTING AND CLEANING
A. Adjust moving parts for smooth, near silent, accurate sash operation with one hand. Adjust sashes for uniform contact of rubber bumpers. Verify that counterbalances operate without interference.
B. Clean finished surfaces, including both sides of glass; touch up as required; and remove or refinish damaged or soiled areas to match original factory finish, as approved by Architect.

END OF SECTION 11 5313
SECTION 11 6000 - LABORATORY EQUIPMENT

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. The laboratory equipment suppliers are to comply with the requirements of this section for laboratory equipment and related components and accessories for “Laboratory Equipment”. This Section includes reference to the following items indicated herein or in the construction documents:
 1. Provide everything necessary for, and incidental to, the complete installation of laboratory equipment as specified herein. Items included are:
 a. Laminar Flow Hood
B. Related Requirements:
 1. Section 22 4000 “Plumbing Fixtures” for faucets and connections.
 2. Section 26 0000 for electrical connections

1.03 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.04 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Indicate locations and types of services, together with associated service requirements and supply connections.
 2. Show adjacent walls, doors, windows, other building components, laboratory casework, fume hoods, environmental rooms and other laboratory equipment. Indicate clearances from above items.
B. Shop Drawings: Submit shop drawing that show, in large scale, methods of construction, joining, dimensions, materials, thicknesses, and finish of materials, installation, and relation to adjoining work, and all other details to fully illustrate the scope of work.

1.05 INFORMATIONAL SUBMITTALS
A. Qualification Data: For manufacturer.
B. Product Test Reports for Equipment: Based on evaluation of comprehensive tests performed by a qualified testing agency, indicating compliance of laboratory equipment with requirements of specified product standard and system structural performance specified in "Performance Requirements” Article.

1.06 QUALITY ASSURANCE
A. Manufacturers Qualifications: Manufacturers shall have an established organization and production facilities specializing in producing the type of equipment specified, with an experienced engineering department. Each shall have the demonstrated ability and capacity to produce and deliver the specified equipment within the required time limits.
B. Any deviations from the Drawings or Specifications, including requests for approval of proposed equals, must be listed in detail. List of deviations shall be submitted along with the Bidder’s proposal.
C. Installer Qualifications:
 1. Experience: Installer is to have a minimum of seven (7) years of experience installing laboratory equipment and who has completed a minimum of ten (10) successful installations of products as specified which are similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance within the past five years.
2. Supervisor/foreman: Maintain a full-time supervisor/foreman on job site during times that laboratory equipment installation is in progress, who has a minimum of five (5) years of experience with the installation of laboratory equipment systems of which three (3) years as a full-time foreman.

D. Laminar Flow Hood Quality Assurance: The manufacturer maintains a testing facility at their place of business for the performance testing of horizontal clean benches. Both clean bench and installation are in conformance to good construction practice and approved by the owner/user. The test facility as well as the manufacturing facility must be available for owner/user inspection and its quality control procedures.

1.07 STANDARDS AND PERFORMANCE REQUIREMENTS:
A. Laminar Flow Hoods shall conform to the following standards:
 1. UL -- Standard 61010-1 Electrical Equipment for Laboratory Use; Part 1: General Requirements; Underwriters Laboratories Inc.

B. Laminar Flow Hoods shall conform to the performance requirements:
 1. ISO/DIS Standard 14644-1 and 2 Class 5 conditions: Less than 3520 particles 0.5 µm or larger per cubic meter of air (formerly Class 100) in the work area of the clean bench.

1.08 DELIVERY, STORAGE, AND HANDLING
A. Protect finished surfaces during handling and installation with protective covering of polyethylene film or other suitable material.

B. Deliver laboratory equipment after painting, utility roughing-in, and similar operations that could damage, soil, or deteriorate equipment has been completed in installation areas. If equipment must be stored in non-installation areas, store only where environmental conditions meet requirements specified in Project Conditions section below.

C. Protect finished surfaces of room and of equipment from soiling and damage during handling and installation.

1.09 FIELD CONDITIONS
A. Locate concealed framing, blocking, and reinforcements that support equipment by field measurements before being enclosed, and indicate measurements on Shop Drawings.

B. Environmental Limitations: Do not deliver or install laboratory equipment until building is enclosed, utility roughing-in and wet work are complete and dry, and temporary HVAC system is operating and maintaining temperature and relative humidity at occupancy levels during the remainder of the construction period.

1.10 WARRANTY
A. All equipment furnished under this section shall be guaranteed with the maximum industry warranty against defective materials, design and workmanship—warranty shall be made to the benefit of the owner.

1.11 MAINTENANCE
A. Furnish maintenance and call back service for a period of 60 months for each type of laboratory equipment after completion of installation or acceptance thereof by beneficial use, whichever is earlier, during normal working hours excluding callbacks.

 1. Service shall consist of periodic examination of the equipment, adjustment, lubrication, cleaning, supplies and parts to keep the equipment in proper operation. Maintenance work, including emergency call back repair service, shall be performed by trained employees of the elevator contractor during regular working hours.

PART 2 - PRODUCTS
2.01 EQUIPMENT ITEMS – GENERAL REQUIREMENTS
A. Furnish and install equipment as indicated and identified on the drawings by the manufacturers and in the models, sizes and with the qualities shown. Provide each with the manufacturer's standard features and accessories as well as any other accessories, options or special configurations shown on the drawings or elsewhere in the specifications. For recessed or
freestanding equipment, provide trim panels to close opening between equipment and adjacent walls, floors and ceilings.

B. Refer to “Laboratory Equipment Schedule” for additional information on building supplied services and special requirements.

2.02 LAMINAR FLOW HOOD

A. Description: Bench mounted [Horizontal] [Vertical] clean bench, with telescoping base stand, providing direct HEPA-filtered air [Horizontally] [Vertically] over the work area to provide ISO Class 5 (formerly Class 100) conditions and protect work from particulate contamination.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Purifier¨ Horizontal Clean Benches as manufactured by Labconco Corporation, or comparable product by one of the following:
 a. Baker
 b. NuAire
 c. TerraUniversal

2. Construction
 a. Size: 8 foot model with interior dimensions 98.0” wide x 26.0” deep x 30.5” high.
 b. Exterior walls constructed of commercial-quality, 18 gauge, cold-rolled, carbon-steel sheet, roller-leveled to stretcher-leveled flatness.
 c. Interior walls shall be ¼” thick tempered safety glass side panels with utility ports.
 d. Exterior paint finish is a baked on, dry powder, electrostatic applied epoxy resin in glacier white.
 e. Work surface is Type 304 brushed stainless steel.
 f. Liner, HEPA filter diffuser, and internal ductwork is constructed of 18 gauge, cold-rolled, painted steel sheet.
 g. Supply filter is a HEPA filter with a minimum of 99.99% efficiency on all particles 0.3µm in size. HEPA filters are industry-standard size.
 h. Roughing prefilters is an industry standard size and traps large particles to prolong HEPA filter life. (4 each on 8’ models).

3. Features
 a. Horizontal clean bench includes a double-gasket, negative pressure HEPA filter seal. The primary gasket seals the upstream side of the filter. The secondary gasket seals the downstream side of the filter frame. The area between is maintained under negative pressure so that should a leak occur at the primary HEPA filter gasket, the contaminated air is immediately recaptured and re-filtered.
 b. Horizontal clean bench is serviceable from the front of the enclosure. Parts may easily be replaced by using quick disconnects. 2.04.03 The Minihelic¨ II pressure gauge is mounted on the front wall of the exterior for easy visibility and is connected to a positive pressure duct.
 c. Angled side panels slope approximately 10 degrees and have no visibility-interfering protrusions.
 d. Nominal velocity is 100 ± 10 fpm.
 e. Sound level is 67 dbA or less when measured.

4. Power and Utilities
 a. Front-mounted light and blower switches.
 b. Fluorescent lighting provides 60 foot-candles on work surface.
 c. Electrical service of 115 volts 60 Hz and bear the ETL Testing Laboratories seal demonstrating compliance with UL 61010-1 and CAN/CSA C22.2 No. 1010.1.
 d. Two ½ hp variable speed motor blowers with isolation pads for low vibration.
 e. Motor mounting system is a permanent part of the motor housing.
5. Base Stand
 a. Adjustable height base stand with telescoping legs, epoxy-coated tubular steel frame and ADA compliant. The stand is adjustable for working heights between 27.5” and 33” inches in 1” increments. Stand includes four fixed leveling feet.

PART 3 - EXECUTION

3.01 EXAMINATION
 A. Examine areas, with Installer present, for compliance with requirements for installation tolerances, location of reinforcements, and other conditions affecting performance of the Work.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION OF EQUIPMENT
 A. Uncrate all equipment and place in locations shown. Remove all crating materials and packing debris.
 B. Install all items in accordance with manufacturer’s instructions. Provide all accessories necessary for a complete installation.
 C. Verify plumbing, ventilation and electrical connection requirements for all equipment with manufacturer’s specifications and options for Contractor-furnished items and with Owner for Owner-furnished items and coordinate connections with Division-22, 23 and 26 work.
 D. Furnish instruction manuals for all Contractor-furnished equipment to the Owner.

3.03 DEMONSTRATION
 A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain laboratory equipment.

3.04 CLEANING AND PROTECTING
 A. Repair or remove and replace defective work as directed upon completion of installation.
 B. Clean shop-finished surfaces, touch-up as required, and remove or refinish damaged or soiled areas, as acceptable to Architect.
 C. Protection: Advise Contractor of procedures and precautions for protection of equipment from damage by work of other trades.

END OF SECTION 11 6000
SECTION 12 2113
HORIZONTAL LOUVER BLINDS

PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes:
 1. Horizontal louver blinds with aluminum slats.

1.02 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: Show fabrication and installation details for horizontal louver blinds.
C. Samples for Verification: For each type and color of horizontal louver blind indicated.
 1. Slat: Not less than 12 inches long.
D. Window-Treatment Schedule: For horizontal louver blinds. Use same designations indicated on Drawings.

1.03 CLOSEOUT SUBMITTALS
A. Maintenance Data: For horizontal louver blinds to include in maintenance manuals.

1.04 DELIVERY, STORAGE, AND HANDLING
A. Deliver horizontal louver blinds in factory packages, marked with manufacturer, product name, and location of installation using same designations indicated on Drawings.

1.05 FIELD CONDITIONS
A. Environmental Limitations: Do not install horizontal louver blinds until construction and wet and finish work in spaces, including painting, is complete and dry and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.
B. Field Measurements: Where horizontal louver blinds are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication and indicate measurements on Shop Drawings. Allow clearances for operating hardware of operable glazed units through entire operating range. Notify Architect of installation conditions that vary from Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. Source Limitations: Obtain horizontal louver blinds from single source from single manufacturer.

2.02 HORIZONTAL LOUVER BLINDS, ALUMINUM SLATS
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Levolor Contract; a Newell Rubbermaid company (Basis-of-Design)
B. Slats: Aluminum; alloy and temper recommended by producer for type of use and finish indicated; with crowned profile and radius corners.
 1. Width: 1 inch.
 2. Thickness: Manufacturer's standard.
 3. Spacing: Manufacturer's standard.
C. Headrail: Formed steel or extruded aluminum; long edges returned or rolled. Headrails fully enclose operating mechanisms on three sides.
 1. Capacity: One blind per headrail unless otherwise indicated.
 2. Ends: Manufacturer's standard.
 3. Manual Lift Mechanism:
 a. Lift-Cord Lock: Variable; stops lift cord at user-selected position within blind full operating range.
 b. Operator: Extension of lift cord(s) through lift-cord lock mechanism to form cord pull.
 a. Tilt: Full.
7. Integrated Headrail/Valance: Curved face.

D. Bottom Rail: Formed-steel or extruded-aluminum tube that secures and protects ends of ladders and lift cords and has plastic- or metal-capped ends.
 1. Type: Manufacturer's standard.

E. Lift Cords: Manufacturer's standard braided cord.

F. Ladders: Evenly spaced across headrail at spacing that prevents long-term slat sag.
 1. Type: Braided cord.

G. Valance: Manufacturer's standard.

H. Mounting Brackets: With spacers and shims required for blind placement and alignment indicated.
 1. Type: Overhead.
 2. Intermediate Support: Provide intermediate support brackets to produce support spacing recommended by blind manufacturer for weight and size of blind.

I. Colors, Textures, Patterns, and Gloss:
 1. Slats: As selected by Architect from manufacturer's full range.
 2. Components: Provide rails, cords, ladders, and materials exposed to view matching or coordinating with slat color unless otherwise indicated.

2.03 HORIZONTAL LOUVER BLIND FABRICATION
A. Product Safety Standard: Fabricate horizontal louver blinds to comply with WCMA A 100.1 including requirements for corded, flexible, looped devices; lead content of components; and warning labels.
B. Unit Sizes: Fabricate units in sizes to fill window and other openings as follows, measured at 74 deg F:
 1. Between (Inside) Jamb Installation: Width equal to jamb-to-jamb dimension of opening in which blind is installed less 1/4 inch per side or 1/2 inch total, plus or minus 1/8 inch. Length equal to head-to-sill dimension of opening in which blind is installed less 1/4 inch, plus or minus 1/8 inch.
 2. Outside of Jamb Installation: Width and length as indicated, with terminations between blinds of end-to-end installations at centerlines of mullion or other defined vertical separations between openings.
C. Concealed Components: Noncorrodible or corrosion-resistant-coated materials.
D. Mounting and Intermediate Brackets: Designed for removal and reinstallation of blind without damaging blind and adjacent surfaces, for supporting blind components, and for bracket positions and blind placement indicated.
E. Installation Fasteners: No fewer than two fasteners per bracket, fabricated from metal noncorrosive to brackets and adjoining construction; type designed for securing to supporting substrate; and supporting blinds and accessories under conditions of normal use.
F. Color-Coated Finish:
 1. Metal: For components exposed to view, apply manufacturer's standard baked finish complying with manufacturer's written instructions for surface preparation including pretreatment, application, baking, and minimum dry film thickness.

PART 3 - EXECUTION
3.01 EXAMINATION
A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, operational clearances, and other conditions affecting performance.
 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION
A. Install horizontal louver blinds level and plumb, aligned and centered on openings, and aligned with adjacent units according to manufacturer's written instructions.
 1. Install mounting and intermediate brackets to prevent deflection of headrails.
2. Install with clearances that prevent interference with adjacent blinds, adjacent construction, and operating hardware of glazed openings, other window treatments, and similar building components and furnishings.

3.03 ADJUSTING
 A. Adjust horizontal louver blinds to operate free of binding or malfunction through full operating ranges.

3.04 CLEANING AND PROTECTION
 A. Clean horizontal louver blind surfaces after installation according to manufacturer's written instructions.
 B. Provide final protection and maintain conditions in a manner acceptable to manufacturer and Installer and that ensures that horizontal louver blinds are without damage or deterioration at time of Substantial Completion.
 C. Replace damaged horizontal louver blinds that cannot be repaired in a manner approved by Architect before time of Substantial Completion.

END OF SECTION 12 2113
SECTION 12 3553.13
METAL LABORATORY CASEWORK

PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes:
 1. Metal laboratory casework.
 2. Utility-space framing at backs of base cabinets.
 3. Filler and closure panels.
 4. Laboratory countertops.
 5. Tables.
 7. Laboratory sinks.
 8. Gas Cylinder Storage Cabinets
 9. Acid and Corrosive Storage Cabinets
 10. Flammable Storage Cabinets
 11. Laboratory accessories.
B. Related Requirements:
 1. Section 06 10 00 "Rough Carpentry" for wood blocking for anchoring laboratory casework.
 2. Section 09 22 16 "Non-Structural Metal Framing" for reinforcements in metal-framed partitions for anchoring laboratory casework.
 3. Section 09 65 13 "Resilient Base and Accessories" for resilient base applied to metal laboratory casework.

1.02 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.03 COORDINATION
A. Coordinate layout and installation of framing and reinforcements for support of laboratory casework.
B. Coordinate installation of laboratory casework with installation of fume hoods and other laboratory equipment.

1.04 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: For laboratory casework. Include plans, elevations, sections, and attachment details.
 1. Indicate types and sizes of cabinets.
 2. Indicate locations of hardware and keying of locks.
 3. Indicate locations and types of service fittings.
 4. Indicate locations of blocking and reinforcements required for installing laboratory casework.
 5. Include details of utility spaces showing supports for conduits and piping.
 6. Include details of support framing system.
 7. Include details of exposed conduits, if required, for service fittings.
 8. Indicate locations of and clearances from adjacent walls, doors, windows, other building components, and other laboratory equipment.
 9. Include coordinated dimensions for laboratory equipment specified in other Sections.
C. Samples for Verification: For each type of cabinet finish and each type of countertop material, in manufacturer's standard sizes.

1.05 INFORMATIONAL SUBMITTALS
A. Qualification Data: For manufacturer.
B. Product Test Reports for Casework: Based on evaluation of comprehensive tests performed by a qualified testing agency, indicating compliance of laboratory casework with requirements of specified product standard and system structural performance specified in "Performance Requirements" Article.
C. Product Test Reports for Countertop Surface Material: Based on evaluation of comprehensive tests performed by a qualified testing agency, indicating compliance of laboratory countertop surface materials with requirements specified for chemical and physical resistance.

1.06 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish complete touchup kit for each type and color of metal laboratory casework provided. Include fillers, primers, paints, and other materials necessary to perform permanent repairs to damaged laboratory casework finish.

1.07 QUALITY ASSURANCE
A. Manufacturer Qualifications: A qualified manufacturer that produces casework of types indicated for this Project that has been tested for compliance with SEFA 8 M.

1.08 DELIVERY, STORAGE, AND HANDLING
A. Protect finished surfaces during handling and installation with protective covering of polyethylene film or other suitable material.

1.09 FIELD CONDITIONS
A. Locate concealed framing, blocking, and reinforcements that support casework by field measurements before being enclosed, and indicate measurements on Shop Drawings.
B. Environmental Limitations: Do not deliver or install laboratory casework until building is enclosed, utility roughing-in and wet work are complete and dry, and temporary HVAC system is operating and maintaining temperature and relative humidity at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
B. Basis-of-Design Product: Subject to compliance with requirements, provide Kewaunee Scientific Corporation Alpha System or comparable product by one of the following:
1. Kewaunee Scientific Corporation (Basis-of-Design)
2. Mott
C. Source Limitations: Obtain laboratory casework from single source from single manufacturer unless otherwise indicated.
D. Product Designations: Drawings indicate sizes and configurations of laboratory casework by referencing designated manufacturer’s catalog numbers. Other manufacturers’ laboratory casework of similar sizes and similar door and drawer configurations and complying with Specifications may be considered. See Section 01 60 00 "Product Requirements."

2.02 PERFORMANCE REQUIREMENTS
A. System Structural Performance: Laboratory casework and support framing system shall withstand the effects of the following gravity loads and stresses without permanent deformation, excessive deflection, or binding of drawers and doors:
4. Shelves: 40 lb/sq. ft.

2.03 CASEWORK, GENERAL
A. Casework Product Standard: Comply with SEFA 8 M, "Laboratory Grade Metal Casework."
B. Flammable Liquid Storage: Where cabinets are indicated for solvent or flammable liquid storage, provide units that are listed and labeled as complying with requirements in NFPA 30 by FM Approvals.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.04 METAL CABINET AND TABLE MATERIALS
A. Metal: Cold-rolled, commercial steel (CS) sheet, complying with ASTM A 1008/A 1008M; matte finish; suitable for exposed applications.
B. Nominal Metal Thickness:
1. Sides, Ends, Fixed Backs, Bottoms, Tops, Soffits, and Items Not Otherwise Indicated: 0.048 inch. Except for flammable liquid storage cabinets, bottoms may be 0.036 inch reinforced.
2. Back Panels, Doors, Drawer Fronts and Bodies, and Shelves: 0.036 inch except 0.048 inch for back panels and doors of flammable liquid storage cabinets and for unreinforced shelves more than 36 inches long.
3. Intermediate Horizontal Rails, Table Aprons and Cross Rails, Center Posts, and Top Gussets: 0.060 inch.
4. Drawer Runners, Sink Supports, and Hinge Reinforcements: 0.075 inch.
5. Leveling and Corner Gussets: 0.105 inch.

2.05 AUXILIARY CABINET MATERIALS
A. Acid Storage-Cabinet Lining: 1/4-inch-thick, polyethylene or polypropylene.
B. Glass for Glazed Doors: Clear tempered glass complying with ASTM C 1048, Kind FT, Condition A, Type I, Class 1, Quality-Q3; not less than 5.0 mm thick.

2.06 COUNTERTOP TABLETOP, SHELF, and SINK MATERIALS
A. Chemical-Resistant Plastic Laminate:
1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
2. High-pressure decorative laminate, complying with NEMA LD 3, that has the following ratings when tested with indicated reagents according to NEMA LD 3, Test Procedure 3.4.5:
 a. No Effect: Acetic acid (98 percent), acetone, ammonium hydroxide (28 percent), amyl acetate, benzene, butyl alcohol, carbon tetrachloride, chloroform, dimethyl formamide, dioxane, ethyl acetate, ethyl alcohol, ethyl ether, formaldehyde (37 percent), gasoline, gentian violet, hydrogen peroxide (3 percent), methyl alcohol, methyl ethyl ketone, methylene chloride, mono chlorobenzene, naphthalene, toluene, trichloroethylene, xylene, and zinc chloride (saturated).
 b. Slight Effect: Cresol, tincture of iodine, sodium sulfide (15 percent).
3. Color: As selected by Architect from chemical-resistant, plastic-laminate manufacturer's full range
4. Core Materials for Plastic Laminate:
 a. Certified Wood: Core materials shall be produced from wood and wood products certified as "FSC Pure" according to FSC STD-01-001, "FSC Principles and Criteria for Forest Stewardship," and to FSC STD-40-004, "FSC Standard for Chain of Custody Certification."
 b. Particleboard: ANSI A208.1, Grade M-2; made with binder containing no urea formaldehyde.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Durcon Incorporated
2. Physical Properties:
 a. Flexural Strength: Not less than 10,000 psi.
 b. Modulus of Elasticity: Not less than 2,000,000 psi.
 c. Hardness (Rockwell M): Not less than 100.
 d. Water Absorption (24 Hours): Not more than 0.02 percent.
 e. Heat Distortion Point: Not less than 260 deg F.
3. Chemical Resistance: Epoxy-resin material has the following ratings when tested with indicated reagents according to NEMA LD 3, Test Procedure 3.4.5:
 a. No Effect: Acetic acid (98 percent), acetone, ammonium hydroxide (28 percent), benzene, carbon tetrachloride, dimethyl formamide, ethyl acetate, ethyl alcohol, ethyl ether, methyl alcohol, nitric acid (70 percent), phenol, sulfuric acid (60 percent), and toluene.
 b. Slight Effect: Chromic acid (60 percent) and sodium hydroxide (50 percent).
4. Color: Match Durcon "Graphite".
2.07 METAL CABINETS AND TABLES

A. Fabrication: Assemble and finish units at point of manufacture. Use precision dies for interchangeability of like-size drawers, doors, and similar parts. Perform assembly on precision jigs to provide units that are square. Reinforce units with angles, gussets, and channels. Except where otherwise specified, integrally frame and weld cabinet bodies to form dirt- and vermin-resistant enclosures. Where applicable, reinforce base cabinets for sink support. Maintain uniform clearance around door and drawer fronts of 1/16 to 3/32 inch.

B. Cabinet Style: Flush Overlay

C. Flush Doors: Outer and inner pans that nest into box formation, with full-height channel reinforcements at center of door. Fill doors with noncombustible, sound-deadening material.

D. Glazed Doors: Hollow-metal stiles and rails of similar construction as flush doors, with glass held in resilient channels or gasket material.

E. Hinged Doors: Mortise for hinges and reinforce with angles welded inside inner pans at hinge edge.

F. Drawers: Fronts made from outer and inner pans that nest into box formation, with no raw metal edges at top. Sides, back, and bottom fabricated in one piece with rolled or formed top of sides for stiffening and comfortable grasp for drawer removal. Provide drawers with rubber bumpers, polymer roller slides, and positive stops to prevent metal-to-metal contact or accidental removal.

G. Adjustable Shelves: Front, back, and ends formed down, with edges returned horizontally at front and back to form reinforcing channels.

H. Toe Space: Fully enclosed, 4 inches high by 3 inches deep, with no open gaps or pockets.

I. Tables: Welded tubing legs, not less than 2 inches square with channel stretchers as needed to comply with product standard. Weld or bolt stretchers to legs and cross-stretchers, and bolt legs to table aprons. Provide leveling device welded to bottom of each leg.

 1. Leg Shoes: Satin-finished, stainless-steel, open-bottom, slip-on type.

J. Utility-Space Framing: Steel framing units consisting of two steel slotted channels complying with MFMA-4, not less than 1-5/8 inches square by 0.105-inch nominal thickness, that are connected at top and bottom by U-shaped brackets made from 1-1/4-by-1/4-inch steel flat bars. Framing units may be made by welding specified channel material into rectangular frames instead of using U-shaped brackets.

K. Filler and Closure Panels: Provide where indicated and as needed to close spaces between cabinets and walls, ceilings, and indicated equipment. Fabricate from same material and with same finish as cabinets and with hemmed or flanged edges unless otherwise indicated.

 1. Provide knee-space panels (modesty panels) at spaces between base cabinets, where cabinets are not installed against a wall or where space is not otherwise closed. Fabricate from back-to-back panels or of hollow construction to eliminate exposed hemmed or flanged edges.

 2. Provide utility-space closure panels at spaces between base cabinets where utility space would otherwise be exposed, including spaces below countertops.

 3. Provide closure panels at ends of utility spaces where utility space would otherwise be exposed.

2.08 METAL CABINET FINISH

A. General: Prepare, treat, and finish welded assemblies after assembling. Prepare, treat, and finish components that are to be assembled with mechanical fasteners before assembling. Prepare, treat, and finish concealed surfaces same as exposed surfaces.

B. Preparation: After assembly, clean surfaces of mill scale, rust, oil, and other contaminants. After cleaning, apply a conversion coating suited to the organic coating to be applied over it.

C. Chemical-Resistant Finish: Immediately after cleaning and pretreating, apply laboratory casework manufacturer's standard two-coat, chemical-resistant, baked-on finish consisting of prime coat and thermosetting topcoat. Comply with coating manufacturer's written instructions for applying and baking to achieve a minimum dry film thickness of 2 mils.

 1. Chemical and Physical Resistance of Finish System: Finish complies with acceptance levels of cabinet surface finish tests in SEFA 8 M. Acceptance level for chemical spot test shall be no more than four Level 3 conditions.

 2. Colors for Metal Laboratory Casework Finish: As selected by Architect from manufacturer's full range.
2.09 HARDWARE
A. General: Provide laboratory casework manufacturer’s standard, commercial-quality, heavy-duty hardware complying with requirements indicated for each type.
B. Hinges: Stainless-steel, five-knuckle hinges complying with BHMA A156.9, Grade 1, with antifriction bearings and rounded tips. Provide two for doors 48 inches high or less and three for doors more than 48 inches high.
C. Hinged Door and Drawer Pulls: Solid-aluminum, stainless-steel, or chrome-plated-brass, back-mounted pulls. Provide two pulls for drawers more than 24 inches wide.
 1. Design: As selected from manufacturer’s full range.
 2. Overall Size: As selected from manufacturer’s full range.
D. Door Catches: Nylon-roller spring catches. Provide two catches on doors more than 48 inches high.
E. Drawer Slides: Side mounted full extension, epoxy-coated steel, self-closing; designed to prevent rebound when drawers are closed; complying with BHMA A156.9, Type B05091.
 1. Provide Grade 1HD-100; for drawers not more than 6 inches high and 24 inches wide.
 2. Provide Grade 1HD-200; for drawers more than 6 inches high or 24 inches wide.
 3. Heavy Duty (Grade 1HD-100 and Grade 1HD-200): Full-overtravel-extension, ball-bearing type.
F. Locks: Cam or half-mortise type, brass with chrome-plated finish; complying with BHMA A156.11, Type E07281, Type E07261, Type E07111, or Type E07021.
 1. Provide a minimum of two keys per lock and two master keys.
 2. Provide at all doors, pairs of doors, and drawers.
 3. Keying: Key locks alike within each room; key each room separately.
 4. Master Key System: Key all locks to be operable by master key.

2.10 COUNTERTOPS, SHELVES AND SINKS
A. Countertops, General: Provide units with smooth surfaces in uniform plane, free of defects. Make exposed edges and corners straight and uniformly beveled. Provide front and end overhang of 1 inch, with continuous drip groove on underside 1/2 inch from edge.
B. Sinks, General: Provide sizes indicated or laboratory casework manufacturer’s closest standard size of equal or greater volume, as approved by Architect.
 1. Outlets: Provide with strainers and tailpieces, NPS 1-1/2, unless otherwise indicated.
 2. Overflows: Where indicated, provide overflow of standard beehive or open-top design with separate strainer. Height 2 inches less than sink depth. Provide in same material as strainer.
C. Epoxy Countertops, Tabletops, and Sinks:
 1. Countertop Fabrication: Fabricate with factory cutouts for sinks, holes for service fittings and accessories, and butt joints assembled with epoxy adhesive and concealed metal splines.
 a. Countertop Configuration: Flat, 1 inch thick, with beveled edge and corners, and with drip groove and applied backsplash.
 b. Countertop Construction: Uniform throughout full thickness.
 2. Tabletop Fabrication:
 a. Tabletop Configuration: Flat, 1 inch thick, with beveled edge and corners, and with drip groove at perimeter.
 b. Tabletop Construction: Uniform throughout full thickness.
 3. Sink Fabrication: Molded in one piece with smooth surfaces, coved corners, and bottom sloped to outlet; 1/2-inch minimum thickness.
 a. Provide with polypropylene strainers and tailpieces.
 b. Provide sinks for drop-in installation with 1/4-inch-thick lip around perimeter of sink.
 c. Provide manufacturer’s recommended adjustable support system for table- and cabinet-type installations.

2.11 OVERHEAD SERVICE CARRIERS
A. Unistrut channels supported from structure above equally spaced at 48” on center maximum
 1. Services Supported:
 a. Compressed Air
 b. Vacuum
c. Electrical and Data services as indicated on drawings

B. Cable tray system as manufactured by P/W Industries, Cope Cable Tray or equal, to be suspended from Overhead Service Carrier.

2.12 **GAS CYLINDER CABINETS**

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

B. **Basis-of-Design Product:** Matheson Model 1170 gas cylinder cabinet.

C. Product Requirements:
 1. Meets or exceeds Article 80 UFC requirements
 2. Cabinet: 12 gauge cold rolled steel
 3. Gaskets: Neoprene with oil resistant adhesive
 4. Window: 1/4” wire reinforced safety glass
 5. Paint: 2-part polyurethane; interior and exterior –light gray
 6. Cabinet Floor: Zinc-plated steel
 7. Doors: 1 and 2 cylinder cabinets – one door with left hand hinge
 8. Doors: 3 cylinder cabinet – double door with off-center post
 9. Integral Sprinkler: Fuse rating of 155°F and flow capacity of 35 GPM @ 40 psi
 10. Water Pipe Connection: 1/2” NPT Female

2.13 **ACID AND CORROSIVE STORAGE CABINETS**

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:

B. **Basis-of-Design Product:** Securall C330.

C. Product Requirements:
 1. Doors: Self-close and self latching
 2. Shelves: 1
 3. Capacity: 30 gallon
 4. Dimensions: 46” high x 43” wide x 18” deep

2.14 **FLAMMABLE STORAGE CABINETS**

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:

B. **Basis-of-Design Product:** Securall A330.

C. Product Requirements:
 1. Doors: Self-close and self latching
 2. Shelves: 1
 3. Capacity: 30 gallon
 4. Dimensions: 46” high x 43” wide x 18” deep

2.15 **LABORATORY ACCESSORIES**

A. Reagent Shelves: Provide as indicated, fabricated from same material as adjacent countertop unless otherwise indicated.

B. Drying Rack: Polypropylene, epoxy, or phenolic-composite pegboards with removable polypropylene pegs and stainless-steel drip troughs with drain outlet.
 1. Provide tubing from drain outlet to sink

C. Cylinder Restraints:
 1. USA Safety Cylinder Restraint Bracket; Model GB200FS, or equal.

D. Retaining Lip
 1. Wall mounted opening adjustable shelving units.
 a. 3/4” retaining lip at lower shelf only.

E. Three Joint Snorkel Exhaust
 1. Provide Movex model Terfu MT-1500-75 snorkel, Nederman Inc., or equal.
 2. Ceiling mounted Terfu ceiling bracket MTI or equal; coordinate with exhaust duct size and requirements.
 3. Hood type: As selected by owner from manufacturer’s full range.
PART 3 - EXECUTION

3.01 EXAMINATION
A. Examine areas, with Installer present, for compliance with requirements for installation tolerances, location of reinforcements, and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION OF CABINETS
A. Comply with installation requirements in SEFA 2.3. Install level, plumb, and true; shim as required, using concealed shims. Where laboratory casework abuts other finished work, apply filler strips and scribe for accurate fit, with fasteners concealed where practical. Do not exceed the following tolerances:
 1. Variation of Tops of Base Cabinets from Level: 1/16 inch in 10 feet.
 2. Variation of Bottoms of Upper Cabinets from Level: 1/8 inch in 10 feet.
 3. Variation of Faces of Cabinets from a True Plane: 1/8 inch in 10 feet.
 5. Variation in Alignment of Adjacent Door and Drawer Edges: 1/16 inch.
B. Base Cabinets: Fasten cabinets to utility-space framing, partition framing, wood blocking, or reinforcements in partitions, with fasteners spaced not more than 16 inches o.c. Bolt adjacent cabinets together with joints flush, tight, and uniform.
 1. Where base cabinets are installed away from walls, fasten to floor at toe space at not more than 24 inches o.c. and at sides of cabinets with not less than two fasteners per side.
C. Wall Cabinets: Fasten to hanging strips, masonry, partition framing, blocking, or reinforcements in partitions. Fasten each cabinet through back, near top, at not less than 16 inches o.c.
D. Install hardware uniformly and precisely. Set hinges snug and flat in mortises.
E. Adjust laboratory casework and hardware so doors and drawers align and operate smoothly without warp or bind and contact points meet accurately. Lubricate operating hardware as recommended by manufacturer.

3.03 INSTALLATION OF COUNTERTOPS
A. Comply with installation requirements in SEFA 2.3. Abut top and edge surfaces in one true plane with flush hairline joints and with internal supports placed to prevent deflection. Locate joints only where indicated on Shop Drawings.
B. Field Jointing: Where possible, make in same manner as shop-made joints, using dowels, splines, fasteners, adhesives, and sealants recommended by manufacturer. Shop prepare edges for field-made joints.
 1. Use concealed clamping devices for field-made joints in plastic-laminate countertops. Locate clamping devices within 6 inches of front and back edges and at intervals not exceeding 24 inches. Tighten according to manufacturer's written instructions to exert a uniform heavy pressure at joints.
C. Fastening:
 1. Secure epoxy countertops to cabinets with epoxy cement, applied at each corner and along perimeter edges at not more than 48 inches o.c.
 2. Where necessary to penetrate countertops with fasteners, countersink heads approximately 1/8 inch, and plug hole flush with material equal to countertop in chemical resistance, hardness, and appearance.
D. Provide required holes and cutouts for service fittings.
E. Seal unfinished edges and cutouts in plastic-laminate countertops with heavy coat of polyurethane varnish.
F. Provide scribe moldings for closures at junctures of countertop, curb, and splash with walls as recommended by manufacturer for materials involved. Match materials and finish to adjacent laboratory casework. Use chemical-resistant, permanently elastic sealing compound where recommended by manufacturer.
G. Carefully dress joints smooth, remove surface scratches, and clean entire surface.

3.04 INSTALLATION OF SINKS
A. Comply with installation requirements in SEFA 2.3.
B. Underside Installation of Epoxy Sinks: Use laboratory casework manufacturer's recommended adjustable support system for table- and cabinet-type installations. Set top edge of sink unit in
sink and countertop manufacturers’ recommended chemical-resistant sealing compound or adhesive, and firmly secure to produce a tight and fully leakproof joint. Adjust sink and securely support to prevent movement. Remove excess sealant or adhesive while still wet and finish joint for neat appearance.

C. Drop-in Installation of Epoxy Sinks: Rout groove in countertop to receive sink rim if not shop prepared. Set sink in adhesive and fill remainder of groove with sealant or adhesive. Use procedures and products recommended by sink and countertop manufacturers. Remove excess adhesive and sealant while still wet and finish joint for neat appearance.

3.05 INSTALLATION OF LABORATORY ACCESSORIES

A. Install accessories according to Shop Drawings, installation requirements in SEFA 2.3, and manufacturer’s written instructions.

B. Securely fasten adjustable shelving supports, stainless-steel shelves, and pegboards to partition framing, wood blocking, or reinforcements in partitions.

C. Install shelf standards plumb and at heights to align shelf brackets for level shelves. Install shelving level and straight, closely fitted to other work where indicated.

D. Securely fasten pegboards to partition framing, wood blocking, or reinforcements in partitions.

3.06 CLEANING AND PROTECTING

A. Clean finished surfaces, touch up as required, and remove or refinish damaged or soiled areas to match original factory finish, as approved by Architect.

B. Protect countertop surfaces during construction with 6-milplastic or other suitable water-resistant covering. Tape to underside of countertop at a minimum of 48 inches o.c.

END OF SECTION 12 3553.13
SECTION 12 3661.16
SOLID SURFACING COUNTERTOPS

PART 1 - GENERAL
1.01 SUMMARY
A. Section Includes:
1. Solid surface material countertops.
2. Solid surface material backsplashes.
3. Solid surface material end splashes.
4. Solid surface material apron fronts.
5. Solid surface material window sills.

1.02 ACTION SUBMITTALS
A. Product Data: For countertop materials.
B. Shop Drawings: For countertops. Show materials, finishes, edge and backsplash profiles, and methods of joining.
 1. Show locations and details of joints.
 2. Show direction of directional pattern, if any.
C. Samples for Verification: For the following products:
 1. Countertop material, 6 inches square.

1.03 CLOSEOUT SUBMITTALS
A. Maintenance Data: For solid surface material countertops to include in maintenance manuals. Include Product Data for care products used or recommended by Installer and names, addresses, and telephone numbers of local sources for products.

1.04 QUALITY ASSURANCE
A. Fabricator Qualifications: Shop that employs skilled workers who custom-fabricate countertops similar to that required for this Project, and whose products have a record of successful in-service performance.

1.05 FIELD CONDITIONS
A. Field Measurements: Verify dimensions of countertops by field measurements after base cabinets are installed but before countertop fabrication is complete.

1.06 COORDINATION
A. Coordinate locations of utilities that will penetrate countertops or backsplashes.

PART 2 - PRODUCTS
2.01 SOLID SURFACE COUNTERTOP MATERIALS
A. Solid Surface Material: Homogeneous-filled plastic resin complying with ICPA SS-1.
 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings.
 2. Colors and Patterns: As indicated on Drawings.
B. Plywood: Exterior softwood plywood complying with DOC PS 1, Grade C-C Plugged, touch sanded.

2.02 COUNTERTOP FABRICATION
A. Fabricate countertops according to solid surface material manufacturer’s written instructions and to the AWI/AWMAC/WI’s “Architectural Woodwork Standards.”
 1. Grade: Premium.
B. Countertops: 1/2-inch- thick, solid surface material with front edge built up with same material.
C. Countertops: 1/4-inch-thick, solid surface material laminated to 3/4-inch-thick plywood with exposed edges faced with 1/4-inch-thick, solid surface material.
D. Backsplashes: 1/2-inch thick, solid surface material.

E. Fabricate tops with shop-applied edges unless otherwise indicated. Comply with solid surface material manufacturer's written instructions for adhesives, sealers, fabrication, and finishing.
 1. Fabricate with loose backsplashes for field assembly.

F. Joints: Fabricate countertops in sections for joining in field.
 1. Joint Locations: Not within 18 inches of a sink and not where a countertop section less than 36 inches long would result, unless unavoidable.

G. Cutouts and Holes:
 2. Fittings: Drill countertops in shop for plumbing fittings, undercounter soap dispensers, and similar items.

2.03 INSTALLATION MATERIALS

A. Adhesive: Product recommended by solid surface material manufacturer.

B. Sealant for Countertops: Comply with applicable requirements in Section 07 92 00 "Joint Sealants."

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine substrates to receive solid surface material countertops and conditions under which countertops will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of countertops.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Install countertops level to a tolerance of 1/8 inch in 8 feet, 1/4 inch maximum. Do not exceed 1/64-inch difference between planes of adjacent units.

B. Secure countertops to subtops with adhesive or fasteners according to solid surface material manufacturer's written instructions. Align adjacent surfaces and, using adhesive in color to match countertop, form seams to comply with manufacturer's written instructions. Carefully dress joints smooth, remove surface scratches, and clean entire surface.

C. Bond joints with adhesive and draw tight as countertops are set. Mask areas of countertops adjacent to joints to prevent adhesive smears.

D. Install backsplashes and end splashbacks by adhering to wall and countertops with adhesive. Mask areas of countertops and splashbacks adjacent to joints to prevent adhesive smears.

E. Install aprons to backing and countertops with adhesive. Mask areas of countertops and splashbacks adjacent to joints to prevent adhesive smears. Fasten by screwing through backing. Predrill holes for screws as recommended by manufacturer.

F. Complete cutouts not finished in shop. Mask areas of countertops adjacent to cutouts to prevent damage while cutting. Make cutouts to accurately fit items to be installed, and at right angles to finished surfaces unless beveling is required for clearance. Ease edges slightly to prevent snapping.

G. Apply sealant to gaps at walls; comply with Section 07 92 00 "Joint Sealants."

END OF SECTION 12 3661.16
SECTION 13 0300
CLEANROOM

PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes:
 1. Complete hard-wall cleanroom with static-dissipative PVC wall panels.
B. Related Requirements:
 1. Section 08 7100 Hardware
 2. Section 21 1313 Wet-Pipe Sprinkler Systems
 3. Division 23 for Fan Filter Units.

1.02 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.03 COORDINATION
A. Coordinate layout and installation of cleanroom with plumbing, fire protection, mechanical, and electrical service requirements.
B. Coordinate door hardware with Division 8 requirements.

1.04 ACTION SUBMITTALS
A. Product Data: For each type of product. Provide itemized list for each product included with Cleanroom.
B. Shop Drawings: For Cleanroom. Include plans, elevations, sections, and attachment details.
 1. Indicate framing and wall panel dimensions
 2. Indicate locations of door and ventilation openings
 3. Indicate locations and types of service fittings.
 4. Indicate ceiling grid and locations of fixtures
 5. Include details of utility connections showing penetration details and supports for conduits and piping.
 6. Include details of support framing system.
 7. Include details of exposed conduits, if required, for service fittings.
 8. Indicate locations of and clearances from adjacent walls, doors, windows, other building components, and other laboratory equipment.
C. Samples for Verification:
 1. typical wall panel
 2. typical ceiling panel and grid
 3. typical framing member
 4. typical service connections

1.05 INFORMATIONAL SUBMITTALS
A. Qualification Data: For manufacturer.
B. Product Test Reports for Cleanroom: Based on evaluation of comprehensive tests performed by a qualified testing agency, indicating compliance of cleanroom with requirements of specified product standard and system structural performance specified in "Performance Requirements" Article.
C. Structural analysis indicating cleanroom has been designed to meet applicable local, state, and federal codes as indicated in Drawings.

1.06 CLOSEOUT SUBMITTALS
A. Maintenance Data: For finishes to include in maintenance manuals.

1.07 MAINTENANCE MATERIAL SUBMITTALS
A. Acoustical Ceiling Panels: Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Acoustical Ceiling Panels: Provide one (1) unopened box of each type of full-size panels.
B. Furnish complete touchup kit for each type and color of wall panel. Include fillers, primers, paints, and other materials necessary to perform permanent repairs to damaged finish.

1.08 QUALITY ASSURANCE
A. Manufacturer Qualifications: A qualified manufacturer that produces cleanrooms of types indicated for this Project that has been tested for compliance with SEFA 8 M.
1.09 REFERENCED STANDARDS
 A. International Organization for Standardization ISO 14644-1
 B. Federal Standard FED-STD 209E

1.10 DELIVERY, STORAGE, AND HANDLING
 A. Deliver materials in their original, unopened packages.
 B. Exercise extreme care in handling all wall system components to prevent damage.
 C. Store materials in such manner as to prevent damage or intrusion of foreign matter.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 B. Basis-of-Design Product: Subject to compliance with requirements, provide Terra Universal Inc. Hardwall Cleanroom or comparable product by one of the following:
 1. Portafab
 2. Clean Air Products
 3. American Cleanroom Systems
 C. Source Limitations: Obtain Cleanroom and components listed from single source from single manufacturer unless otherwise indicated.
 D. Product Designations: Drawings indicate sizes and configurations of cleanroom. Cleanroom height shall be 9'-0" from finish floor to ceiling.

2.02 PERFORMANCE REQUIREMENTS
 A. Installed cleanroom shall be tested for and meet the following standard requirements:
 1. ISO 14644-1 – Class ISO 6
 2. FED-STD 209E – Class 1,000
 B. Provide U.L. listing for all electrical components including receptacles, conduits/raceways, power modules, control panels, switches, etc.

2.03 CLEANROOM MATERIALS AND COMPONENTS
 A. Static-dissipative PVC wall panels center mounted to steel uprights:
 1. Dissipative layers molecularly embedded.
 2. Electrostatic decay in less than 0.05 second per Federal Test Standard 101C, Method 4046.1
 4. Transparent except where Opaque (white) panels are indicated in Drawings.
 5. ¼" thick by 4'-0" maximum width of panel.
 6. Install adjustable wall vents in wall panels to meet indicated positive pressure requirements.
 B. Support Frame:
 1. 2" square powder-coated steel uprights and cross sections.
 2. Ceiling members welded to steel 3" x 1.5" (76 mm x 38 mm) T-bars, forming the 2' x 4' (610 mm x 1219 mm) bays that support filters and lights.
 C. Swing Doors:
 1. Framed 304 stainless steel door, pre-hung in stainless steel frame.
 2. ¼" thick transparent, static-dissipative PVC door panel.
 3. Manufacturer’s standard hardware for each door to include:
 a. Stainless Steel ball bearing hinges – (3) three sets
 b. Exit Device with classroom function.
 c. Cylinder to receive Universities standard core.
 d. Concealed closer.
 e. Gasketing
 D. Type 304 stainless steel trim:
 1. mirror-finish stainless steel trim strips mounted along the front and back edges of each panel secure walls to the steel frame.
 2. Edges are free of gaps, ensuring an airtight room that maintains positive or negative pressure.
E. Powder-coated steel ceiling grid system that forms 2’ x 4’ bays as indicated on drawings with white, polypropylene panels in bays not receiving FFU’s or lights.
F. Fan/Filter Units (FFU’s): As indicated on Drawings and specified in Division 23.
G. 2x4 LED light fixtures to meet requirements indicated in Drawings.
H. Power Distribution Modules as required to meet electrical power requirements indicated in Drawings.
I. Control Panel: Control Panel provides on/off switches for FFUs, lights, and other system options; a manehelic gauge to monitor room pressure; and low-voltage Operation Status Indicator lights.
J. Power and Utility outlets as indicated in Drawings to include:
 1. Laboratory Compressed Air
 2. Laboratory vacuum
 3. Power receptacles
 4. Data receptacles

PART 3 - EXECUTION
3.01 EXAMINATION
A. Examine areas, with Installer present, for compliance with requirements for installation tolerances, location of reinforcements, and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION
A. Set units and components level, plumb and true to line with uniform joints. Do not exceed the following tolerances:
 1. Variation ceiling framing members from level: 1/8 inch in 10 feet.
 2. Variation of uprights, wall panels, and trim from plumb: 1/8 inch in 10 feet.
 3. Offsets in end-to-end or edge-to-edge alignment of consecutive members: 1/8” maximum offset in any alignment, noncumalitive
 4. Variation of Door frame from plum and level: 1/6 inch in 10 feet.
 5. Gap tolerance at doors: +1/16” or -1/16” from 1/8” gap.
B. Install ceiling grid and panels to comply with Section 09 5113 Acoustical Panel Ceilings installation requirements.

3.03 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain laboratory equipment.

3.04 CLEANING AND PROTECTING
A. Clean finished surfaces, touch up as required, and remove or refinish damaged or soiled areas to match original factory finish, as approved by Architect.
B. Protect all surfaces and components during construction and repair or replace damaged items at direction of the Architect.

END OF SECTION 13 0300
SECTION 21 05 00
COMMON WORK RESULTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
1. Piping materials and installation instructions common to most piping systems.
2. Sleeves.
3. Escutcheons.
5. Equipment installation requirements common to equipment sections.
6. Painting and finishing.
7. Concrete bases.
8. Supports and anchorages.

1.3 DEFINITIONS
A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
F. The following are industry abbreviations for plastic materials:
1. CPVC: Chlorinated polyvinyl chloride plastic.
G. The following are industry abbreviations for rubber materials:
1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

1.4 CONTRACTOR’S SUBMITTAL REVIEW RESPONSIBILITIES
A. General: Submittals are not requested for all products covered in the specifications. Submit only the data requested under the submittal portion of each specification section or where indicated in a Submittal Log, if included within Division 01.
1. Non-requirement of submittals, when so noted, is not to be construed as an allowance for substitutions and does not relieve the contractor from full compliance with the plans and specifications.
2. Any deviation from specified items is considered a substitution. If the contractor desires to use other than specified items, then a formal request for substitution must be submitted prior to bid date (no exceptions), in accordance with the procedures and time limitations set forth in Division 01. Where not defined in Division 01, requests for substitutions shall be submitted no less than ten (10) working days prior to bid date. Review of substitution requests by the Engineer shall be done at the expense of the contractor. Charges for this substitution review shall be calculated based on the Engineer’s standard hourly rates, as defined in their contract with the Owner.
B. It is the responsibility of the Contractor to ensure that all submittals have been reviewed for total completeness and accuracy as to the requirements of the specifications and drawings before being submitted to the Engineer for review.
1. One comprehensive submittal shall be provided for each individual specification section. All required submittal information called for in each individual specification section shall be included in the submittal.

2. The Engineer of Record shall not be responsible for informing the contractor on items that have not been included and are necessary for a complete review of the required submittal information for a specification section.

3. The Engineer of Record shall have the option of returning any submittal, unmarked, if all required documentation called for in the specifications has not been provided in the submittal.

4. The Engineer of Record shall review each submittal no more than two (2) times and return to the contractor with the appropriate disposition.

5. If the Engineer of Record is required to review a submittal a second time, it shall be limited to review of the changed information, clearly highlighted by the submitter, and/or confirmation of documentation only and it shall be returned to the contractor with the appropriate disposition.

6. If the submittal is required to be reviewed a third time, it shall be done at the expense of the contractor. Charges for this additional submittal review shall be calculated based on the Engineer’s standard hourly rates, as defined in their contract with the Owner.

C. Operation and Maintenance Manuals: All items required for insertion into each Operation and Maintenance (O&M) Manual are called out in the submittals portion of each specification section or in a Submittal Log, if included within Division 01. It is the responsibility of the Contractor to ensure that the O&M submittal has been reviewed and includes all the requirements of the specifications. The Engineer of Record shall review the submittal for the Operation and Maintenance Manual one (1) time and return to the contractor with the appropriate disposition.

1. If the submittal is required to be reviewed a second time, it shall be done at the expense of the contractor. Charges for this additional submittal review shall be calculated based on the Engineer’s standard hourly rates, as defined in their contract with the Owner.

2. Submittals for the Operation and Maintenance Manual must be original documentation.

3. Photo copies of marked up Operations and Maintenance submittals are not acceptable.

D. Coordination Drawings: Prepare and submit Coordination Drawings as further described herein and as indicated in the Special Conditions. The Engineer shall receive one copy of all coordination drawings supplied to the Owner as required in this specification. It is the responsibility of the Contractor to coordinate the work as outlined herein. Receipt by the Engineer of a copy of the coordination drawings is to verify conformance to the submittal requirements set forth in this specification section. It is not an admission by the Engineer as to the accuracy or completeness of the coordination proposed.

E. Refer to Division 01 and each individual Division 23 Section for additional submittal requirements.

1.5 SUBMITTALS

A. Product Data: For the following:

1. Mechanical sleeve seals.
2. Escutcheons.

1.6 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code-Steel."

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for Fire-Suppression Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.
1.7 DELIVERY, STORAGE, AND HANDLING
A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.8 COORDINATION
A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for fire-suppression installations.
B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
C. Coordinate requirements for access panels and doors for fire-suppression items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS
A. Refer to individual Division 21 piping Sections for pipe, tube, and fitting materials and joining methods.
B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS
A. Refer to individual Division 21 piping Sections for special joining materials not listed below.
B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8 inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
E. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 SLEEVES
A. Galvanized-Steel Sheet: 0.0239 inch minimum thickness; round tube closed with welded longitudinal joint.
B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

2.5 ESCUTCHEONS
A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
1. One-Piece, Stamped-Steel Type: With set screw and chrome-plated finish.
C. One-Piece, Floor-Plate Type: Cast-iron floor plate.

2.6 GROUT
A. Description: ASTM C 1107, Grade B, non-shrink and nonmetallic, dry hydraulic-cement grout.
1. Characteristics: Post-hardening, volume-adjusting, non-staining, non-corrosive, non-gaseous, and recommended for interior and exterior applications.
2. Design Mix: 5000-psi, 28 day compressive strength.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 21 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

 1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep-pattern type.
 b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, stamped-steel type.
 c. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast-brass type with polished chrome-plated finish.
 d. Bare Piping in Unfinished Service Spaces: One piece, stamped-steel type with concealed hinge and set screw.
 e. Bare Piping in Equipment Rooms: One piece, stamped-steel type with set screw.
 f. Bare Piping at Floor Penetrations in Equipment Rooms: One piece, floor-plate type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 b. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 c. Install sleeves that are large enough to provide NFPA #13/14 annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials: Edit pipe size range in first two subparagraphs below to suit Project. Confirm that PVC materials are allowed for sleeves by fire authorities having jurisdiction.
 a. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1 inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Underground, Exterior Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1 inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

T. Verify final equipment locations for roughing-in.

U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 21 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

E. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PAINTING

A. Painting of fire-suppression systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.4 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor fire-suppression materials and equipment.

C. Field Welding: Comply with AWS D1.1.
3.5 GROUTING

A. Mix and install grout for fire-suppression equipment base bearing surfaces, pump and other equipment base plates, and anchors.
B. Clean surfaces that will come into contact with grout.
C. Provide forms as required for placement of grout.
D. Avoid air entrapment during placement of grout.
E. Place grout around anchors.
F. Cure placed grout.

END OF SECTION
SECTION 21 12 00
FIRE-SUPPRESSION STANDPIPES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Fire-protection valves.
 3. Hose connections.
 5. Pressure gages.
 B. Related Sections:
 1. Division 21 Section "Wet-Pipe Sprinkler Systems" for wet-pipe sprinkler piping.

1.3 DEFINITIONS
 A. Standard-Pressure Standpipe Piping: Fire-suppression standpipe piping designed to operate at working pressure 175 psig maximum.

1.4 SYSTEM DESCRIPTIONS
 A. Automatic Wet-Type, Class I Standpipe System: Includes NPS 2-1/2 hose connections. Has open water-supply valve with pressure maintained and is capable of supplying water demand.

1.5 PERFORMANCE REQUIREMENTS
 A. Standard-Pressure, Fire-Suppression Standpipe System Component: Listed for 175-psig minimum working pressure.
 B. Delegated Design: Design fire-suppression standpipes, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and flow criteria from this contractors performed fire hydrant test.
 C. Fire-suppression standpipe design shall be approved by authorities having jurisdiction.
 1. System will be designed as a "Manual Wet System".
 2. Maximum residual pressure at required flow at each hose-connection outlet is as follows unless otherwise indicated:
 a. NPS 2-1/2 Hose Connections: 175 psig.

1.6 SUBMITTALS
 A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 B. Shop Drawings: For fire-suppression standpipes. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.
 C. Delegated-Design Submittal: For standpipe systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 D. Qualification Data: For qualified Installer and professional engineer.
 E. Approved Standpipe Drawings: Working plans, prepared according to NFPA 14, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.
 F. Fire-hydrant flow test report.

H. Field quality-control reports.

I. Operation and Maintenance Data: For fire-suppression standpipes specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer's responsibilities include designing, fabricating, and installing fire-suppression standpipes and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. NFPA Standards: Fire-suppression standpipe equipment, specialties, accessories, installation, and testing shall comply with NFPA 14, "Installation of Standpipe and Hose Systems."

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

A. Standard Weight, Schedule 40 Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.

C. Uncoated, Steel Couplings: ASTM A 865, threaded.

E. Malleable- or Ductile-Iron Unions: UL 860.

G. Grooved-Joint, Steel-Pipe Appurtenances:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Corcoran Piping System Co.
 c. National Fittings, Inc.
 d. Shurjoint Piping Products.
 e. Tyco Fire & Building Products LP.
 f. Victaulic Company.
 2. Pressure Rating: 175 psig minimum.
 3. Uncoated, Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.
2.3 PIPING JOINING MATERIALS
 A. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 LISTED FIRE-PROTECTION VALVES
 A. General Requirements:
 1. Valves shall be UL listed or FM approved.
 B. Iron Butterfly Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Global Safety Products, Inc.
 c. Kennedy Valve; a division of McWane, Inc.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Tyco Fire & Building Products LP.
 g. Victaulic Company.
 2. Standard: UL 1091.
 4. Body Material: Cast or ductile iron.
 5. Style: Lug or wafer.
 C. Check Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Milwaukee Valve Company.
 f. Mueller Co.; Water Products Division.
 g. NIBCO INC.
 h. Potter Roemer.
 i. Reliable Automatic Sprinkler Co., Inc.
 j. Tyco Fire & Building Products LP.
 k. Victaulic Company.
 l. Viking Corporation.
 m. Watts Water Technologies, Inc.
 4. Type: Swing check.
 5. Body Material: Cast iron.
 6. End Connections: Flanged or grooved.
 D. Iron OS&Y Gate Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Clow Valve Company; a division of McWane, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. Mueller Co.; Water Products Division.
f. NIBCO INC.
g. Tyco Fire & Building Products LP.
h. Watts Water Technologies, Inc.

4. Body Material: Cast or ductile iron.
5. End Connections: Flanged or grooved.

E. Indicating-Type Butterfly Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Tyco Fire & Building Products LP.
 f. Victaulic Company.
 2. Standard: UL 1091.
 4. Valves NPS 2 and Smaller:
 a. Valve Type: Ball or butterfly.
 b. Body Material: Bronze.
 c. End Connections: Threaded.
 5. Valves NPS 2-1/2 and Larger:
 a. Valve Type: Butterfly.
 b. Body Material: Cast or ductile iron.
 c. End Connections: Flanged, grooved, or wafer.

2.5 TRIM AND DRAIN VALVES

A. General Requirements:
 2. Pressure Rating: 175 psig minimum.

B. Angle Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

C. Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Kennedy Valve; a division of McWane, Inc.
 d. Legend Valve.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Potter Roemer.
 h. Tyco Fire & Building Products LP.
 i. Victaulic Company.
 j. Watts Water Technologies, Inc.

D. Globe Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

2.6 SPECIALTY VALVES
 A. General Requirements:
 2. Pressure Rating:
 a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
 3. Body Material: Cast or ductile iron.
 4. Size: Same as connected piping.
 5. End Connections: Flanged or grooved.

2.7 HOSE CONNECTIONS
 A. Adjustable-Valve Hose Connections:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AFAC Inc.
 c. Fire-End & Croker Corporation.
 d. Guardian Fire Equipment, Inc.
 e. Potter Roemer.
 f. Tyco Fire & Building Products LP.
 g. Zurn Plumbing Products Group; Wilkins Water Control Products Division.
 2. Standard: UL 668 hose valve, with integral UL 1468 reducing or restricting pressure-control device, for connecting fire hose.
 3. Pressure Rating: 300 psig minimum.
 4. Material: Brass or bronze.
 5. Size: NPS 1-1/2 and NPS 2-1/2, as indicated.
 6. Inlet: Female pipe threads.
 7. Outlet: Male hose threads with lugged cap, gasket, and chain. Include hose valve threads according to NFPA 1963 and matching local fire-department threads.

2.8 FIRE-DEPARTMENT CONNECTIONS
 A. Storz-Type, Fire-Department Connection:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AFAC Inc.
 c. GMR International Equipment Corporation.
 d. Guardian Fire Equipment, Inc.
 e. Potter Roemer.
 2. Type: 30 degree pattern 6 inches x 5 inches Storz.
 5. Cap: Brass, lugged type, with gasket and chain.
 6. Escutcheon Plate: Rectangular, brass, wall type.
 7. Outlet: Storz.
 8. Number of Inlets: One.
 9. Escutcheon Plate Marking: Similar to "AUTO SPKR & STANDPIPE."
10. Finish: Rough brass or bronze.

2.9 ALARM DEVICES
A. Valve Supervisory Switches:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
 3. Type: Electrically supervised.
 5. Design: Signals that controlled valve is in other than fully open position.

2.10 PRESSURE GAGES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AMETEK; U.S. Gauge Division.
 2. Ashcroft Inc.
 4. WIKA Instrument Corporation.
B. Standard: UL 393.
C. Dial Size: 3-1/2 to 4-1/2 inch diameter.
D. Pressure Gage Range: 0 to 250 psig minimum.
E. Water System Piping Gage: Include "WATER" label on dial face.

PART 3 - EXECUTION
3.1 PREPARATION
A. Perform fire-hydrant flow test according to NFPA 14 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.
B. Report test results promptly and in writing.

3.2 EXAMINATION
A. Examine roughing-in for hose connections and stations to verify actual locations of piping connections before installation.
B. Examine walls and partitions for suitable thickness, fire and smoke rated construction, framing for hose-station cabinets, and other conditions where hose connections and stations are to be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 SERVICE-ENTRANCE PIPING
A. Connect fire-suppression standpipe piping to water-service piping at service entrance into building. Comply with requirements for exterior piping in Division 33 Section "Water Distribution."
B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories at connection to fire-suppression water-service piping. Comply with requirements for backflow preventers in Division 21 Section "Wet-Pipe Sprinkler System."

3.4 PIPING INSTALLATION
A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements in NFPA 14 for installation of fire-suppression standpipe piping.

C. Install seismic restraints on piping. Comply with requirements in NFPA 13 for seismic-restraint device materials and installation.

D. Install listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

E. Install drain valves on standpipes. Extend drain piping to outside of building.

F. Install automatic (ball drip) drain valves to drain piping between fire-department connections and check valves. Drain to floor drain or outside building.

G. Install alarm devices in piping systems.

H. Install hangers and supports for standpipe system piping according to NFPA 14. Comply with requirements in NFPA 13 for hanger materials.

I. Install pressure gages on riser or feed main and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft-metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

J. Fill wet-type standpipe system piping with water.

K. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 21 Section "Common Work Results."

L. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 21 Section "Common Work Results."

M. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 21 Section "Common Work Results."

3.5 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.
I. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

J. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 1. Shop-weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.

3.6 VALVE AND SPECIALTIES INSTALLATION
A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 14 and authorities having jurisdiction.
B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

3.7 IDENTIFICATION
A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 14.
B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.8 FIELD QUALITY CONTROL
A. Perform tests and inspections.
 B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect standpipe systems according to NFPA 14, "System Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
 5. Start and run air compressors.
 6. Coordinate with fire-alarm tests. Operate as required.
 7. Coordinate with fire-pump tests. Operate as required.
 8. Verify that equipment hose threads are same as local fire-department equipment.
C. Fire-suppression standpipe system will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports.

3.9 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.10 PIPING SCHEDULE
A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.
B. Standard-pressure, wet-type, fire-suppression standpipe piping, NPS 4 and smaller, shall be one of the following:
 1. Standard-weight Schedule 40, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
2. Standard-weight Schedule 40, black-steel pipe with cut or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

C. Standard-pressure, wet-type, fire-suppression standpipe piping, NPS 5 to NPS 8, shall be one of the following:
 1. Standard-weight Schedule 40, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Standard-weight Schedule 40, black-steel pipe with cut or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

END OF SECTION
SECTION 21 13 13
WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL
1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Fire-protection valves.
 5. Pressure gages.

B. Related Sections:
 1. Division 21 Section "Fire-Suppression Standpipes" for standpipe piping.

1.3 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175 psig maximum.

1.4 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through monitored valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.5 PERFORMANCE REQUIREMENTS

A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

B. Sprinkler system design shall be approved by authorities having jurisdiction.
 1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 2. Sprinkler Occupancy Hazard Classifications:
 a. Building Service Areas: Ordinary Hazard, Group 1.
 b. Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 c. General Storage Areas: Ordinary Hazard, Group 2.
 d. Laundries: Ordinary Hazard, Group 1.
 e. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 f. Office and Public Areas: Light Hazard.
 g. Lab classrooms: Ordinary Hazard, Group 2.
 3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Light-Hazard Occupancy: 0.10 gpm over 1500 sq. ft. area.
 b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500 sq. ft. area.
 c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500 sq. ft. area.
 d. Special Occupancy Hazard: As determined by authorities having jurisdiction.
 4. Maximum Protection Area per Sprinkler: Per UL listing.
 5. Maximum Protection Area per Sprinkler:
 a. Office Spaces: 225 sq. ft.
 b. Storage Areas: 130 sq. ft.
 c. Mechanical Equipment Rooms: 130 sq. ft.
 d. Electrical Equipment Rooms: 130 sq. ft.
 e. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.
6. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 a. Light-Hazard Occupancies: 100 gpm for 30 minutes.
 b. Ordinary-Hazard Occupancies: 250 gpm for 60 to 90 minutes.

1.6 SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.
C. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Coordinate first paragraph below with qualification requirements in Division 01 Section "Quality Requirements" and as supplemented in "Quality Assurance" Article.
D. Qualification Data: For qualified Installer and professional engineer.
E. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.
F. Fire-hydrant flow test report.
G. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."
H. Field quality-control reports.
I. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE
A. Installer Qualifications:
 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.
B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
D. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 1. NFPA 13, "Installation of Sprinkler Systems."
 2. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

1.8 EXTRA MATERIALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.
PART 2 - PRODUCTS

2.1 PIPING MATERIALS
A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS
A. Standard Weight, Schedule 40 Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.
C. Uncoated, Steel Couplings: ASTM A 865, threaded.
E. Malleable- or Ductile-Iron Threaded Fittings: ASME B16.4, Class 125.
F. Cast-Iron Flanges: ASME 16.1, Class 125.
G. Steel Flanges and Flanged Unions: ASME B16.5, Class 150.
I. Grooved-Joint, Steel-Pipe Appurtenances:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Corcoran Piping System Co.
 c. National Fittings, Inc.
 d. Shurjoint Piping Products.
 e. Tyco Fire & Building Products LP.
 f. Victaulic Company.
 2. Pressure Rating: 175 psig minimum.
 3. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 PIPING JOINING MATERIALS
A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free.
 1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.
B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
C. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.
D. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 LISTED FIRE-PROTECTION VALVES
A. General Requirements:
 1. Valves shall be UL listed or FM approved.
B. Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Victaulic Company.
2. Standard: UL 1091 except with ball instead of disc.
3. Valves NPS 1-1/2 and Smaller: Bronze body with threaded ends.
4. Valves NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
5. Valves NPS 3: Ductile-iron body with grooved ends.

C. Bronze Butterfly Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Global Safety Products, Inc.
 b. Milwaukee Valve Company.
 2. Standard: UL 1091.
 5. End Connections: Threaded.

D. Iron Butterfly Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Global Safety Products, Inc.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Tyco Fire & Building Products LP.
 f. Victaulic Company.
 2. Standard: UL 1091.
 4. Body Material: Cast or ductile iron.
 5. Style: Lug or wafer.

E. Check Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Clow Valve Company; a division of McWane, Inc.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Milwaukee Valve Company.
 d. Matco-Norca.
 e. Milwaukee Valve Company.
 f. Mueller Co.; Water Products Division.
 g. NIBCO INC.
 h. Victaulic Company.
 i. Viking Corporation.
 j. Watts Water Technologies, Inc.
 4. Type: Swing check.
 5. Body Material: Cast iron.
 6. End Connections: Flanged or grooved.

F. Bronze OS&Y Gate Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Milwaukee Valve Company.
d. NIBCO INC.
e. United Brass Works, Inc.

5. End Connections: Threaded.

G. Iron OS&Y Gate Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Jenkins Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. Mueller Co.; Water Products Division.
 f. NIBCO INC.
 g. United Brass Works, Inc.
 h. Watts Water Technologies, Inc.
4. Body Material: Cast or ductile iron.
5. End Connections: Flanged or grooved.

H. Indicating-Type Butterfly Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Kennedy Valve; a division of McWane, Inc.
 b. Milwaukee Valve Company.
 c. NIBCO INC.
 d. Victaulic Company.
2. Standard: UL 1091.
4. Valves NPS 2 and Smaller:
 a. Valve Type: Ball or butterfly.
 b. Body Material: Bronze.
 c. End Connections: Threaded.
5. Valves NPS 2-1/2 and Larger:
 a. Valve Type: Butterfly.
 b. Body Material: Cast or ductile iron.
 c. End Connections: Flanged, grooved, or wafer.

I. NRS Gate Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Clow Valve Company; a division of McWane, Inc.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Kennedy Valve; a division of McWane, Inc.
 d. Mueller Co.; Water Products Division.
 e. NIBCO INC.
 f. Tyco Fire & Building Products LP.
5. Stem: Non-rising.
6. End Connections: Flanged or grooved.
J. Indicator Posts:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Stockham Division.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Mueller Co.; Water Products Division.
 d. NIBCO INC.
 e. Tyco Fire & Building Products LP.
 3. Type: Horizontal for wall mounting.
 4. Body Material: Cast iron with extension rod and locking device.

2.5 TRIM AND DRAIN VALVES

A. General Requirements:
 2. Pressure Rating: 175 psig minimum.

B. Angle Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

C. Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Kennedy Valve; a division of McWane, Inc.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Tyco Fire & Building Products LP.
 f. Victaulic Company.

D. Globe Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

2.6 SPECIALTY VALVES

A. General Requirements:
 2. Pressure Rating:
 a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
 3. Body Material: Cast or ductile iron.
 4. Size: Same as connected piping.
 5. End Connections: Flanged or grooved.

2.7 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
b. National Fittings, Inc.
c. Shurjoint Piping Products.
d. Tyco Fire & Building Products LP.
e. Victaulic Company.

5. Type: Mechanical T and cross fittings.
6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing Inc.
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
4. Body Material: Cast or ductile-iron housing with orifice, sight glass, and integral test valve.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

C. Branch Line Testers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Fire-End & Croker Corporation.
 c. Potter Roemer.
2. Standard: UL 199.
5. Size: Same as connected piping.
6. Inlet: Threaded.
7. Drain Outlet: Threaded and capped.
8. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector's Test Fittings:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing Inc.
 b. Triple R Specialty.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 e. Viking Corporation.
4. Body Material: Cast or ductile-iron housing with sight glass.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.
E. Adjustable Drop Nipples:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CECA, LLC.
 b. Corcoran Piping System Co.
 c. Merit Manufacturing; a division of Anvil International, Inc.
 5. Size: Same as connected piping.
 7. Inlet and Outlet: Threaded.

2.8 SPRINKLERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Reliable Automatic Sprinkler Co., Inc.
 2. Tyco Fire & Building Products LP.
 3. Victaulic Company.

B. General Requirements:

C. Automatic Sprinklers with Heat-Responsive Element:
 1. Nonresidential Applications: UL 199.
 2. Characteristics: Nominal ½ inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

D. Sprinkler Finishes:
 1. Chrome plated.
 2. Bronze.
 3. Painted.

E. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed type sprinklers are specified with sprinklers.

F. Sprinkler Guards:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Reliable Automatic Sprinkler Co., Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 d. Viking Corporation.
 2. Standard: UL 199.
 3. Type: Wire cage with fastening device for attaching to sprinkler.

2.9 ALARM DEVICES
A. Alarm-device types shall match piping and equipment connections.

B. Electrically Operated Alarm Bell:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Notifier; a Honeywell company.
c. Potter Electric Signal Company.
3. Type: Vibrating, metal alarm bell.
4. Size: 8 inch minimum diameter.
5. Finish: Red-enamel factory finish, suitable for outdoor use.

C. Water-Flow Indicators:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ADT Security Services, Inc.
 b. McDonnell & Miller; ITT Industries.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
 e. Viking Corporation.
 f. Watts Industries (Canada) Inc.
4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
5. Type: Paddle operated.
7. Design Installation: Horizontal or vertical.

D. Pressure Switches:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AFAC Inc.
 b. Barksdale, Inc.
 c. Detroit Switch, Inc.
 d. Potter Electric Signal Company.
 e. System Sensor; a Honeywell company.
 f. Tyco Fire & Building Products LP.
 g. United Electric Controls Co.
 h. Viking Corporation.
3. Type: Electrically supervised water-flow switch with retard feature.
5. Design Operation: Rising pressure signals water flow.

E. Valve Supervisory Switches:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.

F. Indicator-Post Supervisory Switches:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2.10 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AMETEK; U.S. Gauge Division.
 2. Ashcroft, Inc.
 4. WIKA Instrument Corporation.

B. Standard: UL 393.

C. Dial Size: 3-1/2 to 4-1/2 inch diameter.

D. Pressure Gage Range: 0 to 250 psig minimum.

E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.

B. Report test results promptly and in writing.

3.2 SERVICE-ENTRANCE PIPING

A. Connect sprinkler piping to water-service piping for service entrance to building.

B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-service piping.

3.3 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.

1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.

C. Install seismic restraints on piping. Comply with requirements for seismic-restraint device materials and installation in NFPA 13.

D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

E. Install unions adjacent to each valve in pipes NPS 2 and smaller.

F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

G. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

H. Install sprinkler piping with drains for complete system drainage.

I. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
J. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.

K. Install alarm devices in piping systems.

L. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

M. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

N. Fill sprinkler system piping with water.

O. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 21 Section "Common Work Results."

P. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 21 Section "Common Work Results."

Q. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 21 Section "Common Work Results."

3.4 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system’s pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
1. Shop-weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.

I. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

3.5 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire department connections. Install permanent identification signs indicating portion of system controlled by each valve.
C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

3.6 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of narrow dimension of acoustical ceiling panels and center or quarter pointed in the long dimension.

3.7 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
 5. Coordinate with fire-alarm tests. Operate as required.
 6. Coordinate with fire-pump tests. Operate as required.
 7. Verify that equipment hose threads are same as local fire department equipment.

C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.9 CLEANING

A. Clean dirt and debris from sprinklers.

B. Remove and replace sprinklers with paint other than factory finish.

3.10 PIPING SCHEDULE

A. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.

B. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
 1. Standard-weight schedule 40, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Standard-weight schedule 40, black-steel pipe with plain ends; steel welding fittings; and welded joints.

C. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 and Larger, shall be one of the following:
 1. Standard-weight, schedule 40 black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Standard-weight, schedule 40 black-steel pipe with cut-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 3. Piping and grooved joints.
 4. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.

3.11 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:
 1. Rooms without Ceilings: Upright sprinklers.
2. Rooms with Suspended Ceilings: Concealed sprinklers (wet/dry).
4. Rooms with Solid Surface Ceilings: Concealed sprinklers.

B. Provide sprinkler types in subparagraphs below with finishes indicated.
 1. Upright Sprinklers: White in finished, public and occupied spaces to view; rough bronze in maintenance, loading dock and mechanical rooms spaces not exposed to public view; wax coated where exposed to acids, chemicals, or other corrosive fumes.
 2. Ceiling Mounting in color (non-white) painted ceilings: Concealed Brass-finish, two piece, with 1 inch vertical adjustment.
 3. Ceiling Mounting in white ceiling: Concealed White-plated steel, two piece, with 1 inch vertical adjustment.
 5. Sidewall Mounting in color (non-white) painted hard surfaces: Concealed White-plated steel two piece.

The contractor shall review the Architectural drawings for the scope of the color scheme and shall submit drawings clearly defining the color and installation type of the sprinkler heads on the documents. A sample of the color of heads and/or cover plates shall be submitted for approval.

END OF SECTION
SECTION 21 22 00
CLEAN-AGENT FIRE-EXTINGUISHING SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Clean-agent systems.
 2. Pipe and fittings.
 3. Valves.
 4. Extinguishing-agent containers.
 5. Fire-extinguishing clean agent.
 6. Discharge nozzles.
 7. Manifold and orifice unions.
 8. Fire control panels.
 11. Switches.

1.3 DEFINITIONS

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: For clean-agent fire-extinguishing system signed and sealed by a qualified professional engineer.
 1. Include plans, elevations, sections, details, and attachments to other work.
 2. Include design calculations.
 3. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 4. Wiring Diagrams: For power, signal, and control wiring.
C. Delegated-Design Submittal: For clean-agent fire-extinguishing system signed and sealed by the qualified professional engineer.
 1. Indicate compliance with performance requirements and design criteria, including analysis data.
 2. Include design calculations for weight, volume, and concentration of extinguishing agent required for each hazard area.
 3. Indicate the Following on Reflected Ceiling Plans:
 a. Ceiling penetrations and ceiling-mounted items.
 b. Extinguishing-agent containers if mounted above floor, piping and discharge nozzles, detectors, and accessories.
 c. Method of attaching hangers to building structure.
 d. Other ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, and access panels.
 4. Indicate the Following on Occupied Work Area Plans:
 a. Controls and alarms.
 b. Extinguishing-agent containers, piping and discharge nozzles if mounted in space, detectors, and accessories.
c. Equipment and furnishings.

5. Indicate the Following on Ceiling Plans:
 a. Extinguishing-agent containers, piping and discharge nozzles, detectors, and
 accessories.
 b. Method of supporting piping.
 c. Other equipment located in the ceiling space that is being protected including
 sprinkler piping, HVAC equipment, raceways, or conduit.

1.5 INFORMATIONAL SUBMITTALS

A. Design Data:
 1. Approved Drawings: Working plans, prepared according to NFPA 2001, that have been
 approved by authorities having jurisdiction. Include design calculations.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For special agent system to include in emergency, operation,
 and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective
 covering for storage and identified with labels describing contents. Deliver extra materials to
 Owner.
 1. Detection Devices: Not less than two (2) of each type installed.
 2. Container Valves: Not less than 10 percent of amount of each size and type installed.
 3. Nozzles: Not less than 20 percent of amount of each type installed.
 4. Extinguishing Agent: Not less than 100 percent of amount installed in largest hazard area.
 Include pressure-rated containers with valves.

1.8 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70,
 by a qualified testing agency, and marked for intended location and application.

B. UL Compliance: Provide equipment listed in UL's "Fire Protection Equipment Directory."

PART 2 - PRODUCTS

2.1 CLEAN-AGENT SYSTEMS

A. Delegated Design: Design clean-agent fire-extinguishing system and obtain approval from
 authorities having jurisdiction. Design system for Class A, B, and C fires as appropriate for
 areas being protected, and include safety factor. Use clean agent indicated and in
 concentration suitable for normally occupied areas.

B. Performance Requirements: Discharge HFC 227ea within 15 seconds and maintain 7.1 percent
 concentration by volume at 70 deg F for 10-minute holding time in hazard areas.

C. System Operating Sequence:
 1. Actuating First Detector: Visual indication on annunciator panel. Energize audible and
 visual alarms (slow pulse), shut down air-conditioning and ventilating systems serving
 protected area, close doors in protected area, and send signal to fire-alarm system.

 D. Operating abort switches will delay extinguishing-agent discharge while being activated, and
 switches must be reset to prevent agent discharge. Release of hand pressure on the switch will
 cause agent discharge if the time delay has expired.

 E. Low-Agent Pressure Switch: Initiate trouble alarm if sensing less than set pressure.

2.2 PIPE AND FITTINGS

A. See "HFC 227ea Agent Piping Applications" Article for applications of pipe, tube, fitting, and
 joining materials.

B. Piping, Valves, and Discharge Nozzles: Comply with types and standards listed in NFPA 2001,
 Section "Distribution," for charging pressure of system.
 1. Threaded Fittings:
 b. Flanges and Flanged Fittings: ASME B16.5, Class 300 unless Class 600 is required.

D. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.

E. Flange Bolts and Nuts: ASME B18.2.1, carbon steel.

F. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.3 VALVES

A. General Valve Requirements:
 1. UL listed or FM Approved for use in fire-protection systems.
 2. Compatible with type of clean agent used.

B. Container Valves: With rupture disc or solenoid and manual-release lever, capable of immediate and total agent discharge and suitable for intended flow capacity.

C. Valves in Sections of Closed Piping and Manifolds: Fabricate to prevent entrapment of liquid, or install valve and separate pressure relief device.

D. Valves in Manifolds: Check valve; installed to prevent loss of extinguishing agent when container is removed from manifold.

2.4 EXTINGUISHING-AGENT CONTAINERS

A. Description: Steel tanks complying with ASME Boiler and Pressure Vessel Code: Section VIII, for unfired pressure vessels. Include minimum working-pressure rating that matches system charging pressure, valve, pressure switch, and pressure gage.
 1. Finish: Manufacturer's standard color, enamel or epoxy paint.
 2. Manifold: Fabricate with valves, pressure switches, selector switch, and connections for main- and reserve-supply banks of multiple storage containers.
 3. Storage-Tank Brackets: Factory- or field-fabricated retaining brackets consisting of steel straps and channels; suitable for container support, maintenance, and tank refilling or replacement.

2.5 FIRE-EXTINGUISHING CLEAN AGENT

A. HFC 227ea Clean Agent: Heptafluoropropane.

2.6 DISCHARGE NOZZLES

A. Equipment manufacturer's standard one-piece brass or aluminum alloy of type, size, discharge pattern, and capacity required for application.

B. Material: Corrosion-resistant metal.

C. Stamped with orifice size and type.

2.7 FIRE CONTROL PANELS

A. Description: FM Approved or NRTL listed, including equipment and features required for testing, supervising, and operating fire-extinguishing system.

B. Power Requirements: 120/240-V ac; with electrical contacts for connection to system components and fire-alarm system, and transformer or rectifier as needed to produce power at voltage required for accessories and alarm devices.

C. Enclosure: NEMA ICS 6, Type 1, enameled-steel cabinet.
 1. Mounting: Surface.

D. Supervised Circuits: Separate circuits for each independent hazard area.
1. Detection circuits equal to the required number of zones, or addressable devices assigned to the required number of zones.
3. Alarm circuit.
5. Abort circuit.
6. EPO circuit.

E. Control-Panel Features:
1. Electrical contacts for shutting down fans, activating dampers, and operating system electrical devices.
2. Automatic switchover to standby power at loss of primary power.
3. Storage container, low-pressure indicator.
4. Service disconnect to interrupt system operation for maintenance with visual status indication on the annunciator panel.

F. Annunciator Panel: Graphic type showing protected, hazard-area plans, as well as locations of detectors and abort, EPO, and manual stations. Include lamps to indicate device-initiating alarm, electrical contacts for connection to control panel, and stainless-steel or aluminum enclosure.

G. Standby Power: Sealed lead calcium batteries with capacity to operate system for 24 hours and alarm for minimum of 15 minutes. Include automatic battery charger that has a varying charging rate between trickle and high depending on battery voltage, and that is capable of maintaining batteries fully charged. Include manual voltage control, dc voltmeter, dc ammeter, electrical contacts for connection to control panel, automatic transfer switch, and suitable enclosure.

2.8 DETECTION DEVICES
A. General Requirements for Detection Devices:
2. 24-V dc, nominal.

B. Ionization Detectors: Dual-chamber type, having sampling and referencing chambers, with smoke-sensing element.

C. Signals to the Central Fire Alarm Control Panel: Any type of local system trouble is reported to the central fire alarm control panel as a composite "trouble" signal. Alarms on each system zone are individually reported to the central fire alarm control panel as separately identified zones.

2.9 MANUAL STATIONS
A. General Description: Surface FM Approved or NRTL listed, with clear plastic hinged cover, 120-V ac or low voltage compatible with controls. Include contacts for connection to control panel.

B. Abort Switch: "ABORT" caption, momentary contact, with green finish.

2.10 SWITCHES
A. Description: FM Approved or NRTL listed, where available, 120-V ac or low voltage compatible with controls. Include contacts for connection to control panel.

2.11 ALARM DEVICES
A. Description: Listed and labeled by an NRTL or FM Approved, low voltage, and surface mounting. Comply with requirements in Section 284621.11 "Addressable Fire-Alarm Systems" or Section 284621.13 "Conventional Fire-Alarm Systems" for alarm and monitoring devices.

B. Horns: 90 to 94 dBA.

C. Strobe Lights: Translucent lens, with "FIRE" or similar caption.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and conditions, with Installer present, for compliance with hazard-area leakage requirements, installation tolerances, and other conditions affecting work performance.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 HFC 227ea AGENT PIPING APPLICATIONS
A. Flanged pipe and fittings and flanged joints may be used to connect to specialties and accessories and where required for maintenance.
B. NPS 2 and Smaller: Schedule 40, steel pipe; malleable-iron threaded fittings; and threaded joints.
C. NPS 2-1/2 and Larger: Schedule 40, steel pipe; forged-steel welding fittings; and welded joints

3.3 CLEAN-AGENT PIPING INSTALLATION
A. Install clean-agent extinguishing piping and other components level and plumb, according to manufacturers' written instructions.
B. Install extinguishing-agent containers anchored to substrate.
C. Install pipe and fittings, valves, and discharge nozzles according to requirements listed in NFPA 2001, Section "Distribution."
 1. Install valves designed to prevent entrapment of liquid, or install pressure relief devices in valved sections of piping systems.
 2. Support piping using supports and methods according to NFPA 13.
 3. Install control panels, detection system components, alarms, and accessories, complying with requirements of NFPA 2001, Section "Detection, Actuation, and Control Systems," as required for supervised system application.

3.4 CONNECTIONS
A. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Where installing piping adjacent to equipment, allow space for service and maintenance.
C. Connect electrical devices to control panel and to building's fire-alarm system. Electrical power, wiring, and devices are specified in Section 284621.11 "Addressable Fire-Alarm Systems" or Section 284621.13 "Conventional Fire-Alarm Systems."

3.5 IDENTIFICATION
A. Identify system components and equipment. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
B. Identify piping, extinguishing-agent containers, other equipment, and panels according to NFPA 2001.
C. Install signs at entry doors for protected areas to warn occupants that they are entering a room protected with a clean-agent fire-extinguishing system.
D. Install signs at entry doors to advise persons outside the room the meaning of the horn(s), bell(s), and strobe light(s) outside the protected space.

3.6 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
D. Tests and Inspections:
 1. After installing clean-agent extinguishing piping system and after electrical circuitry has been energized, test for compliance with requirements.
 2. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Sections "Inspection and Test Procedures" and "System Function Tests." Certify compliance with test parameters.
 3. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 4. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation. Remove malfunctioning units, replace with new units, and retest.
 5. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

E. Units will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports.

3.7 CLEANING

A. Each pipe section shall be cleaned internally after preparation and before assembly by means of swabbing, using a suitable nonflammable cleaner. Pipe network shall be free of particulate matter and oil residue before installing nozzles or discharge devices.

3.8 SYSTEM FILLING

A. Preparation:
 1. Verify that piping system installation is completed and cleaned.
 2. Check for complete enclosure integrity.
 3. Check operation of ventilation and exhaust systems.

B. Filling Procedures:
 1. Fill extinguishing-agent containers with extinguishing agent, and pressurize to indicated charging pressure.
 2. Install filled extinguishing-agent containers.
 3. Energize circuits.
 4. Adjust operating controls.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain clean-agent fire-extinguishing systems.

END OF SECTION
SECTION 22 05 00
COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Sleeves.
 3. Escutcheons.
 5. Equipment installation requirements common to equipment sections.
 6. Painting and finishing.
 7. Supports and anchorages.

1.3 DEFINITIONS
A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.
B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
F. The following are industry abbreviations for plastic materials:
 2. CPVC: Chlorinated polyvinyl chloride plastic.
 3. PE: Polyethylene plastic.
 4. PVC: Polyvinyl chloride plastic.
G. The following are industry abbreviations for rubber materials:
 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 2. NBR: Acrylonitrile-butadiene rubber.

1.4 CONTRACTOR'S SUBMITTAL REVIEW RESPONSIBILITIES
A. General: Submittals are not requested for all products covered in the specifications. Submit only the data requested under the submittals portion of each specification section or where indicated in a Submittal Log, if included within Division 01.
 1. Non-requrement of submittals, when so noted, is not to be construed as an allowance for substitutions and does not relieve the contractor from full compliance with the plans and specifications.
 2. Any deviation from specified items is considered a substitution. If the contractor desires to use other than specified items, then a formal request for substitution must be submitted prior to bid date (no exceptions), in accordance with the procedures and time limitations set forth in Division 01. Where not defined in Division 01, requests for substitutions shall be submitted no less than ten (10) working days prior to bid date. Review of substitution
requests by the Engineer shall be done at the expense of the contractor. Charges for this substitution review shall be calculated based on the Engineer’s standard hourly rates, as defined in their contract with the Owner.

B. It is the responsibility of the Contractor to ensure that all submittals have been reviewed for total completeness and accuracy as to the requirements of the specifications and drawings before being submitted to the Engineer for review.
 1. One comprehensive submittal shall be provided for each individual specification section. All required submittal information called for in each individual specification section shall be included in the submittal.
 2. The Engineer of Record shall not be responsible for informing the contractor on items that have not been included and are necessary for a complete review of the required submittal information for a specification section.
 3. The Engineer of Record shall have the option of returning any submittal, unmarked, if all required documentation called for in the specifications has not been provided in the submittal.
 4. The Engineer of Record shall review each submittal no more than two (2) times and return to the contractor with the appropriate disposition.
 5. If the Engineer of Record is required to review a submittal a second time, it shall be limited to review of the changed information, clearly highlighted by the submitter, and/or confirmation of documentation only and it shall be returned to the contractor with the appropriate disposition.
 6. If the submittal is required to be reviewed a third time, it shall be done at the expense of the contractor. Charges for this additional submittal review shall be calculated based on the Engineer’s standard hourly rates, as defined in their contract with the Owner.

C. Operation and Maintenance Manuals: All items required for insertion into each Operation and Maintenance (O&M) Manual are called out in the submittals portion of each specification section or in a Submittal Log, if included within Division 01. It is the responsibility of the Contractor to ensure that the O&M submittal has been reviewed and includes all the requirements of the specifications. The Engineer of Record shall review the submittal for the Operation and Maintenance Manual one (1) time and return to the contractor with the appropriate disposition.
 1. If the submittal is required to be reviewed a second time, it shall be done at the expense of the contractor. Charges for this additional submittal review shall be calculated based on the Engineer’s standard hourly rates, as defined in their contract with the Owner.
 2. Submittals for the Operation and Maintenance Manual must be original documentation.
 3. Photo copies of marked up Operations and Maintenance submittals are not acceptable.

D. Coordination Drawings: Prepare and submit Coordination Drawings as further described herein and as indicated in the Special Conditions. The Engineer shall receive one copy of all coordination drawings supplied to the Owner as required in this specification. It is the responsibility of the Contractor to coordinate the work as outlined herein. Receipt by the Engineer of a copy of the coordination drawings is to verify conformance to the submittal requirements set forth in this specification section. It is not an admission by the Engineer as to the accuracy or completeness of the coordination proposed.

E. Refer to Division 01 and each individual Division 23 Section for additional submittal requirements.

1.5 SUBMITTALS
 A. Product Data: For the following:
 1. Escutcheons.

1.6 QUALITY ASSURANCE
 A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
B. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.8 COORDINATION
A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.
B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section “Access Doors and Frames.”

PART 2 - PRODUCTS
2.1 MANUFACTURERS
A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS
A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.
B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS
A. Refer to individual Division 22 piping Sections for special joining materials not listed below.
B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8 inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

2.4 SLEEVES
A. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
B. Cast Iron: Cast or fabricated “wall pipe” equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
C. The space between the pipe and the sleeve shall be filled with Link-Seal or another approved manufacturer.
2.5 ESCUTCHEONS
 A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
 B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
 C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated.

2.6 GROUT
 A. Description: ASTM C 1107, Grade B, non-shrink and nonmetallic, dry hydraulic-cement grout.
 1. Characteristics: Post-hardening, volume-adjusting, non-staining, non-corrosive, non-gaseous, and recommended for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION
3.1 PIPING SYSTEMS - COMMON REQUIREMENTS
 A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.
 B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
 C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
 D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
 E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
 F. Install piping to permit valve servicing.
 G. Install piping at indicated slopes.
 H. Install piping free of sags and bends.
 I. Install fittings for changes in direction and branch connections.
 J. Install piping to allow application of insulation.
 K. Select system components with pressure rating equal to or greater than system operating pressure.
 L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type and set screw.
 f. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type with set screw.
 g. Bare Piping in Equipment Rooms: One-piece, stamped-steel type with set screw.
h. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 3. Install sleeves that are large enough to provide ¼ inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1 inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1 inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

T. Verify final equipment locations for roughing-in.

U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION, COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
D. Install equipment to allow right of way for piping installed at required slope.

3.5 PAINTING

A. Painting of plumbing systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.6 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.
C. Field Welding: Comply with AWS D1.1.

3.7 GROUTING

A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.
B. Clean surfaces that will come into contact with grout.
C. Provide forms as required for placement of grout.
D. Avoid air entrapment during placement of grout.
E. Place grout, completely filling equipment bases.
F. Place grout on concrete bases and provide smooth bearing surface for equipment.
G. Place grout around anchors.
H. Cure placed grout.

END OF SECTION
SECTION 22 05 23
GENERAL-DUTY VALVES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Bronze ball valves.
 2. Iron, single-flange butterfly valves.
B. Related Sections:
 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
 2. Division 22 Section "Identification for Plumbing" for valve tags and schedules.

1.3 DEFINITIONS
A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene copolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
D. NRS: Non-rising stem.
E. OS&Y: Outside screw and yoke.
F. RS: Rising stem.
G. SWP: Steam working pressure.
H. Lead Free: Refers to the wetted surface of pipe, fittings and fixtures in potable water systems that have a weighted average lead content ≤0.25% per Safe Drinking Water Act as amended January 4th 2011 Section 1417 and as Senate Bill S.3874.

1.4 SUBMITTALS
A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE
A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.1 for power piping valves.
 3. ASME B31.9 for building services piping valves.
C. NSF Compliance: NSF/ANSI 61 and/or NSF/ANSI 372 for valve materials for potable-water service. Valves for domestic water must be 3rd Party Certified.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 4. Set butterfly valves closed or slightly open.
 5. Block check valves in either closed or open position.
B. Use the following precautions during storage:
1. Maintain valve end protection.
2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES
A. Refer to valve schedule articles for applications of valves.
B. Lead-free silicon bronze (ASTM listed) valves shall be made with corrosion-resistant materials. Manufacturer shall provide third party certification tested in accordance with EN ISO 6509 regarding dezincification corrosion resistance and stress corrosion cracking.
C. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
D. Valve Sizes: Same as upstream piping unless otherwise indicated.
E. Valve Actuator Types:
F. Valves in Insulated Piping: With 2 inch stem extensions and the following features:
 1. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
G. Valve-End Connections:
 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 2. Solder Joint: With sockets according to ASME B16.18.
 3. Threaded: With threads according to ASME B1.20.1.
H. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES
A. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Hammond Valve.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece bronze with threaded body packnut design with adjustable stem packing.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

2.3 IRON, SINGLE-FLANGE BUTTERFLY VALVES
A. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Crane Co.; Crane Valve Group; Jenkins Valves.
b. Hammond Valve.
c. Milwaukee Valve Company.
d. NIBCO INC.
e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: EPDM.
 f. Stem: One or two piece stainless steel.
 g. Disc: Lead Free Aluminum bronze.

2.4 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Hammond Valve.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 2. Description:
 a. Standard: MSS SP-139.
 b. CWP Rating: 300 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
1. Swing Check Valves: In horizontal position with hinge pin level.

F. When soldering use paste fluxes that are approved by the manufacture for use with Lead Free Alloys.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
 1. Shutoff Service: Ball or butterfly valves.
 4. Pump-Discharge Check Valves:
 a. NPS 3 and Smaller: Bronze swing check valves with bronze disc.
 b. NPS 4 and Larger for Domestic Water: Iron swing check valves with lever and weight with center-guided, metal-seat check valves.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:
 1. For Copper Tubing, NPS 3 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Copper Tubing, NPS 4 and larger: Flanged ends except where threaded valve-end option is indicated in valve schedules below.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2-1/2 and Smaller:
 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Ball Valves: Two piece, full port, bronze with stainless-steel trim.
 3. Bronze Swing Check Valves: Class 125, bronze disc.

B. Pipe NPS 3 and Larger:
 2. Iron swing check valves for sizes 4” and larger.

END OF SECTION
SECTION 22 05 29
HANGERS AND SUPPORTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Thermal-hanger shield inserts.
4. Fastener systems.
5. Equipment supports.

B. Related Sections:
1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
2. Division 22 Section "Expansion Fittings and Loops" for pipe guides and anchors.

1.3 DEFINITIONS
A. MSS: Manufacturers Standardization Society of the Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS
A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
1. Trapeze pipe hangers.
2. Equipment supports.
C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1. Detail fabrication and assembly of trapeze hangers.
2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 QUALITY ASSURANCE
A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pre-galvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. ERICO International Corporation.
 3. PHS Industries, Inc.
 4. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
 5. Piping Technology & Products, Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop or field-fabricated equipment support made from structural carbon-steel shapes.

2.6 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
B. Grout: ASTM C 1107, factory-mixed and packaged, dry, hydraulic-cement, non-shrink and non-metallic grout; suitable for interior and exterior applications.
 1. Properties: Non-staining, non-corrosive, and non-gaseous.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field-fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

D. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

G. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

H. Install lateral bracing with pipe hangers and supports to prevent swaying.

I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Fasten inserts to forms and install reinforcing bars through openings at top of inserts.

J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

L. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.

5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 METAL FABRICATIONS
 A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
 B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
 C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.
 D. Provide and install Unistrut pipe support systems for installation of piping in tunnel. Unistrut system shall be designed to support guidelines for all piping to be supported in the rack system. The supports shall be designed by a structural engineer licensed in the state of Missouri. All material shall be factory coated for rust protection.

3.3 ADJUSTING
 A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
 B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.4 PAINTING
 A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
 B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.
 C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.5 HANGER AND SUPPORT SCHEDULE
 A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
 B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
 C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
D. Use non-metallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.

F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Use padded hangers for piping that is subject to scratching.

H. Use thermal-hanger shield inserts for insulated piping and tubing.

I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of non-insulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of non-insulated, stationary pipes NPS 3/4 to NPS 8.
 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of non-insulated, stationary pipes NPS 3/4 to NPS 8.
 8. Adjustable Band Hangers (MSS Type 9): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of non-insulated, stationary pipes NPS 3/8 to NPS 8.
 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of non-insulated, stationary pipes NPS 3/8 to NPS 3.
 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar joist construction, to attach to top flange of structural shape.
 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 6. C-Clamps (MSS Type 23): For structural shapes.
 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION
SECTION 22 05 53
IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Equipment labels.
 2. Pipe labels.
 3. Valve tags.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
C. Valve numbering scheme.
D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION
A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS
A. Metal Labels for Equipment:
 1. Material and Thickness: Aluminum, 0.032 inch or anodized aluminum, 0.032 inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2 by 11 inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS
A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
B. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.3 VALVE TAGS

A. Valve Tags: Stamped or engraved with ¼ inch letters for piping system abbreviation and ½ inch numbers.
 1. Tag Material: Aluminum, 0.032 inch or anodized aluminum, 0.032 inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass wire-link chain.

B. Valve Schedules: For each piping system, on 8-1/2 by 11 inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting."

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels with painted, color-coded bands or rectangles, complying with ASME A13.1, on each piping system.
 1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

D. Pipe Label Color Schedule:
 1. Domestic Water Piping:
 a. Background Color: Blue.
2. Sanitary Waste and Storm Drainage Piping:
 a. Background Color: Black.

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 1. Valve-Tag Size and Shape:
 b. Hot Water: 2 inches, round.
 2. Valve-Tag Color:
 b. Hot Water: Natural.
 3. Letter Color:
 b. Hot Water: Black.

END OF SECTION
SECTION 22 07 19
PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes insulating the following plumbing piping services:
 1. Domestic cold-water piping.
 2. Domestic hot-water piping.
 3. Domestic recirculating hot-water piping.
 4. Storm-water piping exposed to freezing conditions.
 5. Roof drains and rainwater leaders.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail attachment and covering of heat tracing inside insulation.
 3. Detail insulation application at pipe expansion joints for each type of insulation.
 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
 6. Detail application of field-applied jackets.
 7. Detail application at linkages of control devices.
C. Qualification Data: For qualified Installer.
D. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
E. Field quality-control reports.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
C. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.5 DELIVERY, STORAGE, AND HANDLING
A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION
A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports."
B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING
A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS
A. Comply with requirements in "Piping Insulation Schedule, General" and "Indoor Piping Insulation Schedule articles for where insulating materials shall be applied.
B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aero flex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.

2.2 ADHESIVES
A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aeroseal.
 b. Armacell LLC; Armadex 520 Adhesive.
 d. K-Flex USA; R-373 Contact Adhesive.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic
Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

D. PVC Jacket Adhesive: Compatible with PVC jacket.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Dow Corning Corporation; 739, Dow Silicone.
 d. Speedline Corporation; Polyco VP Adhesive.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

2.3 SEALANTS

A. Joint Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Permanently flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 100 to plus 300 deg F.
 5. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 6. Use sealants that comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

B. FSK and Metal Jacket Flashing Sealants:
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 405.
 c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 d. Mon-Eco Industries, Inc.; 44-05.
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.
6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Use sealants that comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
1. Products: Subject to compliance with requirements, provide the following:
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Use sealants that comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

2.4 FACTORY-APPLIED JACKETS
A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.5 TAPES
A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 428 AWF ASJ.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 c. Compac Corporation; 104 and 105.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 491 AWF FSK.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 c. Compac Corporation; 110 and 111.
 d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.
2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 488 AWF.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 c. Compac Corporation; 120.
 d. Venture Tape; 3520 CW.
2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch in width.

2.6 SECUREMENTS
A. Bands:
1. Products: Subject to compliance with requirements, provide one of the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping and Seals.
2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.

2.7 PROTECTIVE SHIELDING GUARDS
A. Protective Shielding Pipe Covers:
1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Insul-Tect Products Co.; a subsidiary of MVG Molded Products.
 b. McGuire Manufacturing.
 c. Truebro; a brand of IPS Corporation.
 d. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.
2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that applies to insulation.
C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS
A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
E. Install multiple layers of insulation with longitudinal and end seams staggered.
F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
G. Keep insulation materials dry during application and finishing.
H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
I. Install insulation with least number of joints practical.
J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3 inch wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."
3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe
insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.
3.8 FIELD QUALITY CONTROL
 A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 B. Perform tests and inspections.
 C. Tests and Inspections:
 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article in the section.
 D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 PIPING INSULATION SCHEDULE, GENERAL
 A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
 B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawlspaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.10 PIPING INSULATION SCHEDULE
 A. Domestic and Lab Cold Water:
 1. NPS 1 and Smaller: Insulation shall be one of the following:
 a. Flexible Elastomeric: 3/4 inch thick.
 2. NPS 1-1/4 and Larger: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 B. Domestic and Lab Hot and Recirculated Hot Water:
 1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 2. NPS 1-1/2 and Larger: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 C. Stormwater and Overflow Drains: (All pipe and fittings above ground shall be insulated)
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 3/4 inch thick.
 D. Roof Drain Bodies:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 3/4 inch thick.

END OF SECTION
SECTION 22 11 16
DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
 B. Related Sections:
 1. Division 22 Section “Plumbing Specialties.”
 2. Division 22 Section “Identification for Plumbing” for valve tags and schedules.
 3. Division 22 Section “General duty Valves.”

1.3 SUBMITTALS
 A. Product Data: For the following products:
 1. Water piping materials.
 C. Field quality-control reports.

1.4 QUALITY ASSURANCE
 A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
 B. Comply with NSF 61 for potable domestic water piping and components.

1.5 COORDINATION
 A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
 A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS
 A. Hard Copper Tube: ASTM B 88, Type L and Type K water tube, drawn temper.
 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
 B. Soft Copper Tube: ASTM B 88, Type K water tube, annealed temper.

2.3 PIPING JOINING MATERIALS
 A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated.
 B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
 C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 d. Jomar International Ltd.
 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 f. Wilkins; a Zurn company.

 2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.5 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Flex-Hose Co., Inc.
 2. Flex Pression, Ltd.
 3. Flex-Weld, Inc.
 5. Metraflex, Inc.
 6. Proco Products, Inc.
 7. Tozen Corporation.
 8. Unaflex, Inc.
 9. Universal Metal Hose; a Hyspan company.

B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install underground copper tube in PE encasement according to ASTM A 674 or AWWA C105.

D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.

E. Install shutoff valve immediately upstream of each dielectric fitting.

F. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for pressure-reducing valves.
G. Install domestic water piping level without pitch and plumb.
H. Rough-in domestic water piping for water-meter installation according to utility company’s requirements.
I. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
J. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
K. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
L. Install piping adjacent to equipment and specialties to allow service and maintenance.
M. Install piping to permit valve servicing.
N. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.
O. Install piping free of sags and bends.
P. Install fittings for changes in direction and branch connections.
Q. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
R. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section “Meters and Gages” for pressure gages.
S. Install thermostats in hot-water circulation piping. Comply with requirements in Division 22 Section "Domestic Water Pumps" for thermostats.
T. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages" for thermometers.
U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Common Work Results."
V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section “Common Work Results.”
W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Common Work Results."

3.2 JOINT CONSTRUCTION
A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
D. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA’s "Copper Tube Handbook."
E. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
3.3 VALVE INSTALLATION
A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves" for valve installations.
B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball or gate valves for piping NPS 2 and smaller. Use butterfly or gate valves for piping NPS 2-1/2 and larger.
C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.
D. Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for calibrated balancing valves.

3.4 DIELECTRIC FITTING INSTALLATION
A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

3.5 FLEXIBLE CONNECTOR INSTALLATION
A. Install flexible connectors in suction and discharge piping connections to each domestic water pump and in suction and discharge manifold connections to each domestic water booster pump.
B. Install bronze-hose flexible connectors in copper domestic water tubing.
C. Install stainless-steel-hose flexible connectors in steel domestic water piping.

3.6 HANGER AND SUPPORT INSTALLATION
A. Comply with requirements in Division 22 Section "Hangers and Supports" for pipe hanger and support products and installation.
 1. Vertical Piping: MSS Type 8 or 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.
B. Support vertical piping and tubing at base and at each floor.
C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 3/4 and Smaller: 60 inches with 3/8 inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8 inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8 inch rod.
 4. NPS 2-1/2: 108 inches with 1/2 inch rod.
 5. NPS 3 to NPS 5: 10 feet with 1/2 inch rod.
 6. NPS 6: 10 feet with 5/8 inch rod.
 7. NPS 8: 10 feet with 3/4 inch rod.
E. Install supports for vertical copper tubing every 10 feet.
F. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS
A. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to equipment and machines to allow service and maintenance.
C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 3. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
 4. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.8 IDENTIFICATION
A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing" for identification materials and installation.
B. Label pressure piping with system operating pressure.

3.9 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Piping Inspections:
 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
C. Piping Tests:
 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and
allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
6. Prepare reports for tests and for corrective action required.
D. Domestic water piping will be considered defective if it does not pass tests and inspections.
E. Prepare test and inspection reports.

3.10 ADJUSTING
A. Perform the following adjustments before operation:
1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide flow of hot water in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.11 CLEANING
A. Clean and disinfect potable domestic water piping as follows:
1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
B. Prepare and submit reports of purging and disinfecting activities.
C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.12 PIPING SCHEDULE
A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
C. Under-building-slab, domestic water, building service piping, NPS 1" and smaller, shall be one of the following:
 1. Soft copper tube, ASTM B 88, Type K; wrought-copper solder-joint fittings; and brazed joints.
D. Aboveground domestic water piping, NPS 2-1/2 and smaller, shall be the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper solder-joint fittings; and soldered joints.

E. Aboveground domestic water piping, NPS 3 to NPS 4, shall be the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper solder-joint fittings; and soldered joints.

3.13 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 2. Throttling Duty: Use ball valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION
SECTION 22 11 17
LABORATORY WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
 B. Related Sections:
 1. Division 22 Section “Plumbing Specialties.”
 2. Division 22 Section “Identification for Plumbing” for valve tags and schedules.
 3. Division 22 Section “General duty Valves.”

1.3 SUBMITTALS
 A. Product Data: For the following products:
 1. Water piping materials.
 C. Field quality-control reports.

1.4 QUALITY ASSURANCE
 A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
 B. Comply with NSF 61 for potable domestic water piping and components.

1.5 COORDINATION
 A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
 A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS
 A. Hard Copper Tube: ASTM B 88, Type L and Type K water tube, drawn temper.
 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
 B. Soft Copper Tube: ASTM B 88, Type K water tube, annealed temper.

2.3 PIPING JOINING MATERIALS
 A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated.
 B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
 C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
2.4 DIELECTRIC FITTINGS
A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
B. Dielectric Unions:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 d. Jomar International Ltd.
 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 f. Wilkins; a Zurn company.
 2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.5 FLEXIBLE CONNECTORS
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Flex-Hose Co., Inc.
 2. Flex Pression, Ltd.
 3. Flex-Weld, Inc.
 5. Metraflex, Inc.
 6. Proco Products, Inc.
 7. Tozen Corporation.
 8. Unaflex, Inc.
 9. Universal Metal Hose; a Hyspan company.
B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

PART 3 - EXECUTION
3.1 PIPING INSTALLATION
A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
C. Install underground copper tube in PE encasement according to ASTM A 674 or AWWA C105.
D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.
E. Install shutoff valve immediately upstream of each dielectric fitting.
F. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for pressure-reducing valves.
G. Install domestic water piping level without pitch and plumb.
H. Rough-in domestic water piping for water-meter installation according to utility company's requirements.
I. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
J. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
K. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
L. Install piping adjacent to equipment and specialties to allow service and maintenance.
M. Install piping to permit valve servicing.
N. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.
O. Install piping free of sags and bends.
P. Install fittings for changes in direction and branch connections.
Q. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
R. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section "Meters and Gages" for pressure gages.
S. Install thermostats in hot-water circulation piping. Comply with requirements in Division 22 Section "Domestic Water Pumps" for thermostats.
T. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages" for thermometers.
U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Common Work Results."
V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Common Work Results."
W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Common Work Results."

3.2 JOINT CONSTRUCTION
A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
D. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
E. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
3.3 VALVE INSTALLATION
A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves" for valve installations.

B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball or gate valves for piping NPS 2 and smaller. Use butterfly or gate valves for piping NPS 2-1/2 and larger.

C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.

D. Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for calibrated balancing valves.

3.4 DIELECTRIC FITTING INSTALLATION
A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

3.5 FLEXIBLE CONNECTOR INSTALLATION
A. Install flexible connectors in suction and discharge piping connections to each domestic water pump and in suction and discharge manifold connections to each domestic water booster pump.

B. Install bronze-hose flexible connectors in copper domestic water tubing.

C. Install stainless-steel-hose flexible connectors in steel domestic water piping.

3.6 HANGER AND SUPPORT INSTALLATION
A. Comply with requirements in Division 22 Section "Hangers and Supports" for pipe hanger and support products and installation.
 1. Vertical Piping: MSS Type 8 or 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls.
 Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support vertical piping and tubing at base and at each floor.

C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 3/4 and Smaller: 60 inches with 3/8 inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8 inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8 inch rod.
 4. NPS 2-1/2: 108 inches with 1/2 inch rod.
 5. NPS 3 to NPS 5: 10 feet with 1/2 inch rod.
 6. NPS 6: 10 feet with 5/8 inch rod.
 7. NPS 8: 10 feet with 3/4 inch rod.
E. Install supports for vertical copper tubing every 10 feet.
F. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS
A. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to equipment and machines to allow service and maintenance.
C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 3. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
 4. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.8 IDENTIFICATION
A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing" for identification materials and installation.
B. Label pressure piping with system operating pressure.

3.9 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Piping Inspections:
 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
C. Piping Tests:
 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and
allow to stand for four hours. Leaks and loss in test pressure constitute defects that must
be repaired.
5. Repair leaks and defects with new materials and retest piping or portion thereof until
satisfactory results are obtained.
6. Prepare reports for tests and for corrective action required.
D. Domestic water piping will be considered defective if it does not pass tests and inspections.
E. Prepare test and inspection reports.

3.10 ADJUSTING
A. Perform the following adjustments before operation:
1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to
 provide flow of hot water in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
5. Remove plugs used during testing of piping and for temporary sealing of piping during
 installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for
 application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.11 CLEANING
A. Clean and disinfect potable domestic water piping as follows:
1. Purge new piping and parts of existing piping that have been altered, extended, or
 repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if
 methods are not prescribed, use procedures described in either AWWA C651 or
 AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at
 outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of
 chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of
 chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from
 system after the standing time.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat
 procedures if biological examination shows contamination.
B. Prepare and submit reports of purging and disinfecting activities.
C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.12 PIPING SCHEDULE
A. Transition and special fittings with pressure ratings at least equal to piping rating may be used
 in applications below unless otherwise indicated.
B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
C. Under-building-slab, domestic water, building service piping, NPS 1" and smaller, shall be one
 of the following:
 1. Soft copper tube, ASTM B 88, Type K; wrought-copper solder-joint fittings; and brazed
 joints.
D. Aboveground domestic water piping, NPS 2-1/2 and smaller, shall be the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper solder-joint fittings; and soldered joints.
E. Aboveground domestic water piping, NPS 3 to NPS 4, shall be the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper solder-joint fittings; and soldered joints.

3.13 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 2. Throttling Duty: Use ball valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
B. Use check valves to maintain correct direction of domestic water flow to and from equipment.
SECTION 22 11 19
DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following domestic water piping specialties:
 1. Backflow preventers.
 2. Balancing valves.
 3. Strainers.
 4. Outlet boxes.
 5. Hose bibs.
 6. Wall hydrants.
 7. Water hammer arresters.
B. Related Sections include the following:
 1. Division 22 Section "Meters and Gages" for thermometers, pressure gages, and flow meters in domestic water piping.
 2. Division 22 Section "Domestic Water Piping" for water meters.
 3. Division 22 Section "Emergency Plumbing Fixtures" for water tempering equipment.

1.3 PERFORMANCE REQUIREMENTS
A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: Diagram power, signal, and control wiring.
C. Field quality-control test reports.
D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
B. NSF Compliance:
 2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."

1.6 EXTRA MATERIALS
A. Operating Key Handles: Furnish one extra key for each key-operated hose bibb and wall hydrant installed.

PART 2 - PRODUCTS

2.1 BACKFLOW PREVENTERS
A. Reduced-Pressure-Principle Backflow Preventers (RPBP):
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. DOMESTIC WATER PIPING SPECIALTIES

2.1 WATER PIPING SPECIALTIES

b. Zurn Plumbing Products Group; Wilkins Div.

3. Operation: Continuous-pressure applications.
4. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
5. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
6. Configuration: Designed for horizontal, straight through flow.
7. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

2.2 BALANCING VALVES

A. Copper-Alloy Calibrated Balancing Valves (BV):
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. ITT Industries; Bell & Gossett Div.
 c. NIBCO INC.
 d. Taco, Inc.
 e. Watts Industries, Inc.; Water Products Div.
 2. Type: Ball valve with two readout ports and memory setting indicator.
 4. Size: Same as connected piping, but not larger than NPS 2.
 5. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

2.3 STRainers FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:
 1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
 2. Body: Bronze for NPS 2-1/2” and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating for NPS 3 and larger.
 3. End Connections: Threaded for NPS 2-1/2 and smaller; flanged for NPS 3 and larger.
 4. Screen: Stainless steel with round perforations, unless otherwise indicated.
 5. Perforation Size:
 a. Strainers NPS 2-1/2 and Smaller: 0.020 inch.
 b. Strainers NPS 3 to NPS 4: 0.045 inch.

2.4 HOSE BIBBS

A. Hose Bibbs (HB-1):
 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
 8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
 9. Finish for Service Areas: Chrome or nickel plated.
 10. Finish for Finished Rooms: Chrome or nickel plated.
 11. Operation for Equipment Rooms: Wheel handle or operating key.
12. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.5 WALL HYDRANTS
 A. Nonfreeze Wall Hydrants “WH-1”:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. MIFAB, Inc.
 b. Prier Products, Inc.
 c. Woodford Manufacturing Company.
 4. Operation: Loose key.
 5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
 6. Inlet: NPS 3/4 or NPS 1.
 7. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
 9. Operating Keys(s): Two with each wall hydrant and box.

2.6 WATER HAMMER ARRESTERS
 A. Water Hammer Arresters:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. MIFAB, Inc.
 b. PPP Inc.
 c. Sioux Chief Manufacturing Company, Inc.
 3. Type: Copper tube with piston.
 4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

2.7 WATER FILTER (CAFÉ)
 A. Water Filter:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Everpure model #QL3 single Head: EV92589-14
 b. Owner approved equal.
 2. Furnish with:
 a. Mounting brackets
 b. Valved bypass
 c. All wetted parts approved by NSF extraction test.

2.8 WATER SOFTENER (CAFÉ)
 A. Water Softener shall be provided by and installed by Contractor.
 B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Water Right Impression Series model # IMP-1354
 2. Ecodyne Water Treatment, Inc.
 4. WaterSoft; a division of Amtrol, Inc.
 C. Description: Factory-assembled, pressure-type water softener.
 2. Configuration: Triple unit with one mineral tanks and one brine tank.
4. Wetted Components: Suitable for water temperatures from 33 to at least 100 deg F.
5. Mineral Tanks: Steel, electric welded; pressure-vessel quality.
 b. Pressure Rating: 25-100 psig minimum.
 c. Freeboard: 50 percent minimum for backwash expansion above normal resin bed level.
 d. Finish: Fiberglas on exterior of tank.
 e. Distribution System: Fabricated from PVC pipe and fittings with individual, fine-slotted, non-clogging PE strainers, and arranged for even flow distribution through resin bed.
 f. Liner: PE, ABS, or other material suitable for potable water.
6. Controls: Fully automatic; factory-wired and factory-mounted on unit.
 a. Electric time clock and switch for fully automatic operation, adjustable to initiate regeneration at any hour of day and any day of week or at fixed intervals.
 b. Sequence of Operation: Multiport pilot-control valve automatically pressure-actuates main operating valve through steps of regeneration and return to service.
7. Main Operating Valves: Industrial, automatic, multiport, diaphragm type with the following features:
 a. Slow opening and closing, non-slam operation.
 b. Diaphragm guiding on full perimeter from fully open to fully closed.
 c. Isolated, dissimilar metals within valve.
 d. Self-adjusting, internal, automatic brine injector that draws brine and rinses at constant rate independent of pressure.
 e. Valve for single mineral-tank unit with internal automatic bypass of raw water during regeneration.
 f. Sampling cocks for soft water.
 g. Special tools are not required for service.
8. Flow Control: Automatic, to control backwash and flush rates over wide variations in operating pressure; does not require field adjustments.
 a.Demand-Initiated Control: The mineral tank unit is equipped with automatic-reset-head that electrically activates cycle controllers to automatically regenerate at preset time. Head automatically resets to preset time for next service run.
 a. Tank and Cover Material: Fiberglass or molded Polyethylene material.
 b. Brine Valve: Float operated and plastic fitted for automatic control of brine withdrawal and freshwater refill.
10. Factory-Installed Accessories:
 a. Piping, valves, tubing, and drains.
 b. Sampling cocks.
 c. Main-operating-valve position indicators.
D. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of water softeners that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures of mineral and brine tanks.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 d. Attrition loss of resin exceeding 3 percent per year.
 e. Mineral washed out of system during service run or backwashing period.
 f. Effluent turbidity greater and color darker than incoming water.
g. Fouling of under-drain system, gravel, and resin with turbidity or by dirt, rust, or scale from water softener or soft water, while operating according to manufacturer's written operating instructions.

2. Commercial Water Softeners, Warranty Period: From date of Substantial Completion.
 b. Brine Tanks: 10 years.
 c. Control Valve: One year.

2.9 EXTRA MATERIALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Salt for Brine Tanks: Furnish in same form as and at least four times original load, but not less than 240 lbs. Deliver on pallets according to the following:
 a. Plain Pellet Salt: In 40-lb packages.
 2. Store salt on raised platform where directed by Owner. Do not store in contact with concrete floor.

2.10 MAINTENANCE SERVICE
 A. Initial Maintenance Service: Beginning at Substantial Completion, provide 12 months' full maintenance by skilled employees of water softener Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, cleaning, and adjusting as required for proper water softener operation at rated capacity. Provide parts and supplies the same as those used in the manufacture and installation of original equipment.
 B. Continuing Maintenance Proposal: From Installer to Owner, in the form of a standard yearly (or other period) maintenance agreement, starting on date initial maintenance service is concluded. State services, obligations, conditions, and terms for agreement period and for future renewal options.

PART 3 - EXECUTION
3.1 INSTALLATION
 A. Refer to Division 22 Section "Common Work Results" for piping joining materials, joint construction, and basic installation requirements.
 B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
 3. Do not install bypass piping around backflow preventers.
 C. Install balancing valves in locations where they can easily be adjusted.
 D. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 1. Install thermometers and water regulators if specified.
 2. Install cabinet-type units recessed in or surface mounted on wall as specified.
 E. Install Y-pattern strainers for water on supply side of each control valve, and water pressure-reducing valve.
 F. Install outlet boxes recessed in wall. Install 2 by 4 inch fire-retardant-treated-wood blocking wall reinforcement between studs.
 G. Install hose stations with check stops or shutoff valves on inlets and with thermometer on outlet.
 1. Install shutoff valve on outlet if specified.
2. Install cabinet-type units recessed in or surface mounted on wall as specified.

H. Install water hammer arresters in water piping according to PDI-WH 201.

3.2 CONNECTIONS
A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

3.3 LABELING AND IDENTIFYING
A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Reduced-pressure-principle backflow preventers.
 2. Double-check backflow-prevention assemblies.
 3. Calibrated balancing valves.
 4. Primary, thermostatic, water mixing valves.
 5. Outlet boxes.
 6. Hose stations.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing."

3.4 FIELD QUALITY CONTROL
A. Perform the following tests and prepare test reports:
 1. Test each reduced-pressure-principle backflow preventer double-check backflow-prevention assembly according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.5 ADJUSTING
A. Set field-adjustable flow set points of balancing valves.

3.6 STARTUP SERVICE FOR WATER SOFTENER
A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.

B. Add water to brine tanks and fill with the following form of salt:
 1. Commercial Water Softeners: Processed, crystallized solar salt collected from shallow ponds and milled into irregular particles.

C. Sample water softener effluent after startup and at three consecutive seven-day intervals (total of four samples), and prepare certified test reports for required water performance characteristics. Comply with the following:
 2. ASTM D 1067, "Test Methods for Acidity or Alkalinity of Water."
 5. ASTM D 3370, "Practices for Sampling Water from Closed Conduits."

3.7 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain water softeners.

END OF SECTION
SECTION 22 13 16
STORM, SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Pipe, tube, and fittings.
2. Specialty pipe fittings.
3. Encasement for underground metal piping.
B. Related Sections:
1. Division 22 Section "Common Work Results."

1.3 PERFORMANCE REQUIREMENTS
A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

1.4 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: For solvent drainage system. Include plans, elevations, sections, and details.
C. Field quality-control reports.

1.5 QUALITY ASSURANCE
A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS
A. Pipe and Fittings: ASTM A 74 and CISPI 301, Service class(es).
B. Gaskets: ASTM C 564, rubber.
C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS
A. Pipe and Fittings: ASTM A 888 and CISPI 301.
B. Heavy-Duty, Hubless-Piping Couplings:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 b. Mission Rubber Company; a division of MCP Industries, Inc.
 c. Tyler Pipe.
3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
2.4 COPPER TUBE AND FITTINGS
 A. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.
 B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.
 C. Solder: ASTM B 32, lead-free with ASTM B 813, water-flushable flux.

2.5 LAB SINK WASTE PIPE AND FITTINGS
 A. Drainage Pipe and Fittings: ASTM F 1412, pipe extruded and drainage-pattern fittings molded, with Schedule 40 dimensions, from Polypropylene (PP) resin with fire-retardant additive complying with ASTM D 4101; with mechanical-joint ends.
 1. Exception: Pipe and fittings made from PP resin without fire-retardant additive may be used for underground installation.
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Orion Fittings, Inc.; a division of Watts Water Technologies, Inc.
 b. Sloane, George Fischer Inc.
 c. Town & Country Plastics, Inc.
 d. Watts Industries (Canada) Inc.
 e. Zurn Plumbing Products Group; Chemical Drainage Systems.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION
 A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
 B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
 C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
 D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
 E. Install piping to permit valve servicing.
 F. Install piping at indicated slopes.
 G. Install piping free of sags and bends.
 H. Install fittings for changes in direction and branch connections.
 I. Install piping to allow application of insulation.
 J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
 K. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
L. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
1. Building Sanitary Drain and Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
2. Vent Piping: 0.5 percent down toward vertical fixture vent or toward vent stack.

M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

N. Plumbing Specialties:
1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Division 22 Section "Sanitary Waste Piping Specialties."
2. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Division 22 Section "Sanitary Waste Piping Specialties."

O. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Common Work Results."

Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Common Work Results."

R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Common Work Results."

3.2 JOINT CONSTRUCTION

B. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

C. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.

1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.

3.3 HANGER AND SUPPORT INSTALLATION
A. Comply with requirements for pipe hanger and support devices and installation specified in Division 22 Section "Hangers and Supports."

1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
3. Vertical Piping: MSS Type 8 or Type 42 clamps.
4. Install individual, straight, horizontal piping runs.

B. Support horizontal piping and tubing within 12 inches of each fitting and coupling.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, with 3/8 inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/2 and NPS 2: 60 inches with 3/8 inch rod.
2. NPS 3: 60 inches with 1/2 inch rod.
3. NPS 4 and NPS 5: 60 inches with 5/8 inch rod.
4. NPS 6 and NPS 8: 60 inches with 3/4 inch rod.
F. Install supports for vertical cast-iron soil piping every 15 feet.

G. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4: 72 inches with 3/8 inch rod.
 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8 inch rod.

H. Install supports for vertical copper tubing every 10 feet.

I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer’s written instructions.

3.4 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 5. Comply with requirements for cleanouts and drains specified in Division 22 Section "Sanitary Waste Piping Specialties."
 6. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.5 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing."

3.6 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.

2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.

3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10 foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.

3.7 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.
B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.8 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
B. Aboveground, soil and waste piping NPS 1-1/2 and smaller shall be any of the following:
 1. Copper DWV tube, copper drainage fittings, and soldered joints.
C. Aboveground, storm, soil and waste piping NPS 2 and larger shall be:
 1. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.
D. Aboveground, vent piping NPS 1-1/2 and smaller shall be any of the following:
 1. Copper DWV tube, copper drainage fittings, and soldered joints.
E. Lab Sinks (LS) waste piping from connection to sink to the waste pipe in wall shall be;
 1. Polypropylene schedule 40 pipe and fittings with mechanical joints.
F. Aboveground, vent piping NPS 2 and larger shall be:
 1. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.
G. Underground, storm, soil, waste, and vent piping NPS 12 and smaller shall be any of the following:
 1. Cast-iron hub and spigot pipe and fittings with push joint gaskets.

END OF SECTION
THIS PAGE LEFT INTENTIONALLY BLANK
SECTION 22 13 19
SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following sanitary drainage piping specialties:
 1. Cleanouts.
 2. Floor drains.
 3. Floor sinks.
 5. Flashing materials.
B. Related Sections include the following:
 1. Division 22 Section "Storm Drainage Piping Specialties" for trench drains for storm water, channel drainage systems for storm water, roof drains, and catch basins.
 2. Division 22 Section "Plumbing Fixtures" for hair interceptors.

1.3 DEFINITIONS
B. FOG: Fats, oils, and greases.
C. FRP: Fiberglass-reinforced plastic.
D. HDPE: High-density polyethylene plastic.
E. PE: Polyethylene plastic.
F. PP: Polypropylene plastic.
G. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories:

1.5 QUALITY ASSURANCE
A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

1.6 COORDINATION
A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
B. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 CLEANOUTS
A. Exposed Metal Cleanouts (CO):
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
d. Tyler Pipe; Wade Div.
e. Watts Drainage Products Inc.
f. Zurn Plumbing Products Group; Specification Drainage Operation.

2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
3. Size: Same as connected drainage piping
4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
5. Closure: Countersunk or raised-head, brass plug.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Metal Floor Cleanouts (FCO):
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Tyler Pipe; Wade Div.
 d. Watts Drainage Products Inc.
 e. Zurn Plumbing Products Group; Light Commercial Operation.
2. Standard: ASME A112.36.2M for heavy-duty, adjustable housing cleanout.
3. Size: Same as connected branch.
4. Type: Heavy-duty, adjustable housing.
5. Body or Ferrule: Cast iron.
7. Closure: Brass plug with tapered threads.
8. Adjustable Housing Material: Cast iron with set-screws or other device.
10. Frame and Cover Shape: Round.
11. Top Loading Classification: Heavy Duty.
12. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
14. Size: Same as connected branch.
15. Housing: Stainless steel.
17. Riser: Stainless steel drainage pipe fitting to cleanout.

C. Cast-Iron Wall Cleanouts (WCO):
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products Inc.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.
2. Standard: ASME A112.36.2M. Include wall access.
3. Size: Same as connected drainage piping.
4. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
5. Closure: Countersunk or raised-head, drilled-and-threaded brass plug.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.2 FLOOR DRAINS
A. Cast-Iron Floor Drains: See Schedule on Drawings.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2.3 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Deep-Seal Traps:
 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
 2. Size: Same as connected waste piping.
 a. NPS 2: 4-inch- minimum water seal.
 b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.

B. Trap Seals:

C. Floor-Drain, Trap-Seal Primer Fittings:
 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.

D. Air-Gap Fittings:
 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 2. Body: Bronze or cast iron.
 3. Inlet: Opening in top of body.
 4. Outlet: Larger than inlet.
 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

2.4 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Use: 4.0-lb/sq. ft., 0.0625-inch thickness.
 2. Vent Pipe Flashing: 3.0-lb/sq. ft., 0.0469-inch thickness.

C. Fasteners: Metal compatible with material and substrate being fastened.

D. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

E. Solder: ASTM B 32, lead-free alloy.

F. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results" for piping joining materials, joint construction, and basic installation requirements.

B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 4. Locate at base of each vertical soil and waste stack.

C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

F. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.

G. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.

H. Install deep-seal traps on floor drains and other waste outlets, if indicated.

I. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.

J. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

K. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.

L. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.
3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Division 07 Section "Sheet Metal Flashing and Trim."

F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION
SECTION 22 40 00
PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following conventional plumbing fixtures and related components:
 1. Faucets for lavatories and sinks.
 2. Flushometers.
 3. Toilet seats.
 4. Protective shielding guards.
 5. Fixture supports.
 7. Lavatories.
 8. Commercial sinks.
 B. Related Sections include the following:
 1. Division 10 Section "Toilet, Bath, and Laundry Accessories."
 2. Division 22 Section "Domestic Water Piping Specialties" for backflow preventers, floor drains, and specialty fixtures not included in this Section.
 3. Division 22 Section "Emergency Plumbing Fixtures."

1.3 DEFINITIONS
 B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.
 C. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.
 D. Cultured Marble: Cast-filled-polymer-plastic material with surface coating.
 E. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.
 F. FRP: Fiberglass-reinforced plastic.
 G. PMMA: Polymethyl methacrylate (acrylic) plastic.
 H. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS
 A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.
 B. Shop Drawings: Diagram power, signal, and control wiring.
 C. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.
 D. Warranty: Special warranty specified in this Section.
1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.
 1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

F. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.

G. Comply with the following applicable standards and other requirements specified for plumbing fixtures:
 4. Vitreous-China Fixtures: ASME A112.19.2M.

H. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:
 1. Faucets: ASME A112.18.1.

I. Comply with the following applicable standards and other requirements specified for bathtub/shower and shower faucets:
 1. Backflow Protection Devices for Hand-Held Showers: ASME A112.18.3M.
 2. Combination, Pressure-Equalizing and Thermostatic-Control Antiscald Faucets: ASSE 1016.
J. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:
2. Brass and Copper Supplies: ASME A112.18.1.

K. Comply with the following applicable standards and other requirements specified for miscellaneous components:
1. Disposers: ASSE 1008 and UL 430.
4. Floor Drains: ASME A112.6.3.
5. Grab Bars: ASTM F 446.
7. Off-Floor Fixture Supports: ASME A112.6.1M.

1.6 WARRANTY
A. Special Warranties: Manufacturer's standard form in which manufacturer agrees to repair or replace components that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Structural failures of unit.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.
2. Warranty Period for Commercial Applications: One year from date of Substantial Completion.

PART 2 - PRODUCTS (SEE SCHEDULE ON DRAWINGS)
2.1 ACCEPTABLE MANUFACTRERS:
A. Vitreous China:
 1. Kohler.
 3. Sloan.
B. Mop Basins:
 1. Stern Williams.
 2. Fiat.
C. Electric Water Cooler:
 1. Oasis.
 2. Halsey Taylor.
 3. Elkay.
D. Flush Valves:
 1. Sloan.
 2. Zurn Industries.
E. Sensor Operated Faucets:
 1. Sloan.
 2. Zurn Industries.
F. Manual Operated Faucets:
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.
B. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers' written instructions.
B. Install floor-mounting fixtures on closet flanges or other attachments to piping or building substrate.
C. Install counter-mounting fixtures in and attached to casework.
D. Install fixtures level and plumb according to roughing-in drawings.
E. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
F. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.
G. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.
H. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.
I. Install toilet seats on water closets.
J. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
K. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.
L. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
M. Install shower flow-control fittings with specified maximum flow rates in shower arms.
N. Install traps on fixture outlets.
 1. Exception: Omit trap on fixtures with integral traps.
 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.
O. Install disposer in outlet of each sink indicated to have disposer. Install switch where indicated or in wall adjacent to sink if location is not indicated.
P. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Common Work Results."
Q. Set shower receptors and service basins in leveling bed of cement grout. Grout is specified in Division 22 Section "Common Work Results."

R. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."

3.3 CONNECTIONS
A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

3.4 FIELD QUALITY CONTROL
A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.

B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.

C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.

D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

E. Install fresh batteries in sensor-operated mechanisms.

3.5 ADJUSTING
A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.

B. Operate and adjust disposers and controls. Replace damaged and malfunctioning units and controls.

C. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.

D. Replace washers and seals of leaking and dripping faucets and stops.

E. Install fresh batteries in sensor-operated mechanisms.

3.6 CLEANING
A. Clean fixtures, faucets, and other fittings with manufacturers’ recommended cleaning methods and materials. Do the following:
 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 2. Remove sediment and debris from drains.

B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.7 PROTECTION
A. Provide protective covering for installed fixtures and fittings.

B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION
SECTION 22 61 13
COMPRESSED-AIR PIPING FOR LABORATORY FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Section 220500 “Common Work Results for Plumbing”.

1.3 DEFINITIONS
A. Compressed-air piping systems include laboratory air piping systems.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS
A. Brazing certificates.
 B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION
A. Laboratory air operating at 100 psig.

2.2 PIPES, TUBES, AND FITTINGS
A. Copper Water Tube: ASTM B 88, Type L, seamless, drawn temper that has been manufacturer cleaned.
 B. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type that has been manufacturer cleaned.
 C. Copper Unions: ASME B16.22 or MSS SP-123, wrought-copper or cast-copper alloy.

2.3 JOINING MATERIALS
A. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION
A. Drawing plans, schematics, and diagrams indicate general location and arrangement of
 compressed-air piping. Indicated locations and arrangements were used to size pipe and
 calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install
 piping as indicated unless deviations to layout are approved on coordination drawings.
 B. Install piping concealed from view and protected from physical contact by building occupants
 unless otherwise indicated and except in equipment rooms and service areas.
 C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right
 angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated
 otherwise.
 D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and
 coordinate with other services occupying that space.
 E. Install piping adjacent to equipment and specialties to allow service and maintenance.
 F. Install compressed-air piping with 1 percent slope downward in direction of flow.
G. Install nipples, unions, special fittings, and valves with pressure ratings same as or higher than system pressure rating used in applications specified in "Piping Schedule" Article unless otherwise indicated.

H. Install eccentric reducers, if available, where compressed-air piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.

I. Install branch connections to compressed-air mains from top of main. Provide drain leg and drain trap at end of each main and branch and at low points.

J. Install thermometer and pressure gage on discharge piping from each air compressor and on each receiver. Comply with requirements in Section 220519 "Meters and Gages for Plumbing Piping."

K. Install piping to permit valve servicing.

L. Install piping free of sags and bends.

M. Install fittings for changes in direction and for branch connections.

3.2 JOINT CONSTRUCTION

A. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.

B. Threaded Joints: Apply appropriate tape to external pipe threads.

C. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" chapter. Continuously purge joint with oil-free dry nitrogen during brazing.

D. Flanged Joints: Install flange on copper tubes. Use pipe-flange gasket between flanges. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.

E. Shape-Memory-Metal Coupling Joints: Join new copper tube to existing tube according to procedures developed by fitting manufacturer for installation of shape-memory-metal coupling joints.

3.3 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.

B. Vertical Piping: MSS Type 8 or Type 42, clamps.

C. Individual, Straight, Horizontal Piping Runs:
 1. 100 Feet and Less: MSS Type 1, adjustable, steel, clevis hangers.
 2. Longer Than 100 Feet: MSS Type 43, adjustable, roller hangers.

D. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for trapeze hangers.

E. Base of Vertical Piping: MSS Type 52, spring hangers.

F. Support horizontal piping within 12 inches of each fitting and coupling.

G. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch- minimum rods.

H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1/4: 60 inches with 3/8-inch rod.
 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
 4. NPS 1: 96 inches with 3/8-inch rod.
 6. NPS 1-1/2: 10 feet with 3/8-inch rod.
 7. NPS 2: 11 feet with 3/8-inch rod.
 8. NPS 2-1/2: 13 feet with 1/2-inch rod.
 9. NPS 3: 14 feet with 1/2-inch rod.
I. Install supports for vertical copper tubing every 10 feet.

3.4 IDENTIFICATION

A. Install identifying labels and devices for nonmedical laboratory compressed-air piping, valves, and specialties. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL FOR COMPRESSED-AIR PIPING IN NONMEDICAL LABORATORY FACILITIES

A. Testing Agency: Engage qualified testing agency to perform tests and inspections of compressed-air piping in nonmedical laboratory facilities and to prepare test and inspection reports.

B. Tests and Inspections:
 1. Piping Leak Tests for Compressed-Air Piping: Test new and modified parts of existing piping. Cap and fill compressed-air piping with oil-free dry nitrogen to pressure of 50 psig above system operating pressure, but not less than 150 psig. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
 2. Repair leaks and retest until no leaks exist.

C. Remove and replace components that do not pass tests and inspections and retest as specified above.

3.6 PROTECTION

A. Protect tubing from damage.

B. Retain sealing plugs in tubing, fittings, and specialties until installation.

3.7 PIPING SCHEDULE

A. Connect new tubing to existing tubing with memory-metal couplings.

B. Laboratory Air Piping except Laboratory Air Piping Larger than NPS 3 and Operating at More Than 185 psig: Type L, copper type “L” seamless pipe; wrought-copper fittings; and solder joints.

END OF SECTION
SECTION 22 62 13
VACUUM PIPING FOR LABORATORY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Laboratory vacuum piping, designated "laboratory vacuum."
B. Related Requirements:
 1. Section 220500 "Common Work Results for Plumbing".

1.3 DEFINITIONS
A. LV: Laboratory vacuum piping systems.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS
A. Brazing certificates.
 B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION
A. Laboratory vacuum operating at 27 in. Hg or less.

2.2 PIPES, TUBES, AND FITTINGS
A. Copper Water Tube: ASTM B 88, Type L, seamless, drawn temper that has been manufacturer cleaned.
B. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type that has been manufacturer cleaned.
C. Copper Unions: ASME B16.22 or MSS SP-123, wrought-copper or cast-copper alloy.

2.3 JOINING MATERIALS
A. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION
A. Drawing plans, schematics, and diagrams indicate general location and arrangement of vacuum piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, vacuum producer sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
B. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.
E. Install piping adjacent to equipment and specialties to allow service and maintenance.
F. Install vacuum piping with 1 percent slope downward in direction of flow.
G. Install nipples, unions, special fittings, and valves with pressure ratings same as or higher than piping pressure rating used in applications specified in "Piping Schedule" Article unless otherwise indicated.
H. Install eccentric reducers, if available, where vacuum piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.
I. Install piping to permit valve servicing.
J. Install piping free of sags and bends.

3.2 JOINT CONSTRUCTION
A. Ream ends of pipes and tubes and remove burrs.
B. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.
C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
D. Threaded Joints: Apply appropriate tape to external pipe threads.
E. Soldered Joints: Apply ASTM B 813, water-flushable flux to tube end. Join copper tube and fittings according to ASTM B 828.

3.3 HANGER AND SUPPORT INSTALLATION
A. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.
B. Vertical Piping: MSS Type 8 or Type 42, clamps.
C. Individual, Straight, Horizontal Piping Runs:
 1. 100 Feet and Less: MSS Type 1, adjustable, steel, clevis hangers.
 2. Longer Than 100 Feet: MSS Type 43, adjustable, roller hangers.
D. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for trapeze hangers.
E. Base of Vertical Piping: MSS Type 52, spring hangers.
F. Support horizontal piping within 12 inches of each fitting and coupling.
G. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch- minimum rods.
H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1/4: 60 inches with 3/8-inch rod.
 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
 4. NPS 1: 96 inches with 3/8-inch rod.
 6. NPS 1-1/2: 10 feet with 3/8-inch rod.
 7. NPS 2: 11 feet with 3/8-inch rod.
 8. NPS 2-1/2: 13 feet with 1/2-inch rod.
 9. NPS 3: 14 feet with 1/2-inch rod.
I. Install supports for vertical copper tubing every 10 feet.

3.4 IDENTIFICATION
A. Install identifying labels and devices for laboratory vacuum piping, valves, and specialties. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment."
3.5 FIELD QUALITY CONTROL FOR LABORATORY FACILITY NONMEDICAL VACUUM PIPING

A. Testing Agency: Engage qualified testing agency to perform field tests and inspections of vacuum piping in nonmedical laboratory facilities and to prepare test and inspection reports.

B. Tests and Inspections:
 1. Piping Leak Tests for Vacuum Piping: Test new and modified parts of existing piping. Cap and fill vacuum piping with oil-free, dry nitrogen. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
 a. Test Pressure for Copper Tubing: 100 psig.
 2. Repair leaks and retest until no leaks exist.
 3. Inspect filters for proper operation.

C. Remove and replace components that do not pass tests and inspections and retest as specified above.

3.6 PROTECTION

A. Protect tubing from damage.

B. Retain sealing plugs in tubing, fittings, and specialties until installation.

3.7 PIPING SCHEDULE

A. Connect new copper tubing to existing copper tubing.

B. Laboratory Vacuum Piping: Use the following piping materials for each size range:
 1. NPS 4 and Smaller: Copper type “L” seamless pipe, wrought-copper fittings, and soldered joints.

END OF SECTION
SECTION 22 67 00
DEIONIZED WATER PIPING FOR LABORATORY FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes deionized-water piping.

1.3 PERFORMANCE REQUIREMENTS
A. Minimum Working Pressure Ratings:
 1. Deionized-Water Piping: 100 psig unless otherwise indicated.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS
A. Seismic Qualification Certificates: For water piping, accessories, and components, from
 manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of
 assembled components or on calculation.
 2. Detailed description of piping anchorage devices on which the certification is based and
 their installation requirements.

B. Welding certificates.
C. Field quality-control reports.

1.6 QUALITY ASSURANCE
A. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and
 Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
B. ASME Compliance: Comply with ASME B31.3, "Process Piping," for piping conveying fluid at a
 pressure of 15 psig or greater.

PART 2 - PRODUCTS

2.1 PLASTIC PIPE AND FITTINGS
A. Polypropylene (PP) Pipe and Fittings for Electro-Fusion Joints: Made from ASTM D 4101, PP
 resin.
 1. Schedule 80, Pipe and Fittings: Pipe made to ASTM D 2447, Schedule 80 dimensions;
 with socket fittings matching pipe dimensions.
 2. Electro-Fusion Fitting: Electrical-resistance heating coil for PP piping joints.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION
A. General Locations and Arrangements: Drawing plans and details indicate general location and
 arrangement of water piping. Location and arrangement of piping layout take design
 considerations into account. Install piping as indicated, to extent practical. Where specific
 installation is not indicated, follow piping manufacturer's written instructions.
B. Install piping concealed from view and protected from physical contact by building occupants
 unless otherwise indicated and except in equipment rooms and service areas.
C. Install piping indicated to be exposed and in equipment rooms and service areas at right angles
 or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
D. Install piping above accessible ceilings to allow sufficient space for removal of ceiling panel, and coordinate with other services occupying that space.
E. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
F. Install piping to permit valve servicing.
G. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure ratings unless otherwise indicated.
H. Install piping free of sags and bends.
I. Install fittings for changes in direction and branch connections.

3.2 JOINT CONSTRUCTION
A. Where specific joint construction is not indicated, follow piping manufacturer's written instructions.
B. PP Piping Electro-Fusion Joints: Make according to ASTM F 1290.

3.3 HANGER AND SUPPORT INSTALLATION
A. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
B. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 2. Install stainless-steel pipe hangers for horizontal piping in corrosive environments.
 3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
 5. Clamps for Vertical Piping: MSS Type 8 or Type 42.
 6. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable clevis hangers.
 7. Multiple, Straight, Horizontal Piping Runs, 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 8. Base of Vertical Piping: MSS Type 52, spring hangers.
C. Support horizontal piping and tubing within 12 inches of each fitting and coupling.
D. Support vertical piping and tubing at base and at each floor.
E. Rod diameter may be reduced one size for double-rod hangers, to minimum 3/8 inch.
F. Install padded hangers for PP piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1 and Smaller: 32 inches with 3/8-inch rod.
 2. NPS 1-1/4 to NPS 2: 48 inches with 3/8-inch rod.
 3. NPS 2-1/2 and NPS 3: 48 inches with 1/2-inch rod.
G. Install padded supports for vertical PP piping NPS 2-1/2 and larger every 120 inches and midstory for NPS 2 and smaller.
H. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions. Spacing of hangers can be expanded to 10 feet if a continuous stainless steel support is placed in each hanger supporting the pipe for the entire length of the horizontal run of the pipe.

3.4 CONNECTIONS
A. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
3.5 IDENTIFICATION
 A. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.6 FIELD QUALITY CONTROL
 A. Test new piping, and parts of existing piping that have been altered, extended, or repaired, for leaks and defects.
 1. Schedule tests and their inspections by Owner, with at least 24 hours' advance notice.
 2. Do not cover piping or put into service before inspection and approval.
 3. Test completed piping according to Owner. If Owner does not have published procedures, perform tests as follows:
 a. Hydrostatic Tests: Test piping at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 100 psig.
 1) Exception: Do not subject glass piping to pressure above manufacturer's pressure rating for size.
 4. Replace leaking joints with new materials and retest until no leaks exist.
 5. Submit separate reports for each test.

3.7 CLEANING
 A. Use procedures prescribed by Owner or, if not prescribed, use procedures described below:
 1. Before using, purge new piping and parts of existing piping that have been altered, extended, or repaired.
 2. Clean piping by flushing with deionized water.

3.8 PIPING SCHEDULE
 A. Transition and special fittings with pressure ratings at least equal to piping, and of same or compatible material, may be used in applications below.
 B. Deionized-Water Piping: Use the following piping materials for each pipe size range:
 1. NPS 3 and Smaller: PP pipe and fittings and electro-fusion joints.

 END OF SECTION
SECTION 23 01 00
BASIC MECHANICAL REQUIREMENTS

PART 1 - GENERAL
1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this and the other sections of Division 23.

1.2 SUMMARY
 A. This Section includes general administrative and procedural requirements for mechanical installations. The following administrative and procedural requirements are included in this Section to expand the requirements specified in Division 01:
 1. Submittals.
 3. Coordination drawings.
 4. Record documents.
 5. Maintenance manuals.

1.3 SUBMITTALS
 A. General: Submittals are not requested for all products covered in the specifications. Submit only the data requested under the submittals portion of each specification section or where indicated in a Submittal Log, if included within Division 01. Un-requested submittals will not be processed, reviewed or returned and the contractor will be notified that the submittal will not be reviewed by the engineer of record.
 1. Non-requirement of submittals, when so noted, is not to be construed as an allowance for substitutions and does not relieve the contractor from full compliance with the plans and specifications.
 2. Any deviation from specified items is considered a substitution. If the contractor desires to use other than specified items, then a formal request for substitution must be submitted prior to bid date (no exceptions), in accordance with the procedures and time limitations set forth in Division 01. Where not defined in Division 01, requests for substitutions shall be submitted no less than ten (10) working days prior to bid date. Review of substitution requests by the Engineer shall be done at the expense of the contractor. Charges for this substitution review shall be calculated based on the Engineer’s standard hourly rates, as defined in their contract with the Owner.
 B. It is the responsibility of the Contractor to ensure that all submittals have been reviewed for total completeness and accuracy as to the requirements of the specifications and drawings before being submitted to the Engineer for review.
 1. One comprehensive submittal shall be provided for each individual specification section. All required submittal information called for in each individual specification section shall be included in the submittal.
 2. The Engineer of Record shall not be responsible for informing the contractor on items that have not been included and are necessary for a complete review of the required submittal information for a specification section.
 3. The Engineer of Record shall have the option of returning any submittal, unmarked, if all required documentation called for in the specifications has not been provided in the submittal.
 4. The Engineer of Record shall review each submittal no more than two (2) times and return to the contractor with the appropriate disposition.
 5. If the Engineer of Record is required to review a submittal a second time, it shall be limited to review of the changed information, clearly highlighted by the submitter, and/or confirmation of documentation only and it shall be returned to the contractor with the appropriate disposition.
6. If the submittal is required to be reviewed a third time, it shall be done at the expense of the contractor. Charges for this additional submittal review shall be calculated based on the Engineer’s standard hourly rates, as defined in their contract with the Owner.

C. Operation and Maintenance Manuals: All items required for insertion into each Operation and Maintenance (O&M) Manual are called out in the submittals portion of each specification section or in a Submittal Log, if included within Division 01. It is the responsibility of the Contractor to ensure that the O&M submittal has been reviewed and includes all the requirements of the specifications. The Engineer of Record shall review the submittal for the Operation and Maintenance Manual one (1) time and return to the contractor with the appropriate disposition.

1. If the submittal is required to be reviewed a second time, it shall be done at the expense of the contractor. Charges for this additional submittal review shall be calculated based on the Engineer’s standard hourly rates, as defined in their contract with the Owner.

2. Submittals for the Operation and Maintenance Manual must be original documentation.

3. Photo copies of marked up Operations and Maintenance submittals are not acceptable.

D. Coordination Drawings: Prepare and submit Coordination Drawings as further described herein and as indicated in the Special Conditions. The Engineer shall receive one copy of all coordination drawings supplied to the Owner as required in this specification. It is the responsibility of the Contractor to coordinate the work as outlined herein. Receipt by the Engineer of a copy of the coordination drawings is to verify conformance to the submittal requirements set forth in this specification section. It is not an admission by the Engineer as to the accuracy or completeness of the coordination proposed.

E. Refer to Division 01 and each individual Division 23 Section for additional submittal requirements.

1.4 REFERENCED STANDARDS

1.5 MATERIAL AND EQUIPMENT SELECTION

A. Product Options: The specification of each item of major mechanical equipment required for the project may include a list of manufacturers, with one “basis of design” manufacturer, type, and model identified by virtue of their listing in the equipment schedule on the Drawings. Where several manufacturers in addition to the “basis of design” manufacturer are listed in the specifications, it shall be understood that the words “or approved equal by” are implied to precede each of the other manufacturer’s names. The Contractor shall note that the requirements of Division 01, Special Conditions, Substitutions and Equal governs when the requirements of this section are in conflict with the referenced Division 1 requirements.

1. The manufacturers other than the “basis of design” may be furnished at the contractor’s option in lieu of the “basis of design” product, provided that the selected manufacturer’s product is equal in all material and functional respects. In addition to submittal requirements that may be specified in this section, submit a line-by-line written verification of the applicable specification section(s) identifying compliance with or variations from the specified features, materials, performance, capacities, weight, size, durability, energy consumption and efficiency, warranty, and visual impact (if exposed to view by other than maintenance persons). The burden of proof of manufacturer/product equality is on the contractor.

2. Where a product is not scheduled on the drawings and, therefore, where no “basis of design” is indicated, selection among all of the listed manufacturers and products is at the contractor’s option, subject to the requirements of the Contract Documents.
3. Products of manufacturers not listed in the Contract Documents are considered Substitutions and are not permitted, except as provided under the General and Special Conditions.

B. Listing of a manufacturer does not imply approval of that manufacturer’s standard product or products. Rather, listing of a manufacturer indicates only a general acceptance of that manufacturer’s name and reputation. Final approval is subject to full compliance with these Contract Documents.

C. Model numbers identified on the Drawings notwithstanding, all equipment must comply with the requirements of these Contract Documents. Do not assume that a manufacturer’s standard product is acceptable as is. For example, one or more custom modifications, custom colors or finishes, manufacturer’s options, and/or accessories may be required to meet the specified requirements.

D. Where drawings indicate sizes, profiles, connections, and dimensional requirements of material and equipment, these are based on the “basis of design” manufacturer, type and model indicated. In the event that equipment of power, dimensions, capacities, layout, connections, and/or ratings differing from the “basis of design” are selected by the contractor and approved by the Owner’s representative, any necessary adjustments are the contractor’s responsibility. All connecting mechanical and electrical services, circuit breakers, conduit, motors, bases, pipe and duct sizes, pipe and duct layout, and the like shall be adjusted by the contractor to suit the equipment provided. No additional costs will be approved for these changes. Should revisions to the design because of contractor’s selection of manufacturer, type, or model other than the “basis of design” require additional review and/or redesign by an Architect or Engineer, the contractor shall reimburse the Owner for Owner’s added professional fee expenses.

E. Where two or more materials are listed in the “Part 2 – Products” subsection of any Division 23 section, do not assume that the selection of materials is the contractor’s option. Refer to “Part 3 – Execution” subsection of that same Division 23 section for an explanation of which specific material(s) shall be used for which specific application(s). For example, Part 2 may list several types and grades of piping, and Part 3 will describe which type and grade of pipe to use for a given application.

1.6 COORDINATION DRAWINGS

A. Prepare project coordination drawings to a scale of 1/4" = 1'0" or larger. Detail major elements, components, and systems of mechanical equipment and materials in relationship with other systems, installations, and building components. Show space requirements for installation and access. Indicate if sequence and coordination of installations are important to efficient flow of the Work. Include the following:

1. Planned piping layout, including valve and specialty locations and valve-stem movement. Include all piping including but not limited to HVAC piping, plumbing piping, and fire protection piping. Include ceiling and wall-mounted access doors and panels required to provide access to valves and other operating devices.

2. Planned ductwork layout, including terminal units, dampers and specialty locations, with terminal unit and damper operator clearances. Include ceiling and wall-mounted access doors and panels required to provide access to dampers and other operating devices. Unless otherwise noted, all ductwork shall be install above all other services as high as possible. Provide access to all types of dampers.

3. Clearances for installing and maintaining insulation.

4. Clearances for servicing and maintaining equipment, accessories, and specialties, including space for disassembly required for periodic maintenance.

5. Equipment and accessory service connections and support details.

7. Fire-rated wall and floor penetrations.

8. Sizes and location of required concrete pads and bases.

9. Scheduling, sequencing, movement, and positioning of large equipment into building during construction.
10. Floor plans, elevations, and details to indicate penetrations in floors, walls, ceilings and roofs, and their relationship to other penetrations and installations.

11. Ceiling plans showing coordination of mechanical, electrical, structural, ceiling suspension assembly, lighting, security, communications, fire alarm, plumbing, and fire protection work within allotted space.

12. Reflected ceiling plans to coordinate and integrate installation of air outlets and inlets, light fixtures, communication system components, sprinklers, access panels, special moldings, and other ceiling-mounted items.

13. Floor plans and sections of penthouse, mechanical rooms and laboratories; show layout and relationships between components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate and certify field measurements.

1.7 RECORD DOCUMENTS

A. Prepare record documents in accordance with the requirements in Division 01. In addition to the requirements specified in Division 01, indicate the following installed conditions:

1. Ductwork mains and branches, size and location, for both exterior and interior; locations of dampers and other control devices; filters, boxes, and terminal units requiring periodic maintenance or repair.

2. Mains and branches of piping systems, with valves and control devices located and numbered, concealed unions located, and with items requiring maintenance located (i.e., traps, strainers, expansion compensators, tanks, etc.). Indicate actual inverts and horizontal locations of all underground piping.

3. Valve location diagrams, complete with valve tag chart. Refer to Division 23 Section “Basic Mechanical Materials and Methods.”

4. Equipment locations (exposed and concealed), dimensioned from prominent building lines.

5. Approved substitutions, Contract Modifications, and actual equipment and materials installed.

6. Contract Modifications, actual equipment and materials installed. Modify all equipment schedule sheets with installed materials model numbers and all performances.

1.8 MAINTENANCE MANUALS

A. Prepare maintenance manuals in accordance with Division 01. In addition to the requirements specified in Division 01, include the following information for equipment items:

1. Description of function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and commercial numbers of replacement parts.

2. Manufacturer’s printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency instructions; and summer and winter operating instructions.

3. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.

4. Servicing instructions and lubrication charts and schedules.

B. In addition to the above, comply with ASHRAE Guideline 4-2008 Preparation of Operating and Maintenance Documentation for Building Systems.
B. Protect stored on-site or installed absorptive materials from moisture damage. Materials directly exposed to moisture via precipitation, water leaks, or condensation shall be removed from the jobsite and replaced.

C. If permanent building ductwork and air handling equipment are used for temporary ventilation during construction, filtration media with a MERV-8 or better shall be used at each and every return air opening for the duration of operation.
 1. Shut down or damper-off the return side of the HVAC system in areas of heavy construction or demolition. Seal return system openings with plastic where major activity occurs.
 2. Repair all leaks in ducts and air handling equipment promptly.
 3. Erect temporary barriers between work areas and non-work areas.
 4. Provide and operate temporary ventilation to maintain slightly negative air pressurization in heavy work areas, to minimize tendency of dust, debris, and contaminants from migrating to non-work areas.

D. Building Flush-Out: After construction ends but prior to occupancy, conduct a minimum two-week building flush-out using permanent building ductwork and air handling equipment. Flush-out shall be made with 100% outdoor air and MERV-13 or better filtration media. If extremes of cold, hot, or humid weather are anticipated during flush-out, participate with design professional in formulating a climate control plan.

E. Replace all filtration media immediately prior to occupancy, using MERV-13 or better filtration media.

F. Document Construction IAQ Management activities. Such documentation shall include, as a minimum:
 1. List each air filter used during construction. Include the MERV value, manufacturer name and model number, and a designation of where used on this project.
 2. List each air filter installed at the end of construction. Include the MERV value, manufacturer name and model number, and a designation of where used on this project.
 3. Provide 18 photographs (six photographs taken on three different occasions during construction), along with identification of the SMACNA approach featured by each photograph, in order to show consistent adherence to the SMACNA Guideline.

END OF SECTION
SECTION 23 05 00
BASIC MECHANICAL MATERIALS AND METHODS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following basic mechanical materials and methods to complement other Division 23 Sections:
1. Materials and installation instructions common to mechanical systems.
2. Pipe joining materials and methods.
3. Dielectric Waterway fittings.
4. Flexible pipe connectors.
5. Modular sleeve seals.
6. Pipe sleeves.
7. Escutcheons.
8. Penetration firestopping of fire-resistance-rated assemblies and/or smoke barriers by mechanical piping, conduit, or ductwork
9. Labeling and identifying mechanical systems and equipment.
10. Non-shrink grout for equipment installations.
11. Painting and finishing of mechanical work.
12. Concrete base construction requirements.
13. Coordination with Structural work.
14. Field-fabricated equipment supports.
15. Selective Demolition.
16. Cutting and patching.

1.2 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
B. Section 23 0100 “Basic Mechanical Requirements” to the work of this Section as if fully repeated herein.
C. Pipe and pipe fitting materials are specified in individual Division 23 piping system Sections.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawl spaces, and tunnels.
B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.
E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants, but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
F. The following abbreviations are used throughout Division 23 Specification Sections:
2. CPVC: Chlorinated polyvinyl chloride plastic.
3. CR: Chlorosulfonated polyethylene synthetic rubber.
4. EPDM: Ethylene propylene diene terpolymer rubber.
5. NBR: Acrylonitrile-butadiene rubber.
6. NP: Nylon plastic.
7. PE: Polyethylene plastic.
8. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS
A. Product Data: For dielectric fittings, transition couplings, flexible pipe connectors, modular sleeve seals, escutcheons, and identification materials and devices.
B. Shop Drawings: Detail fabrication and installation for supports and anchorage for mechanical materials and equipment.
C. Coordination Drawings: For access panel and door locations.
D. Samples: Of color, lettering style, and other graphic representation required for each identification material and device.
E. Demonstrate compliance with the Buy American Act (41 USC 10a-10d) by either certifying that the materials and components furnished under this Section meet the required criteria or that a formal waiver has been granted by an authorized agency. Refer to Division 23 Section “Basic Mechanical Requirements.”

1.5 QUALITY ASSURANCE
A. Welding: Qualify welding processes and operators for structural steel according to AWS D1.1 “Structural Welding Code – Steel.”
B. Welding: Qualify welding processes and operators for piping according to ASME “Boiler and Pressure Vessel Code,” Section IX, “Welding and Brazing Qualifications.”
 2. Certify that each welder has passed AWS qualification tests for the welding processes involved and that certification is current.
 3. Contractor shall retain all welding certificates on file and produce them for review upon request by the Owner and/or Owner’s representative.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and prevent entrance of dirt, debris, and moisture. Protect stored pipes and tubes from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor or roof, if stored thereupon. Protect flanges, fittings, and piping specialties from moisture and dirt.
B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.
C. Protect ductwork interiors from the elements and foreign materials throughout construction. Deliver ducts with shop-applied impervious protective covering over all open ends. Maintain protective end coverings through shipping, storage, and handling to prevent entrance of dirt, debris, and moisture. Elevate stored ducts above grade. As ductwork is installed, remove protective end covering as each successive segment is connected, but with protective end covering maintained over open ends remaining exposed.
D. Deliver products to the project properly identified with names, model numbers, types, grades, compliance labels, and other information needed for identification.

1.7 SEQUENCING AND SCHEDULING
A. Coordinate mechanical equipment installation with other building components.
B. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction to allow for mechanical installations.
C. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components, as they are constructed.
D. Sequence, coordinate, and integrate installations of mechanical materials and equipment for efficient flow of the Work. Coordinate installation of large equipment requiring positioning before closing in building.

E. Coordinate connection of mechanical systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies.

F. Coordinate requirements for access panels and doors if mechanical items requiring access are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section “Access Doors and Panels.”

G. Coordinate installation of identifying devices after completing covering and painting, if devices are applied to surfaces. Install identifying devices before installing acoustical ceilings and similar concealment.

H. Coordinate connection of electrical services.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Transition Couplings:
 a. Dresser Industries, Inc.
 b. or approved equal.
 2. Dielectric Waterway Fittings:
 a. Vitaulic Style 47-TT
 3. Flexible Pipe Connectors:
 a. Flexicraft Industries, Inc.
 b. Hyspan Precision Products, Inc.
 c. Mason Industries, Inc.
 d. The Metraflex Company
 e. Proco Products, Inc.
 4. Modular Sleeve Seals:
 a. Calpico, Inc.
 b. Flexicraft Industries, Inc. “PipeSeal”
 c. GPT div. of EnPro Industries, Inc “Link-Seal”
 d. The Metraflex Company
 5. Identifying Devices and Labels:
 b. Brimar Industries, Inc.
 c. Kolbi Industries, Inc.
 d. Panduit Corp.
 e. Seton Name Plate Co.

2.2 PIPE AND PIPE FITTINGS

A. Refer to individual Division 23 piping Sections for pipe and fitting materials and joining methods.

2.3 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

C. Pipe-Flange Joining Gaskets: ASME B16.21, EPDM, flat, asbestos-free, 1/8-inch (3.2-mm) thickness, unless noted otherwise.
 1. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 2. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
D. Pipe-Flange Joining Bolts and Nuts: ASME B18.2.1 bolts with ASME B18.2.2 nuts, carbon steel, unless otherwise indicated.
 1. Bolts and nuts shall be Type 304 or Type 316 stainless steel, if installed on stainless steel piping, and matching the grade of stainless steel piping.
 2. Bolts and nuts shall be Type 304 stainless steel if installed on uninsulated piping located outdoors.
 3. Bolts and nuts shall be Type 316 stainless steel if installed on uninsulated direct-bury piping.

E. Solder Filler Metals: ASTM B32 lead-free alloys. Include water-flushable flux according to ASTM B813.

F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

H. Solvent Cements: Manufacturer’s standard solvent cements for the following:
 1. ABS Piping: ASTM D2235.
 2. CPVC Piping: ASTM F493.
 3. PVC Piping: ASTM D2564. Include primer according to ASTM F656.
 4. PVC to ABS Piping Transition: ASTM D3138.

J. Flanged, Ductile-Iron Pipe Gasket, Bolts, and Nuts: AWWA C110, rubber gasket, carbon-steel bolts and nuts unless noted otherwise.
 1. Bolts and nuts shall be Type 304 stainless steel if installed on uninsulated piping located outdoors.
 2. Bolts and nuts shall be Type 316 stainless steel if installed on uninsulated direct-bury piping.

K. Transition Couplings: Iron-body sleeve assembly, fabricated to match OD of plain-end, pressure pipes.
 2. Followers: ASTM A47 (ASTM A47M) malleable iron or ASTM A536 ductile iron.
 5. Finish: Enamel paint.

2.4 DIELECTRIC WATERWAY FITTINGS

A. Dielectric-Flange Insulation Kits: Field-assembled, companion-flange assembly, full-face type. Components shall include EPDM gasket, phenolic or polyethylene bolt sleeves designed to prevent any metal-to-metal contact across mating flanges; phenolic washers, and steel backing washers. Provide separate companion flanges and steel bolts and nuts for 150- or 300-psig (1035- or 2070-kPa) minimum working pressure as required to suit system pressures. Copper pipe flange shall be soldered-on companion flange in sizes ½-inch and larger; steel pipe flange shall be threaded-on in sizes ½-inch to 2-inch. Other flanges and flange bolting kits are specified in “Joining Materials” subsection above.

2.5 FLEXIBLE PIPE CONNECTORS

A. General: Fabricated from materials suitable for system fluid and that will provide equipment-pipe connections.

B. Flexible Pipe Connectors for Copper Piping: Corrugated bronze inner tubing covered with interwoven bronze wire braid. Include copper-tube ends, brazed to hose.
C. Flexible Pipe Connectors for Steel Piping: Corrugated stainless steel inner tubing covered with interwoven stainless-steel wire braid.

D. Performance Rating Requirements:
 1. Misalignment: Rated for ¾-inch (20-mm) permanent lateral offset.
 2. Length: As needed to allow offset rating above, but not less than 9-inches (230 mm).
 3. Design Working Pressure: 150 psig (1035 kPa) at 300°F (149°C).

E. Schedule of End Connections:
 1. 2-Inch NPS (DN50) and Smaller, Copper Pipe: Copper tube end connections suitable for soldering to adjacent piping; except that brazed end connections are required for refrigerant service.
 2. 2-Inch NPS (DN50) and Smaller, Steel Pipe: Threaded-end carbon steel nipples welded to hose; except that stainless-steel ends are required for natural gas service or where mated to stainless steel piping.
 3. 2½-Inch NPS (DN65) and Larger: Carbon-steel flanged end connections welded to hose and drilled to meet ANSI Class 150; except that stainless-steel flanged end connections are required for natural gas service or where mated to stainless steel piping.

F. Flexible pipe connectors specified herein are for use at the piping connection to a piece of mechanical equipment, including but not limited to pumps. These are not acceptable for use where “expansion joints” or “pipe expansion fittings” are called out. Refer to Division 23 Section “Pipe Expansion Fittings” for pipe expansion joints or pipe expansion fittings.

2.6 MODULAR SLEEVE SEALS

A. Description: Modular design, with interlocking rubber links shaped to continuously fill annular space between pipe and sleeve. Include connecting bolts and pressure plates.

B. Sealing Elements: Interlocking links of EPDM or Nitrile rubber, shaped to fit surface of pipe. Include number and size of links required for size of pipe. Modular seal elements shall have a tensile strength of not less than 1200 psi per ASTM D412 test method.

C. Pressure Plates: Select among reinforced nylon polymer, steel zinc dichromate, or stainless steel. Include two for each sealing element.

D. Connecting Bolts and Nuts: Type 304 or 316 stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

E. Minimum Temperature Rating: -40°F to +210°F (-40°C to +99°C).

2.7 PIPE SLEEVES

A. The following sleeve materials are for wall, floor, slab, and roof penetrations.

B. Steel Pipe: ASTM A53, Type E, Grade A, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated “wall pipe” equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with setscrews.

E. PE: Manufactured, reusable, tapered, cup shaped, smooth outer surface, with nailing flange for attaching to wooden forms.

F. Contractor’s Option: Pre-engineered, UL-listed fire-resistance rated and watertight cast-in-place floor sleeving systems meeting the following specifications will be acceptable in lieu of traditional floor sleeves with field-installed firestop, at contractor’s option.
 1. Description: Cast-in-place, factory-assembled, one-piece watertight firestop device for use in concrete floors formed with wood and/or steel decking to protect penetrating objects
from expansion and contraction of concrete, thermal and seismic movement, and the
passage of air, smoke, fire, and hot gasses.
2. Manufacturer: Subject to compliance with requirements, provide Hydroflame™ sleeving
system by Hubbard Enterprises / Holdrite; or approved equal.
3. Include an outer sleeve lined with an intumescent strip; and a radial extended flange
attached to one end of the sleeve for fastening to concrete formwork; or wide outside
wings attached to one end of the sleeve for fastening to metal deck concrete formwork
and span deck corrugations.
4. Include a waterstop gasket and mid-body seal consisting of one to three concentric raised
rings for embedment and sealing to the concrete slab. For applications involving a
corrugated deck, also include a cone attached to the base for extending the device
through the metal deck.
5. Product shall provide a two-hour fire-resistance rated assembly when tested according to
ASTM E814 or ANSI/UL 1479.

2.8 ESCUTCHEONS AND FLOOR PLATES
A. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and
spring-clip fasteners. Use only for piping with a fitting or sleeve protruding from wall.
B. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
C. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip
fasteners.
D. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
E. Split-Casting Floor Plates: Cast brass with concealed hinge.

2.9 PENETRATION FIRESTOPPING SYSTEMS
A. Penetration firestopping systems shall bear classification marking of UL or FM.
B. Penetrations in Fire-Resistance-Rated Assemblies: Penetration firestopping systems with
ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure
differential of 0.01-inch wg (2.49 Pa).
1. F-Rating: At least one hour, but not less than the fire-resistance rating of constructions
penetrated.
2. T-Rating: At least one hour, but not less than the fire-resistance rating of constructions
penetrated except for floor penetrations within the cavity of a wall.
3. W-Rating: Provide penetration firestopping systems showing no evidence of water leakage
when tested according to UL 1479.
C. Penetrations in Smoke Barriers: Penetration firestopping systems with ratings determined per
UL 1479, based on testing at a positive pressure differential of 0.30-inch wg (74.7 Pa).
1. L-Rating: Not exceeding 5.0 cfm/sq. ft. (0.025 cu. m/s per sq. m) of penetration opening at
and no more than 50-cfm (0.024-cu. m/s) cumulative total for any 100 sq. ft. (9.3 sq. m) at
both ambient and elevated temperatures.
D. Accessories: Provide components such as permanent forming/damming/backing materials,
substrate primers, collars, and/or steel sleeves for each penetration firestopping system as
necessary to install fill materials and to maintain ratings required. Use only those components
specified by penetration firestopping system manufacturer and approved by qualified testing
and inspecting agency for conditions indicated.
E. Mixing: For those products requiring mixing before application, comply with penetration
firestopping system manufacturer’s written instructions for accurate proportioning of materials,
water (if required), type of mixing equipment, selection of mixer speeds, mixing containers,
mixing time, and other items or procedures needed to produce products of uniform quality with
optimum performance characteristics for application indicated.
2.10 IDENTIFYING DEVICES AND LABELS

A. General: Manufacturer’s standard products of categories and types required for each application as referenced in other Division 23 Sections. If more than one type is specified for application, selection is installer’s option, but provide one selection for each product category.

B. Comply with ASME A13.1 for lettering size, length of color field, colors, and viewing angles of identification devices.

C. Equipment Nameplates: Metal nameplate with operational data engraved or stamped; permanently fastened to equipment; furnished and factory-installed by original equipment manufacturer.
 1. Data: Manufacturer, product name, model number, serial number, capacity, operating and power characteristics, labels of tested compliances, and similar essential data.
 2. Location: Accessible and visible location.

 1. Nomenclature: Heating Water Supply, Heating Water Return, Chilled Water Supply, Chilled Water Return, Natural Gas, etc. as required per service. Match name to the name given on Drawings (full names, not abbreviations).
 2. Color: Per ASME A13.1 Standard per service, unless noted otherwise.
 3. Flow Direction: Indicate flow direction via arrows on each label.
 4. Pipe Size: Indicate nominal pipe size, in inches, on each label.
 5. Example: ←2” CHILLED WATER RETURN←

E. Plastic Duct Markers: Manufacturer’s standard color-coded, laminated plastic. Comply with the following color code:
 1. Green: Cold air.
 2. Yellow: Hot air.
 3. Yellow/Green or Green: Supply air.
 4. Blue: Exhaust, outside, return, and mixed air.
 5. For hazardous exhausts, use colors and designs recommended by ASME A13.1.
 7. Example: ←RETURN AIR←

F. Engraved Plastic-Laminate Signs: ASTM D709, Type I, cellulose, paper-base, phenolic-resin-laminate engraving stock; Grade ES-2, black surface, black phenolic core, with white melamine subcore, unless otherwise indicated.
 1. Fabricate in sizes required for message.
 2. Engraved with engraver’s standard letter style, of sizes and with wording to match equipment identification.
 3. Punch for mechanical fastening.
 4. Thickness: 1/16-inch (1.6 mm), for units up to 20 sq. in. (130 sq. cm) or 8 inches (200 mm) long; 1/8-inch (3.2 mm) for larger units.
 5. Fasteners: Self-tapping stainless-steel screws or contact-type permanent adhesive.

G. Valve Tags: Photo-anodized barcode tags with ¼-inch (6-mm) letters and numbers. Include 5/32-inch (4-mm) hole for fastener.
 1. Material: 0.032-inch (0.8-mm) thick anodized aluminum.
 2. Color: Silver background with black characters.
 3. Printed Nomenclature: Piping system abbreviation and sequenced number; e.g., CWS-23 for chilled water supply valve #23; HWR-12 for hot water return valve #12.
 4. Barcode: Two-dimensional Data Matrix ECC 200 barcode symbology. QR Code is also acceptable. Prior to manufacture, obtain valve tag information from owner’s property manager for encoding into the barcode. Include valve number, piping system, system abbreviation, location of valve (room or space), normal-operating position (open, closed,
or modulating), and variations for identification. Mark valves for emergency shutdown and similar special uses.

H. Valve Tag Fasteners: Brass, wire-link chain or stainless steel beaded chain.

I. Lettering and Graphics: Coordinate names, abbreviations, and other designations used in mechanical identification, with corresponding designations indicated. Use numbers, lettering, and wording indicated for proper identification and operation/maintenance of mechanical systems and equipment.

1. Multiple Systems: If multiple systems of same generic name are indicated, provide identification that indicates individual system number and service such as “Boiler No. 3,” “Air Supply No. 1H,” or “Standpipe F12.”

J. Chiller Room Warning Sign: Each entrance to a refrigerating machinery room shall be provided with a legible permanent sign, securely attached and easily accessible, reading “Machinery Room – Authorized Personnel Only.” A second sign shall further state “Audible and Visual Refrigerant Alarm Sounding Indicates Refrigerant Detection – Entry is Forbidden Except by Those Personnel Trained in Emergency Procedures.”

2.11 CONCRETE AND GROUT

A. Concrete: For all minor concrete work required for mechanical installations, such as concrete equipment bases and supports, refer to Division 03 Sections for specification of cast-in-place concrete and reinforcing materials, whose requirements apply to the work of Division 23 as if fully reproduced herein.

B. Concrete: For all minor concrete work required for mechanical installations, such as concrete equipment bases and supports, provide Quikrete® Commercial Grade FastSet™ Concrete #1004-51 prepackaged concrete mix, or approved equal. Mix, place, and cure in accordance with manufacturer’s written instructions.

C. Concrete Reinforcing: ASTM A615 Grade 60 deformed bars and ASTM A185 welded wire fabric.

D. Non-shrink, Nonmetallic Grout: ASTM C1107, Grade B.

2. Design Mix: 5000-psig (34.5-MPa), 28-day compressive strength.

2.12 PAINTING AND FINISHING

A. For all painting and finishing work required for mechanical installations, as described in Part 3 of this Section and/or on the Drawings, refer to Division 09 Sections for specification of paint and finishing materials, whose requirements apply to the work of Division 23 as if fully reproduced herein.

B. Master Painters Institute, Inc. (MPI) Standards: Provide paint and paint products that comply with MPI standards indicated and that are listed in its "MPI Approved Products List."

C. Material Compatibility: Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.

D. Colors: As directed by Owner’s representative. Each pipe [or duct] shall be painted a designated color according to service.

E. Furnish 5 percent extra paint, but not less than 1 gallon of each material and color applied, from the same product run, that match products installed and that are packaged for storage and identified with labels describing contents.
F. Mechanical Room Floor Paint: Sherwin Williams ArmorSeal 8100 (D70W8161) water-based epoxy in Satin finish and Shark Grip additive for slip resistance.

PART 3 - EXECUTION

3.1 GENERAL MECHANICAL INSTALLATION REQUIREMENTS

A. Verify all dimensions by field measurements.
B. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide the maximum headroom possible.
C. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings, to greatest extent possible. Conform to arrangements indicated by the Contract Documents, recognizing that portions of the Work are shown only in diagrammatic form. Where coordination requirements conflict with individual system requirements, refer conflict to the Architect.
D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed exposed in finished spaces.
E. Install mechanical equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting, with minimum of interference with other installations. Extend grease fittings to an accessible location.
F. Install systems, materials, and equipment giving right-of-way priority to systems required to be installed at a specified slope.

3.2 PIPING SYSTEM INSTALLATION REQUIREMENTS

A. General: Install piping as described below, unless piping Sections specify otherwise. Individual Division 23 piping Sections specify unique piping installation requirements.
B. General Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated, unless deviations to layout are approved on Coordination Drawings.
C. Install components with pressure rating equal to or greater than system operating pressure.
D. Install piping at indicated slope, and free of sags and bends.
E. Install piping tight to slabs, beams, joists, columns, walls, and other building elements. Allow sufficient space above removable ceiling panels to allow for ceiling panel removal. Install piping to allow application of insulation plus 1-inch (25-mm) clearance around insulation.
F. Locate groups of pipes parallel to each other, arranged and spaced to permit valve servicing.
G. Install fittings for changes in direction and branch connections. Install couplings according to manufacturer’s written instructions.
H. Install piping in concealed interior and exterior locations, except in equipment rooms and service areas. Install exposed interior and exterior piping at right angles or parallel to building walls. Diagonal runs are prohibited, unless otherwise indicated.
I. Electrical Equipment Spaces: Route piping to avoid passing through transformer vaults and electrical equipment spaces and enclosures.
J. Piping Support: As specified in Division 23 Section “Hangers and Supports.”

3.3 PIPING JOINING REQUIREMENTS

A. Piping Joint Construction: Join pipe and fittings as follows and as specifically required in individual piping specification Sections.
B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B828 or CDA’s “Copper Tube Handbook,” using lead-free solder alloy complying with ASTM B32.

E. Brazed Joints: Construct joints according to AWS’s “Brazing Handbook,” “Pipe and Tube” Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipefittings and valves as follows:
 1. Note internal length of threads in fittings or valve ends, and proximity of internal seat or wall, to determine how far pipe should be threaded into joint.
 2. Apply appropriate tape or thread compound to external pipe threads, unless dry seal threading is specified.
 3. Align threads at point of assembly.
 4. Tighten joint with wrench. Apply wrench to valve end into which pipe is being threaded.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

 1. Apply one coat of self-priming, rust-inhibitor paint around the entire circumference of each welded pipe joint; regardless of whether or not the piping is specified to be painted. Paint may be brush-applied, roller-applied, or spray-applied at contractor’s option.

H. Flanged Joints: Align flange surfaces parallel. Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly using torque wrench.

I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join pipe and fittings according to the following:
 1. Comply with ASTM F402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. ABS Piping: ASTM D2235 and ASTM D2661.
 4. PVC Pressure Piping: ASTM D2672.
 5. PVC Non-pressure Piping: ASTM D2855.
 6. PVC to ABS Non-pressure Transition Fittings: Procedure and solvent cement according to ASTM D3138.

J. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D2657 procedures and manufacturer’s written instructions.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

K. Piping Connections: Make connections according to the following, unless otherwise indicated.
 1. Install unions, in piping 2-inch NPS (DN50) and smaller, adjacent to each valve and at final connection to each piece of equipment with 2-inch NPS (DN50) or smaller threaded pipe connection.
2. Install flanges, in piping 2½-inch NPS (DN65) and larger, adjacent to flanged valves and at final connection to each piece of equipment with flanged pipe connection.
3. Install dielectric flanges to connect piping materials of dissimilar metals.
4. Valve Caps: Any valve that represents a termination or the end of a run (e.g., blowdown or drain valve, hose-end valve, etc.) shall be fitted with a permanent but removable cap, plug, or blind flange matching the valve construction, to minimize risk in the event the valve is accidentally opened under pressure.

3.4 PIPE-PENETRATION INSTALLATION REQUIREMENTS

A. Except as noted otherwise, install escutcheons for both insulated and bare piping in the following cases:
 1. New piping of penetrations of newly-constructed walls, ceilings, and floors.
 2. New piping penetrations of existing walls, ceilings, and floors.
 3. Existing piping which penetrates newly-constructed walls, ceilings, and floors.

B. Escutcheons are not required in the following cases. Note that some form of closure of the annular or overcut opening (for reasons of acoustics, fire/smoke, sight, etc.) may still be required by other provisions of these documents.
 1. Existing piping which penetrates existing walls, ceilings, and floors.
 2. Wall penetrations in an unfinished cavity above a finished ceiling.
 3. Penetrations of a wall or partition dividing one unfinished space from another unfinished space, such as service spaces, storage rooms, and equipment rooms.

C. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening. Use one-piece type for new piping and split-plate type for existing piping as specified in Part 2 of this section.

D. Install floor plates for piping penetrations of unfinished floors in service spaces and equipment rooms. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening. Use one-piece floor-plate type for new piping and split-casting floor-plate type for existing piping as specified in Part 2 of this section.

E. Install sleeves for pipes passing through concrete and masonry walls, and concrete floor and roof slabs.

F. Cut sleeves to length for mounting flush with both surfaces. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

G. Fire-Resistance Rated, Cast-in-Place Sleeve Installation: Select sleeve size based on size and type of pipe and thickness of the floor. Position and secure sleeve to concrete form using nails or staples. Place concrete, and finish even with top of sleeve. Install in complete and strict accordance with manufacturer's UL-listed installation instructions.

H. Build sleeves into new walls and slabs as work progresses.

I. Install sleeves large enough to provide ¼-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 1. Steel Pipe Sleeves: For pipes smaller than 6-inch NPS (DN150).
 2. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level. Refer to Division 07 Section “Flashing and Sheet Metal” for flashing.
 3. Seal space outside of sleeve fittings with non-shrink, non-metallic grout.

J. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using elastomeric joint sealants. Refer to Division 07 Section “Joint Sealants” for
materials. Use Type S, Grade NS, Class 25, Use O, neutral-curing silicone sealant, unless otherwise indicated.

K. Aboveground, Exterior-Wall, Pipe Penetrations: Seal penetrations using sleeves and modular sleeve seals. Size sleeve for 1-inch (25-mm) annular clear space between pipe and sleeve for installing modular sleeve seals.
 1. Install steel pipe for sleeves smaller than 6 inches (150 mm) in diameter.
 2. Install cast-iron “wall pipes” for sleeves 6 inches (150 mm) in diameter and larger.
 3. Assemble and install modular sleeve seals according to manufacturer’s written instructions. Tighten bolts that cause rubber-sealing elements to expand and make watertight seal.

L. Underground, Exterior-Wall, Pipe Penetrations: Install cast-iron “wall pipes” for sleeves. Seal pipe penetrations using modular sleeve seals. Size sleeve for 1-inch (25-mm) annular clear space between pipe and sleeve for installing modular sleeve seals. Assemble and install modular sleeve seals according to manufacturer’s written instructions. Tighten bolts that cause rubber-sealing elements to expand and make watertight seal.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by PE removable sleeves.

O. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestopping materials. Refer to Division 07 Section “Penetration Firestopping” for materials.

3.5 EQUIPMENT INSTALLATION REQUIREMENTS

A. Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected. Refer to equipment specifications in Division 23 and Division 26 for rough-in requirements.

B. Install equipment to provide maximum possible headroom, if mounting heights are not indicated.

C. Install equipment according to approved submittal data. Portions of the Work are shown only in diagrammatic form. Refer conflicts to Architect.

D. Positive attachment and anchorage of all equipment to the structure or floor is required. Do not rely on friction or gravity as a means of attachment.

E. Install flexible pipe connectors at the following locations. Install on equipment side of shutoff valves.
 1. Inlet and outlet of each pump.
 2. Inlet and outlet of each chiller.
 3. Inlet and outlet of each cooling tower.
 4. At each connection to a packaged computer-room air-conditioning unit.
 5. Where indicated elsewhere in these specifications.

F. Support for Suspended Equipment: As specified in Division 23 Section “Hangers and Supports.”

3.6 PENETRATION FIRESTOPPING INSTALLATION

A. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991, “Approval of Firestop Contractors,” or been evaluated by UL and found to comply with its “Qualified Firestop Contractor Program Requirements.”

B. Environmental Limitations: Do not install penetration firestopping system when ambient or substrate temperatures are outside limits permitted by penetration firestopping system manufacturers or when substrates are wet because of rain, frost, condensation, or other causes.
C. Coordinate construction of openings and penetrating items to ensure that penetration firestopping systems can be installed according to specified firestopping system design.

D. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate penetration firestopping systems.

E. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work. Proceed with installation only after unsatisfactory conditions have been corrected.

F. Surface Cleaning: Before installing penetration firestopping systems, clean out openings immediately to comply with manufacturer’s written instructions and with the following requirements:
 1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of penetration firestopping materials.
 2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with penetration firestopping materials. Remove loose particles remaining from cleaning operation.
 3. Remove laitance and form-release agents from concrete.

G. Prime substrates where recommended in writing by manufacturer using that manufacturer’s recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

H. General: Install penetration firestopping systems to comply with manufacturer’s written installation instructions and published drawings for products and applications. Install and cure penetration firestopping materials per manufacturer’s written instructions using natural means of ventilations or, where this is inadequate, forced-air circulation.

I. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not forming permanent components of firestopping.

J. Install fill materials by proven techniques to produce the following results:
 1. Fill voids and cavities formed by openings, forming materials, accessories and penetrating items to achieve required fire-resistance ratings.
 2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
 3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

K. Clean off excess fill materials adjacent to openings as the Work progresses by methods and with cleaning materials that are approved in writing by penetration firestopping system manufacturers and that do not damage materials in which openings occur.

L. Provide final protection and maintain conditions during and after installation that ensure that penetration firestopping systems are without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, immediately cut out and remove damaged or deteriorated penetration firestopping material and install new materials to produce systems complying with specified requirements.

3.7 LABELING AND IDENTIFYING

A. Piping Systems: Install pipe markers on each system. Include arrows showing normal direction of flow. Use plastic markers, with application systems. Install on insulation segment if required for hot, uninsulated piping.
B. Locate pipe markers as follows if piping is exposed in finished spaces, machine rooms, and accessible maintenance spaces, such as shafts, tunnels, plenums, and exterior non-concealed locations:
1. Near each valve and control device.
2. Near each branch, excluding short takeoffs for fixtures and terminal units. Mark each pipe at branch, if flow pattern is not obvious.
3. Near locations where pipes pass through walls, floors, ceilings, or enter non-accessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum of 50-foot (15-m) intervals along each run. Reduce intervals to 25 feet (7.5 m) in congested areas of piping and equipment.
7. On piping above removable acoustical ceilings, except omit intermediately spaced markers.

C. Install continuous plastic underground warning tapes during back filling of trenches for underground piping. Locate 6 to 8 inches (150 to 200 mm) below finished grade, directly over piping. Refer to Division 31 Section “Earth Moving” for warning-tape materials and devices and their installation.

D. Equipment: Install engraved plastic-laminate sign on or near each major item of mechanical equipment.
1. Lettering Size: Minimum ¼-inch- (6.4-mm-) high lettering for name of unit if viewing distance is less than 24 inches (610 mm), ½-inch- (12.7-mm-) high lettering for distances up to 72 inches (1800 mm), and proportionately larger lettering for greater distances. Provide secondary lettering two-thirds to three-fourths of size of principal lettering.
2. Text of Signs: Provide name of identified unit. Include text to distinguish between multiple units, inform user of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.

E. Duct Systems: Identify air supply, return, exhaust, intake, and relief ducts with duct markers showing duct system service and direction of flow. In each space, if ducts are exposed or concealed by removable ceiling system, locate signs near points where ducts enter into space and at maximum intervals of 50 feet (15 m).

F. Adjusting: Relocate identifying devices as necessary for unobstructed view in finished construction.

G. Install valve tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, plumbing fixture supply stops, faucets, and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units.

3.8 PAINTING AND FINISHING
A. For all painting and finishing work required for mechanical installations, refer to Division 09 Sections for application requirements.

B. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45ºF. Maintain containers in clean condition, free of foreign materials and residue. Remove rags and waste from storage areas daily.

C. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50ºF and 95ºF. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5ºF above the dew point; or to damp or wet surfaces.

D. Examine substrates and conditions for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
E. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

F. Proceed with coating application only after unsatisfactory conditions have been corrected. Application of coating indicates acceptance of surfaces and conditions.

G. Comply with manufacturer’s written instructions and recommendations in “MPI Manual” applicable to substrates indicated.

H. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints. Remove surface oxidation, loose mill scale, and shop primer, if any. Clean field welds, bolted connections, and abraded areas of shop paint.

I. Apply paints according to manufacturer’s written instructions and to recommendations in “MPI Manual.” Use applicators and techniques suited for paint and substrate indicated. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.

J. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

K. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

L. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

M. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

N. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

O. Painting HVAC Work: Paint the following work where exposed to view in finished or unfinished spaces: Uninsulated steel piping, pipe hangers and supports, tanks that do not have factory-applied final finishes, all interior and exterior ferrous piping and appurtenances, including steel, galvanized steel, cast iron and ductile iron.

P. In addition, paint the following:
 1. Duct, equipment, and pipe insulation having ASJ or other paintable jacket material.
 2. Paint portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets that are visible from occupied spaces.
 3. Mechanical room floors and all equipment curb edges.

Q. Steel Substrates: Primer, alkyd, anti-corrosive, for metal, MPI #79; plus topcoat of latex, interior, semi-gloss, MPI #54.

R. Galvanized-Metal Substrates: Primer, galvanized, water based, MPI #134; plus topcoat of latex, interior, semi-gloss, MPI #54.

S. Aluminum (Not Anodized or Otherwise Coated) Substrates: Primer, quick dry, for aluminum, MPI #95; plus topcoat of latex, interior, semi-gloss, MPI #54.

T. ASJ Insulation-Covering Substrates: Including pipe and duct coverings. Primer sealer, latex, interior, MPI #50; plus topcoat of latex, interior, semi-gloss, MPI #54.

U. Primers specified above may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.

3.9 CONCRETE BASES

A. Anchor equipment to concrete base according to equipment manufacturer’s written instructions and according to Division 20 Section “Seismic Protection.”
B. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit.

C. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of the base.

D. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.

E. Place and secure anchorage devices. Use supported equipment manufacturer’s setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

F. Install anchor bolts according to anchor-bolt manufacturer’s written instructions. Install anchor bolts to elevations required for proper attachment to supported equipment.

G. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete and reinforcement as specified in Division 03.

3.10 COORDINATION WITH STRUCTURAL WORK

A. Concrete: Do not embed pipes, wires, tube, boxes, ducts or other cavity-creating elements in concrete work unless shown on or permitted by the structural drawings. Openings through concrete not shown on the structural drawings are subject to approval by the structural engineer of record. See coordination drawing requirements under Submittals.

B. Roof Deck: Do not place loads on, or hang any loads whatsoever from roof deck, unless shown on structural drawings, including, but not limited to, hangers for pipes, ducts, equipment, etc. Trade contractor installing such loads shall provide sub-framing connected to steel frame.

1. Do not exceed capacity of roof deck as a working platform. Submit all proposed construction loads to deck supplier for approval.

2. Openings in roof deck not shown on structural drawings, such as openings required for stacks, pipes, ducts, plumbing vents, etc., shall be cut and reinforced by trade requiring opening.

C. Supported Slab: Do not suspend loads exceeding 500 pounds within any 100 square feet of contiguous area from concrete supported slab. Suspend such loads from structural steel only. Any “sub-framing” required is responsibility of Contractor or sub-contractor installing material requiring support.

1. Openings in concrete floor slabs not shown on structural drawings, such as openings required for stacks, pipes, ducts, plumbing vents, etc., shall be the responsibility of the trade requiring openings. Form blockouts in the slab, reinforcing deck, and cut openings after concrete has reached specified strength.

2. Where openings larger than 12-inches are required but not shown on structural drawings, secure written approval from Architect/Engineer prior to cutting deck.

3.11 ERECTION OF SUPPORTS AND ANCHORAGE

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor mechanical materials and equipment.

3.12 SELECTIVE DEMOLITION

A. Disconnect, demolish, and remove mechanical work as indicated on the Drawings, and as required for installation of new work shown. Coordinate with Division 26 for disconnection of power to electrically-powered equipment prior to demolition.

B. Remove accessible work in its entirety. Repair cut surfaces to match adjacent surfaces. Abandon in place embedded or buried work, unless noted otherwise.

1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material. Do not abandon dead-end legs on an active system; instead cap the abandoned leg at the active main.

3. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.

4. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material. Do not abandon dead-end legs on an active system; instead cap the abandoned leg at the active main.

5. Equipment to Be Removed: Disconnect and cap services and remove equipment.

C. Removal: Unless otherwise indicated, remove demolished pipe, duct and equipment from the Project site. Handle and dispose of in accordance with National, State, and Local regulations.
1. Relocation: Remove, store, clean, reinstall, reconnect, and make operational all work indicated for relocation.
2. Salvage: Remove and deliver to Owner all work indicated for salvage.

D. Refer to Division 01 Sections “Selective Demolition” and/or “Selective Structure Demolition” for additional requirements.

E. For selective demolition of any appliance or piece of equipment containing a CFC, HCFC, or HFC refrigerant: Prior to demolition, refrigerant shall be evacuated and captured in full compliance with the Clean Air Act; using only technicians with the proper refrigerant license as according to law, stored in approved containers, and shipped to a licensed refrigerant recycling facility all as required by the United States Environmental Protection Agency.

3.13 CUTTING AND PATCHING
A. General: Employ skilled workmen to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time and complete without delay. Perform cutting and patching in accordance with the following:

B. Protection of Installed Work: During cutting and patching operations, protect adjacent installations.

C. Perform cutting, fitting, and patching of mechanical equipment and materials required to:
1. Uncover Work to provide for installation of ill-timed Work.
2. Remove and replace defective Work.
3. Remove and replace Work not conforming to requirements of the Contract Documents.
4. Install equipment and materials in existing structures.

D. Cut, remove and legally dispose of selected mechanical equipment, components, and materials as indicated, including but not limited to removal of mechanical piping, pumps, and other mechanical items made obsolete by the new Work.

E. Cut, channel, chase, and drill floors, walls, partitions, ceilings, and other surfaces necessary for mechanical installations. Perform cutting by skilled mechanics of trades involved.

F. Protect the structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.

G. Provide and maintain temporary partitions or dust barriers adequate to prevent the spread of dust and dirt to adjacent areas.

H. Repair cut surfaces to match adjacent installations.

I. Repair any building insulation or building fireproofing materials, whether new or existing, that are removed or scraped away in order to make a mechanical installation, so as to maintain an equivalent insulation or fire rating as existed without said mechanical installation.

J. Refer to Division 01 Sections “Execution” and/or “Cutting and Patching” for additional requirements.
3.14 GROUTING

A. Install nonmetallic, non-shrink, grout for mechanical equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Mix grout according to manufacturer’s written instructions. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Place grout, completely filling equipment bases. Avoid air entrapment during placing of grout. Place grout on concrete bases to provide smooth bearing surface for equipment. Place grout around anchors.

E. Cure placed grout according to manufacturer’s written instructions.

END OF SECTION 23 0500
SECTION 23 05 19
METERS AND GAGES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.
B. Section 230100 “Basic Mechanical Requirements” and Section 230500 “Basic Mechanical Materials and Methods” apply to the work of this Section as if fully repeated herein.

1.2 SUMMARY
A. Section Includes:
 1. Liquid-in-glass thermometers.
 2. Thermowells.
 3. Pressure gages.
 4. Test plugs.
B. Related Sections:
 1. Division 23 Section “Steam and Condensate Piping” for steam meters.
 2. Meters, thermometers and gages furnished as part of factory-fabricated equipment are specified as part of the equipment assembly in other Division 23 Sections.
 3. This Section does not include meters and gages associated with a building energy management or control system; those devices are specified in Division 23 Section “Control Systems.”

1.3 SUBMITTALS
A. Product Data: Submit product data for each type of meter, gage, and fitting specified. Include scale range, ratings, and calibrated performance curves. Submit a meter and gage schedule showing manufacturer's figure number, scale range, location, and accessories for each meter and gage.
B. Product Certificates: For each type of meter and gage, from manufacturer.
C. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE
A. Comply with applicable portions of American Society of Mechanical Engineers (ASME) and Instrument Society of America (ISA) standards pertaining to construction and installation of thermometers and gages.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Thermometers and Pressure Gages:
 a. Ernst Gage Co.
 b. Marsh Bellofram.
 c. Miljoco Corp.
 d. H.O. Trerice Co.
 e. Weiss Instruments, Inc.
 f. Weksler Glass Thermometer Corp.
 2. Test Plugs:
 b. Miljoco Corporation.
 c. Peterson Equipment Co., Inc. (“Pete’s Plugs”)
2.2 LIQUID-IN-GLASS THERMOMETERS

B. Case: Cast aluminum; 9-inch (229-mm) nominal size unless otherwise indicated.
C. Case Form: Adjustable angle; 180-degree adjustment in vertical plane, 360-degree adjustment in horizontal plane, with locking device.
D. Tube: Glass with magnifying lens and blue organic mineral spirit fill.
E. Tube Background: Non-reflective aluminum with enameled scale markings graduated in both degrees F and degrees C.
F. Scale range: Temperature ranges for services listed as follows:
 1. Heating Hot Water: 30ºF to 240ºF, with 2-degree scale divisions
 2. Chilled Water: 0ºF to 100ºF, with 2-degree scale divisions.
 3. Steam and Steam-Condensate Piping: 50 to 400ºF, with 5-degree scale divisions.
G. Window: Glass, acrylic, or Lexan.
H. Stem: Stainless steel for separable socket, and of length to suit installation.
 1. Design for Thermowell Installation: Bare stem.
I. Connector: 1¼ inches (32 mm), with ASME B1.1 screw threads.
J. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.3 THERMOWELLS

B. Description: Pressure-tight, socket-type fitting with protective dry well made for insertion into piping threaded tee fitting.
C. Material for Use with Copper Tubing: Brass.
D. Material for Use with Steel Piping: Stainless steel.
E. Type: Stepped shank unless straight or tapered shank is indicated.
F. External Threads: NPS ½, NPS ¾, or NPS 1, (DN 15, DN 20, or NPS 25,) ASME B1.20.1 pipe threads.
G. Internal Threads: 1/2, 3/4, and 1 inch (13, 19, and 25 mm), with ASME B1.1 screw threads.
H. Bore: Diameter required to match thermometer bulb or stem.
I. Insertion Length: Length required to match thermometer bulb or stem, to extend to center of pipe.
J. Lagging Extension: Nominal thickness of 2 inches, but not less than thickness of insulation. Omit extension neck for wells for piping not insulated.
K. Bushings: For converting size of thermowell’s internal screw thread to size of thermometer connection.
L. Cap: Threaded, with chain permanently fastened to socket.
M. Heat-Transfer Medium: Oil, conductive jelly, or mixture of graphite and glycerin.

2.4 PRESSURE GAGES

A. Description: ASME B40.1, Grade A phosphor-bronze Bourdon-tube pressure gage with bottom connection; dry type, unless liquid-filled-case type is indicated.
 1. Pressure gages serving pump differential measurement shall be liquid-filled.
B. Case: Drawn steel, brass, or aluminum with 4½-inch diameter glass lens.
C. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
D. Pressure Connection: Brass, with NPS ¼ (DN 8), ASME B1.20.1 pipe threads.
E. Movement: Mechanical, with link to pressure element and connection to pointer.
F. Dial: Non-reflective aluminum with enameled scale markings graduated in dual units of psi and kPa.
G. Pointer: Dark-colored metal.
H. Window: Glass, acrylic, or Lexan lens.
I. Ring: Brass or Stainless steel.
J. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.
K. Range: Comply with the following:
 1. Fluids under Pressure: Two times the operating pressure.
L. Gage Attachments:
 1. Snubbers: ASME B40.100, brass; with NPS ¼ (DN 8), ASME B1.20.1 pipe threads and porous-metal-type surge-dampening device of material suitable for system fluid and working pressure. Include extension for use on insulated piping.
 2. Siphons: Loop-shaped section of brass or stainless-steel pipe with NPS ¼ (DN 8) pipe threads.
 3. Valves: Brass or stainless-steel needle-type, with NPS ¼ (DN 8), ASME B1.20.1 pipe threads. Ball valves are not acceptable.

2.5 TEST PLUGS
A. Description: Test-station fitting made for insertion into piping tee fitting.
B. Body: Brass or stainless steel with core inserts. Include extended stem on units to be installed in insulated piping, with length as required to extend beyond insulation
C. Test-Plug Cap: Gasketed and threaded cap, with retention chain.
D. Thread Size: NPS ½ (DN 15), ASME B1.20.1 pipe thread.
E. Minimum Pressure and Temperature Rating: 500 psig at 200°F (3450 kPa at 93 C).
F. Core Inserts: Two (2) EPDM self-sealing rubber valve types, suitable for inserting a 1/8 inch outside diameter probe from a dial thermometer or pressure gage.
G. Furnish one test-plug kit(s) containing two thermometer(s), one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.
 1. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- (25- to 51-mm-) diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125°F (minus 4 to plus 52 C).
 2. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- (25- to 51-mm-) diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220°F (minus 18 to plus 104 C).
 3. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch- (51- to 76-mm-) diameter dial and probe. Dial range shall be at least 0 to 200 psig (0 to 1380 kPa).
 4. Carrying Case: Metal or plastic, with formed instrument padding.

PART 3 - EXECUTION
3.1 INSTALLATION
A. Install thermowells in vertical position in piping tees.
B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
C. Install thermowells with extension on insulated piping.
D. Fill thermowells with heat-transfer medium.
E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
F. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
G. Install valve and snubber in piping for each pressure gage for fluids (except steam).
H. Install valve and siphon fitting in piping for each pressure gage for steam.
I. Install test plugs in piping tees where indicated, located on pipe at most readable position. Secure cap.
J. Install thermometers in the following locations:
 1. Inlet and outlet of each hydronic coil in air-handling units.
 2. Two inlets and two outlets of each hydronic heat exchanger.
K. Install pressure gages in the following locations:
 1. Discharge of each pressure-reducing valve.
 2. Multiple points at each pump as detailed on Drawings; include trumpet valve. Pressure gages serving pump differential measurement shall be liquid-filled and shall include snubber.
 3. Where indicated on Drawings.

3.2 CONNECTIONS
A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING
A. After installation, calibrate meters according to manufacturer’s written instructions.
B. Adjust faces of meters and gages to proper angle for best visibility.

END OF SECTION
SECTION 23 05 23
VALVES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.
B. Section 230100 “Basic Mechanical Requirements” and Section 230500 “Basic Mechanical Materials and Methods” apply to the work of this Section as if fully repeated herein.

1.2 SUMMARY
A. This Section includes the following general-duty valves common to several mechanical piping systems. Regarding medium pressure steam systems, this specification section shall apply beginning on the downstream side of the shut-off valve that is located downstream of the steam meter. Regarding pumped condensate systems, this specification section shall apply beginning on the upstream side of the shut-off valve located at or near where the pumped condensate line exiting the building.
1. Ball valves.
2. Butterfly valves.
3. Check valves.
4. Gate valves.
5. Globe valves.
6. Chainwheel actuators.
B. Related Sections include the following:
1. Division 21 fire-suppression piping Sections for fire-protection valves.
2. Division 22 plumbing system valves.
3. Division 23 Section “Basic Mechanical Materials and Methods” for valve tags and charts.
4. Division 23 Section “Control Systems” for control valves and actuators.
5. Division 23 piping Sections for specialty valves applicable to those Sections only.

1.3 DEFINITIONS
A. The following are standard abbreviations for valves used in this Section:
1. CWP: Cold working pressure (formerly WOG – Water, Oil, Gas working pressure).
2. EPDM: Ethylene-propylene-diene terpolymer rubber.
3. OS&Y: Outside screw and yoke
4. PTFE: Polytetrafluoroethylene plastic.
5. TFE: Tetrafluoroethylene plastic.
6. Class 125: Minimum 125-psig (860-kPa) SWP and minimum 200-psig (1380-kPa) CWP ratings.
7. Class 150: Minimum 150-psig (1035-kPa) SWP and minimum 300-psig (2070-kPa) CWP ratings.

1.4 SUBMITTALS
A. General: Follow the procedures specified in Division 01 Section “Special Conditions.”
B. Product Data: For each type of valve indicated. Include body, seating, and trim materials; valve design; pressure and temperature classifications; end connections; arrangement; dimensions; and required clearances. Include list indicating valve and its application. Include rated capacities; furnished specialties; and accessories.
C. Maintenance Data: For each type of valve, to include in the operation and maintenance manual specified in Division 01. Include detailed manufacturer’s instructions on adjusting, servicing, disassembling, and repairing.
1.5 QUALITY ASSURANCE
 A. ASME Compliance: ASME B31.9 for building services piping valves.
 B. ASME Compliance for Ferrous Valves: ASME B16.10 and ASME B16.34 for dimension and
design criteria.
 C. MSS Compliance: Comply with the various MSS Standard Practice documents referenced
 herein.
 D. Buy-American: All valves shall be furnished from domestic sources (USA).

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball valves open to minimize exposure of functional surfaces.
 5. Set butterfly valves closed or slightly open.
 6. Block check valves in either closed or open position.
 B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew-point temperature. If
 outdoor storage is necessary, store valves off the ground in watertight enclosures.
 C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use
 handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. General: Subject to compliance with requirements, provide gate valves, globe valves, and
 swing check valves by one of the following:
 1. Crane Co.; Crane Valve Group; Crane, Jenkins, & Stockham brands.
 2. Grinnell Corporation.
 3. Hammond Valve.
 5. NIBCO Inc.
 6. Red-White Valve Corp.
 B. Ball Valves: Subject to compliance with requirements, provide ball valves by one of the
 following:
 1. Any of the manufacturers listed under the “General” subheading above.
 3. Johnson Control Inc.
 4. Griswold Controls.
 5. Nexus
 C. Standard-Performance Butterfly Valves: Subject to compliance with requirements, provide
 butterfly valves by one of the following:
 1. Any of the manufacturers listed under the “General” subheading above.
 2. Bray International, Inc.
 3. Crane Co.; Crane Valve Group; Center Line brand.
 4. General Signal; DeZurik Unit
 5. McWane, Inc.; Kennedy Div.
 6. Metraflex Co.
 7. Grinnell
D. Wafer Check Valves: Subject to compliance with requirements, provide butterfly-style dual-plate wafer check valves and piston-style lift-disc check valves by one of the following:
 1. Any of the manufacturers listed under the “General” subheading above.
 2. Metraflex Co.

E. High Performance Gate Valves (NPS 2 (DN50) and smaller) one of the following:
 1. Hancock 950 S (screwed); Hancock 950 W (socket weld)
 2. Vogt 1211 (screwed); Vogt SW 1211 (socket weld)

F. High Performance Gate Valves (NPS 2½ (DN65) and larger) one of the following:
 1. Crane No. 47XUF
 2. Stockham 15-OF-U
 3. Kitz K150 SCL

G. High Performance Globe Valves (NPS 2 (DN50) and smaller) one of the following:
 1. Hancock 5500S (screwed); Hancock 5500 W (socket weld)
 2. Vogt 12141 (screwed); Vogt SW 12141 (socket weld)

2.2 VALVES, COMMON REQUIREMENTS

A. General: Refer to Part 3 “Valve Applications Schedule” Article for application schedule of valves, end connections, and actuator types.

B. Valve Sizes: Same as upstream pipe size, unless otherwise indicated.

D. Valve Threaded Ends: With threads according to ASME B1.20.1.

E. Valve Bypass and Drain Connections: MSS SP-45.

F. Material Substitution: Ductile iron is acceptable anywhere cast iron is specified, but cast iron is not acceptable where ductile iron is specified.

G. Class Substitution: If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP class or CWP ratings may be substituted.

H. Chainwheel Operators: Where required, provide valve actuation assembly with ductile iron sprocket rim, brackets, and hot-dip galvanized steel chain; of type, number, size and fasteners as required for the host valve.

I. For piping systems required to be insulated, valve stems shall be extended to accommodate insulation. Refer to other Division 23 Sections for piping systems required to be insulated.

2.3 BALL VALVES

A. Liquid Service, Size NPS 2 (DN 50) and smaller:
 1. General: Valve shall conform to MSS SP-110.
 5. Ball: Type 316 stainless steel, full port.
 7. Seat/Packing: PTFE or TFE.
 8. Ends: Threaded.
 9. Handle: Vinyl-covered steel lever with memory stop; and zinc-plated steel nut.

2.4 STANDARD-PERFORMANCE BUTTERFLY VALVES

A. General: Valve shall conform to MSS SP-67, Type I.

B. Minimum CWP rating: 175-psig (1207-kPa).

C. Body and bonnet: ASTM A536 ductile-iron, extended neck. Cast iron valves will be rejected.

D. Packing: Field-replaceable EPDM sleeve and stem seals.
E. Stem and Stem Hardware: Type 316 stainless steel.
F. Disc: Aluminum bronze or Type 316 stainless steel.
G. End Connections: Lug and flanged bodies are acceptable; wafer bodies are not acceptable.
H. Dead End Service: All butterfly valves shall be suitable for bi-directional dead-end service without downstream blind flange. Bolt holes on lugged valve bodies shall be threaded per ANSI B-1.1 coarse thread, with center stop, to accept cap screws from both directions.
I. Operator: Lever handle with ten-position latching mechanism, except where noted below.
 1. Chainwheel Operators: Required for butterfly valves larger than NPS 4 (DN 100), if installed 96 inches (2400 mm) or higher above finished floor elevation.
 2. Gear Drive: Required for butterfly valves NPS 6 (DN 150) and larger, and for any butterfly valves larger than NPS 4 (DN 100) if installed 96 inches (2400 mm) or higher above finished floor elevation, to accommodate a chainwheel operator.

2.5 CHECK VALVES
A. Bronze Swing Check Valve, NPS 2 (DN50) and smaller: Valve shall conform to MSS SP-80.
 1. Minimum pressure rating: Class 150.
 4. Disc and seat: Renewable; ASTM B62 bronze with bronze-alloy hinge pin.
 5. Hardware: Bronze.
B. Cast-Iron Swing Check Valves, NPS 2½ (DN65) and larger: Valve shall conform to MSS SP-71, Type I.
 1. Minimum pressure rating: Class 125.
 4. Disc and seat: Renewable; Ductile-iron or bronze-alloy.
 5. Ends: Flanged.
C. Wafer Check Valves, NPS 2½ (DN65) and larger: Valve shall conform to API 594.
 1. Minimum pressure rating: Class 125.
 3. Discs: Dual-plate aluminum bronze, spring-loaded, butterfly style.
 4. Spring and hinge hardware: Type 316 stainless steel.
 5. Ends: Wafer style, with diameter made to fit within bolt circle of adjacent flanges.

2.6 GATE VALVES
A. NPS 2 (DN50) and smaller: Valve shall conform to MSS SP-80.
 1. Minimum pressure rating: Class 150.
 5. Stem: Bronze alloy rising-type.
 7. Ends: Threaded.
B. NPS 2½ (DN65) and larger: Valve shall conform to MSS SP-70, Type I.
 1. Minimum pressure rating: Class 125.
 5. Stem: Brass ASTM B 16 Alloy C36000 rising-type with outside screw and yoke.

C. High-Performance Valves, NPS 2½ (DN65) and larger for Steam and Condensate Return Applications: Valve shall conform to MSS SP-55.
 1. Minimum pressure rating: Class 150.
 5. Stem: ASTM A 182 rising-type with outside screw and yoke.
 8. Handle: Cast-iron handwheel.

2.7 GLOBE VALVES

A. Flow Pattern: Straight pattern at Contractor’s option, to accommodate piping layout and route.

B. NPS 2 (DN50) and smaller: Valve shall conform to MSS SP-80.
 1. Minimum pressure rating: Class 150.
 5. Disc: Nonmetallic.
 8. Ends: Threaded.

C. NPS 2½ (DN65) and larger: Valve shall conform to MSS SP-85.
 1. Minimum pressure rating: Class 125.
 5. Disc: Renewable bronze-alloy seats and disc.
 6. Stem: Brass alloy rising-type with outside screw and yoke.
 7. Packing: Non-asbestos packing with cast-iron follower.

D. High-Performance Valves, NPS 2½ (DN65) and larger for Steam and Condensate Return Applications: Valve shall conform to MSS SP-55.
 1. Minimum pressure rating: Class 150.
 5. Stem: ASTM A 182 rising-type with outside screw and yoke.
 8. Handle: Cast-iron handwheel.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine piping system for compliance with requirements for installation tolerances and other conditions affecting performance. Proceed with installation only after unsatisfactory conditions have been corrected.
B. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
C. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
D. Examine threads on valve and mating pipe for form and cleanliness.
E. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
F. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION
A. Install valves as indicated, according to manufacturer's written instructions.
B. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
C. Install isolation valves at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
D. Locate valves for easy access and provide separate support where necessary.
E. Install valves in horizontal piping with stem at or above center of pipe.
F. Install valves in position to allow full stem movement.
G. Any valve that represents a termination or the end of a run (e.g., blowdown or drain valve, hose-end valve, etc.) shall be fitted with a permanent but removable cap, plug, or blind flange matching the valve construction, to minimize risk in the event the valve is accidentally opened under pressure.
H. Install chainwheel operators where specified. Extend chains to within 60 inches (1520 mm) above finished floor elevation.
I. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level, or vertical with upward flow.

3.3 JOINT CONSTRUCTION
A. Refer to Division 23 Section “Basic Mechanical Materials and Methods” for basic piping joint construction.
B. Threaded Connections: Note the internal length of threads in valve ends and proximity of valve internal seat or wall to determine how far pipe should be threaded into valve.
 1. Align threads at point of assembly.
 2. Apply appropriate tape or thread compound to the external pipe threads, except where dry seal threading is specified.
 3. Assemble joint, wrench tight. Wrench on valve shall be on the valve end into which the pipe is being threaded.
C. Flanged Connections: Align flange surfaces parallel.
 1. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly with a torque wrench.
2. For dead-end service, butterfly valves require flanges both upstream and downstream for proper shutoff and retention.

3.4 ADJUSTING
A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.5 VALVE APPLICATIONS SCHEDULE
A. General: Refer to piping Sections and Drawings for specific valve applications. If no specific valve type is indicated, use the valve types indicated in the following schedules.
B. HVAC Chilled Water, Hydronic Heating Water Piping, HVAC Makeup Water and Drain Piping, Process Cooling Piping and Glycol Piping: Use the following types of valves. Choices are contractor’s option unless a specific type of valve is specifically called out by name on the Drawings.
1. For shutoff duty, NPS 2 (DN 50) and smaller, use ball valves.
2. For shutoff duty, NPS 2½ (DN 65) and larger, use butterfly valves.
3. For throttling duty, NPS 2 (DN 50) and smaller, use ball valves.
4. For throttling duty, NPS 2½ (DN 65) and larger, use butterfly valves.
5. For pump discharge protection, NPS 2 (DN 50) and smaller, use swing check valves.
6. For pump discharge protection, NPS 2½ (DN 65) and larger, use wafer check valves.
7. For one-way flow control other than at pump discharge, use swing check valves in all sizes.
C. Steam and Steam Condensate Piping: Use the following types of valves. Choices are contractor’s option unless a specific type of valve is specifically called out by name on the Drawings.
1. For shutoff duty, NPS 2 (DN 50) and smaller, use gate valves.
2. For shutoff duty, NPS 2½ (DN 65) and larger, use high-performance gate valves.
3. For throttling duty, NPS 2 (DN 50) and smaller, use globe valves.
4. For throttling duty, NPS 2½ (DN 65) and larger, use high-performance globe valves.
5. For one-way flow control and for pump discharge protection, use swing check valves.

END OF SECTION
THIS PAGE LEFT INTENTIONALLY BLANK
SECTION 23 05 29
HANGERS AND SUPPORTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.
B. Section 230100 “Basic Mechanical Requirements”, Section 230500 “Basic Mechanical Materials and Methods” and Section 230540 “Mechanical Vibration Isolation” all apply to the work of this Section as if fully repeated herein.

1.2 SUMMARY
A. This Section includes hangers and supports for mechanical system piping and equipment, including but not limited to the following:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Thermal-hanger shield inserts.
 5. Fastener systems.
 6. Pipe stands.
 7. Equipment supports.
B. Related Sections include the following:
 1. Division 05 Section “Metal Fabrications” for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 2. Division 23 Section “Mechanical Vibration Isolation” for vibration isolation devices.
 3. Division 23 Section “Metal Ducts” for duct hangers and supports.

1.3 DEFINITIONS
A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.
B. Terminology: As defined in MSS SP-90, “Guidelines on Terminology for Pipe Hangers and Supports.”

1.4 PERFORMANCE REQUIREMENTS
A. If contractor elects to apply channel support systems and/or heavy-duty steel trapezes to support multiple pipes, in lieu of individual supports, then contractor is responsible for design of same capable of supporting combined weight of supported systems, system contents, and test water.
 1. Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
C. Do not suspend pipe hangers and supports from roof deck. Suspend such loads from structural steel only, and provide structural steel sub-framing as required.
D. Do not suspend piping loads exceeding 500 pounds within any 100 square feet of contiguous area from supported concrete floor slabs. Suspend such loads from structural members only, and provide structural steel sub-framing as required.
E. Structural Performance: Hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
1.5 SUBMITTALS

A. Product Data: For each type of pipe hanger and channel support system component indicated. Include:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers. Include Product Data for components.
 3. Metal framing systems. Include Product Data for components.
 4. Manufacturer paint color chart for Architect to pick color for all equipment installed in exposed spaces.

1.6 QUALITY ASSURANCE

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code, Section IX, “Welding and Brazing Qualifications.”

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Manufactured Pipe Hangers:
 a. Anvil International, Inc.
 b. Cooper B-Line, Inc.
 c. Carpenter & Patterson, Inc.
 d. Erico International Corp.
 e. PHD Manufacturing, Inc.
 f. Tolco division of Cooper B-Line, Inc.
 2. Metal Framing Systems:
 a. Anvil International, Inc.
 b. Cooper B-Line, Inc.
 c. Erico / Michigan Hanger Co.
 d. Thomas & Betts Corporation.
 e. Tolco division of Cooper B-Line, Inc.
 f. Unistrut Corporation; Tyco International, Ltd.
 3. Thermal-Hanger Shield Inserts:
 a. Carpenter & Paterson, Inc.
 b. Erico International Corp.
 c. PHS Industries, Inc.
 d. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
 4. Powder-Actuated Fastener Systems:
 a. Hilti, Inc.
 b. ITW Ramset/Red Head.

2.2 METAL PIPE HANGERS AND SUPPORTS

A. Application: Refer to “Hanger and Support Applications” Article in Part 3 for where to use specific hanger and support types.

B. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pre-galvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
5. **Hanger Rods**: Continuous-thread rod, nuts, and washer made of carbon steel unless noted otherwise.

C. **Copper Pipe Hangers**:
 1. **Description**: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 2. **Hanger Rods**: Continuous-thread rod, nuts, and washer made of stainless steel unless noted otherwise.

2.3 TRAPEZE PIPE HANGERS

A. **Description**: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

A. **Description**: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes, according to Standard MFMA-4.

B. **Channels**: Continuous slotted steel channel with inturned lips.

C. **Channel Nuts**: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

D. **Hanger Rods**: As specified for Metal Pipe Hangers and Supports above.

E. **Coatings**: Manufacturer’s standard finish, unless otherwise noted. All exposed systems shall be provided with a Paint Coating. Paint color will be selected by Architect during shop drawing review.
 1. **Metallic Coating**: Hot-dipped galvanized.
 2. **Paint Coating**: Polyester Powder Finish
 3. **Plastic Coating**: PVC

2.5 THERMAL-HANGER SHIELD INSERTS

A. **Insulation-Insert Material for Piping Below Ambient Temperature**: ASTM C552, Type II cellular glass with 100-psig (688-kPa) or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength and vapor barrier.

B. **Insulation-Insert Material for Piping At or Above Ambient Temperature**: Water-repellent treated, ASTM C533, Type I calcium silicate with 100-psig (688-kPa) ASTM C552, Type II cellular glass with 100-psig (688-kPa) or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength.

C. **For Trapeze or Clamped Systems**: Insert and shield shall cover entire circumference of pipe.

D. **For Clevis or Band Hangers**: Insert and shield shall cover lower 180 degrees of pipe.

E. **Insert Length**: Extend 2-inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. **Powder-Actuated Fasteners**: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. **Mechanical-Expansion Anchors**: Insert-wedge-type, stainless steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.7 EQUIPMENT SUPPORTS

A. **Description**: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.
2.8 MISCELLANEOUS MATERIALS
 A. Structural and Miscellaneous Steel: As specified in Division 23 Section “Basic Mechanical Materials and Methods.”
 B. Grout: As specified in Division 23 Section “Basic Mechanical Materials and Methods.”

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT SCHEDULE OF APPLICATIONS
 A. Contractor shall provide Mechanical Framing Systems from beam to beam to maintain hanger support maximum span distances described below.
 B. Comply with MSS SP-69 for pipe hanger and trapeze selections and applications that are not specified in this Section.
 C. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.
 D. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
 E. Use copper-plated pipe hangers and copper or stainless-steel attachments, or use nonmetallic coatings on attachments for electrolytic protection, where hangers are in direct contact with copper tubing.
 F. Horizontal-Piping Hangers and Supports for the first three hangers/supports or the first 50-feet (whichever is greater) adjacent to Pumps: Use spring hangers and supports. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports shall include the following types:
 1. Horizontal (MSS Type 54): Mounted horizontally.
 2. Vertical (MSS Type 55): Mounted vertically.
 3. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
 4. Exception: Spring hangers are not required adjacent to inline pumps that are smaller than 5-horsepower. Use other types of hangers and supports as listed for service below.
 G. Horizontal-Piping Hangers and Supports for individual, insulated pipe runs which are both 2½-inch diameter or larger and 20 feet or longer: Unless otherwise indicated, choose among the following types:
 1. Single Pipe Rolls (MSS Type 41): For suspension of pipes from two rods.
 2. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes from single rod.
 3. Complete Pipe Rolls (MSS Type 44): Where vertical adjustment is not necessary.
 4. Adjustable Pipe Roll and Base Units (MSS Type 46): For vertical and lateral adjustment.
 5. Exception: Piping whose normal operating temperature is less than 150ºF (e.g., chilled water) may be supported with static hangers specified in the next paragraph.
 H. Horizontal-Piping Hangers and Supports for individual pipe runs less than 20 feet long and all piping 2-inch diameter or smaller, regardless of length: Unless otherwise indicated, choose among the following types:
 1. Adjustable Steel Clevis Hangers (MSS Type 1).
 2. Yoke-Type Pipe Clamps (MSS Type 2): For pipes NPS 4 and larger.
 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3).
 4. Steel Pipe Clamps (MSS Type 4).
 I. Horizontal-Piping Hangers and Supports for individual uninsulated pipe runs of any size or length: Unless otherwise indicated, choose among the following types:
 1. Adjustable Steel Clevis Hangers (MSS Type 1).
 2. Yoke-Type Pipe Clamps (MSS Type 2): For pipes NPS 4 and larger.
 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3).
 4. Steel Pipe Clamps (MSS Type 4).
 5. Adjustable Steel Band Hangers (MSS Type 7): For pipes up to NPS 2 only.
6. Adjustable Swivel-Ring Band Hangers (MSS Type 10): For pipes up to NPS 2 only.
7. U-Bolts (MSS Type 24).

J. Vertical-Piping Hangers and Supports for individual, insulated pipe runs which are both 2½-inch diameter or larger and 20 feet or longer: Use spring hangers and supports. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports shall include the following types:
1. Horizontal (MSS Type 54): Mounted horizontally.
2. Vertical (MSS Type 55): Mounted vertically.
3. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

K. Vertical-Piping Hangers and Supports for individual pipe runs less than 20 feet long and all piping 2-inch diameter or smaller, regardless of length: Unless otherwise indicated, choose among the following types:
1. Extension Pipe or Riser Clamps (MSS Type 8).
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): Where longer ends are required.

L. Vertical-Piping Hangers and Supports for individual uninsulated pipe runs of any size or length: Unless otherwise indicated, choose among the following types:
1. Extension Pipe or Riser Clamps (MSS Type 8).
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): Where longer ends are required.

M. Hanger-Rod Attachments: Unless otherwise indicated, choose among the following types:
1. Steel Turnbuckles (MSS Type 13).
2. Steel Clevises (MSS Type 14).
3. Malleable-Iron Sockets (MSS Type 16).
4. Steel Weldless Eye Nuts (MSS Type 17).

N. Building Attachments: Unless otherwise indicated, choose among the following types:
1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to concrete ceiling.
2. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
3. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams.
4. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
5. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
6. Side-Beam Brackets (MSS Type 34): For sides of steel beams.
7. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

3.2 HANGER AND SUPPORT MAXIMUM SPACING AND MINIMUM ROD SIZE

A. Install hangers and supports with the following maximum spacing and minimum rod sizes.

B. Threaded Piping for any Liquid-service piping systems:
1. NPS ½ (DN 15): Maximum span, 5 feet (1.5 m); minimum rod size, 3/8-inch (10 mm).
2. NPS ¾ (DN 20): Maximum span, 7 feet (2.1 m); minimum rod size, 3/8-inch (10 mm).
3. NPS 1 (DN 25): Maximum span, 7 feet (2.1 m); minimum rod size, 3/8-inch (10 mm).
4. NPS 1¼ (DN 32): Maximum span, 7 feet (2.1 m); minimum rod size, 3/8-inch (10 mm).
5. NPS 1½ (DN 40): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8-inch (10 mm).
6. NPS 2 (DN 50): Maximum span, 10 feet (3 m); minimum rod size, 3/8-inch (10 mm).
7. NPS 2½ (DN 65): Maximum span, 11 feet (3.4 m); minimum rod size, 1/2-inch (13 mm).

C. Drawn-Temper Copper Piping for any liquid-service piping systems:
1. NPS ½ (DN 15): Maximum span, 4 feet (1.2 m); minimum rod size, 3/8-inch (10 mm).
2. NPS ¾ (DN 20): Maximum span, 5 feet (1.5 m); minimum rod size, 3/8-inch (10 mm).
3. NPS 1 (DN 25): Maximum span, 6 feet (1.8 m); minimum rod size, 3/8-inch (10 mm).
4. NPS 1¼ (DN 32): Maximum span, 6 feet (1.8 m); minimum rod size, 3/8-inch (10 mm).
5. NPS 1½ (DN 40): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8-inch (10 mm).
6. NPS 2 (DN 50): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8-inch (10 mm).
7. NPS 2½ (DN 65): Maximum span, 9 feet (2.7 m); minimum rod size, 1/2-inch (13 mm).

D. Support vertical runs at roof, at each floor, and at 10-foot (3-m) intervals between floors.
E. Rod diameters may be reduced one size for double-rod hangers, with 3/8-inch (10 mm) minimum rods.
F. Hanger and support spacing for piping and tubing not listed above shall be according to MSS SP-69 and piping manufacturer’s written instructions.

3.3 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A36/A36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

F. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

G. Install lateral bracing with pipe hangers and supports to prevent swaying.

H. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

I. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2½ (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

K. Repair any building insulation or building fireproofing materials, whether new or existing, that are removed or scraped away in order to attach hangers and supports, so as to maintain an equivalent insulation or fire rating as existed without said hanger or support attachment.

L. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4-inches (100 mm) thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer’s operating manual.
2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer’s written instructions.

3.4 PROTECTION OF INSULATED PIPING:

A. Attach clamps and spacers to piping.
 1. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 2. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.

B. Do not exceed pipe stress limits according to ASME B31.9.

C. Piping Operating above Ambient Air Temperature: Clevis- and clamp-type supports may project through insulation.
 1. Option: Thermal-hanger shield inserts may be used. Insert shall be same thickness as adjoining pipe insulation and length shall be at least as long as the protective shield. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
 2. For piping on roller-type supports, install MSS SP-58, Type 39 protection saddles, and fill interior voids with insulation that matches adjoining insulation.
 3. For pipes NPS 8 (DN 200) and larger, include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

D. Piping Operating below Ambient Air Temperature: Clevis- and clamp-type supports shall be sized for the outside diameter of the insulation including jacket. Install MSS SP-58, Type 40 protective shields. Shields shall span an arc of 180 degrees.
 1. Pipe Sizes NPS 4 and larger: Include thermal-hanger shield inserts. Insert shall be same thickness as adjoining pipe insulation and length shall be at least as long as the protective shield. Include steel weight-distribution plate if pipe is installed on rollers.

E. Shield Dimensions for Pipe: Not less than the following:
 1. NPS ¼ to NPS 3½: 12-inches long and 0.048-inch thick.

3.5 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.6 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and/or equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.7 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1½-inches (40 mm).

3.8 PAINTING

A. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.

END OF SECTION
SECTION 23 07 00
MECHANICAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.
B. Section 230100 “Basic Mechanical Requirements,” and Section 230500 “Basic Mechanical Materials and Methods” apply to the work of this Section as if fully repeated herein.

1.2 SUMMARY
A. This Section includes mechanical insulation for ductwork, equipment, piping, and other installations, including the following:
 1. Insulation Materials:
 a. Flexible elastomeric.
 b. Mineral fiber.
 2. Insulating cements.
 3. Adhesives.
 5. Sealants.
 6. Factory-applied jackets.
 8. Field-applied jackets.
 10. Securements.
 11. Corner angles.

1.3 DEFINITIONS
A. ASJ: All-service jacket.
B. FSK: Foil, scrim, kraft paper.
C. SSL: Self-sealing lap.
D. Thermal Resistivity: “R-values” represent the reciprocal of thermal conductivity (k-value). Thermal conductivity is the rate of heat flow through a homogenous material exactly 1-inch thick. Thermal resistivities are expressed by the temperature difference in degrees F between two exposed faces required to cause one BTU to flow through one square foot of material, in one hour, at a given mean temperature.
E. Refer to Division 23 Section “Basic Mechanical Materials and Methods” for definitions of finished, interior, exterior, exposed, and concealed locations.
F. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawl spaces, and tunnels.
G. Exposed Installations: Exposed to view. Examples include finished occupied spaces without ceilings, mechanical equipment rooms, courtyards and rooftop locations.
H. Concealed Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings or within duct shafts.
I. Conditioned Space: Spaces that are served by both a mechanical heating and mechanical cooling system are conditioned spaces. Heating-only spaces are not conditioned spaces. The space above a ceiling is considered conditioned space if the space directly below that ceiling is conditioned space. A vertical shaft is considered conditioned space if the spaces on all sides surrounding the shaft are conditioned spaces.
1.4 SUBMITTALS
 A. Product Data: For each type of product indicated, identify thermal conductivity, thickness, and jackets (both factory and field applied, if any).

1.5 QUALITY ASSURANCE
 A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
 B. Fire/Smoke Ratings: Provide composite mechanical insulation (insulation, jackets, coverings, sealers, mastics, and adhesives) with flame-spread index of 25 or less, and smoke-developed index of 50 or less, as tested by ASTM E 84 (NFPA 255) method.
 1. Exception: Outdoor mechanical insulation may have flame spread index of 75 and smoke development index of 150.
 C. Insulation thickness shall comply with ASHRAE 90.1 – 2016 or the table below where ASHRAE 90.1 either does not address the condition, or the University prefers to exceed ASHRAE requirements.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION
 A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 23 Section “Hangers and Supports.”
 B. Coordinate clearance requirements with piping Installer for piping insulation application, duct installer for duct insulation application, and equipment installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING
 A. Schedule insulation application after pressure testing systems and, where required, after installing. Insulation application may begin on segments that have satisfactory test results.
 B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 1. Flexible Elastomeric Insulation:
 a. Aeroflex USA Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Lock® Seam-Seal.
 d. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.
 2. Mineral Fiber Duct Insulation:
 a. CertainTeed Corp.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Manson Insulation Inc.
 e. Owens Corning.
 3. Mineral-Fiber, Preformed Pipe Insulation:
 b. Knauf Insulation.
2.2 INSULATION MATERIALS

A. Refer to Schedule in Part 4 for requirements about where insulating materials shall be applied.

B. Restrictions: Products shall not contain asbestos, lead, mercury, or mercury compounds. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C795.

E. Adhesives shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C534, Type I for tubular materials and Type II for sheet materials.

1. Thermal Conductivity: 0.28 average maximum at 75°F mean temperature.

G. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C534, Type I for tubular materials and Type II for sheet materials.

1. Thermal Conductivity: 0.28 average maximum at 75°F mean temperature using test method ASTM C177 or C518.
2. Water Vapor Permeability: Maximum 0.1 perm-inch using test method ASTM E96 Procedure A.
3. Water Absorption: Maximum 0.2% by volume using test method ASTM C209.
5. Adhesive: Comply with MIL-A-24179A, Type II, Class I; VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C553, Type II and ASTM C1290, Type III with factory-applied jacket.

1. Thermal Conductivity: 0.26 average maximum at 75°F mean temperature.
2. Density: 1.5 lb/cft (24-kg/cu. m) minimum.
3. Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.

I. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C612, Type IA or Type IB.

1. Thermal Conductivity: 0.26 average maximum at 75°F mean temperature.
2. Density: 2.0 lb/cft (32-kg/cu. m) minimum.
3. Jacket (Ducts): Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.
4. Jacket (Equipment): White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.

J. Mineral-Fiber, Preformed Pipe Insulation: Type I, 850°F (454°C); mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C547, Type I, Grade A, with factory-applied jacket.

1. Thermal Conductivity: 0.26 average maximum at 75°F mean temperature.
3. Adhesive: Water-based and complying with ASTM C916 Type II; equal to Foster 85-60 and/or Childers CP-127.

K. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semi-rigid board material complying with ASTM C1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C612, Type IB.

1. Thermal Conductivity: 0.29 average maximum at 100°F mean temperature.
2. Density: 2.5 lb/cft (40-kg/cu. m) minimum.
3. Jacket: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
4. Adhesive: Water-based and complying with ASTM C916 Type II.

2.3 CEMENTS AND MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates.

B. Insulating Cements: Select one or more of the following at contractor’s option.

2. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C196.

C. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below-ambient services. Equal to Foster 30-33 or Childers CP-33 or Vimasco 749.

1. Water-Vapor Permeance: ASTM E96, Procedure B, 0.07 perms or less at 41 mil dry film thickness.
2. Service Temperature Range: -20 to +180°F (-29 to +82°C).

D. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services. Equal to Foster 46-50 or Childers CP-10/11 or Vimasco WC-5.
1. Water-Vapor Permeance: ASTM F1249, 3 perms (2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
2. Service Temperature Range: -20 to +200°F (-29 to +93°C).
3. Solids Content: 63 percent by volume and 73 percent by weight.

2.4 SEALANTS
A. Joint Sealants: Permanently flexible, elastomeric sealant. Materials shall be compatible with insulation materials, jackets, and substrates.
1. Service Temperature Range: -100 to +200°F (-73 to +94°C).
2. Color: White, tan, or gray.
3. VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. FSK and Metal Jacket Flashing Sealants: Fire- and water-resistant, flexible, elastomeric sealant. Materials shall be compatible with insulation materials, jackets, and substrates.
1. Service Temperature Range: -40 to +250°F (-40 to +121°C).
2. Color: Aluminum.
3. VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants: Fire- and water-resistant, flexible, elastomeric sealant. Materials shall be compatible with insulation materials, jackets, and substrates.
1. Service Temperature Range: -40 to +250°F (-40 to +121°C).
3. VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 FIELD-APPLIED JACKETS
A. Field-applied jackets shall comply with ASTM C921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D1784, Class 16354-C; thickness 30 mils (0.8 mm); roll stock ready for shop or field cutting and forming.
1. Adhesive: Compatible with PVC, as recommended by jacket material manufacturer.
2. Color: Finish color shall be selected by Owner during shop drawing review process and shall be selected from manufacturer’s standard color chart which shall offer at a minimum eight (8) standard colors to include primary colors and white, beige, brown and black.
3. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
4. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
5. Factory-fabricated tank heads and tank side panels.

C. Metal Jackets: Sheet and roll stock ready for shop or field sizing. Factory pre-cut and rolled to size is also acceptable.
1. Aluminum Jacket: Comply with ASTM B209, Alloy 3003, 3005, 3105 or 5005, Temper H-14. Finishes and thickness as follows:
 a. Indoor Ducts and Plenums: Smooth, 0.016-inch (0.41 mm) thick. Paint ready finish.
 b. Indoor Equipment: Stucco Embossed, 0.016-inch (0.41 mm) thick. Paint ready finish.
2. Stainless-Steel Jacket: ASTM A167 or ASTM A240; Type 304 stucco embossed, with Z-shaped locking seam; 0.016-inch (0.41 mm) thick.
3. Moisture Barrier for Indoor Applications: 1-mil- (0.025-mm-) thick, heat-bonded polyethylene and kraft paper.
4. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
5. Factory-Fabricated Fitting Covers: Same material, finish, and thickness as jacket; provide as required for preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows, tee covers, flange and union covers, end caps, beveled collars, and valve covers.
6. Field-fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.6 TAPES
A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136 and UL listed.
 1. Width: 3-inches (75 mm).
 2. Thickness: 11.5 mils (0.29 mm).
 3. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C1136 and UL listed.
 1. Width: 3-inches (75 mm).
 2. Thickness: 6.5 mils (0.16 mm).
 3. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
 1. Width: 2-inches (50 mm).
 2. Thickness: 6 mils (0.15 mm).
 3. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
 4. Elongation: 500 percent.
 5. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.
D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive and UL listed.
 1. Width: 2-inches (50 mm).
 2. Thickness: 3.7 mils (0.093 mm).
 3. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
 4. Elongation: 5 percent.
 5. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.

2.7 SECUREMENTS
A. Bands:
 1. Stainless Steel: ASTM A167 or ASTM A240, Type 304; 0.015-inch (0.38 mm) thick, ½-inch (13 mm) wide with wing or closed seal.
 2. Aluminum: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020-inch (0.51 mm) thick, ½-inch (13 mm) wide with wing or closed seal.
B. Insulation Pins and Hangers:
 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch (2.6-mm) diameter shank, length to suit depth of insulation indicated with integral 1½-inch (38-mm) galvanized carbon-steel washer.

3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Baseplate shall be perforated, galvanized carbon-steel sheet, 0.030-inch (0.76 mm) thick by 2-inches (50 mm) square. Spindle shall be copper, aluminum, or stainless steel, fully annealed, 0.106-inch (2.6-mm) diameter shank, length to suit depth of insulation indicated. Adhesive shall be as recommended by hanger manufacturer; with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

4. Self-Sticking-Base Insulation Hangers: Adhesive-backed base with a peel-off protective cover; and baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Baseplate shall be galvanized carbon-steel sheet, 0.030-inch (0.76 mm) thick by 2-inches (50 mm) square. Spindle shall be copper, aluminum, or stainless steel, fully annealed, 0.106-inch (2.6-mm) diameter shank, length to suit depth of insulation indicated.

5. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch (0.41-mm) thick, aluminum or stainless-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1½-inches (38 mm) in diameter. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal ¾-inch (19-mm) wide, stainless steel or Monel.

D. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.

2.8 CORNER ANGLES
A. PVC Corner Angles: 30 mils (0.8 mm) thick, minimum 1 by 1-inch (25 by 25 mm), PVC according to ASTM D1784, Class 16354-C. White or color-coded to match adjacent surface.
B. Aluminum Corner Angles: 0.040-inch (1.0 mm) thick, minimum 1 by 1-inch (25 by 25 mm), aluminum according to ASTM B209, Alloy 3003, 3005, 3105 or 5005; Temper H-14.
C. Stainless-Steel Corner Angles: 0.024-inch (0.61 mm) thick, minimum 1 by 1-inch (25 by 25 mm), stainless steel according to ASTM A167 or ASTM A240, Type 304 or 316.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application. Verify that systems and equipment to be insulated have been tested and are free of defects. Verify that surfaces to be insulated are clean and dry. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 COMMON INSTALLATION REQUIREMENTS
A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.
B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs. Install multiple layers of insulation with longitudinal and end seams staggered.

E. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer. Install insulation with least number of joints practical.

H. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

I. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

J. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4-inches (100 mm) o.c.
 3. Overlap jacket longitudinal seams at least 1½-inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2-inches (50 mm) o.c.
 4. For below ambient services, apply vapor-barrier mastic over staples.
 5. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 6. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.

K. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

L. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

M. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4-inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

N. At the following locations, omit jacket and provide a separate cutaway removable segment of insulation clearly labeled “Access.” For below-ambient services, provide a design that allows access but maintains vapor barrier.
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.
O. At connections to equipment such as VAV boxes, all collars, reheat coils, coil return bends shall be insulated as the adjacent duct. All components in contact with 55F supply air shall be insulated and a vapor barrier installed.

P. Install insulation materials with smooth and even surfaces and on clean and dry surfaces. Redo poorly fitted joints and fitting. Do not use mastic or joint sealer as filler for gapped joints and excessive voids resulting from poor workmanship.
 1. NOTE: All insulation installed in interior exposed and any finished space in view from room shall be installed satisfactory to Owners Representative, Architect and Engineer. Where finish does not meet and or exceed the expectations of the Owners Representative, Architect and Engineer shall be removed, replaced and installed at Contractor’s expense.

Q. Provide all service jacket on duct insulation to be painted. Service jacket shall have a paint grip finish.

R. Contractor shall be responsible for re-insulating existing equipment, ductwork and piping where insulation has been removed for new connections.

S. Repair damaged sections of existing mechanical insulation, damaged during this construction period. Use insulation of same thickness as existing insulation, install new jacket lapping and sealed over existing.

T. Do not cover the damper shafts and handles with insulation.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2-inches (50 mm) below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Below-Grade Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2-inches (50 mm).
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations:
 1. Install pipe insulation continuously through pipe penetrations of fire-rated walls and partitions.
 2. Install duct insulation continuously through duct penetrations of fire-rated walls and partitions, for cases where no fire or smoke damper is required.
 3. Terminate duct insulation at fire or smoke damper sleeves for cases where fire or smoke dampers are used, but overlap duct insulation at least 2-inches (50 mm) onto sleeve.
 4. Firestopping and fire-resistive joint sealers are specified in Division 07 Section “Penetration Firestopping.”
F. Insulation Installation at Floor Penetrations:
 1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2-inches (50 mm).
 2. Pipe: For below-ambient piping services, install insulation continuously through floor penetrations. For above-ambient piping services, either do the same as for below-ambient piping, or it is acceptable to install uninsulated piping through the slab and butt the pipe insulation tight to the slab on both the top side and the underneath side.
 3. Seal penetrations through fire-rated assemblies according to Division 07 Section “Penetration Firestopping.”

3.5 DUCT INSULATION INSTALLATION
A. See Part 4 Insulation Schedules for specific requirements.
B. The following ductwork items need not be insulated, unless noted otherwise:
 1. Fibrous-glass ducts.
 2. Metal ducts with internal duct liner.
 3. Factory-insulated flexible ducts.
 4. Factory-insulated plenums, casings, fan housings, and air terminal units.
 5. Flexible connectors.
 7. Factory-insulated access panels and doors.
C. Secure all insulation on ducts and plenums with insulation pins. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 1. On duct sides with dimensions 18-inches (450 mm) and smaller, pins may be omitted.
 2. On duct sides with dimensions 18-inches (450 mm) and larger, place pins along longitudinal centerline of duct. Space 3-inches (75 mm) maximum from insulation end joints, and 16-inches (400 mm) o.c.
 3. On duct sides with dimensions larger than 36-inches (900 mm), place pins 16-inches (400 mm) o.c. each way, and 3-inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 4. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 5. Do not over-compress insulation during installation.
 6. If using blanket insulation, impale insulation over pins and attach speed washers.
 7. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
D. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2-inches (50 mm) from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1-inch (25 mm) o.c. Complete the vapor barrier by applying FSK tape specified in Part 2, or vapor-barrier mastic and sealant, at all joints, seams, and protrusions.
 1. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 2. Install vapor stops for ductwork and plenums operating below 50ºF (10 C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3-inches (75 mm).
E. If using blanket insulation, overlap unfaced blankets a minimum of 2-inches (50 mm) on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18-inches (450 mm) o.c.
F. Unless factory-insulated, install duct insulation continuously and unbroken over duct-mounted accessories such as fans, coils, terminal units, humidifier housings, damper housings, airflow measuring station housings, etc.

G. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. If using board insulation, groove and score insulation to fit as closely as possible to outside and inside radius of elbows.

H. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

I. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-(150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6-inches (150 mm) o.c.

3.6 PIPE INSULATION INSTALLATION

A. See Part 4 Insulation Schedules for specific requirements.

B. Requirements in this Article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

C. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of insulation to pipe with tape or bands and tighten without deforming insulation materials. If furnished in half sections, orient longitudinal joints at 3 and 9 o'clock positions on the pipe.
 2. All insulation shall be tightly butted and free of voids and gaps at all joints.
 3. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 4. For insulation with factory-applied jackets on above ambient services, secure laps with outward clinched staples at 6-inches (150 mm) o.c.
 5. For insulation with factory-applied jackets on below ambient services, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant. Vapor barrier must be continuous.

D. Insulation Installation on Pipe Flanges or Mechanical Couplings:
 1. Install preformed pipe insulation to outer diameter of pipe flange or mechanical coupling (such as grooved pipe couplings, if applicable).
 2. Make width of insulation section same as overall width of flange/coupling and bolts, plus twice the thickness of pipe insulation, not to exceed 1½-inch (38-mm) thickness.
 3. Fill voids between inner circumference of flange/coupling insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same thickness as pipe insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1-inch (25 mm), and seal joints with flashing sealant.

E. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
 3. Cut sectional pipe insulation to fit. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

F. Insulation Installation on Valves, Strainers, Unions, and Specials:
 1. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.

3. Install insulation over valves, strainers, flanges, mechanical couplings, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.

4. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

5. Insulate unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

6. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

7. For services not specified to receive a field-applied jacket except for flexible elastomeric, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

8.Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

G. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

H. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2-inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

I. Special Requirements for Flexible Elastomeric Insulation Installation: Seal all transverse seams, longitudinal seams, end joints, and section joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
3.7 FIELD-APPLIED JACKET INSTALLATION
 A. See Part 4 Insulation Schedules for specific requirements.
 B. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
 C. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12-inches (300 mm) o.c. and at end joints.

3.8 FINISHES
 A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
 B. Duct, Equipment, and Pipe Insulation with ASJ, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 C. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
 D. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

PART 4 - SCHEDULES
4.1 INSULATION SCHEDULES
 A. Furnish and install duct, equipment, and piping insulation as specified above and in accordance with the schedules below. All insulation thicknesses and pipe sizes in the following tables are given in nominal inches. Where more than one type of allowable material or more than one type of field jacket is listed, the choice is contractor's option.
 B. Hot Surfaces: For piping, ductwork, and equipment services denoted as 105°F or greater, all piping surfaces including but not limited to pipe, duct, flanges, fittings, valves of every kind, pumps, dampers, strainers, unions, steam traps, and other appurtenances shall be insulated to avoid potential for personnel injury via contact with hot surface.
 C. Cold Surfaces: For piping, ductwork, and equipment surfaces operating below surrounding ambient temperature, all surfaces including but not limited to pipe, duct, flanges, fittings, valves of every kind, pumps, dampers, strainers, unions, and other appurtenances shall be insulated and shall include uninterrupted vapor barrier to avoid potential condensation.
<table>
<thead>
<tr>
<th>DUCT INSULATION</th>
<th>Duct Service</th>
<th>Duct Shape</th>
<th>Minimum R-Value</th>
<th>Allowable Insulation Thickness</th>
<th>Field Jacket</th>
<th>Keyed Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Air Service</td>
<td>(including outdoor air that has been heated or cooled)</td>
<td>Round, Oval</td>
<td>ICC,ICN R-3.5 FGBK 1.50 AL (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rectangular</td>
<td>ICC,ICN R-3.5 FGBK 1.50 --- (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outdoor Air Service (prior to being heated or cooled)</td>
<td>Round, Oval</td>
<td>ICC,ICN R-3.5 FGBK 1.50 --- (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rectangular</td>
<td>ICC,ICN R-3.5 FGBK 1.50 --- (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Return Air Service</td>
<td>Round, Oval</td>
<td>ICC,IEC -- -- -- -- (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rectangular</td>
<td>ICC,IEC -- -- -- -- (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exhaust Air Service</td>
<td>Round, Oval</td>
<td>ICC, IEC R-3.5 FGBK 1.50 --- (2) (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rectangular</td>
<td>ICC, IEC R-3.5 FGBK 1.50 --- (1) (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rectangular Ducts

<table>
<thead>
<tr>
<th></th>
<th>ICC, IEC</th>
<th>R-3.5</th>
<th>FGBK</th>
<th>1.50</th>
<th>---</th>
<th>(2) (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICN, IEN</td>
<td>R-3.5</td>
<td>FGBD</td>
<td>1.50</td>
<td>---</td>
<td></td>
<td>(1) (3)</td>
</tr>
<tr>
<td>Outdoors</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

KEYED NOTES:

1. Insulate only if the exhaust is routed to an energy-recovery device.
2. Insulate only between final isolation damper and penetration of building exterior.
3. Omit insulation if duct is expressly called out to be internally lined.

LEGEND:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
<th>Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC</td>
<td>Indoor, Concealed, in Conditioned space</td>
<td>CS</td>
<td>Calcium Silicate</td>
</tr>
<tr>
<td>ICN</td>
<td>Indoor, Concealed, in Non-conditioned space</td>
<td>FRW</td>
<td>Fire-Rated Wrap</td>
</tr>
<tr>
<td>IEC</td>
<td>Indoor, Exposed, in Conditioned space</td>
<td>AL</td>
<td>Aluminum</td>
</tr>
<tr>
<td>IEN</td>
<td>Indoor, Exposed, in Non-conditioned space</td>
<td>SS</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>FGBK</td>
<td>Fiberglass Insulation, 1.5-lb density, Blanket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FGBD</td>
<td>Fiberglass Insulation, 1.5-lb density, Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FE</td>
<td>Flexible Elastomeric</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PIPE INSULATION

<table>
<thead>
<tr>
<th>Services</th>
<th>Temperature</th>
<th>Size</th>
<th>Location</th>
<th>Allowable</th>
<th>Thickness</th>
<th>Field</th>
<th>Keyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment drains, blowdown, hot vents, coil condensate, makeup or fill water</td>
<td>below 60</td>
<td>¾ to 6</td>
<td>Indoor</td>
<td>FE</td>
<td>0.50</td>
<td>PVC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 & up</td>
<td>Indoor</td>
<td>FE</td>
<td>MF</td>
<td>0.50</td>
<td>PVC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>above 105</td>
<td>All</td>
<td>All</td>
<td>MF</td>
<td>1.00</td>
<td>AL,SS</td>
<td></td>
</tr>
<tr>
<td>Chilled Water and Process Piping</td>
<td>below 40</td>
<td>¾ to 6</td>
<td>Indoor</td>
<td>FE</td>
<td>1.50</td>
<td>PVC</td>
<td></td>
</tr>
<tr>
<td>(supply and return)</td>
<td></td>
<td></td>
<td>Outdoor</td>
<td>FE</td>
<td>2.00</td>
<td>AL,SS</td>
<td></td>
</tr>
<tr>
<td>Process Piping</td>
<td></td>
<td>8 & up</td>
<td>Indoor</td>
<td>FE</td>
<td>2.00</td>
<td>PVC</td>
<td></td>
</tr>
<tr>
<td>(supply and return)</td>
<td>1¼</td>
<td>Outdoor</td>
<td>FE</td>
<td>2.00</td>
<td>AL,SS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1½ to 6</td>
<td>Indoor</td>
<td>FE</td>
<td>1.50</td>
<td>PVC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating Hot Water Piping</td>
<td>140 and</td>
<td>¾ to 1¼</td>
<td>Indoor</td>
<td>MF</td>
<td>1.00</td>
<td>PVC</td>
<td></td>
</tr>
<tr>
<td>(supply and return)</td>
<td>below</td>
<td>1½ & up</td>
<td>Indoor</td>
<td>MF</td>
<td>1.50</td>
<td>PVC</td>
<td></td>
</tr>
<tr>
<td>Refrigerant suction and hot gas piping</td>
<td>All</td>
<td>All</td>
<td>Indoor</td>
<td>FE</td>
<td>2.00</td>
<td>AL,SS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outdoor</td>
<td>FE</td>
<td>2.00</td>
<td>AL,SS</td>
<td></td>
</tr>
</tbody>
</table>

KEYED NOTES:

LEGEND:

- **AFF** Above Finished Floor
- **CG** Cellular Glass
- **FE** Flexible Elastomeric
- **PI** Polyisocyanurate
- **MF** Mineral Fiber
- **SCR** Steam Condensate Return
- **HW** Hot Water
- **PVC** Polyvinyl Chloride
- **AL** Aluminum
- **SS** Stainless Steel
END OF SECTION 23 0700
SECTION 23 09 00
CONTROL SYSTEMS

PART 1 - GENERAL
1.1 SUMMARY
A. University of Missouri Controls Specification.
B. This section contains requirements for pneumatic, electric and digital control systems as indicated on the contract drawings.
C. Contractor is responsible for providing, installing and connecting all sensors, pneumatic actuators, control valves, control dampers, electrical components and all interconnecting pneumatic tubing and electrical wiring between these devices and up to the Direct Digital Controller (DDC).
D. DDC systems consist of Johnson Controls METASYS controllers. Contractor shall install owner provided control enclosures. Owner will provide and install controllers. After all equipment has been installed, wired and piped, Owner will be responsible for all termination connections at the DDC controller’s and for checking, testing, programming and start-up of the control system. Contractor must be on site at start-up to make any necessary hardware adjustments as required.
E. Once each mechanical system is completely operational under the new control system, contractor shall make any final connections and adjustments. For controls renovation jobs, contractor shall remove all unused sensors, operators, panels, wiring, tubing, conduit, etc. Owner shall have the option of retaining any removed pneumatic controls.

1.2 RELATED SECTIONS
A. Drawings and general provisions of Contract, including General and Special Conditions apply to work of this section.

1.3 QUALITY ASSURANCE
A. Contractor's Qualifications:
 1. Contractor shall be regularly engaged in the installation of digital control systems and equipment, of types and sizes required. Contractor shall have a minimum of five years experience installing digital control systems. Contractor shall supply sufficient and competent supervision and personnel throughout the project in accordance with General Conditions section 3.4.1 and 3.4.4.
B. Codes and Standards:
 1. Electrical Standards: Provide electrical components of control systems which have been UL-listed and labeled, and comply with NEMA standards.
 2. NEMA Compliance: Comply with NEMA standards pertaining to components and devices for control systems.
 3. NFPA Compliance: Comply with NFPA 90A "Standard for the Installation of Air Conditioning and Ventilating Systems" where applicable to controls and control sequences.
 4. NFPA Compliance: Comply with NFPA 70 "National Electric Code".

1.4 SUBMITTALS
A. Shop Drawings: Submit shop drawings for each control system, containing the following information:
B. Product data for each damper, valve, and control device.
C. Schematic flow diagrams of system showing fans, pumps, coils, dampers, valves, and control devices.
D. Label each control device with setting or adjustable range of control.
E. Indicate all required electrical wiring. Clearly differentiate between portions of wiring that are factory-installed and portions to be field-installed.
F. Provide details of faces on control panels, including controls, instruments, and labeling.
G. Include written description of sequence of operation.
H. Provide wiring diagrams of contractor provided interface and I/O panels.
I. Provide field routing of proposed network bus diagram listing all device on bus.

1.5 PART 2 PRODUCTS

1.6 MATERIALS AND EQUIPMENT

A. Air Piping:
 1. Copper Tubing: Seamless copper tubing, Type M or L, ASTM B 88; wrought-copper solder-joint fittings, ANSI B16.22; except brass compression-type fittings at connections to equipment.
 2. Flex Tubing: Virgin Polyethylene non-metallic tubing, ASTM D 2737, with flame-retardant harness for multiple tubing. Use compression or push-on polyethylene fittings. Tubing used above suspended ceilings to be plenum rated per NFPA 90A. See section 3.1.b for locations where flex tubing can be used.
 3. Copper to polyethylene connections shall be compression barbed fittings or solder barbed fittings.

B. Conduit and Raceway:
 1. Electrical Metallic Tubing: EMT and fittings shall conform to ANSI C80.3.
 2. Surface Metal Raceway and Fittings: Wiremold 500, Ivory, or approved equal.
 3. Flexible Metal Conduit: Indoors, per National Electric Code for connection to moving or vibrating equipment.
 4. Liquidtight Flexible Conduit: Outdoors, per National Electric Code for connection to moving or vibrating equipment.

C. Control Valves: Provide factory fabricated pneumatic or electric control valves of type, body material, and pressure class as indicated on the drawings. Butterfly style control valves are not acceptable except for two position applications. Equip control valves with heavy-duty pneumatic actuators, with proper shutoff rating for each individual application. Refer to contract document schedule sheet and details for system and valve type.
 1. Hydronic Chilled Water and Heating Hot Water
 a) At minimum, hydronic control valves shall be pressure independent. High performing energy monitoring control valves may be considered depending on the project. The flow through the valve shall not vary more than +/- 5% due to system pressure fluctuations across the valve in the selected operating range. The control valve shall accurately control the flow from 1 to 100% full rated flow.
 b) The valve bodies shall be of cast iron, steel or bronze and rated for 150 PSI working pressure. All internal parts shall be stainless steel, steel, Teflon, brass, or bronze.
 c) Valves shall be DeltaP Valves manufactured by Flow Control Industries, Belimo, Danfoss Series, or approved equal.
 d) The valves shall have pressure taps across the valve for measuring the pressure drop across the valve. The pressure taps shall have ½-inch extensions for accessibility.
 e) Control valves shall be installed with unions or flanges as necessary for easy removal and replacement.
 f) Valve Tag shall include the model number, AHU being served, design flow, and maximum flow for that valve.
 g) The control valves shall be delivered preset to the scheduled design flow and should be capable of reaching 110% of the design flow to allow for field adjustment for capacity changes.

D. Control Dampers: Ruskin CD-50 or approved equal.
 1. Provide dampers with parallel blades for 2-position control.
 2. Provide opposed blades for modulating control.
 3. Dampers shall be low leakage design with blade and edge seals.
 4. Provide multiple sections and operators as required by opening size and sequence of operations, as indicated on the contract drawings.

E. Electric Actuators: Johnson Controls, Bray, Belimo, TAC or approved equal. KMC actuators are not approved. Size electric actuators to operate their appropriate dampers or valves with...
sufficient reserve power to provide smooth modulating action or 2-position action as specified. If mixed air AHU has return air, exhaust air and outside air dampers that are not mechanically linked then static safety switch must be installed and wired to safety circuit. Spring return actuators should be provided on heat exchanger control valves or dampers or as specified on the drawings. Control signal shall be 0 to 10 VDC unless otherwise specified on drawings. Actuators with integral damper end switch are acceptable. For VAV reheat valves, actuators shall have a manual override capability to aid in system flushing, startup, and balancing.

F. Air and Hot Water Electronic Temperature Sensors:

1. All electronic temperature sensors shall be compatible with Johnson METASYS systems.
2. Sensors shall be 1,000 ohm platinum, resistance temperature detectors (RTDs) with two wire connections. Duct mounted sensors shall be averaging type. Contractor may install probe type when field conditions prohibit averaging type, but must receive permission from Owner's Representative.
3. Coordinate thermowell manufacturer with RTD manufacturer. Thermowells that are installed by the contractor, but are to have the RTD installed by owner, must be Johnson Controls Inc. series WZ-1000.

G. Chilled Water Electronic Temperature Sensors:

1. Temperature Sensors
2. General: The RTD/Temperature Transmitter/Thermowell assembly shall come as a complete assembly from a single manufacturer. The Assembly shall be suitable for use in the accurate measurement of Chilled/Tower/Dual Water temperatures in a mechanical room environment.
3. Calibration: Each RTD must be match calibrated to the Transmitter via NIST traceable calibration standards. Results are to be programmed into the transmitter. Results are to be presented on report as after condition at the specified calibration points. Assembly shall not be approved for installation until Owner has received all factory calibration reports.
4. RTD:
 a) RTD type: 2-wire or 3-wire 100 ohm platinum class A or B.
 b) Outside Diameter: 0.25 inch
 c) Tolerance: +/- 0.06% Type A, +/- 0.12% Type B.
 d) Stability: +/- 0.1 % over one year.
 e) TCR: 0.00385 (ohm/ohm/°C).
 f) RTD shall be tip sensitive.
 g) Resistance vs. Temperature table for the RTD must be provided to the Owner.
5. Transmitter:
 a) Transmitter shall be match calibrated to the RTD and assembled as a matched pair.
 b) Type: 2 wire (loop powered).
 c) Input: 2 or 3 wire 100 ohm platinum class A or class B RTD.
 d) Output: Output shall be a 4-20 mA signal linear to temperature.
 e) Calibrated Span:
 (1) Chilled Water: 30 °F to 130 °F
 (2) Hot Water: 30 °F to 230 °F
 (3) Process Water: 30 °F to 130 °F
 f) Calibration Accuracy, including total of all errors, of the Transmitter & RTD matched pair over the entire span shall be within +/- 0.2% of the calibrated span or +/- 0.18 °F, whichever is greater
 g) Supply Voltage: 24 VDC.
 h) Ambient Operating Temp.: 32 to 122 °F
 i) Epoxy potted for moisture resistance.
6. Thermowell
 a) Thermowell shall be suitable for immersion in chilled/hot water.
 b) Thermowell shall be reduced tip.
 c) Thermowell shall be one piece stainless steel machined from solid bar stock.
 d) Thermowell shall have 1/2" NPT process connection to pipe thread-o-let.
 e) Thermowell insertion depth shall be ½ inside pipe diameter, but not to exceed 10”.
7. Assembly:
 a) Assembly configuration: Spring loaded RTD with thermowell-double ended hexconnection head.
 b) Connection head shall be cast aluminum with chain connecting cap to body, have 1/2” NPT process and 3/4” NPT conduit connections, and a sealing gasket between cap and body.
8. RTD/Temperature Transmitter/Thermowell assembly shall be the following or approved equal:
 a) Manufacturer: Pyromation, Inc.
 (1) Chilled Water: RAF185L-S4C[length code]08-SL-8HN31,TT440-385U-S(30-130)F with calibration SMC(40,60)F
 (2) Hot Water: RAF185L-S4C[length code]08T2-SL-8HN31,TT440-385U-S(100-250)F with calibration SMC(140,180)F
H. Occupant Override: Provide wall mounted occupant override button in locations shown on drawings.
I. Low Limit Controllers: Provide unit-mounted low limit controllers, of rod-and-tube type, with an adjustable set point and a manual reset. Capillary shall be of adequate length to horizontally traverse face of cooling coil every 12”. Multiple low limit controllers may be required for large coils. Controller shall have an extra set of contactors for connection to control panel for alarm status. Locate the thermostat case and bellows where the ambient temperature is always warmer than the set point.
1. Freeze Stats: Johnson Controls model A70HA-1 or approved equal.
J. Carbon Dioxide Sensor:
 1. Wall Mount: ACI Model ESENSE-R.
 2. Duct Mount: ACI Model ESENSE-D.
K. Power Supply Used to Provide Power to Contractor-Provided Control Devices: Shall have adjustable DC output, screw terminals, overload protection and 24 VAC and 24 VDC output.
 1. Kele, DCPA-1.2 or approved equal.
L. Pressure Differential Switch:
 1. Fans: NECC model DP222 or approved equal.
M. Differential Pressure Transmitter: Provide units with linear analog 4-20mA output proportional to differential pressure, compatible with the Johnson METASYS Systems.
 1. Water: Units shall be wet/wet differential pressure capable of a bi-directional pressure range of +/- 50 psid. Accuracy shall be +/- 0.25% full scale with a compensated temperature range of 30 to 150 deg F and a maximum working pressure of 250 psig. Install transmitter in a pre-manufactured bypass valve assembly with shut-off valves, vent valves and a bypass valve, all enclosed in a NEMA 1 enclosure.
 a) Setra model 230 with Kele model BVA-5 bypass valve assembly, or approved equal.
 2. Air: Units shall be capable of measuring a differential pressure of 0 to 5 in. WC. Accuracy shall be +/- 1.0% full scale with a compensated temperature range of 40 to 149 deg F and a maximum working pressure of 250 psig.
 a) Setra model 267, or approved equal.
 b) Shall be installed in control panel and piped 2/3 down the duct unless shown otherwise or approved by owners representative.
N. Building Static Pressure: Transducer shall utilize a ceramic capacitive sensing element to provide a stable linear output over the specified range of building static pressure. Transducer shall be housed in a wall-mounted enclosure with LCD display. Transducer shall have the
following capabilities:
1. Input Power: 24 VAC
2. Output: 0-10 VDC
3. Pressure Range: -0.25 to +0.25 inches w.g.
4. Display: 3-1/2 digit LCD, displaying pressure in inches w.g.
5. Accuracy: +/- 1.0% combined linearity and hysteresis
6. Temperature effect: 0.05% / deg C
7. Zero drift (1 year): 2.0% max
8. Zero adjust: Push-button auto-zero and digital input
9. Operating Environment: 0 to 140 deg F, 90% RH (non-condensing)
10. Fittings: Brass barbs, 1/8” O.D.
11. Enclosure: High-impact ABS plastic
12. Outdoor Sensing Tube Enclosure: UV stabilized thermoplastic or aluminum “can” enclosure to shield outdoor pressure sensing tube from wind effects.
13. Transducer shall be Veris Industries Model PXPLX01S, equivalent from Setra, or approved equal

O. High Static Pressure Limit Switch: Provide pressure high limit switch to open contact in fan circuit to shut down the supply fan when the inlet static pressure rises above the set point. Provide with an adjustable set point, a manual reset button, 2 SPST (normally closed) contacts, and ¼” compression fittings.
1. Kele model AFS-460-DDS, or approved equal.

P. Electrical Requirements: Provide electric-pneumatic switches, electrical devices, and relays that are UL-listed and of type which meet current and voltage characteristics of the project. All devices shall be of industrial/commercial grade or better. Residential types will be rejected.
1. EP Switches: Landis & Gyr Powers, Inc. Series 265 - Junction Box Type or approved equal.
2. Relays: Relays shall have an LED status indicator, voltage transient suppression, Closed-Open-Auto switch, plastic enclosure, and color coded wires. Kele model RIBU1C or approved equal.

PART 2 - EXECUTION

2.1 INSTALLATION OF CONTROL SYSTEMS

A. General: Install systems and materials in accordance with manufacturers instructions, roughing-in drawings and details shown on drawings.

B. Control Air Piping:
1. All control air piping shall be copper. Exception: Flexible Tubing may be used for a maximum of two (2) feet at connections to equipment and inside control cabinets.
2. Provide copper tubing with a maximum unsupported length of 3'-0”.
3. Pressure Test control air piping at 30 psi for 24 hours. Test fails if more than 5 PSI loss occurs.
4. Fasten flexible connections bridging cabinets and doors, neatly along hinge side, and protect against abrasion. Tie and support tubing neatly.
5. Number-code or color-code tubing, except local individual room control tubing, for future identification and servicing of control system.
6. All control tubing at control panel shall be tagged and labeled during installation to assist owner in making termination connections at control panel.
7. Provide pressure gages on each output device.
8. Paint all exposed control tubing to match existing.

C. Raceway: Raceway is to be installed in accordance with the National Electric Code. Use of flexible metal conduit or liquidtight flexible conduit is limited to 36” to connect from EMT to devices subject to movement. Flexible raceway is not to be used to compensate for misalignment of raceway during installation.

D. Control Wiring: Install control wiring in raceway, without splices between terminal points, color-coded. Install in a neat workmanlike manner, securely fastened. Install in accordance with National Electrical Code.
1. Install circuits over 25-volt with color-coded No. 12 stranded wire.
2. Install electronic circuits and circuits under 25-volts with color-coded No. 18 stranded twisted shielded pair type conductor.
3. N2 communications bus wire shall be 18 AWG, plenum rated, stranded twisted shielded, 3 conductor, with blue outer casing, described as 18-03 OAS STR PLNM NEON BLU JK distributed by Windy City Wire, constructed by Cable-Tek, or approved equivalent.
 a) Metastat wiring shall be minimum 20 AWG, plenum rated, stranded, 8 conductor stranded wire.
4. FC communications bus wire shall be 22 AWG, plenum rated, stranded twisted shielded, 3 conductor, with blue outer casing, described as 22-03 OAS STR PLNM NEON BLU JK distributed by Windy City Wire, constructed by Cable-Tek, or approved equivalent.
 a) Network sensor wiring (SA Bus) shall be 22 gauge plenum rated stranded twisted wire, 4 conductor.
5. All control wiring at control panel shall be tagged and labeled during installation to assist owner in making termination connections at control panel. Label all control wires per bid documents.

E. All low voltage electrical wiring shall be run as follows:
 1. Route electrical wiring in concealed spaces and mechanical rooms whenever possible.
 2. Provide EMT conduit and fittings in mechanical rooms and where indicated on drawings.
 3. Low voltage electrical wiring routed above acoustical ceiling is not required to be in conduit, but wire must be plenum rated and properly supported to building structure.
 4. Provide surface raceway, fittings and boxes in finished areas where wiring cannot be run in concealed spaces. Route on ceiling or along walls as close to ceiling as possible. Run raceway parallel to walls. Diagonal runs are not permitted. Paint raceway and fittings to match existing conditions. Patch/repair/paint any exposed wall penetrations to match existing conditions.

F. All devices shall be mounted appropriately for the intended service and location.
 1. Adjustable thermostats shall be provided with base and covers in occupied areas and mounted 48” above finished floor to the top of the device. Tubing and/or wiring shall be concealed within the wall up to the ceiling where ever possible. Surface raceway may only be used with approval of Owners Representative. Wall mounted sensors such as CO2, RH, and non-adjustable temperature sensors shall be mounted 54” above finished floor. Duct mounted sensors shall be provided with mounting brackets to accommodate insulation. Mounting clips for capillary tubes for averaging sensors are required.
 2. All control devices shall be tagged and labeled for future identification and servicing of control system.
 3. Preheat and mixed air discharge sensors must be of adequate length and installed with capillary tube horizontally traversing face of coil, covering entire coil every 24 inches bottom to top.
 4. All field devices must be accessible or access panels must be installed.

G. Install magnehelic pressure gage across each air handling unit filter bank. If the air handling unit has a prefilter and a final filter, two magnehelic pressure gages are required.

2.2 ADJUSTING AND START-UP

A. Start-Up: Temporary control of Air Handling Units shall be allowed only if approved by the owner’s representative to protect finishes, etc., AHUs may be run using caution with temporary controls installed by contractor early in the startup process. All safeties including a smoke detector for shut down must be operational. Some means of discharge air control shall be utilized and provided by the contractor such as a temporary temperature sensor and controller located and installed by the Contractor.

B. The start-up, testing, and adjusting of pneumatic and digital control systems will be conducted by owner. Once all items are completed by the Contractor for each system, Contractor shall allow time in the construction schedule for owner to complete commissioning of controls before project substantial completion. This task should be included in the original schedule and updated to include the allotted time necessary to complete it. As a minimum, the following items are required to be completed by the Contractor for Owner to begin controls.
commissioning.

1. Process Control Network
 a) The control boards and enclosures need to be installed in the mechanical rooms.
 b) The fiber optic conduit and box for the process control network needs to be installed. Once in place, Owner needs to be contacted so the length of the owner provided fiber cable can be determined and ordered, if required. Coordinate with Owner to schedule the pull in and termination of the fiber cable. Power should be in place at that time. (Fiber for the process control network is required to allow metering of utilities prior to turn on.)

2. Heating System
 a) Pumps, heat exchangers, steam pressure reducing station, piping, control valves, steam and/or hot water meter, feeder conduit and wire, VFDs, control panels and control wiring installed in the mechanical room. The house keeping pads must be poured before pump operation. All must be in place in working order (pumps aligned, VFDs set up by vendor, motors checked for rotation, steam regulators set to required pressure, condensate pumps operational, heating system ready to circulate (all piping pressure tested, flushed, and insulated) with differential pressure sensors in place.

3. Cooling System
 a) Pumps, heat exchangers, piping, control valves, chilled water meter, feeder conduit and wire, VFDs, control panels and control wiring installed in the mechanical room. The house keeping pads must be poured before pump operation. All must be in place in working order (pumps aligned, VFDs set up by vendor, motors checked for rotation, cooling system ready to circulate (all piping pressure tested, flushed, and insulated) with differential pressure sensors in place.

4. VAVs-First Pass
 a) Power, (FC or N2 bus), and control wire installed before owner can make first commissioning pass. First pass includes installation of VAV controller, termination of power, control and network communication wiring.

5. Air Handlers
 a) Prior to owner commissioning, at a minimum, the following items shall be complete: Power wiring, motor rotation check, fire/smoke dampers open, control wiring including all safeties, IO cabinet, air handler cleaned, and filters installed as required. To protect the systems from dirt, outside air with no return will be used until the building is clean enough for return air operation.

6. VAVs-Second Pass
 a) After the air handlers are running and under static pressure control and the heating water system is operating, a second pass can be made on the VAVs to download the control program and commission controllers to verify the VAV dampers, thermostat, and reheat control valves are working properly.

7. Exhaust and Energy Recovery Systems
 a) Exhaust fans need to be operational and under control before labs can be commissioned.

8. Lab Air Controls
 a) Lab Air Controls vendor will have the same requirements as stated above for VAVs.

C. Some balance work can be done alongside the control work as long as areas are mostly complete and all diffusers are in place.

3.02 CLOSEOUT PROCEDURES
A. Contractor shall provide complete diagrams of the control system including flow diagrams with each control device labeled, a diagram showing the termination connections, and an explanation of the control sequence. The diagram and sequence shall be framed and protected by glass and mounted next to controller.
B. Contractor shall provide as built diagram of network bus routing listing all devices on bus, once wiring is complete prior to scope completion.
END OF SECTION
SECTION 23 09 50
FACILITY MONITORING SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General Conditions of the Contract, General Conduct of the Work and Special Requirements, and Division 1 Specification Sections, apply to this Section.

1.2 OVERVIEW
A. This document contains the specification and input/output summaries for a Facility Monitoring System (FMS). The system architecture shall utilize local room, duct and outside air probes networked to distributed Air Data Routers and Sensors Suites communicating over a data and air sampling network. The air sampling network shall consist of an air packet transportation network that shall transport air samples from the environment being monitored to distributed Sensor Suites located throughout the facility. The air sampling network shall consist of intelligent air packet routers, an electrically conductive MicroDuct® network, and structured cable. Gathering of air samples shall occur via room, duct mounted, and outside air sampling probes located as indicated in the documents.

B. The FMS shall provide continuous monitoring of environmental conditions and ventilation performance as prescribed in the Sensor Suite section, and provide protected information access via a web based user interface to analytical summaries, system generated reports, onscreen graphical form, system distributed reports, and analysis based notifications. With an active subscription to Advisor Services, web-based utilities are to be included to export FMS data as a comma separated values (.csv) file format. The FMS shall interface with other analog and microprocessor based building subsystems as shown on the drawings, specified herein and in other sections.

C. The FMS specified herein, shall be by Aircuity, Inc., Newton Massachusetts.

1.3 RELATED SECTIONS
A. 3rd-Party Interfacing is required on this project according to the following Specification sections for sub-systems:
 1. Section 230900 – Control Systems.

B. REFERENCES
 1. ANSI/ASHRAE 135-2001: BACnet® - A Data Communication Protocol for Building Automation Systems: This shall include the Standard and all published Addenda.

1.4 CODES, REGULATIONS, AND COMPLIANCE
A. All electrical equipment and material and its installation shall conform to the current requirements of the following authorities:
 1. Occupational Safety and Health Act (OSHA)
 2. National Electric Code (NEC)

B. Where two or more codes conflict, the most restrictive shall apply. Nothing in this specification or related documentation shall be construed to permit work not conforming to applicable codes.

C. All Air Data Routers and Sensor Suites shall comply with:
 1. Underwriters Laboratories UL916 for Energy Management Equipment
 2. FCC Part 15 Class A
 3. CE

D. All Plenum Rated OptiNet Structured Cable shall comply with:
 1. UL CMP
2. NEC 800.51 (A)
3. NFPA 262
4. UL 910
5. FCC Part 15 Class A
6. CE

E. All Riser Rated OptiNet Structured Cable shall comply with:
 1. UL CMR
 2. NEC 800.51 (B)
 3. ANSI 1666
 4. UL 1666
 5. FCC Part 15 Class A
 6. CE

F. All OptiNet Tubing shall comply with:
 1. NFPA 90A
 2. UL 94V-2
 3. UL 1820

G. All Information Management Servers shall comply with:
 1. FCC Part 15 Class A
 2. CE

H. All Room Sensors and Duct Probes shall comply with:
 1. FCC Part 15 Class A
 2. CE

I. All OptiNet Systems Integrators shall comply with:
 1. Underwriters Laboratories UL916 for Energy Management Equipment
 2. FCC Part 15 Class A
 3. CE
 4. C-UL Listed to Canadian Standards Association

1.5 DEFINITIONS

A. ADR refers to the Aircuity Air Data Router
B. BAS refers to the Building Automation System.
C. FMC refers to the Facility Monitoring System Contractor. The FMC is the Contractor responsible for the implementation of this Section of the Specifications
D. FMS refers to the hardware, software and other components comprising the Facility Monitoring System as herein described
E. I/O refers to Input/Output. Thus, "I/O device" means "Input/Output device"
F. IMS refers to the Aircuity Information Management Server
G. LACS refers to the Laboratory Airflow Control System
H. OSI refers to the OptiNet Systems Integrator
I. PCM refers to a pump control module
J. SST refers to the Aircuity Sensor Suite

1.6 ACCEPTABLE FACILITY MONITORING SYSTEM CONTRACTOR (FMC)

A. The FMC shall have support services within a 120 mile radius of Project Site and comply with the service requirements of a 24 hour response time. Any technicians working on the FMS will be certified by the FMS manufacturer for such work. Support services is defined as having
access to complete parts inventory, having all required test and diagnostic equipment, and having factory certified technicians on the systems specified herein.

PART 2 - PRODUCTS

2.1 Contractor Responsibilities:
A. The FMC shall furnish all necessary hardware, wiring, structured cable, tubing, computing equipment and software required to provide a complete and functional system necessary to perform the design intent and as defined in this specification.
B. Installation of all FMS components; and all electrical work required as an integral part of this section as noted in Part 3 Execution including but not limited to Sensor Suites, Air Data Routers, Room, Duct, and Outside Air Probes, Transformers, Vacuum Pumps, Information Management Servers, Structured Cable, etc., shall be by Division 26.
C. The base price of the system will include a comprehensive Annual Service Agreement for 2 years as described in the Annual Services portion of this specification. At the time the warranty commences a complete copy of the agreement marked "PAID IN FULL" shall be delivered to the owner.

2.2 CONTRACTOR (FMC) EXPERIENCE AND PERFORMANCE
A. The FMC shall have a local office or representative, staffed with factory certified technicians, fully capable of providing instruction, routine maintenance, and emergency maintenance service on all system components. The FMC shall be responsible for replacement of all products supplied at all times for a period of not less than 1 year following project completion, and shall provide a 24 hour response to a service/warranty call from the owner.

2.3 System Requirements
A. All material and equipment used shall be standard components, regularly manufactured and available by the manufacturer and not custom designed especially for this project. All systems and components, except site specific software, shall have previously been thoroughly tested and proven in actual use prior to installation on this project.
B. The system shall have the ability to host multiple sensors for the purpose of simultaneously sensing multiple parameters from a single test area's environment.
C. The system shall provide the end user the ability to select which environmental parameters will be sensed on a test area by test area basis.
D. The system shall have the ability to make true differential measurements by utilizing the same suite of sensors to evaluate both the contaminant levels of a test area and the source of the ventilation air.
E. The system shall have the ability to perform application specific computations using sensed contaminant levels for the purposes of generating ventilation command signals to be read by LACS via hardwired outputs or BACnet over IP connections.
F. The system shall have the ability to have third party data (i.e. total supply flow, total general exhaust flow, fume hood sash position, room/fume hood occupancy statuses, etc.) written to it by LACS via hardwired inputs or BACnet over IP connections for the purposes of generating analytical data and reports based of off actual system performance.
G. The system architecture shall be fully modular permitting expansion of application software, system peripherals, and field hardware.
H. The system, upon completion of the installation and prior to acceptance of the project, shall perform all operating functions as detailed in this specification.

2.4 Equipment
A. System Hardware
 1. The FMC shall provide the following:
a. All Air Data Routers, Sensor Suites, Sensor Suite Sensors, Room, Duct, and Outside Air Probes, Information Management Servers, Vacuum Pumps, Structured Cable, OptiNet Tubing, Transformers and when required, an OptiNet Systems Integrator to perform the functions listed.

2. System Software
 a. The FMC shall provide all software identified in this specification. The database required for implementation of these specifications shall be provided by the FMC, including point descriptors, test sequences, reports and point summaries. The FMC shall provide and create the system using the latest software release, at the time of Shop Drawing approval.
 b. The FMC shall provide a BACnet compatible integration server and software to interface with the facility’s BAS. Communication shall be via BACnet over IP.

3. Building Ethernet Connection Cabling:
 a. The owner shall provide CAT-5e or CAT-6 network drops and cabling between the FMS Information Management Server and the owner’s BACnet communications network– to serve as the connection to the BAS.
 b. Final Building Ethernet Connection(s) shall be coordinated with the owner’s IT Group.

4. Both the FMS manufacturer and FMC shall have quality control procedures for design and manufacture of Facility Monitoring Systems for precision monitoring, indoor air quality, energy savings and preventative maintenance.

5. The FMC shall provide all zone attribute data and programming and shall coordinate object naming conventions and network map requirements with the owner’s internal Energy Management department. The naming convention shall be submitted with the FMC Shop Drawings for review and approval by owner’s Energy Management department.

2.5 FACILITY MONITORING SYSTEM INTERFACE

A. The building will be equipped with a Facility Monitoring System (FMS) as specified in other sections of these specifications. The purpose of the system is to analyze key elements of the indoor environment and to provide direction to the mechanical systems via the LACS. Directions to be achieved shall be accomplished by monitoring and analysis of airborne parameters such as particulates, volatile organic compounds (VOCs), moisture content, gases such as carbon monoxide and carbon dioxide (CO, CO2), and others as indicated in the FMS specification. As a result of this analysis the FMS will provide the LACS with changes in operational parameters, most significantly airflow rates. The system will also provide analysis of how the indoor environment responds as a result of the mechanical system modes of operation, and provide optional performance reports and other data to building management.

B. BAS CONTRACTOR’S RESPONSIBILITY: The BAS contractor shall be required to implement an interface between the LACS and the FMS. Expansion boards on the ADRs shall communicate with the LACS via hardwired I/O connections. The BAS contractor shall be responsible for:

1. Providing, routing and terminating all 18 ga. stranded 2-conductor communication wiring between the LACS and FMS’ ADR expansion boards. Wiring methods shall match BAS wiring methods and shall conform to local state and federal building codes.

2. Providing the FMS with the following feedbacks for EACH control/pressurized zone:
 a. Total Supply Air Flow Feedback
 b. Total General Exhaust Flow Feedback
 c. Control/pressurized Zone Occupancy Status Value (or provide a written schedule which reflects typical occupancy)
 d. Fume Hood Flow Feedback (for EACH fume hood contained in each control/pressurized zone)
 e. Fume Hood Occupancy Status (for EACH fume hood contained in each control/pressurized zone)
f. Fume Hood Sash Open % (for EACH fume hood contained in each control/pressurized zone)

3. Communicating, in writing, to the FMS contractor the formats of each of the above feedbacks (i.e. SA Flow Feedback of 0–10VDC equates to 0–1,000 CFM for Room 101)

4. Reserving or providing the physical inputs required on the LACS for the FMS supply air ventilation command output for EACH control/pressurized zone.

5. Communicating, in writing, to the FMS contractor the required formats of the previously mentioned supply air ventilation commands for EACH space (i.e. 0–10VDC equates to 0–18ACH, or 4–20mA equates to 0–18ACH, etc.)

6. Providing the FMS contractor with a detailed point-to-point wiring diagram package showing the physical terminations on both the LACS and corresponding terminations on the ADR expansion boards.

7. Implementing the necessary control sequences to respond to the directions from the FMS. These directions will be integrated from a priority standpoint so that other control actions such as smoke control are not impeded.

8. Provide qualified on-site staff during start up of the FMS to insure that communication is functional, that data values are received from the FMS, that control BAS sequences as a result of this data are implemented properly and effectively, and that necessary data is transmitted to the FMS.

2.6 SYSTEM OVERVIEW

A. The purpose of the FMS is to establish with extreme precision the proper amount of ventilation needed based on analysis of the air within the facility for airborne contaminants. This analysis will involve precise comparison between air within any space being ventilated and the air being supplied to it, the air outside the building, or both as indicated in specific applications.

B. Data captured during the analysis and through the ventilation management process will be analyzed and formatted into a host of on screen displays, analytical reports, and analysis based notification of operational deficiencies. These analyses will encompass data sets gathered over time, and should not be confused with simple alarm notifications.

C. AIR DATA ROUTERS

1. The Air Data Router shall be furnished as a complete, self contained, unit housing all electronics, air solenoid valves, sampling manifolds, firmware, and software. Unit shall be furnished with all internal devices and wiring assembled and tested at the factory.

2. Air Data Routers shall consist of an enclosure; terminations areas for both field wiring and Structured Cable; a communications/processor board; high capacity solenoid valves; and sampling manifold.

3. Air Data Router shall have provisions to interface to the FMS Structured Cable or OptiNet Tubing. Air Data Router shall utilize an internal, factory pre-assembled air sampling manifold to interface to the on-board solenoid valves, and push to connect speed fittings for ease of interface to the Structured Cable. Air Data Routers shall be capable of sampling of up to four zones. Air Data Routers shall be sized and configured with the appropriate number of zones noted on the plans and/or specifications.

 a. Air Data router shall be capable of accepting universal 0–10Vdc or 4–20mA inputs and outputs through expansion boards for interfacing to other third party devices and controllers.

4. Up to 30 Air Data Routers shall communicate on an isolated RS-485 network with the Sensor Suite.

5. All point data, algorithms and application software within the Air Data Routers shall be programmable from the Information Management Server. Each Air Data Router shall contain both software and firmware to receive and perform full test sequencing schemes downloaded from the Server.

6. Each Air Data Router shall contain a serial port for the interface with a portable computer. Air Data Router and network integration shall be possible through this port.
7. Air Data Routers shall be capable of proper operation in an ambient temperature environment of 40 degrees F to 120 degrees F (4.4°–49°C), 0–90% RH (non-condensing).
8. Air Data Routers shall have LED indication for visual status of communication and power.
9. Air Data Routers shall operate on 24Vac power fed from a common 120/24Vac transformer. Low voltage power shall be distributed to the Air Data Routers through the associated structured cable.

D. SENSOR SUITE
1. The Sensor Suite shall be a distributed, network based, multipoint sensing device. The Sensor Suite shall be furnished as a complete, self contained unit housing all electronics, sensing card cage, sampling manifolds, flow regulators, pressure regulators, firmware, and software.
2. The Sensor Suite shall provide communications between the Air Data Router sub network and the Information Management Server over an isolated RS-485 network. The Sensor Suite shall support communications with a sub network of 30 Air Data Routers; 30 other Sensor Suites, and an Information Management Server.
3. The Sensor Suite base unit shall consist of an enclosure; hinged door with keyed lock; terminations area for both field wiring and Structured Cable connections; a communications/processor board; electronic flow measurement and controller assembly; and sensor bay.
4. The Sensor Suite shall utilize a card cage to allow for the ease of selection and installation of a diverse array of environmental and specialty sensors. At a minimum, the Sensor Suite shall incorporate the following sensors to meet the required applications:
5. Sensor Specifications: Airborne Particulates

<table>
<thead>
<tr>
<th>Model Number</th>
<th>SEN-PAR-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Application</td>
<td>Particulate Monitoring or Control: May be used in any application</td>
</tr>
<tr>
<td>Sensor: Airborne Particulates - Small Particles PM2.5</td>
<td>Single Channel</td>
</tr>
<tr>
<td>Element</td>
<td>Optical Particle Counter</td>
</tr>
<tr>
<td>Range</td>
<td>PM2.5: 0.3–2.5µm</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 25% of reading</td>
</tr>
<tr>
<td>Concentration Range</td>
<td>100–10,000,000 particles pcf</td>
</tr>
<tr>
<td>Response</td>
<td>30 seconds</td>
</tr>
</tbody>
</table>

Sensor Specifications: Total Volatile Organic Compounds
6. The Sensor Suite shall have the ability to “multitask” by concurrently drawing an air sample from one limb while sensing the parameters of the air sample in the other limb.
7. The Sensor Suite shall be modular in nature, and allow for the addition and removal of the sensors for application specific sensing requirements, and ease of calibration and service.
8. The Sensor Suite shall house an on-board flow regulator, orifice plate, and differential pressure sensor to maintain a continuous, regulated flow rate through the Structured Cable.
9. On-board diagnostics shall continuously perform system checks.
10. The Sensor Suite will continuously monitor atmospheric pressure and compensate sensor outputs accordingly as the atmospheric pressure changes.
11. Each Sensor Suite shall contain a serial port for the interface with a portable computer. Sensor Suite and network integration shall be possible through this port.
12. Sensor Suites shall be capable of proper operation in an ambient temperature environment of 40 degrees F to 120 degrees F (4.4°–49°C), 0–90% RH (non-condensing).
13. Sensor Suites shall have LED indication for visual status of communication and power.
14. Sensor Suites shall operate on 24 Vac power fed from a common 120/24 Vac transformer connected to the Sensor Suite provided by the FMC.
15. To mitigate the potential for Sensor Suite failure, the Sensor Suite shall not be mounted to the same support structure as the vacuum pumps.

E. HIGH FLOW VACUUM PUMP
1. EACH Sensor Suite will be equipped with a High Flow Vacuum Pump (HFP) that will draw samples from the sampling ports in the system, through the Sensor Suite, and then discharge them. Samples will be discharged into the nearest exhaust duct so the samples may be discharged directly from the building.
2. The HFP will meet the following specifications:
3. Maximum Vacuum: -9 ±1.0 PSIG (18.32 ±2.04 inches Hg)
4. Minimum Flow Rate: 1.2 SCFM
5. Pump mounting: Pump shall be mounted securely using the factory supplied mounting assembly to prevent it from moving due to vibration, and in a location where the sound of the pump will not be heard outside the immediate area. The pump mounting assembly shall not be secured to the same structure as the IMS or Sensor Suite.
6. Standby pump with automatic switchover: Provides a second pump, identical to the first, with an automatic switchover controller that will automatically take over should the on-line
pump stop for any reason other than a complete failure of all local AC power. In the event this occurs, or if some other event occurs resulting in a loss of vacuum at the SST, the standby pump will be placed in operation and a notification will be sent to the Aircuity remote data center, notifying customer support that the backup pump is in operation, prompting a field visit. At any point, if there is a sustained loss of vacuum at the SST, a notification will be sent to the Aircuity remote data center, and all BACnet points whose integrity is affected by the loss of vacuum condition will be marked as “unreliable”, which can be observed by the BMS, so that they can respond accordingly. The notification will be reset once the loss of vacuum condition is remedied.

F. INFORMATION MANAGEMENT SERVER

1. The Information Management Server (Server) shall provide network management of Sensor Suites, integration to the BAS, and interface to the web based Aircuity Knowledge Center for viewing and outputting graphs, charts and data derived from the Ventilation Management System.

2. The hardware platform for the Server shall, at a minimum, consist of:
 a. PC processor with minimum 64-bit word structure.
 b. Minimum 1.86 GHz processor speed.
 c. Minimum 2GB on board RAM
 d. Hard drive or equal high-speed data storage, minimum 250 gigabytes.
 e. Two (2) Gigabit LAN connections: (10/100)
 f. Dual RS-232 Serial Ports
 g. Operating System shall be Windows 7.

3. Information Management Server includes an Uninterruptable Power Supply capable of sustaining the IMS power for a minimum of 5 minutes to accommodate cycling from normal to emergency power and back.

4. The owner shall provide CAT-5e or CAT-6 network drops and cabling between the FMS Information Management Server and:
 a. The owner’s Building Ethernet Network - to serve as the path to the offsite archival and analysis system (the Aircuity Knowledge Center)
 b. The owner’s BACnet communications network (if different from the above) – to serve as the connection to the BAS.
 c. Final Building Ethernet Connection shall be coordinated with the owner’s IT Group.

5. The Server shall be located within 25 feet of the nearest Sensor Suite and be connected to the Server through the RS-232 serial port.

6. To mitigate the potential for hard drive failure, the IMS shall not be mounted to the same support structure as the vacuum pumps.

G. STRUCTURED CABLE

1. The FMS shall utilize a pre-engineered system of Structured Cable to facilitate network wide communications, distribution of low voltage power to Air Data Routers and Sensor Suites, and provide a sampling conduit for air samples all within a single cable.

2. The cable shall contain the necessary wires to distribute communications, data and low voltage power throughout the FMS. As a minimum, Structured cable shall consist of:
 a. Communications – 22 AWG twisted shield pair with drain wire
 b. Low Voltage Power – 18 AWG, 3 wire

3. An inner pathway, MicroDuct, shall be furnished as an integral part of the Structured Cable to facilitate collection of zone air samples. MicroDuct shall be lined with a smooth, electrically conductive, chemically inert surface to insure air samples remain pure and uncorrupted and do not adhere to the wall lining during transport. Aircuity OSC or stainless steel tubing only. No exceptions. Polyethylene tubing, copper tubing, galvanized pipe are not acceptable. See below for stainless steel specifications.

4. Structured cable shall not require any specialized tools for installation. Installation of the cable shall follow traditional local area network practices.
5. Structured cable shall carry incremental length markings (in feet) throughout the cable length.
 a. Dedicated wiring specifically used for the FMS consisting of a minimum of:
 1) Communications – 22 AWG twisted shield pair with drain wire
 2) Low Voltage Power – 18 AWG, 3 wire

H. ROOM, DUCT, and SUPPLY AIR PROBES
 1. Room, Duct, and Supply Sensors:
 a. A semi-flush mounted, sampling port with an optional integral temperature sensor
 housed within one enclosure; the port within the enclosure will accept the MicroDuct
 from the Structured Cable.
 b. Internal coarse filter to screen out large particulate matter from entering the
 MicroDuct.
 2. Sensors:
 a. Sensors are the property of Aircuity whose warranty is covered under the OptiNet
 Assurance Services contract agreement.
 b. Sensors shall be installed in a listed enclosure (the Sensor Suite) in a climate
 controlled environment which is maintained between 40°F–120°F and 0–90% RH (non-
 condensing).
 c. Quality of sensors: All sensors shall possess the properties published in section 2.5-
 B.4 of this specification. For each set of installed sensors a certificate of calibration
 shall be made available for viewing on each project’s web based Aircuity Advisor
 Services portal.
 d. Sensors shall be physically removed from the sensor suite, and replaced with
 recalibrated sensors a minimum of every 6 months after the initial sensor installation.
 e. Immediately after replacement, sensors are to be shipped back to Aircuity in the
 postage paid return box provided by Aircuity.

2.7 SYSTEM SOFTWARE OVERVIEW
 A. The FMC shall provide all software required for configuration, operation and commissioning of
 the FMS system specified herein. All functionality described herein shall be regarded as a
 minimum. The FMC shall provide the following as a minimum:
 1. Completed database.
 2. Configuration of all Air Data Router, Sensor Suite, Server and user interface application
 programs.
 3. All Configuration Tools, and all software licenses, required to configure and operate all
 products installed on this project.
 4. The ability to override raw sensed data for the purposes of commissioning the system
 after integration with a BMS.

 B. SYSTEM CONFIGURATION
 1. Database Creation and Modification. All changes shall be done utilizing standard
 procedures. The system shall allow changes to be made at the local site through the
 Information Management Server.

 C. WEB BASED USER INTERFACE AND DATA MANAGEMENT SYSTEM
 1. Included with the system shall be a fully integrated web based user interface and data
 management system. The data management system shall be password protected and
 shall be able to store sampled data from all zones for online viewing and reporting.
 2. The data management system will be sized to record and retain every sample taken by
 the system, along with other data gathered from other systems or direct interface points,
 for a minimum of 20 years. Systems that retain only a portion of the archived data in an
 active data base and require accessing older data via a separate archive are not
 acceptable.
3. Unlimited data access, viewing, report generation and remote data storage shall be provided with the FMS for the duration of the project commissioning and for the entire warranty period.

D. SAMPLE SEQUENCING
1. The system shall allow the trained technician to designate any zone to be scheduled through the Information Management Server.
2. The trained technician shall be able to make all schedule additions, modifications and deletions to the sample schedules. The trained technician shall have the capability to edit all schedules and then download any or all schedule changes to the FMS.

2.8 SUBMITTALS
A. As soon as Submittals are prepared, an electronic version shall be provided simultaneously with the mailing of the paper copies. This version shall be transmitted in electronic format, via e-mail, to expedite the approval process.

B. Shop Drawings shall include:
1. Index: The first sheet of the Shop Drawings shall be an Index of all sheets in the set.
2. Legend: A description of symbols and acronyms used shall be provided at the beginning of the set of Shop Drawings.
3. Communications Riser: A single-page diagram depicting the system architecture complete with a communications riser. Riser shall include room locations and addressing for each Air Data Router and Sensor Suite. Include a Bill of Material for all equipment in this diagram but not included with the unique controlled systems.
4. Device Addressing Scheme: Install controllers implementing an addressing scheme consistent with a reference-document. The addressing scheme shall be submitted, reviewed and approved by the owner's BAS Group prior to implementation.
5. Equipment Numbering: Equipment numbering scheme shall be submitted, reviewed and approved by the owner's BAS Group prior to implementation.
6. Systems Summary: Drawings shall include a table listing each piece of equipment and the area(s) served by each piece of equipment.
7. System Schematic: Drawings shall include a single-line representation of all areas being monitored and/or controlled, including all field devices required for properly controlling equipment and implementing the sequences of operation for this project.
8. Point-to-point Wiring Details: Drawings shall include point-to-point wiring details and must show all field devices, routers, sensor suites, controllers, panel devices, wiring terminal numbers and any special information (i.e. shielding requirements) for properly monitoring areas and controlling equipment.
9. Bill of Material: Drawings shall include a bill of the material necessary and used for properly controlling equipment and implementing the required sequences of operation.
10. Configuration Details: Drawings shall include test and cluster sequence schedules for each test point.
11. As-Built Drawings and documentation shall be created after the final system checkout, by modifying and adding to the Shop Drawings and completing the OptiNet system vacuum decay worksheet. As-Built Drawings shall show exact installation locations of equipment as well as indicate installed cable paths and lengths. As-Built Drawings will be acknowledged in writing by the project design engineer and the owner's representative after the final checkout of the system. The system will not be considered complete until the As-Built Drawings have received their final approval. The FMC shall provide four sets of As-Built Drawings.

C. Operation and Maintenance Manuals
1. Operation and Maintenance (O&M) manuals for the system shall include project specific, detailed information describing the specific installation. Manual shall contain as a minimum:
a. System overview
b. Networking architecture
c. Hardware cut-sheets and product descriptions
d. Wiring diagrams for all controllers and field hardware

2.9 WARRANTY

A. Repair or replace any defective product and correct any defect in material or workmanship for a period of 12 months following when the system is placed in operation.

2.10 ANNUAL SERVICES AGREEMENT

A. At the time of sensors are shipped from the factory as described later in this specification, the FMC will transmit an agreement for annual services to the owner marked "PAID IN FULL" that will provide services for the system for a period of 1 year. Under this agreement the FMC will provide sensor element replacement, calibration services, diagnostics, software upgrades, materials and equipment necessary for ongoing system operation. At a minimum, twice a year, provide calibration with NIST traceable calibration gases and test instrumentation, functional testing, sensor element evaluation to determine useful life and element replacement as required, and evaluation services to insure the ongoing performance of all sensors as installed system per this specification. This service shall include, but not be limited to the following:

1. Provide a factory certified depot to remove all sensors within the sensor suite on a periodic basis (as a minimum, twice per year), and replace with pre-packaged, certified, industry traceable, factory calibrated sensors. Removed sensors shall be returned to the manufacturer for factory recalibration, internal cleaning, upgrades, sensor element replacement, and component and board repairs. Written records shall be provided to the owner for every visit indicating the performance of such calibrations along with all pertinent data.

2. All costs for the repair and replacement of any defective sensor, and for any consumable element or part on the sensor shall be included.

3. Software upgrades to correct bugs, fixes and patches for the sensors shall be included.
3.1 GENERAL
A. Install all equipment and systems specified herein in accordance with the manufacturer’s most current version of the installation guide. In the event of conflicting information between this document and the installation guide, the most stringent requirement shall apply.
B. Verify that mechanical and control systems are complete and ensure that the systems are capable of being started and operated in a safe and normal condition before attempting to operate the FMS.
C. Install software in the Management Server. Implement all features of programs to specified requirements and as appropriate for sequence of operation.
D. Connect and configure equipment and software to achieve sequence of operation specified.

3.2 WIRING INSTALLATION
A. Install systems and materials in accordance with manufacturer's instructions, rough-in drawings and equipment details. Install electrical components and use electrical products complying with requirements of applicable Division 26 sections of these specifications.
B. All wiring shall be installed neatly and professionally, in accordance with requirements of applicable Specification Division 26 section and all national, state, and local electrical codes. All the wiring shall be installed in accordance with the current National Electrical Code (NEC).
C. Provide wiring as required by functions as specified and as recommended by equipment manufacturer to serve specified control functions.
D. Install wiring and cables according to Division 26 section and as follows:
 1. Bundle and harness multi-conductor cable in place of single cables where several cables follow a common path.
 2. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
E. All exposed control wiring and control wiring in the mechanical, electrical, telephone, and similar rooms shall be installed in raceways. All other wiring shall be installed neatly and inconspicuously.
F. All control wiring shall be installed in a neat and workmanlike manner parallel to building lines with adequate support. Both conduit and plenum wiring shall be supported from or anchored to structural members. Conduit or plenum wiring supported from or anchored to piping, duct supports, the ceiling suspension system, is not acceptable. Provide adequate strain relief for all field terminations.

3.3 FIELD DEVICE INSTALLATION
A. All room probes shall be mounted so as to be accessible in accordance with ADA Guidelines, unless otherwise noted on the drawings.
B. Freestanding enclosures and panels shall be supported on steel unistrut frames, or approved equal, and be securely anchored to the floor and be well braced.
C. Enclosures and panels mounted directly to the wall shall be provided with all clearances required by the manufacturer's installation guide.
D. A minimum of 3' working clearance shall be provided in front of all enclosures and panels; clearance shall be ensured to permit the enclosure door to open at least 90° from its closed position.
E. Mounting height shall be a maximum 6'-6" to the top of the Sensor Suite enclosure.
F. All field devices shall be installed in a location which is easily accessible after installation for the purposes of troubleshooting & future modifications.
3.4 CONTROL POWER

A. Class 2 step-down transformers shall provide 24VAC power for all Air Data Routers, Sensor Suites, and associated FMS components from nearest electrical power panel noted below or as indicated on the electrical drawings—coordinate the installation and location thereof with Electrical Contractor and all other trades.
 1. The primary side of all Class 2 step-down transformers shall be fed by dedicated branch circuits with grounding conductors from the nearest building electrical distribution power panel. Branch circuits shall be installed per local state and federal codes by a licensed electrician.
 2. The secondary side of all class 2 step-down transformers, used for the purposes of providing power to Air Data Routers, Sensor Suites and associated FMS components, shall not be grounded.
 3. The IMS shall be powered from the battery backup side of the UPS shipped with every IMS. The UPS shall be powered from a 120VAC dedicated power receptacle installed per local state and federal codes by a licensed electrician.
 4. Where applicable, all FMS equipment shall be powered by the same source of emergency power as the air handling units and BAS themselves. For example, if the Air Handling units are served by the building’s generators, the FMS must also be served by the generators.

3.5 IDENTIFICATION

A. The FMC shall label each system device with a point address or other clearly identifiable notation inside the device cover - labels shall be permanent and typewritten. Use of handwritten labeling with markers is not acceptable. All FMS equipment shall be clearly identified as noted on the approved submittals.

3.6 FINAL INSTALLATION OF CRITICAL SENSORS

A. Sensors will be held at the manufacturer’s location and not shipped to the site until checkout & startup of the all other portions of the FMS is complete, and mechanical systems are operational and ready to implement the sequences that will result in ventilation being performed on demand as indicated by the FMS.
 B. At the time sensors are shipped the Annual Services Agreement marked PAID IN FULL described above will be transmitted to the owner.

3.7 ACCEPTANCE OF COMPLETED FMS INSTALLATION

A. Upon completion of the installation, the FMC shall start up the system and perform all necessary calibration, testing, and debugging operations including, but not limited to, the vacuum decay test. An acceptance test shall be performed by the FMC in the presence of the job site project manager and owner’s representative. Acceptance test shall be scheduled with at least 10 working days advance notice. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including piping and electrical connections.
 B. After electrical circuitry has been energized, start units to confirm proper unit operation. Remove malfunctioning units, replace with new units, and retest.
 C. Demonstrate compliance with specifications, including calibration and testing, and air sampling test sequences. Adjust, calibrate, and fine tune equipment to achieve sequence of operation specified.
 D. The acceptance test shall include, but not be limited to:
 1. The FMC shall verify the proper operation of all input/outputs.
2. The FMC shall verify all inputs meet or exceed manufacturer’s stated tolerances for accuracy.

3. The FMC shall verify that all on-line graphical displays of air sampling test data accurately represent the real time state of the field conditions.

4. The FMC shall verify the reliability of all communications of all Air Data Routers and Sensor Suites.

5. The test shall include functional verification of all interfaces and system integration required to meet the scope of this project.

6. Participation in a joint session with the owner’s Energy Management department to demonstrate that the complete sequence of operation is being executed accordingly.

E. Acceptance: When the field test procedures have been successfully demonstrated to the job site project manager and owner’s representative, and the system performance is deemed satisfactory, the system parts will be accepted for beneficial use and placed under warranty. At this time, a “notice of completion” shall be issued by the owner’s representative and the warranty period shall start.

3.8 TRAINING

A. The FMC shall provide factory-trained instructor to give full instructions to designated personnel in the operation, maintenance, and programming of the system. Instructors shall be thoroughly familiar with all aspects of the subject matter they are to teach. The training shall be specifically oriented to the system and interfacing equipment installed.

B. Instructions shall include 2 parts, the “New Equipment Orientation” and the “Product & Service Training”.

C. New Equipment Orientation: A “walk-through” session shall include showing where all field equipment is located throughout the area involved in the project.

D. Product & Service Training: Train on-site personnel on the navigation and interpretation of the data and information provided by the system.

1. Train personnel on procedures and schedules for troubleshooting, servicing, and maintaining equipment.

2. Provide operator training on modification of data display, zone descriptors, executing commands, resetting default values, and requesting reports.

END OF SECTION
SECTION 23 09 90
TESTING, ADJUSTING, AND BALANCING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.

B. Section 230100 "Basic Mechanical Requirements" and Section 230500 "Basic Mechanical Materials and Methods" apply to the work of this Section as if fully repeated herein.

1.2 DESCRIPTION OF WORK

A. This scope of services specifies the requirements and procedures for mechanical systems testing, adjusting and balancing. Requirements include measurement and establishment of the fluid quantities of the mechanical systems as required to meet design specifications, and recording and reporting the results. The test and balance work will be performed by the Owner’s personnel. It is the Contractor’s responsibility to assist as outlined below.

B. Test, adjust and balance the following mechanical systems which are shown in the construction documents.

1. Supply air systems, all pressure ranges, including variable volume and constant volume systems.
2. Return air systems.
3. Outdoor air systems.
4. Exhaust air systems.
5. Hydronic systems.
6. Domestic hot water recirculating system.
7. Verify temperature control system operation.

C. The Contractor’s responsibilities are as follows:

1. Notify the Owner’s Representative fourteen (14) days prior to the schedule date for balancing the system.
2. Schedule a one (1) week allowance for the testing and balancing firm to complete the testing and balancing work when scheduling completion of all work required of the Contractor by the contract documents.
3. Cooperate with the testing and balancing firm and shall make all necessary preparations for the TAB efforts.
4. Complete the following work prior to requesting the TAB effort.
 a. Clean and flush all piping systems.
 b. Leak test and make tight all piping systems.
 c. Fill all piping systems with clean water.
 d. Clean and seal all ductwork systems.
 e. Service and tag all equipment.
 f. Set and align all motors and drives.
 g. Start up and prove all equipment and systems.
 h. Make preliminary settings on all control devices and have all systems operational.
 i. Operate all systems successfully for twenty-four (24) hours minimum.
5. Lubricate all motors and bearings.
6. Check fan belt tension.
7. Check fan rotation.
8. Patch insulation, ductwork and housing, using materials identical to those removed.
9. Seal ducts and piping, and test for and repair leaks.
10. Seal insulation to re-establish integrity of the vapor barrier.
11. Attend a coordination meeting prior to the balancing of the system and a coordination meeting following the balancing of the system.
12. Provide a complete set of as-built drawings prior to the TAB effort.
13. Provide craftsmen of the proper trade to work with the TAB firm to make adjustments and installation changes as required.
14. Change out fan sheaves when and if required by the TAB firm.
15. Dedicate the resources to accommodate all changes identified by the test and balance firm in a timely manner.
16. If a significant rebalance (Owner’s determination) of the HVAC system is required due to the Contractor’s failure to properly install and check out the HVAC system, the cost of rebalancing the system shall be borne by the Contractor.

1.3 PRE-BALANCING CONFERENCE
A. Prior to beginning of the testing, adjusting and balancing procedures, a conference with the Owner’s representative, Engineer and the Test and Balance Agency’s representative will be held. The objective of the conference is final coordination and verification of system operation and readiness for testing, adjusting and balancing.

1.4 SEQUENCING AND SCHEDULING OF SERVICES
A. Test, adjust and balance the air conditioning systems during summer season and heating systems during winter season. This includes at least a period of operation at outside conditions within 5 deg. F wet bulb temperature of maximum summer design condition, and within 10 deg. F dry bulb temperature of minimum winter design conditions. Take final temperature readings during seasonal operation.

PART 2 - PRODUCTS (Not applicable)
PART 3 - EXECUTION (Not applicable)

END OF SECTION 23 0990
SECTION 23 21 13
HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.
B. Section 230100 “Basic Mechanical Requirements,” and Section 230500 “Basic Mechanical Materials and Methods” apply to the work of this Section as if fully repeated herein.

1.2 SUMMARY
A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:
 1. Hot-water heating piping.
 2. Chilled-water piping.
 3. Condensate-drain piping.
B. Related Sections include the following:
 1. Division 07 Section “Penetration Firestopping” for materials and methods for sealing pipe penetrations through fire and smoke barriers.
 2. Division 07 Section “Joint Sealants” for materials and methods for sealing pipe penetrations through exterior walls.
 3. Division 23 Section “Basic Mechanical Materials and Methods” for general piping materials and installation requirements, and for labeling and identifying hydronic piping.
 4. Division 23 Section “Hangers and Supports” for pipe supports, product descriptions, and installation requirements. Hanger and support spacing is specified in this Section.
 5. Division 23 Section “Valves” for general-duty ball, butterfly, and check valves.
 6. Division 23 Section “Meters and Gages” for thermometers, flow meters, and pressure gages.
 7. Division 23 Section “Control Systems” for temperature-control valves and sensors.

1.3 DEFINITIONS
A. CWP: Cold working pressure (formerly WOG – Water, Oil, Gas working pressure).
B. DZR Brass: Brass alloy containing not more than 15% zinc by weight.
C. EPDM: Ethylene-propylene-diene terpolymer rubber.
D. PTFE: Polytetrafluoroethylene.
E. PVC: Polyvinyl chloride.
F. Pipe sizes used in this Specification are Nominal Pipe Size (NPS).
G. Class 125: Minimum 125-psig (860-kPa) SWP and minimum 200-psig (1380-kPa) CWP ratings.
H. Class 150: Minimum 150-psig (1030-kPa) SWP and minimum 300-psig (2070-kPa) CWP ratings.

1.4 PERFORMANCE REQUIREMENTS
A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:
 1. Chilled-Water Piping: 150 psig (1030 kPa) at 200°F (93 C).
 3. Hot-Water Heating Piping: 150 psig (1030 kPa) at 200°F (93 C).
 4. Chilled-Water Piping: 150 psig (1030 kPa) at 200°F (93 C).
 5. Makeup-Water Piping: 80 psig (552 kPa) at 150°F (66 C).
 6. Process Cooling Piping: 150 psig (1030 kPa) at 200°F (93 C).

1.5 SUBMITTALS
A. Product Data: For each type of the following:
1. Valves. Include flow and pressure drop curves based on manufacturer’s testing for calibrated-orifice balancing valves and automatic flow-control valves.

2. Air control devices.

3. Hydronic specialties.

B. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, “Structural Welding Code - Steel.”

B. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.

1. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. ASME Compliance: Comply with ASME B31.9, “Building Services Piping,” for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air/dirt separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

D. Comply with NFPA 70 – National Electrical Code. Do not route piping directly above electric panelboards and switchboards, or other prohibited locations.

E. All work shall conform with ANSI B31.9 and International Mechanical Code.

1.7 COORDINATION

A. Coordinate layout and installation of hydronic piping and suspension system components with other construction, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.

B. Coordinate piping installation with roof curbs, equipment supports, and roof penetrations. Roof specialties are specified in Division 07 Sections.

C. Coordinate pipe fitting pressure classes with products specified in related Sections.

D. Coordinate installation of pipe sleeves for penetrations through exterior walls and floor assemblies. Coordinate with requirements for firestopping specified in Division 07 Section “Penetration Firestopping” for fire and smoke wall and floor assemblies.

E. Contractor is responsible for the installation of all specialty items specified herein, pressure gauges, thermostats and other items as shown on the contract documents.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Automatic Flow-Control Valves:
 a. Flow Design Inc.
 b. Griswold Controls.
 c. Nexus Valve.
 d. Pro-Hydronic Specialties, LLC.

2. Manual Air Vents:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett; a Xylem Brand.
 d. Conbraco Industries, Inc.
 e. Spence Engineering Company, Inc.
 f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

3. Strainers:
 b. Hoffman Specialty ITT; Fluid Handling Div.
 c. Metraflex Co.
 d. Nibco Inc.
2.2 PIPING MATERIALS
 A. General: Refer to Part 3 “Piping Applications” Article for applications of pipe and fitting materials, including a schedule of which types of piping to use in which application.

2.3 COPPER TUBE AND FITTINGS
 A. Drawn-Temper Copper Tubing: ASTM B88, Type L (ASTM B88M, Type B).
 B. DWV Copper Tubing: ASTM B306, Type DWV.
 C. Wrought-Copper Fittings: ASME B16.22.
 D. Wrought-Copper Unions: ASME B16.22.
 F. Field or shop fabricated fittings are not allowed. Pulled-tees or pipe fittings using “T-Drill” are not allowed.

2.4 STEEL PIPE AND FITTINGS
 A. Steel Pipe: ASTM A53/A53M, black steel with plain ends; Type E (Electric-resistance welded), Grade B, Schedule 40; unless otherwise indicated in Part 3 “Piping Applications” Article.
 B. Steel Pipe Nipples: ASTM A733, made of ASTM A53/A53M black steel, Grade B, Schedule 40; unless otherwise indicated in Part 3 “Piping Applications” Article.
 C. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150 or 300 as indicated in Part 3 “Piping Applications” Article.
 D. Malleable-Iron Unions: ASME B16.39; Class 150, 250, or 300 as indicated in Part 3 “Piping Applications” Article.
 E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Class 125 or 250 as indicated in Part 3 “Piping Applications” Article; raised ground face, and bolt holes spot faced.
 F. Wrought-Steel Fittings: ASTM A234/A234M, wall thickness to match adjoining pipe. All elbows shall be long-radius type.
 G. Wrought Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 2. End Connections: Butt welding.
 3. Facings: Raised face.
 H. Grooved Mechanical Joint Fittings and Couplings are not allowed.

2.5 SPECIALTIES
 A. Refer to Division 23 Section “Basic Mechanical Materials and Methods” for joining materials, transition fittings, and dielectric waterway fittings. Those requirements apply to the work of this Section as if fully reproduced herein.

2.6 GENERAL-PURPOSE VALVES
 A. Refer to Division 23 Section “Valves” for Ball Valves whose requirements apply to the work of this Section as if fully reproduced herein.
 B. Refer to Division 23 Section “Control Systems” for Automatic Temperature-Control Valves, Actuators, and Sensors, whose requirements apply to the work of this Section as if fully reproduced herein.
 C. Refer to Part 3 “Valve Applications” Article elsewhere within this Section for applications of each type of valve and service.

2.7 SPECIALTY VALVES
 A. Automatic Flow-Control Valves:
 1. Body: DZR-brass or ferrous metal.
 2. Piston and Spring Assembly: Bronze or Stainless steel; tamper proof, self cleaning, and removable.
 3. Combination Assemblies: Include bronze or brass-alloy ball valve.
 4. Identification Tag: Marked with zone identification, valve number, and flow rate.
 5. Size: Same as pipe in which installed.
6. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.

2.8 AIR CONTROL DEVICES
A. Manual Air Vents:
 1. Body: Bronze.
 2. Internal Parts: Nonferrous.
 4. Inlet Connection: NPS ½ (DN 15).
 5. Discharge Connection: NPS 1/8 (DN 6).
 6. CWP Rating: 150 psig (1035 kPa).

2.9 HYDRONIC PIPING SPECIALTIES
A. Y-Pattern Strainers, 2-inch and Smaller:
 1. Body (for use in Copper piping): ASTM B584 C84400 or ASTM B-62 C83600 bronze body, with threaded bronze cover and brass drain plug.
 4. Strainer Screen: 20-mesh, Type 304 stainless steel.
 5. CWP Rating: 200 psig (1380 kPa) at 150ºF (65 C).
 6. SWP Rating: 150 psig (1030 kPa) at 350ºF (176 C).
B. Y-Pattern Strainers, 2½-inch and Larger:
 1. Body: ASTM A126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Flanged ends.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 4. CWP Rating: 175 psig (1200 kPa) at 150ºF (65 C).
 5. SWP Rating: 125 psig (860 kPa) at 350ºF (176 C).
C. Refer to Division 23 Section “Basic Mechanical Materials and Methods” for flexible pipe connectors, whose requirements apply to the work of this Section as if fully reproduced herein.

PART 3 - EXECUTION
3.1 PIPING SCHEDULE OF APPLICATIONS
A. Hot-water heating piping, Chilled-water, Process chilled water, aboveground, NPS 2 (DN 50) and smaller, shall be Type L (C), drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
 1. Contractor’s Option: Schedule 40 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints will be acceptable.
B. Cooling Coil Condensate-Drain Piping: Type L (C), drawn-temper copper tubing, wrought-copper fittings, and soldered joints;
C. Hot-water heating piping, Chilled-water piping, Process chilled-water piping, and aboveground, NPS 2½ (DN 65) and larger, shall be Standard Weight steel pipe; wrought-steel fittings and wrought-steel flanges and flange fittings, and welded and flanged joints. All elbows shall be long-radius type.
D. Air-Vent Piping: Same materials and joining methods as for piping specified for the service in which air vent is installed.

3.2 VALVE APPLICATIONS
A. Install valves where indicated on Drawings and where indicated in Division 23 Section "Valves."
B. Install specialty valves where indicated on Drawings.
C. Install ¾ inch drain valves at all low points, and ¾ inch drain valve with manual air vents at all high points, in mains, risers, branch lines and elsewhere as required for system drainage.

D. Any valve that represents a termination or the end of a run (e.g., blowdown or drain valve, hose-end valve, etc.) shall be fitted with a permanent but removable cap, plug, or blind flange matching the valve construction, to minimize risk in the event the valve is accidentally opened under pressure.

E. Route automatic air vent discharge in ¼ inch (6.4 mm) poly tubing to floor drain.

F. Install autoflow valve at end of run heating hot water systems to maintain flow at end of run.

3.3 PIPING INSTALLATIONS

A. General: General piping installation is specified in Division 23 Section “Basic Mechanical Materials and Methods,” whose requirements apply to the work of this Section as if fully repeated herein.

B. Install drains, consisting of a tee fitting, NPS ¾ (DN 20) ball valve, and short NPS ¾ (DN 20) threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

C. In closed systems, install horizontal piping at a uniform grade of 0.2 percent upward in direction of flow.

D. For cooling coil condensate-drain piping, install horizontal piping at a uniform grade of 1.0 percent downward in the direction of flow.

E. Bull-head tees prohibited: Do not use tee fittings in such a way that the flow through the branch leg equals the sum of the flows through two main legs.

F. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

G. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the top of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

H. Changes of direction, branches, tees, etc. shall be accomplished with the appropriate factory or foundry fitting meeting the requirements of these specifications. Mechanically-formed extruded tee outlets or field-fabricated tee branches and/or elbows are not acceptable.

I. All elbows shall be long-radius type.

J. Install valves according to Division 23 Section “Valves.”

K. Install unions in piping NPS 2 (DN 50) and smaller, at final connections of equipment and elsewhere as indicated.

L. Install flanges in piping NPS 2½ (DN 65) and larger, at final connections of equipment and elsewhere as indicated.

M. Install strainers on inlet side of each control valve and elsewhere as indicated. Install NPS ¾ (DN 20) ball valve in blowdown connection of strainers NPS 2 (DN 50) and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2 (DN 50). Install removable cap to end of valve.

N. Connect risers and branch connections to mains with at least five pipe fittings, including tee in main.

O. Connect risers and branch connections to terminal units with at least four pipe fittings, including tee in riser.

P. Connect mains and branch connections to terminal units with at least four pipe fittings, including tee in main.

Q. Install expansion joints, anchors, and pipe alignment guides as specified in Division 23 Section “Pipe Expansion Fittings.”

R. Identify piping as specified in Division 23 Section “Basic Mechanical Materials and Methods.”

S. Hang, support, and anchor all piping as specified in Division 23 Section “Hangers and Supports.”

T. Connect copper branch lines to steel or iron mains as follows: Install steel branch pipe off main with dielectric waterway fitting (Victaulic Style 47-TT) connected to bronze ball valve. Connect bronze ball valve to copper piping with threaded copper male adaptor, which is then soldered to the copper branch line.

U. Provide shutoff valves at each floor and/or branch on hot water reheat systems.

V. Branch connections shall be made with straight tees, reducing tees, threadolets, or weldolets.

W. Tap side of weldolet or threadolet to be no more than 1/3 of the sizes of tapped pipe.
X. Flanges shall be flat face when mating with 125 lb class cast iron valves.

3.4 PIPE JOINT CONSTRUCTION
A. Refer to Division 23 Section “Basic Mechanical Materials and Methods” for joint construction requirements for soldered joints in copper tubing; threaded, welded, and flanged joints in steel piping; and solvent-welded joints for PVC piping.
 1. Apply one coat of self-priming, rust-inhibitor paint around the entire circumference of each welded pipe joint; regardless of whether or not the piping is specified to be painted. Paint may be brush-applied, roller-applied, or spray-applied at contractor’s option.

3.5 HYDRONIC SPECIALTIES INSTALLATION
A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting. Air vents shall be provided at all system high points. This includes ALL high points in both the supply and return piping wherever the piping changes elevations. All air vents in a system shall be manual vents. Provide a hose bid connection on all manual air vents.
 1. Hot Water Piping to Reheat Coils:
 a. Water coils will not perform if there is air in the piping. Ensure that the piping from the piping from the main, to the coil, and to the return main is appropriately sloped up and vented to eliminate entrained air that can air lock the flow.
B. Install manual air vents where indicated on Drawings.
C. Install ¾ inch ball valve with hose bib connection at all locations were a manual air vent is installed as indicated on Drawings.
D. Locate piping unions on the equipment or branch side of any shutoff valves. Unions on the system side defeat the purpose of the shutoff valve. All control valves shall have unions.

3.6 TERMINAL EQUIPMENT CONNECTIONS
A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
B. Install control valves in accessible locations close to connected equipment, but outside the service area. For example, control valve shall be as close to hydronic coil as practical, but not within the coil pull space and/or access door swing space.
C. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Division 23 Section “Meters and Gages.”
D. Provide shutoff valves on supply and return at all pieces of equipment, reheat coils, etc. Provide pressure/temperature ports to be added at the inlet and outlet of each coil.

3.7 FIELD QUALITY CONTROL
A. Prepare hydronic piping according to ASME B31.9 and as follows:
 1. Notify Owners Representative 72 hours before required testing. All tests shall be conducted in the presence of the Owner Representative.
 2. Leave joints, including welds, uninsulated and exposed for examination during test.
 3. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 4. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 5. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 6. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
 7. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used. Do not pressure test with air.
8. Pressure gauge shall be a minimum 4 inch dial face, 0-160 psig, and shall be calibrated within one year to test date.
9. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
10. Isolate expansion tanks and determine that hydronic system is full of water.
11. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system’s working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times “SE” value in Appendix A in ASME B31.9, “Building Services Piping.”
12. Minimum duration of test shall be four (4) hours. During the final hour of the hydrostatic test, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
13. Prepare written report of testing.
14. Minimum test pressure shall be 100 PSIG.
15. System shall be operated for a minimum of 24 hours to demonstrate to the Owner’s Representative that system is complete and operational.

B. Perform the following before operating the system:
 1. Open manual valves fully.
 2. Inspect pumps for proper rotation.
 3. Set makeup pressure-reducing valves for required system pressure.
 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 5. Set temperature controls so all coils are calling for full flow.
 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
 7. Verify lubrication of motors and bearings.

C. System shall be operational for a minimum of 24 hours to demonstrate to the Owner’s Representative that system is complete and operational.

D. Acceptance Testing: Perform hydrostatic tests on the hydronic piping in accordance with ANSI B31.9 and as follows:
 1. Notify Owners Representative 24 hours before required testing. All tests shall be conducted in the presence of the Owners Representative.
 2. Flush system with clean water and clean strainers.
 3. Minimum test pressure shall be 100 PSIG.
 4. Clean and flush hydronic piping systems. Remove, clean, and replace strainers. After cleaning and flushing hydronic piping system, but before balancing, remove dispos

3.8 CLEANING AND ADJUSTING
 A. Flush hydronic piping systems with clean water. Remove and clean or replace strainer screens. After cleaning and flushing hydronic piping systems, but before balancing, remove disposable fine-mesh strainers in pump suction diffusers.

END OF SECTION

END OF SECTION
SECTION 23 31 13
METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.
B. Section 230100 “Basic Mechanical Requirements,” and Section 230500 “Basic Mechanical Materials and Methods” apply to the work of this Section as if fully repeated herein.

1.2 SUMMARY
A. This Section includes metal ducts and plenums for supply, return, outside, and exhaust air-distribution systems in pressure classes from minus 2- to plus 10-inch wg (minus 500 to plus 2500 Pa). Metal ducts include the following:
 1. Single-wall rectangular ducts and fittings.
 2. Single-wall round and flat oval ducts and fittings.
 3. Double-wall round and flat-oval ducts and fittings.
 4. Sheet metal materials.
 5. Sealants and gaskets.
 6. Hangers and supports.
B. Related Sections include the following:
 1. Division 07 Sections “Penetration Firestopping” for fire-resistant sealants for use around duct penetrations and fire-damper installations in fire-rated floors, partitions, and walls.
 2. Division 08 Section “Access Doors and Frames” for wall- and ceiling-mounted access doors and for access to concealed ducts.
 3. Division 08 Section “Louvers and Vents” for intake and relief louvers and vents connected to ducts and installed in exterior walls.
 4. Division 23 Section “Mechanical Insulation.”
 5. Division 23 Section “Duct Accessories” for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.
 6. Division 23 Section “Diffusers, Registers and Grilles.”
 7. Division 23 Section “Control Systems” for automatic control dampers and actuators.
 8. Division 23 Section “Testing, Adjusting and Balancing” for air balancing and final adjusting of manual volume dampers.

1.3 DEFINITIONS
A. Thermal Conductivity and Apparent Thermal Conductivity (k-Value): As defined in ASTM C168.

1.4 PERFORMANCE REQUIREMENTS
A. Duct system design, as indicated, has been used to select size and type of air-moving and distribution equipment and other air system components. Changes to layout or configuration of duct system must be specifically approved in writing by the design professional. Accompany requests for layout modifications with calculations showing that proposed layout will provide original design results without increasing system total pressure.
B. Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA HVAC Duct Construction Standards – Metal and Flexible and performance requirements and design criteria indicated in Part 3 of this Section.
C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

1.5 SUBMITTALS
A. Product Data: For each type of the following products:
1. Sealants and gaskets.
2. Manufactured ductwork and duct fittings (if applicable).
3. MSDS (Material Safety Data Sheet) for each adhesive and sealant furnished.
4. Sheet metal thicknesses.
5. Joint and seam construction and sealing.
6. Reinforcement details and spacing.
7. Materials, fabrication, assembly, and spacing of hangers and supports.

B. Field quality-control test reports: Indicate and interpret test results for compliance with performance requirements.

C. Record Drawings: Indicate actual routing, fitting details, reinforcement, support, and installed accessories and devices.

D. Coordination Drawings: Comply with Division 23 Section “Basic Mechanical Requirements” for Coordination Drawings.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:

E. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6.4.4 – “HVAC System Construction and Insulation.”

1.7 REFERENCES

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver sealant and firestopping materials to site in original unopened containers or bundles with labels indicating manufacturer, product name and designation, color, expiration period for use, pot life, curing time, and mixing instructions for multi-component materials.

B. Store and handle sealant and firestopping materials according to manufacturer’s written recommendations.

C. Deliver and store stainless-steel sheets with mill-applied adhesive protective paper maintained through fabrication and installation.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Field-Applied Duct Sealant Materials:
 a. Ductmate, Inc.
 b. Hardcast, Inc.
 c. McGill Air Seal Corporation.
 2. Optional Manufactured Duct Slide-on Flange System:
 a. Ductmate, Inc.
 b. Nexus Inc.
 c. Ward Industries, Inc.
 3. Optional Round Duct Coupling System:
 a. Lindab, Inc. “Spirosafe”
 b. Sheet Metal Connectors, Inc.
 c. Spiramir Corp.

2.2 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA HVAC Duct Construction Standards – Metal and Flexible for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Sheet Gage: SMACNA standards notwithstanding, no material thinner than 26-gage is permitted for spiral-seam round duct, and no material thinner than 24-gage is permitted for all other ducts.

C. Galvanized Sheet Steel: Comply with ASTM A653 / A653M.

D. Stainless-Steel Sheets: Comply with ASTM A480 / A480M, Type 304 or 316, as indicated in Part 3 of this Section; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in Part 3 of this Section.

E. Aluminum Sheets: Comply with ASTM B209 (ASTM B209M) Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.

F. Reinforcement Shapes and Plates: ASTM A36 / A36M, steel plates, shapes, and bars; black and galvanized. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

G. Tie Rods: Comply with Articles 2.5 through 2.9, including all accompanying Tables and Figures, of the SMANCA HVAC Duct Construction Standards.

2.3 SEALANT MATERIALS

A. Two-Part Sealing System: Woven-fiber tape impregnated with gypsum mineral compound and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal; Hardcast® Two-Part Sealing System, Uni-Cast® by McGill AirSeal Corporation, or equal.

B. One-Part Sealing System: Flexible, adhesive sealant, fiber-reinforced, resistant to UV light when cured, UL 723 listed, and complying with NFPA requirements for Class 1 ducts; “Uni-Mastic 181” by McGill AirSeal Corporation or equal.

C. Water-Based Seam Sealant: Flexible, adhesive sealant, resistant to UV light when cured, UL 723 listed, and complying with NFPA requirements for Class 1 ducts.
D. Formed-on Duct Connectors: Flange shop roll-formed onto edge of ductwork, with corner closures, cleats and gaskets for seal; TDC or TDF constructed per SMACNA T-25a or T-25b.
 1. Flanged Joint Mastic: One-part, acid-curing, silicone, elastomeric joint sealant complying with ASTM C920, Type S, Grade NS, Class 25, Use O.
 2. Flange Gaskets: Butyl rubber or EPDM polymer with polyisobutylene plasticizer.
 3. Contractor’s Option: Proprietary manufactured slide-on duct connectors by Ductmate, Ward, or Nexus meeting the above requirements will be accepted wherever formed-on duct connectors are required by these specifications.

2.4 RECTANGULAR DUCT FABRICATION

A. General: Fabricate ducts, elbows, transitions, offsets, branch connections, and other construction according to SMACNA HVAC Duct Construction Standards – Metal and Flexible. Comply with requirements for metal thickness, reinforcing types and intervals, tie-rod applications, deflection limits, and joint types and intervals, except where more stringent requirements are specified herein.

B. All sheet metal shall be a minimum of 24-gage thickness in any case. Use 24-gage sheet metal where SMACNA allows thinner material.

C. Lengths: Fabricate rectangular ducts in lengths appropriate to reinforcement and rigidity class required for pressure classification.

D. Materials: Free from visual imperfections such as pitting, seam marks, roller marks, stains, and discolorations.

E. Cross Breaking or Cross Beading: Cross break or cross bead duct sides 19 inches (480 mm) and larger and 0.0359-inch (0.9 mm) thick or less, with more than 10 sq. ft. (0.93 sq. m) of unbraced panel area, unless ducts are lined.

F. Pressure Classification: See Schedule in Part 3 of this Section.

G. Seal Classification: See Schedule in Part 3 of this Section.

H. Longitudinal Seams: Pittsburgh lock constructed per Type L-1 of SMACNA Figure 2-2 shall be used on all longitudinal seams. See “Seam and Joint Sealing” in Part 3 of this Section for further requirements.

I. Duct sizes shown on plans are free area sizes and do not include the thickness of internal duct liner, if any. For internally lined ductwork, increase the indicated duct dimensions to account for the liner thickness.

J. Contractor is free to alter the indicated sizes of rectangular duct to suit field conditions, provided that revised size is selected for friction loss no greater than that of indicated size. No prior approval by the Engineer is required for equal-friction duct size changes unless proposed size has an aspect ratio greater than 4 to 1.

K. All square-throat elbows of angle greater than 45° shall include single-thickness turning vanes.

L. Divided flow branches shall be Type 1 or Type 2 per SMACNA Figure 4-5. Type 3 divided flow branches are permitted only where expressly shown. Seek Engineer’s approval of Type 3 where space and/or layout clearances prohibit Type 1 or Type 2.

M. Branch connections shall be per SMACNA Figure 4-6, except that straight taps are not permitted. All rectangular branch duct takeoffs shall use the 45 degree shoe-tap design. Spin-ins, air extractors and scoops are not permitted.

N. Offsets and transitions shall be per SMACNA Figure 4-7, except that offset Type 2 (mitered) is limited to an angle of 45°.

O. Fittings at obstructions shall be per SMACNA Figure 4-8, except that Figure D is not permitted. Use Figure 4-8.B in lieu of Figure 4-8.D. Seek Engineer’s approval of Figure 4-8.D where space and/or layout clearances prohibit use of Figure 4-8.B.
2.5 ROUND AND FLAT OVAL DUCT AND FITTING FABRICATION

A. Diameter as applied to flat-oval ducts in this Section is the diameter of a round duct with a circumference equal to the perimeter of a given size of flat-oval duct.

B. Contractor’s Option: The contractor is permitted to furnish spiral lock-seam round or flat-oval ductwork anywhere rectangular duct is indicated, provided the Contractor’s coordination drawings demonstrate that adequate ceiling clearances and space required by other trades will permit round ductwork. If this option is chosen, round duct sizes shall be selected by the Contractor according to “equal friction” with respect to the rectangular sizes shown.

C. Round, Spiral Lock-Seam Ducts: Fabricate supply ducts of galvanized steel according to SMACNA HVAC Duct Construction Standards – Metal and Flexible except that 26-gage is the thinnest material acceptable.

D. Longitudinal-seam round ducts (“stovepipe”) of a minimum 24-gage thickness, will be permitted on ½-inch and 1-inch pressure classifications only; and only if the Seal Class specified in Part 3 of this Section can be achieved.

E. Flat-Oval, Spiral Lock-Seam Ducts: Fabricate supply ducts according to SMACNA HVAC Duct Construction Standards – Metal and Flexible except that 24-gage is the thinnest material available. With approval of Engineer, contractor may substitute flat oval duct where round duct is indicated, provided that revised size is selected for friction loss no greater than that of indicated size.

F. 90-Degree Tees and Laterals and Conical Tees: Fabricate to comply with SMACNA HVAC Duct Construction Standards – Metal and Flexible, with metal thicknesses specified for longitudinal-seam straight ducts.

G. Diverging-Flow Fittings: Fabricate with reduced entrance to branch taps and with no excess material projecting from fitting onto branch tap entrance.

H. Fabricate elbows using die-formed, gored, pleated, or mitered construction. Bend radius of die-formed, gored, and pleated elbows shall be 1½ times duct diameter. Adjustable-angle elbow fittings are not permitted. Unless elbow construction type is indicated, fabricate elbows as follows:

1. Mitered-Elbow Radius and Number of Pieces: Welded construction complying with SMACNA HVAC Duct Construction Standards – Metal and Flexible unless otherwise indicated.

2. 90-Degree, 2-Piece, Mitered Elbows: Use only if approved by the Engineer where space restrictions do not permit using radius elbows. Fabricate with single-thickness turning vanes.

3. Round Elbows 8 Inches (200 mm) and Less in Diameter: Fabricate die-formed elbows for 45- and 90-degree elbows and pleated elbows for 30, 45, 60, and 90 degrees only. Fabricate nonstandard bend-angle configurations or nonstandard diameter elbows with gored construction.

4. Round Elbows 9 through 14 Inches (225 through 355 mm) in Diameter: Fabricate gored or pleated elbows for 30, 45, 60, and 90 degrees unless space restrictions require mitered elbows. Fabricate nonstandard bend-angle configurations or nonstandard diameter elbows with gored construction.

5. Round Elbows Larger Than 14 Inches (355 mm) in Diameter and All Flat-Oval Elbows: Fabricate gored elbows unless space restrictions require mitered elbows.

2.6 DOUBLE-WALL DUCT AND FITTING FABRICATION

A. Ducts: Fabricate double-wall (insulated) ducts with an outer shell and an inner duct. This includes both round and flat-oval. Dimensions indicated are for inner ducts.

1. Outer Shell: Base metal thickness on outer-shell dimensions. Fabricate outer-shell lengths 2 inches (50 mm) longer than inner duct and insulation and in metal thickness specified for single-wall duct.
2. Insulation: 2-inch- (50-mm-) thick fibrous glass, unless otherwise indicated. Terminate insulation where double-wall duct connects to single-wall duct or uninsulated components, and reduce outer shell diameter to inner duct diameter.
 a. Thermal Conductivity (k-Value): 0.26 at 75°F (0.037 at 24 C) mean temperature.

3. Solid Inner Ducts: Use the following sheet metal thicknesses and seam construction:
 a. Ducts 3 to 8 Inches (75 to 200 mm) in Diameter: 0.019 inch (0.5 mm) with standard spiral-seam construction.
 b. Ducts 9 to 42 Inches (225 to 1070 mm) in Diameter: 0.019 inch (0.5 mm) with single-rib spiral-seam construction.
 c. Ducts 44 to 60 Inches (1120 to 1525 mm) in Diameter: 0.022 inch (0.55 mm) with single-rib spiral-seam construction.
 d. Ducts 62 to 88 Inches (1575 to 2235 mm) in Diameter: 0.034 inch (0.85 mm) with standard spiral-seam construction.

4. Perforated Inner Ducts: Fabricate with 0.028-inch (0.7-mm) thick sheet metal having 3/32-inch (2.4-mm) diameter perforations, with overall open area of 23 percent.

5. Maintain concentricity of inner duct to outer shell by mechanical means. Prevent dislocation of insulation by mechanical means.

B. Fittings: Fabricate double-wall (insulated) fittings with an outer shell and an inner duct.
 1. Solid Inner Ducts: Use the following sheet metal thicknesses:
 a. Ducts 3 to 34 Inches (75 to 865 mm) in Diameter: 0.028 inch (0.7 mm).
 b. Ducts 35 to 58 Inches (890 to 1475 mm) in Diameter: 0.034 inch (0.85 mm).
 c. Ducts 60 to 88 Inches (1525 to 2235 mm) in Diameter: 0.040 inch (1.0 mm).
 2. Perforated Inner Ducts: Fabricate with 0.028-inch (0.7-mm) thick sheet metal having 3/32-inch (2.4-mm) diameter perforations, with overall open area of 23 percent.

C. All exposed ductwork shall be provided with paint grip finish to accept field applied paint.

2.7 SHOP- AND FIELD-FABRICATED PLENUMS

A. Description: Provide galvanized steel (unless noted otherwise) air plenums in accordance with Chapter 9 of SMACNA HVAC Duct Construction Standards – Metal and Flexible. Air plenums required for this project include:
 1. Return air / outdoor air mixing plenums for attachment to the inlet end of air handling units, with connection points for outdoor and return air ducts. Construction shall be 2-inch insulated double wall with solid inner liner; coordinate size, orientation, and layout with Division 23 Section “Modular Packaged Air-Handling Units” and the Drawings.
 2. Outdoor air intake plenums for attachment to exterior outdoor air intake louvers, with connection point(s) for outdoor air duct(s). Construction shall be single wall with exterior insulation; coordinate size, orientation, and layout with Division 08 Section “Louvers and Vents” and the Drawings.
 3. Exhaust air plenums for attachment to exterior exhaust louvers, with connection point(s) for exhaust air duct(s). Construction shall be single wall uninsulated; coordinate size, orientation, and layout with Division 08 Section “Louvers and Vents” and the Drawings.
 4. Other HVAC plenums as indicated on Drawings.

B. Shop fabricate plenums to greatest extent possible with a minimum of joints and to minimize field fabrication and assembly.

C. Fabricate plenums with standing seam construction and angle reinforcement. Fabricate close-off sheets from plenum sides, top, and bottom to damper frames. Bolt close-off sheets to frame flanges and housings.

D. Fabricate plenums with sheet metal walls, top, and bottom panels. Do not use building walls, ceilings or floors as a portion of the plenum boundary, except where expressly shown on Drawings.

E. Reinforce plenums with galvanized or painted steel angles.

F. Seal joints as required in Part 3 of this Section.
G. Fabricate drain pans for air plenums adjacent to exterior louvers with external connection and vented deep-seal trap for drainage piping with a 3/4-inch (20-mm) pipe connection. Fabricate and reinforce drain pans of same material and thickness as housing, 2 inches (50 mm) deep with rolled edges. Solder seams.

H. Fabricate plenums with reinforced openings for access doors at least 20 inches (500 mm) wide by 48 inches (1200 mm) high and located for access to each item of equipment housed. Each plenum shall have at least one access door; more if shown on Drawings. Access doors shall swing out for negative pressure plenums and in for positive pressure plenums. Refer to Division 23 Section “Duct Accessories” for access doors.

I. Mount automatic control dampers in air mixing plenums where applicable. Control dampers are supplied as the work of Division 23 Section “HVAC Instrumentation and Controls.”

2.8 HANGERS AND SUPPORTS

A. General: Support all ductwork in accordance with Chapter 5 of SMACNA HVAC Duct Construction Standards – Metal and Flexible except where more stringent requirements are specified herein.

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches (100 mm) thick.
 2. Exception: Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches (100 mm) thick.

C. Hanger Materials: Galvanized sheet steel or threaded steel rod.
 2. Hanger Rods for Corrosive Environments (all laboratories): Electro-galvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
 3. Strap and Rod Sizes: Comply with SMACNA HVAC Duct Construction Standards – Metal and Flexible for steel sheet width and thickness and for steel rod diameters.
 4. Galvanized-steel straps attached to aluminum ducts shall have contact surfaces painted with zinc-chromate primer.

D. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

E. Trapeze and Riser Supports: Steel shapes complying with ASTM A36.
 3. Supports for Aluminum Ducts: Aluminum support materials unless materials are electrolytically separated from ducts.

2.9 SHOP PRIME PAINT

A. All aluminum and galvanized steel ductwork that will be installed exposed to view in finished spaces shall be shop-primed to accept field paint.

B. All indoor round double-wall supply air ductwork shall receive a shop primer and powder-coat finish at the fabrication shop. Powder coating shall use 100% dry resin that is electrostatically applied to the surface and then baked in an oven to fuse the coating. The coating system shall be manufactured by Tiger Drylac, comprised of a Series 69 zinc epoxy primer and a Series 49 polyester/TGIC top coat, or approved equal. A total finished average film thickness of 4 mils (0.004 inches) on external duct surface is required. Finish color shall be selected by Owner during shop drawing review process and shall be selected from manufacturer’s standard color chart which shall offer at a minimum eight (8) standard colors to include primary colors and white, beige, brown and black.

C. Field touch-up of the resulting scratches and other small areas of exposed metal in the ductwork, after installation, is required in accordance with Division 9 painting Sections.
D. Provide surplus paint matching color selected by Owner for indoor round double-wall supply air ductwork to be used for field painting of rectangular supply and exhaust air ductwork located within exposed ceiling areas and all as called for on the plans.

E. Primer for aluminum shall be acrylic- or alkyd-based metal primer specifically recommended by the manufacturer for use over aluminum, with total dry film thickness of 1.4 mils; such as Moore #163 or equal. Coordinate brand and selection with the party responsible for performance of Division 09 Painting Sections.

PART 3 - EXECUTION

3.1 DUCT PRESSURE CLASS SCHEDULE

A. Static-Pressure Classes: Unless otherwise indicated, construct ducts according to the following:
 3. Outdoor Air Ducts: 6-inch wg (1500 Pa), positive or negative pressure as applicable.
 4. Return Ducts located outside of Mechanical Rooms and Penthouses: 6-inch wg (1500 Pa), positive or negative pressure as applicable.
 5. Transfer Ducts: 1/2-inch wg (125 Pa).
 6. Exhaust Ducts located outside of Mechanical Rooms and Penthouses: 6-inch wg (1500 Pa), positive or negative pressure as applicable.
 7. Flat Oval Ducts: 10-inch wg (2500 Pa), positive or negative pressure as applicable.
 8. Flue Hood Ducts: 10-inch wg (2500 Pa), negative pressure.

3.2 DUCT MATERIAL SCHEDULE

A. All ducts shall be galvanized steel except as follows:
 1. Laboratory Fume Hood Exhaust Ducts: Exhaust ducts originating from any laboratory fume hood shall be Type 316 stainless-steel sheets with No. 4 finish for its entire length of run, with all joints and seams TIG welded. Where laboratory fume hood exhaust ductwork combines with general exhaust ductwork, the downstream ductwork shall be TIG welded stainless steel.

3.3 DUCT INSTALLATION

A. Construct and install ducts according to SMACNA HVAC Duct Construction Standards – Metal and Flexible unless otherwise indicated.
 B. Install round and flat-oval ducts in lengths not less than 12 feet (3.7 m) unless interrupted by fittings.
 C. Install ducts with fewest possible joints.
 D. Install fabricated fittings for changes in directions, size, and shape and for connections.
 E. Install couplings tight to duct wall surface with a minimum of projections into duct. Secure couplings with sheet metal screws. Install screws at intervals of 12-inches (300 mm), with a minimum of 3 screws in each coupling.
 F. Install ducts, unless otherwise indicated, vertically and horizontally and parallel and perpendicular to building lines; avoid diagonal runs.
 G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
 H. Install ducts with a clearance of 1-inch (25 mm), plus allowance for insulation thickness.
 I. Duct sizes shown on plans are free area sizes. For double wall duct ductwork, increase the indicated duct dimensions to account for the insulation and sheet metal thickness (2 inches (50mm)).
 J. Conceal ducts from view in finished spaces. Do not encase horizontal runs in solid partitions unless specifically indicated.
K. Install duct accessories as required by Division 23 Section “Duct Accessories.”

L. Coordinate layout with suspended ceiling, fire- and smoke-control dampers, lighting layouts, and similar finished work.

M. Drawings are diagrammatic in nature. Not necessarily all fittings and offsets are shown. Provide all required fittings and offsets as required by field conditions and coordination with the work of other trades, whether specifically shown or not, for a complete and functional installation.

N. Seal all joints and seams. Apply sealant to male end connectors before insertion, and afterward to cover entire joint and sheet metal screws.

O. Electrical Equipment Spaces: Route ducts to avoid passing through transformer vaults and electrical equipment spaces and enclosures.

P. Non-Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls and are exposed to view, conceal spaces between construction openings and ducts or duct insulation with sheet metal flanges of same metal thickness as ducts. Overlap openings on 4 sides by at least 1 ½ inches (38 mm).

Q. Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls, install appropriately rated fire dampers, sleeves, and firestopping sealant. Fire and smoke dampers are specified in Division 23 Section “Duct Accessories.” Firestopping materials and installation methods are specified in Division 07 Section “Penetration Firestopping.”

R. Protect duct interiors from the elements and foreign materials until building is enclosed. Follow SMACNA’s “Duct Cleanliness for New Construction.” Duct interiors shall be cleaned to meet the Intermediate Level of cleanliness.

S. Rigid (sheet metal) elbows shall be provided at all connections to diffusers.

3.4 SEAM AND JOINT SEALING SCHEDULE

A. General: Ducts noted as welded in the Duct Material Schedule above shall be made liquid-tight with all joints and seams full-penetration welded continuously along the entire length of the seam or joint. Otherwise, seal duct seams and joints according to the duct pressure class indicated and as described in SMACNA HVAC Duct Construction Standards – Metal and Flexible except where more stringent requirements are specified herein.

B. All Laboratory Fume Hood Exhaust Ducts shall be welded stainless steel ductwork shall be TIG (Tungsten Inert Gas) welded joints only.

C. Seal externally insulated ducts before insulation installation.

D. Seal Class Schedule: Seal Class A and Leakage Class 4 is required for all ducts except as noted below.
 1. Spiral lock-seams need not be sealed.

E. Rectangular Duct: Sealant materials and methods shall be at contractor’s option, chosen from among the products specified in Part 2 of this Section; provided that the above seal class and leakage class schedule is met.

F. Round or Flat Oval Duct: Transverse joints shall be made with a SMACNA RT-1 interior slip coupling beaded at center, fastened to duct with screws; in addition, apply Two-Part Sealing System continuously around exterior side of joint.
 1. Contractor’s Option: Furnish prefabricated round duct connection system consisting of self-sealing gasketed fittings with double-lipped, U-profile, EPDM rubber gasket secured with stainless steel band; “Spirosafe” by Lindab, Inc. Manufacture ducts according to connection system manufacturer’s tolerances. Round duct joints made with Lindab “Spirosafe” fittings do not require the additional sealant specified above.

3.5 HANGING AND SUPPORTING

A. Install rigid round, rectangular, and flat-oval metal duct with support systems indicated in SMACNA HVAC Duct Construction Standards – Metal and Flexible.
B. Support horizontal ducts within 24-inches (600 mm) of each elbow and within 48-inches (1200 mm) of each branch intersection.
C. Support vertical ducts at maximum intervals of 16 feet (5 m) and at each floor.
D. Install upper attachments to structures with an allowable load not exceeding one-fourth of failure (proof-test) load.
E. Install concrete inserts before placing concrete.
F. Install powder-actuated concrete fasteners after concrete is placed and completely cured. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4-inches (100 mm) thick.
G. Repair any building insulation or building fireproofing materials, whether new or existing, that are removed or scraped away in order to attach hangers and supports, so as to maintain an equivalent insulation or fire rating as existed without said hanger or support attachment.

3.6 CONNECTIONS
A. Make connections to equipment with flexible connectors according to Division 23 Section “Duct Accessories.”
B. Comply with SMACNA HVAC Duct Construction Standards – Metal and Flexible for branch, outlet and inlet, and terminal unit connections.

3.7 FIELD QUALITY CONTROL
A. Perform the following field tests and inspections according to SMACNA HVAC Duct Construction Standards – Metal and Flexible and prepare test reports:
 1. All outdoor ducts.
 2. All Laboratory Fume Hood Exhaust Ducts.
 3. All indoor ducts if design pressure rating is greater than 3-inch w.g.
B. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
C. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If pressure classes are not indicated, test entire system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure. Give seven days’ advance notice for testing.
D. Maximum Allowable Leakage: Comply with requirements for Leakage Class 4.
E. Remake leaking joints and retest until leakage is equal to or less than maximum allowable.

3.8 CLEANING NEW SYSTEMS
A. Clean the following metal duct systems by removing surface contaminants and deposits:
 1. Air outlets and inlets (registers, grilles, and diffusers).
 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 5. Return-air ducts, dampers, and actuators except in ceiling plenums and mechanical equipment rooms.
B. Mechanical Cleaning Methodology:
 1. Clean coils and coil drain pans according to ACR 2006. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
2. Contractor shall maintain all systems to be kept clean until building Substantial Completion of Project has been obtained.

C. Cleanliness Verification:
 1. Visually inspect metal ducts for contaminants.
 2. Where contaminants are discovered, clean ducts.

D. Verification of Coil Cleaning: Cleaning must restore coil pressure drop to within 10 percent of pressure drop measured when coil was first installed. If original pressure drop is not known, coil will be considered clean only if it is free of foreign matter and chemical residue, based on thorough visual inspection.

END OF SECTION
SECTION 23 33 00
DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.
B. Section 230100 “Basic Mechanical Requirements,” and Section 230500 “Basic Mechanical Materials and Methods” apply to the work of this Section as if fully repeated herein.
C. Section 23 0900, “Control Systems” for automatic control dampers under the control of the Building Direct Digital Control system.

1.2 SUMMARY
A. This Section includes the following:
 1. Backdraft Dampers
 3. Turning vanes.
 4. Duct-mounted access doors.
 5. Flexible connectors.
 6. Flexible ducts.
 7. Duct accessory hardware.
B. Related Sections:
 1. Division 23 Section “Control Systems” for actuators associated with automatic control dampers.
 2. Division 26 Section “Fire Alarm Systems” for duct-mounted fire detectors.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE
B. Comply with AMCA 500-D testing for damper rating.

1.5 REFERENCED STANDARDS

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. HVAC Dampers (all types):
 a. Air Balance Inc.; a division of Mestek, Inc.
 b. Greenheck Inc.
 c. Nailor Industries Inc.
 d. Pottorf; a division of PCI Industries, Inc.
 e. Ruskin Company.
 2. Turning Vanes:
 a. Ductmate Industries, Inc.
 b. Duro Dyne Inc.
c. Metalaire, Inc.
d. Semco Incorporated.
e. Ward Industries, Inc.; a division of Hart & Cooley, Inc.

3. Duct-Mounted Access Doors:
 a. American Warming and Ventilating; a division of Mestek, Inc.
b. Cesco Products; a division of Mestek, Inc.
c. Ductmate Industries, Inc.
d. Flexmaster U.S.A., Inc.
e. Greenheck Fan Corporation.
f. McGill AirFlow LLC.
g. Nailor Industries Inc.
h. Pottorff; a division of PCI Industries, Inc.
i. Ventfabrics, Inc.
j. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
k. Ruskin Company.

4. Flexible Connectors:
 a. Ductmate Industries, Inc.
b. Duro Dyne Inc.
c. Ventfabrics, Inc.
d. Ward Industries, Inc.; a division of Hart & Cooley, Inc.

5. Flexible Ducts:
 a. #087 by Atco Rubber Products, Inc.
b. Type 8B by Flexmaster USA, Inc.
c. "M-KE" by ThermaFlex.

2.2 MATERIALS

A. Comply with SMACNA’s “HVAC Duct Construction Standards – Metal and Flexible” for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Lock-forming quality; complying with ASTM A653/A653M and having G90 (Z275) coating designation; ducts shall have mill-phosphatized finish for surfaces exposed to view.

C. Stainless-Steel Sheets: Comply with ASTM A480/A480M, Type 304, and having a No. 2D finish for concealed ducts and No. 4 finish for exposed ducts.

E. Extruded Aluminum: Comply with ASTM B221 (ASTM B221M), Alloy 6063, Temper T6.

F. Minimum Thickness: All sheet steel used on this project shall be a minimum of 24-gage thickness, and all aluminum sheets shall be a minimum of 0.04-inch thickness, regardless of whether or not SMACNA standards permit thinner gage material.

G. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

H. Tie Rods: Comply with Articles 2.5 through 2.9, including all accompanying Tables and Figures, of the SMACNA HVAC Duct Construction Standards.

2.3 BACKDRAFT DAMPERS

A. Description: Gravity balanced, suitable for horizontal or vertical installations. The following requirements apply to conventional backdraft dampers, pressure relief dampers, and barometric relief dampers.

B. Rated Air Velocity: 3000 fpm (15 m/s).
C. Rated System Pressure: 2-inch wg (0.5 kPa).

D. Frame: Match material options below to material of adjacent ductwork. For duct material, refer to Division 23 Section "Metal Ducts."
 1. 18-gage or 0.052-inch- (1.3-mm-) thick, galvanized sheet steel, with welded corners and mounting flange.
 2. 16-gage or 0.063-inch- (1.6-mm-) thick extruded aluminum, with welded corners and mounting flange.
 3. 18-gage or 0.052-inch- (1.3-mm-) thick stainless steel, with welded corners and mounting flange.

E. Blades: Multiple single-piece blades, maximum 6-inch (150-mm) width, 18-gage or 0.050-inch- (1.2-mm) thick aluminum sheet with sealed edges.

F. Blade Action: Parallel.

G. Blade Seals: Extruded vinyl or neoprene, mechanically locked into blade edge.

H. Blade Axles: Nonferrous metal, with diameter of 0.20-inch (5 mm).

I. Tie Bars and Brackets: Aluminum.

J. Return Spring: Adjustable tension.

K. Bearings: Steel ball or synthetic pivot bushings.

L. Required accessories:
 1. Adjustment device to permit setting for varying differential static pressure.
 2. Counterweights and spring-assist kits, if vertical airflow installation.
 3. 90-degree stops.
 4. Duct mounting flange(s).

M. Sleeve: Minimum 20-gage or 0.040-inch- (1.0-mm) thickness.

2.4 MANUAL VOLUME DAMPERS

A. Manual volume dampers shall be standard leakage rating, with linkage outside airstream, suitable for horizontal or vertical applications. Volume dampers may be factory-manufactured or contractor-fabricated per SMACNA Fig. 7-4/7-5.

B. Material: Match material options throughout this subsection to the material of adjacent ductwork. For duct material, refer to Division 23 Section "Metal Ducts."

C. Frames: Hat-shaped channels with mitered and welded corners, flanges for attaching to walls, and flangeless frames for installing in ducts.
 1. Galvanized-steel, 16-gage or 0.064-inch (1.62-mm) minimum thickness, for use in galvanized steel ducts.
 2. Aluminum sheet, 12-gage or 0.100-inch- (2.5-mm-) minimum thickness, for use in aluminum ducts.
 3. Stainless-steel, 16-gage or 0.064-inch (1.62-mm) minimum thickness, for use in stainless steel ducts.
 4. The above requirements may be reduced to 20-gage for round dampers installed in round ducts.

D. Blades: Multiple-blade; single-blade if duct dimension is 12-inch or less in the direction perpendicular to damper axis. Parallel or opposed-blade design (contractor's choice, unless a specific type is indicated). Stiffen damper blades for stability.
 1. Galvanized-steel, 16-gage or 0.064-inch (1.62 mm) thick, for use in galvanized steel ducts.
 2. Roll-Formed Aluminum, 12-gage or 0.10-inch- (2.5-mm-) thick aluminum sheet, for use in aluminum ducts.
 3. Stainless-steel, 16-gage or 0.064-inch (1.62 mm) thick, for use in stainless steel ducts.
 4. The above requirements may be reduced to 20-gage for round dampers installed in round ducts.
E. Blade Axles: Galvanized steel, aluminum, or stainless steel, as required to match blade material. Dampers shall have axles full length of damper blades, and bearings at both ends of operating shaft.

F. Bearings: Oil-impregnated bronze, molded synthetic, and stainless-steel sleeve-type are acceptable.

G. Tie Bars and Brackets: Galvanized steel or aluminum.

H. Jackshaft:
1. Size: 1-inch (25-mm) diameter.
2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

I. Damper Hardware:
1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch- (2.4-mm-) thick zinc-plated steel, and a 3/4-inch (19-mm) hexagon locking nut.
2. Include center hole to suit damper operating-rod size.
3. Include elevated platform for insulated duct mounting.
4. For all insulated ductwork, provide extended shaft parts and kit to extend handle through insulation. Provide Ruskin crank arms, extended shaft and hand quadrant (ESK050, ESK050B or approved equal). Damper shaft and handle shall be completely insulated. Refer to Division 23 “Mechanical Insulation.”

2.5 AUTOMATIC CONTROL DAMPERS
A. Refer to Section 230900, “Control Systems” for automatic control damper requirements.

2.6 TURNING VANES
A. Turning Vanes for Metal Ducts: Turning vane construction shall match duct construction (i.e stainless steel duct use stainless steel construction). Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

B. Contractor-Fabricated to comply with SMACNA’s “HVAC Duct Construction Standards – Metal and Flexible,” Figures 4-3 and 4-4 single thickness type, or Contractor may elect to provide manufactured turning vanes as described below.
1. Manufactured Turning Vanes: Fabricate of 1½-inch- (38-mm-) wide, curved blades set 3/4-inch (19 mm) o.c.; support with bars perpendicular to blades set 2-inches (50 mm) o.c.; and set into side strips suitable for mounting in ducts.
2. Double-thickness turning vanes will also be acceptable.

2.7 DUCT-MOUNTED ACCESS DOORS
A. Duct-Mounted Access Doors: Factory-manufactured doors, airtight and suitable for duct pressure class.

B. Door: Double wall, rectangular, galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.

C. Insulation: 1-inch (25-mm-) thick, fibrous-glass or polystyrene-foam board.

D. Hinges and Latches: 1-by-1-inch (25-by-25-mm) butt or piano hinge and cam latches.

E. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets. Seal around frame attachment to duct and door to frame with neoprene or foam rubber.

F. Number of Hinges and Locks: Two hinges, or continuous piano hinge, and two sash locks.

G. Doors shall be fully gasketed.
H. Doors shall be insulated when installed in insulated ductwork.

2.8 FLEXIBLE CONNECTORS
A. Materials: Flame-retardant or noncombustible fabrics.
B. Coatings and Adhesives: Comply with UL 181, Class 1.
C. Metal-Edged Connectors: Factory fabricated with a fabric strip 5¾-inches (146 mm) wide attached to 2 strips of 2¾-inch- (70-mm-) wide, 0.028-inch- (0.7-mm-) thick, galvanized sheet steel or 0.032-inch- (0.8-mm-) thick aluminum sheets. Provide metal compatible with connected ducts.
D. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene or polychloroprene.
 1. Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
 2. Tensile Strength: 480 lbf/inch (84 N/mm) in the warp and 360 lbf/inch (63 N/mm) in the filling.
 3. Service Temperature: Minus 40 to plus 200ºF (Minus 40 to plus 93 C).
E. Thrust Limits: As specified in Division 23 Section “Mechanical Vibration Isolation.”

2.9 FLEXIBLE DUCTS
A. General: Comply with UL 181, Class 1. Factory-fabricated, insulated, round duct, with an outer jacket enclosing glass-fiber insulation around a continuous inner liner.
 1. Reinforcement: Galvanized steel wire helix encapsulated in inner liner.
 3. Inner Liner: CPE film, acoustically transparent to mid-range sound energy.
B. Required Pressure Ratings:
 1. Sizes 12-inch and smaller: At least 8-inch wg positive and 1-inch wg negative.
 2. Sizes larger than 12-inch: At least 4-inch wg positive and ½-inch wg negative.
 3. Burst Rating: 2.5 times working pressure rating above.
C. Velocity Rating: 4000 fpm.
D. Temperature Rating: -20°F to +250°F.
E. Thermal Rating: Minimum R-4.2 thermal resistance.
F. Flexible Duct Connector Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action, in sizes 3 through 18-inches, to suit duct size.
G. Flexible duct is not allowed for return and exhaust air systems.
H. Refer to detail drawings for allowed flexible ducts at air terminals.

2.10 DUCT ACCESSORY HARDWARE
A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION
3.1 INSTALLATION
A. Install duct accessories according to applicable details in SMACNA’s “HVAC Duct Construction Standards – Metal and Flexible.”
B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts.
 1. Locate dampers at least two duct diameters from fittings and as far away as possible from outlets.
 2. Install steel volume dampers in steel ducts.
 3. Install aluminum volume dampers in aluminum ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 1. Adjacent to and close enough to all automatic dampers, fire dampers, smoke damper and fire/smoke dampers to reset or reinstall fusible links and sight investigation.
 2. Upstream and downstream of all duct mounted cooling coils and heating coils.
 3. Upstream and downstream of all airflow stations for cleaning and inspection.
 4. Doors shall be suitable for pressure classification.
 5. Doors shall open against static pressure in duct.
 6. Elsewhere as indicated.

H. Install access doors with swing against duct static pressure.

I. Access Door Size: 18 by 10-inches (460 by 250 mm) unless noted otherwise

J. Label access doors according to Division 23 Section “Basic Mechanical Materials and Methods” to indicate the purpose of access door.

K. Label fire dampers according to Division 23 Section “Basic Mechanical Materials and Methods” to indicate the location of each damper.

L. Install flexible connectors to connect ducts to equipment.

M. Connect air devices to ducts with flexible duct clamped or strapped in place.

N. Install duct test holes where required for testing and balancing purposes.

O. For fans developing static pressures of 5-inch wg (1250 Pa) and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

P. Install duct test holes where required for testing and balancing purposes.

Q. Install flexible ducts per detail drawings only.

R. Flexible duct minimum 36-inch (900-mm) and a maximum 72-inch (1800-mm) length of flexible duct.

S. Flexible ductwork shall not be used on ducted return or exhaust systems.

T. No flexible ductwork shall be upstream of VAV boxes.

U. Flexible connections shall be provided at connections to all moving equipment.

V. For locations where static pressure will be over 2.0 in. wc., dampers shall be opposed blade with adjustable quadrant and locking device with position indicator.

W. If duct static is greater than 2.0 in.wc., a manual balance dampers shall be installed upstream of the VAV box at the branch take-off for pressure reduction.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Operate dampers to verify full range of movement.
 2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire dampers to verify full range of movement and verify that proper heat-
response device is installed.
4. Inspect turning vanes for proper and secure installation.

END OF SECTION
SECTION 23 34 19
LABORATORY MECHANICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
B. Section 23 0100 “Basic Mechanical Requirements” and Section 23 0500 “Basic Mechanical Materials and Methods” all apply to the work of this Section as if fully repeated herein.

1.2 SUMMARY
A. This Section includes the following:
1. Air volume control products associated with laboratory fume hoods and rooms.
2. Fan Filter Units (FFU)
B. Related Sections: The following Sections contain requirements that relate to this Section.
1. Division 23 Section “Metal Ductwork” contains requirements that relate to this Section.
2. Division 23 Section “Duct Accessories” for duct flexible connectors.
3. Division 23 Section “Control Systems” for control devices.

1.3 PERFORMANCE REQUIREMENTS
A. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS
A. General: Submit each item in this Article according to the Conditions of the Contract and Division 01 Specification Sections.
B. Product Data including rated capacities of each unit, weights (shipping, installed, and operating), furnished specialties, accessories, and the following:
1. Certified fan performance curves with system operating conditions indicated.
2. Certified fan sound power ratings.
3. Material gages and finishes, including color charts.
4. Dampers, including housings, linkages, and operators.
5. Manufacturer’s standard color chart.
C. Shop Drawings from manufacturer detailing equipment assemblies and indicating dimensions, weights, loadings, required clearances, method of field assembly, components, and location and size of each field connection.
D. Provide data indicating configuration, general assembly, and materials used in fabrication. Include catalog performance ratings that include air flow, static pressure, and sound power levels for each of the second through sixth octave bands in dBA.
E. Certifications: Certify that air capacities, pressure drops, and selection procedures meet or exceed specified requirements.
F. Manufacturer’s Installation Instructions: Indicate support and hanging details, installation instructions, recommendations, and service clearance requirements.
G. Wiring diagrams detailing wiring for power and control systems and differentiating clearly between manufacturer-installed and field-installed wiring.
H. Maintenance data for air-handling units to include in the operation and maintenance manual specified in Division 01 and in Division 23 Section “Basic Mechanical Requirements.”
I. Operation and Maintenance Data: For fan filter units to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE
A. Documented aspiration tests shall have been performed in conjunction with the fan performance test.
B. Sound testing shall be in accordance with AMCA 300.
C. Electrical Component Standard: Provide components that comply with NFPA 70 and that are listed and labeled by UL where available.
D. Listing and Labeling: Provide electrically operated fixtures specified in this Section that are listed and labeled by a Nationally Recognized Testing Laboratory (NRTL) as defined in OSHA Regulation 1910.7.
E. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Lift and support units with the manufacturer's designated lifting or supporting points.

1.7 PROJECT CONDITIONS
A. Field Measurements: Verify dimensions by field measurements. Verify clearances.

1.8 COORDINATION AND SCHEDULING
A. Coordinate the installation of equipment supports.

1.9 EXTRA MATERIALS
A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents for each modular air-handling unit.
 1. Filters: Furnish one (1) additional set for each fan filter unit.
 2. Gaskets: Furnish one (1) additional complete set for each fan filter unit.

1.10 WARRANTY
A. Provide 18-month manufacturer warranty from the date of shipment for all fan filter units.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Volume Boxes: Subject to compliance with requirements, provide laboratory air volume control products by one of the following:
 1. Phoenix Controls Corporation.

B. Fan Filter Units: Subject to compliance with requirements, provide fan filter unit products by one of the following:
 2. Terra Universal Incorporated

2.2 LABORATORY AIRFLOW CONTROL SYSTEM
A. All laboratory airflow controls shall be provided to allow all supply air, general exhaust and fume hood exhaust to operate in a variable flow configuration. All electric actuators shall only be high speed on all control valves.
B. A laboratory airflow control system shall be furnished and installed to control the airflow into and out of laboratory rooms and reheat coils within those rooms. The exhaust flow rate of a laboratory fume hood shall be precisely controlled to maintain the indicated minimum and maximum airflows into the fume hood. The fume hood control shall be of variable air volume type. The laboratory control system shall vary the amount of makeup/supply air into the room to operate the laboratories at the lowest possible airflow rates necessary to maintain laboratory pressurization in relation to adjacent spaces (positive or negative) as indicated on the Drawings. The plans and specifications for the laboratory airflow control system are based on systems and equipment manufactured by Phoenix Controls Corporation.
C. Laboratory Airflow Control System Warranty: Warranty shall commence upon the date of shipment and extend for a period of thirty-six (36) months, whereupon any defects in materials or laboratory airflow control system performance shall be repaired by the supplier at no cost to the Owner.
D. Each laboratory space shall have a dedicated laboratory airflow control system.
E. The laboratory airflow control system shall employ individual average face velocity controllers that directly measure the area of the fume hood sash opening and proportionally control the hood’s exhaust airflow to maintain a constant face velocity.
F. The hood exhaust airflow control device shall respond to the fume hood sash opening by achieving 90% of its commanded value within one second of the sash reaching 90% of its final position (with no more than 5% overshoot/undershoot) of required airflow. Rate of sash movement shall be between 1.0 to 1.5 feet per second.

G. The hood exhaust airflow control device shall be automatically switched between in-use and standby levels based on operator presence immediately in front of the hood. A presence and motion sensor shall activate the switching. The airflow control device shall achieve the required in-use command value in less than one second from moment of detection with no more than a 5% overshoot or undershoot.

H. The laboratory airflow control system shall maintain specific airflow (+/- 5% of signal within one second of a change in duct static pressure) regardless of the magnitude of the pressure change (within 0.3-inch to 3.0-inch w.c., for low pressure valves, and 0.6-inch to 3.0-inch w.c. for medium pressure valves), airflow change, or quantity of airflow control devices on the manifold.

I. The laboratory airflow control system shall maintain a specific airflow (+/- 5% of signal) with a minimum 16 to 1 turndown to ensure accurate pressurization at low airflow and guarantee the maximum system diversity and energy efficiency.

J. Airflow Control Valves (ACV):
 1. The airflow control valve shall be a venturi air valve.
 2. All valve controllers shall be shut-off type and high-speed electric actuators only. Coordinate location of each airflow control valve controller installation location individually with floor plans and all Contractor trades. Controllers must be installed in an accessible location for service. All field required changes shall be at the cost of this Contractor and not the Owner.
 3. The airflow control device shall be pressure independent over its specified differential static pressure operating range. An integral pressure independent assembly shall respond and maintain specific airflow within one second of a change in duct static pressure, irrespective of the magnitude of pressure and/or flow change or quantity of airflow controllers on a manifolded system.
 4. The airflow control device shall maintain accuracy within ± 5% of signal over an airflow turndown range of no less than 16 to 1. No minimum entrance or exit duct diameters shall be required to ensure accuracy and/or pressure independence.
 5. The airflow control device shall be constructed of one of the following two types, Class A or Class B as described below.
 6. Class A – The airflow control device for non-corrosive airstreams such as supply and general exhaust shall be constructed of 16 gauge aluminum. The device’s shaft and shaft support brackets shall be made of 316 stainless steel. The pivot arm and internal mounting link shall be made of aluminum. The pressure independent springs shall be spring grade stainless steel. All shaft bearing surfaces shall be made of a Teflon, or polyester, or PPS (polyphenylene sulfide) composite.
 7. Sound attenuating devices used in conjunction with general exhaust or supply airflow control devices shall be constructed using 24 gauge galvanized steel or other suitable material used in standard duct construction. No sound absorptive materials of any kind shall be used.
 8. Class B – The airflow control device for corrosive airstreams such as fume hoods shall have a baked-on corrosion resistant phenolic coating. The device’s shaft shall be made of 316 stainless steel with a Teflon coating. The shaft support brackets shall be made of 316 stainless steel. The pivot arm and internal mounting link shall be made of 316 or 303 stainless steel. The pressure independent springs shall be a spring grade stainless steel. The internal nuts, bolts and rivets shall be stainless steel. All shaft bearing surfaces shall be made of Teflon or PPS (polyphenylene sulfide) composite.
 9. An electric actuator shall be factory mounted to the valve. Loss of control power shall cause normally open valves to fail to maximum position, and normally closed valves to fail to minimum position.
10. Certification: Each airflow control device shall be factory calibrated to the job specific airflows as detailed on the plans and specifications using NIST traceable air stations and instrumentation having a combined accuracy of at least ± 1% of signal over the entire range of measurement. Electronic airflow control devices shall be further calibrated and their accuracy verified to ± 5% of signal at a minimum of eight different airflows across the full operating range of the device.

11. All airflow control devices shall be individually marked with device specific, factory calibration data. As a minimum, it should include; tag number, serial number, model number, eight point characterization information (for electronic devices), and quality control inspection numbers. All information shall be stored by the manufacturer for use with as-built documentation.

12. The airflow control device shall use closed loop control to linearly regulate airflow based on a 0 to 10 volt control signal. The device shall generate a 0 to 10 volt feedback signal that is linearly proportional to its airflow.

K. Neutralizer: Provide a neutralizer to be used in conjunction with general exhaust and supply air valves. See plans for locations.
 1. The attenuator shall consist of resonator chambers that are tuned to the output frequencies of the air valve, providing a reduction in sound power levels over the entire sound spectrum.
 2. Construction: 24 gauge galvanized steel.
 3. Field provided square to round transition is required for single valve units.
 4. The pressure drop across the device shall be less than 0.1-inch w.c.

2.3 FAN FILTER UNITS

A. General:
 1. The fan filter unit shall be supplied to provide unidirectional supply air at controlled discharge velocities. The units shall include a High Efficiency Particulate Air (HEPA).
 2. Modules sizes, electrical characteristics, efficiencies, capacities, and options shall be as scheduled on drawings.

B. Performance:
 1. The unit shall provide filtered air tested at an average velocity of 90 fpm (+/- 15 fpm) measured 12 inches from the face of the unit in accordance with IEST-RP-CC0022.2.
 2. The room sound level shall be less than 55 dBA when measured at 30 inches from the filter face at 90 fpm average face velocity in accordance with IEST-RP-CC0022.2.
 3. The unit is to be factory sealed and tested to assure leakage is consistent with the filter.

C. Construction:
 1. Plenum material shall be:
 a. Aluminum.
 2. Face material shall be:
 a. Expanded metal grille with powder-coat paint finish
 3. Plenum shall be walkable up to 250 lbs.
 4. The diffuser plenum shall feature four (4) eyebolts at each plenum corner for securing the unit to structural supports above the ceiling.
 5. The 51% free-area perforated distribution plate shall be secured to the face using quarter-turn fasteners with anti-slip, snap-in retainers and stainless steel retainer cables for ease of installation and removal.
 6. Inlet: standard round or optional rectangular collar for non-ducted applications.
 7. Eye bolts for hanging shall be mounted on the top four (4) corners of the plenum and capable of each supporting 75 lbs.

D. Filters:
 1. The filter shall be framed in extruded aluminum with an integral cavity filled with a urethane gel to provide a leak-tight seal between the filter frame and the border.
 2. Filter type shall be:
3. High Efficiency Particulate Air (HEPA) filter shall provide 99.997% efficiency on .30 μm particulate, with an initial pressure drop of 0.45” wg at 100 fpm.
4. Filter shall be UL 900 classified.
5. Filter pack depth shall be 2.5”.
6. Filter media shall be borosilicate micro-fiberglass.
7. Filter shall be:
 a. Bench top removable and replaceable, mounted in an extruded aluminum frame with an upstream gasket. Bench top replaceable filters shall be supplied with a room-side accessible static pressure port in an extruded aluminum center divider.

E. Plenum Finish shall be:
1. All aluminum components shall have B12 White baked-on powder coat finish.
 a. The paint finish must demonstrate no degradation when tested in accordance with ASTM D1308 (covered and spot immersion) and ASTM D4752 (MEK double rub) paint durability tests.
 b. The paint film thickness shall be a minimum of 2.0 mils.
 c. The finish shall have a hardness of 2H.
 d. The finish shall withstand a minimum salt spray exposure of 1000 hours.
 e. The finish shall have an impact resistance of 80 in-lb.

F. Face and frame finish shall be:
1. All aluminum components shall have White B12 Standard baked-on powder coat finish.
 a. The paint finish must demonstrate no degradation when tested in accordance with ASTM D1308 (covered and spot immersion) and ASTM D4752 (MEK double rub) paint durability tests.
 b. The paint film thickness shall be a minimum of 2.0 mils.
 c. The finish shall have a hardness of 2H.
 d. The finish shall withstand a minimum salt spray exposure of 1000 hours.
 e. The finish shall have an impact resistance of 80 in-lb.

G. Fan:
1. The centrifugal type fan shall be supplied with rubber mounts to isolate the motor/blower assembly from the diffuser plenum. Fans are to be of metal construction with a direct drive:
 a. Forward curved impeller
 b. Backward curved impeller
2. Plastic construction shall not be acceptable.

H. Electrical Systems:
1. Single point power connection.

I. Fan Motor:
1. The fan motor shall be:
 a. Electrically Commutated Motor (ECM):
 1) Constant Torque Program
 a) A constant torque program shall be provided to allow the ECM to vary the airflow with fluctuations in both upstream static pressure and filter pressure drop.
 b) The constant torque program shall prevent unexpected motor operation or motor shutdown due to upstream static pressure fluctuations.
 c) The constant torque program shall be used for ducted applications where fluctuations in upstream pressure may occur.
 2) Constant Flow Program
 a) A constant flow program shall be provided to allow the ECM to compensate for fluctuations in both upstream static pressure and filter pressure drop, providing constant airflow.
b) The constant flow program shall be used for non-ducted applications where the inlet static pressure is zero or slightly negative.

c) Fan motor shaft directly connected to fan and isolated from casing to prevent transmission of vibration.

2. Fan motor shall have internal thermal and overload protection.

3. Fan motor shaft shall be directly connected to the fan impeller, and isolated from casing to prevent transmission of vibration.

4. Fan motor shall be supplied with a motor speed controller (select one):
 a. ECM standard speed controller
 1) The ECM speed controller shall operate on 24 VAC supply voltage.
 2) The ECM speed controller shall have dual outputs to control up to two motors simultaneously.
 3) The ECM speed controller shall be supplied with a BAS interface to accept 2-10 VDC signal for variable speed remote control, as well as be able to remotely shut off via BAS signal.
 4) The ECM speed controller shall be supplied as a wall mounted kit, shipped loose for field installation.

J. Options:
 1. Filter replacement style:
 2. Bench Top replaceable filter

K. Pre-filter:
 1. Non-ducted units:
 a. Unit shall be provided with 25-30% MERV 4 washable pre-filter.
 2. Ducted units:
 a. Unit shall be provided with 25-30% MERV 4 washable pre-filter with side access filter housing.

L. Disconnect Switch: A factory supplied disconnect switch shall be provided for disconnection of power to the terminal block.

M. Power cord:
 1. An eight foot (2.4 m) power cord shall be supplied for use with a 115 V power supply.

N. Motor/blower access:
 1. Room side access

O. Filter status indicator shall be communicated by:
 1. LED Indicator light:
 a. The LED indicator light shall be visible from the occupied area to determine the filter loading status without opening the diffuser.
 b. The LED light shall turn from green to yellow when the pressure drop across the filter exceeds the specified limit.
 c. The LED kit shall be provided with a switch, factory pre-calibrated for 150% of initial clean filter pressure drop.
 d. The LED kit shall operate on a 24 VAC power supply, provided by others.

P. Motor status shall be communicated by:
 1. Motor status LED:
 a. The LED indicator light shall be visible from the occupied area to determine the motor operating status without opening the diffuser.
 b. The motor LED shall be green to indicate normal motor operation, and that the unit static pressure is above 0.2” wg.
 c. The motor LED shall turn from green to red when the motor is not in operation, and when the unit static pressure is below 0.2” wg.
 2. Motor status BAS signal:
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the fans, laboratory air volume control products, and other system components. Do not proceed with installation until unsatisfactory conditions have been corrected.
B. Verify that conditions are suitable for installation.
C. Verify that field measurements are as shown on the drawings.

3.2 INSTALLATION
A. Install fans according to manufacturer’s written instructions.
B. Install units with clearances for service and maintenance.
C. Install in accordance with manufacturer’s instructions.
D. See drawings for the size (s) and locations of fan filter unit inlets.
E. Support components individually from structure in accordance with SMACNA (SRM).
F. Do not support components from ductwork.
G. Laboratory Airflow Control System Installation:
 1. Install the sash sensors, interface boxes, and fume hood monitor on the fume hood under initial supervision of the laboratory airflow control system supplier. Reel-type sash sensors and their stainless steel cables shall be hidden from view. Bar-type sash sensors shall be affixed to the individual sash panels. Sash interface boxes with interface cards shall be mounted in an accessible location.
 2. Install the laboratory control unit (if panel-mounted) and wall-mounted power supply (as required) in an accessible location in the designated laboratory room.
 3. Terminate and connect all cables as required. In addition, integrated laboratory control unit connectors shall be furnished by this contractor.
 4. Install all airflow control devices in the ductwork and connect all airflow control valve linkages.
 5. Connect Neutralizer with sheet metal screws. Seal any gaps with duct sealant. Assemble multiple units according manufacturer’s recommendation. Install attenuator with airflow direction arrow pointing in the direction of airflow. The attenuator shall be installed between the valve and the first air device (diffuser, grille, or register).
 6. Perform all controls work in complete and strict accordance with Division 23 Section “Control Systems.”

3.3 CONNECTIONS
A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate the general arrangement of ducts and duct accessories.
B. Electrical: Conform to applicable requirements in Division 26 Sections. Connect wiring and ground equipment according to Division 26 Sections.

3.4 FIELD QUALITY CONTROL
A. Manufacturer’s Field Service: Provide services of a factory-authorized service representative to supervise the field assembly of components and installation of fans, including duct and electrical connections, and to report results in writing.

3.5 ADJUSTING & CLEANING
A. Adjust damper linkages for proper damper operation.
B. After completing installation, inspect exposed finish. Remove burrs, dirt, and construction debris, and repair damaged finishes including chips, scratches, and abrasions.
C. Clean fan interiors to remove foreign material and construction debris. Vacuum clean fan wheel and cabinet.
D. Lubricate all bearings.
E. Ensure supply air to the fan filter units by performing pitot traverse on the main supply duct.
F. Balance outlets according to manufacturer’s recommendations.
G. Verify that field measurements are as shown on the drawings.

3.6 COMMISSIONING

A. Perform the following operations and checks before startup of exhaust fans:
 1. Verify that shipping, blocking, and bracing are removed.
 2. Verify that unit is secure on mountings and supporting devices, and that connections forducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnects.
 3. Perform cleaning and adjusting specified in this Section.
 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearings operation. Reconnect fan drive system.
 5. Verify lubrication for bearings and other moving parts.
 6. Verify that manual and automatic volume control and fire and smoke dampers inconnected ductwork systems are in the fully open position.

B. Starting procedures for fans are as follows:
 1. Energize motor; verify proper operation of motor, drive system, and fan wheel.
 2. Adjust fan to indicated RPM.
 3. Measure and record motor voltage and amperage.
 4. Replace fan and motor as required to achieve design conditions.

3.7 DEMONSTRATION

A. Train Owner’s maintenance personnel on procedures and schedules related to startup andshutdown, troubleshooting, servicing, and preventive maintenance.
B. Review data in the operation and maintenance manuals. Refer to Division 01.
C. Schedule training with Owner, through Architect, with at least 7 days’ advance notice.
D. Demonstrate operation of products specified in this Section. Conduct walking tour of the Project.Briefly identify location and describe function, operation, and maintenance of each product.
E. Laboratory Airflow Control System Start-Up: System start-up shall be provided by a factoryauthorized representative of the laboratory airflow control system manufacturer. Start-up shallinclude calibrating the fume hood monitor and any combination sash sensing equipment asrequired. Start-up shall also provide electronic verification of airflow (fume hood exhaust,supply, and general exhaust) and system programming.
F. The laboratory airflow control system supplier shall furnish a minimum of four hours of ownertraining, by factory trained and certified personnel. The training will provide an overview of thejob specific airflow control components, verification of initial fume hood monitor calibration,general procedures for verifying airflow of air valves, and general troubleshooting procedures.Operation and Maintenance manuals, including as-built wiring diagrams and component listsshall be provided for each training attendee.

END OF SECTION
SECTION 23 36 00
AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes the following:
 1. Shutoff single-duct air terminal units.
 2. Exhaust single-duct air terminal units.

1.2 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
B. Section 23 0100 “Basic Mechanical Requirements,” and Section 23 0500 “Basic Mechanical Materials and Methods” all apply to the work of this Section as if fully repeated herein.
C. Related sections include Division 23 Section “Control Systems” for control devices and installation associated with air terminals.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated, include rated capacities; furnished specialties and accessories; shipping, installed, and operating weights; and sound-power ratings for each model indicated. Detail equipment assemblies and indicate dimensions, required clearances, method of field assembly, components, and location and size of each field connection. Include a schedule showing unique model designation, room location, model number, size, and accessories furnished.
B. Shop Drawings: For air terminal units. Include plans, elevations, sections, details, and attachments to other work. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection. Hangers and supports, including methods for duct and building attachment, and vibration isolation.
C. Verify compliance with each third-party test or rating Standard referenced in the “Quality Assurance” subsection below.
D. Coordination Drawings: Refer to Division 23 Section “Basic Mechanical Requirements.”
E. Field quality-control reports.
F. Operation and Maintenance Data: For air terminal units to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01, include instructions for resetting minimum and maximum air volumes and for adjusting software set points.

1.4 QUALITY ASSURANCE
A. Product Options: Drawings indicate size, profiles, and dimensional requirements of air terminal units and are based on the specific system indicated. Refer to Division 23 Section “Basic Mechanical Requirements.”
C. AHRI Certification: Only air terminals that are certified under the AHRI Standard 880-2017 Certification Program and carry the AHRI Seal will be accepted.
D. Controls: Test and rate air terminal unit controls in accordance with ANSI/ASHRAE 195-2013 Method of Test for Rating Air Terminal Unit Controls. This standard specifies instrumentation, facilities, test installation methods, and procedures for determining the accuracy and stability of airflow control systems for pressure independent terminal units at various airflow setpoints for variable-air-volume and constant-volume air-moving systems.
E. Control sequences shall be in complete and strict accordance with ASHRAE Guideline 36-2018 High Performance Sequences of Operation for HVAC Systems.

1.5 COORDINATION
A. Coordinate layout and installation of air terminal units and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS
2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide Air Terminal Units by one of the following:
2. Carnes Co., Inc.
3. Environmental Technologies, Inc.
5. Metalaire, div. of Metal Industries Inc.
6. Price Industries Inc.
7. The Trane Co.

2.2 AIR TERMINAL UNITS, general
A. Configuration: Pressure independent terminal unit as scheduled; including volume-damper assembly inside unit casing with control components located inside a protective metal shroud. Unit sizes, capacities, maximum and minimum airflows, maximum noise ratings, and maximum air pressure drops shall be as scheduled on the Drawings.

B. Casing: Minimum 22-gage galvanized steel or 0.032-inch (0.8-mm) aluminum.
1. Air Inlets: Beaded round stub connection of length at least 2-inches beyond airflow sensor taps for inlet duct attachment.
2. Air Outlets: Rectangular S-slip and drive connections.
3. Access: Removable panels or access door for access to damper, heating coil, and other parts requiring service, adjustment, or maintenance; with airtight gasket.

C. Oversize Casing Sizing Criteria: For any and all Air Terminal Units specified or scheduled to include a hydronic heating coil, the Air Terminal Unit casing size and hydronic coil physical size shall both be increased one standard size increment without increasing the duty-sized inlet diameter.
1. For example, a terminal whose duty calls for 8-inch nominal size shall be furnished as a 10-inch nominal size terminal but with an 8-inch inlet, airflow sensor, and damper.
2. It is not acceptable to increase the entire terminal size to satisfy the above criteria. For example, it is not acceptable to furnish to a complete 10-inch terminal size where duty calls for 8-inch inlet, airflow sensor, and damper; product must be a 10-inch nominal terminal with an 8-inch inlet.
3. The above oversizing criteria is not required for cooling-only terminals; nor terminals with an electric-resistance heating coil.
4. Subject to compliance with requirements, examples of acceptable products include Titus Model DESVE and Price Model HSG.

D. Volume Damper: Minimum 22-gage galvanized steel with peripheral edge gasket and self-lubricating bearings. Include a mechanical hard stop to prevent over-stroking. Include permanent markings on damper shaft to indicate damper position by simple visual inspection.

E. Maximum allowable damper leakage is given below, when tested according to AHRI 880-2017, based on 4-inch wg (1000-Pa) differential static pressure (inlet to outlet) and 2500 fpm (12.7 m/s) air velocity at nominal box inlet diameter.
1. 3% for nominal size 4-inch (100 mm).
2. 2% for nominal sizes 5-inch (125 mm) through 7-inch (175 mm).
3. 1% for nominal sizes 8-inch (200 mm) and larger.

F. Airflow Sensor: Multipoint, multi-axis inlet velocity sensor with center-averaging feature, factory installed and connected to the controller with UL-listed fire-retardant pneumatic tubing. Single axis sensor is not acceptable for inlet diameters 6-inch and larger. The sensor shall output an amplified differential pressure signal that is at least 2.3 times the equivalent velocity pressure signal obtained from a conventional pitot tube. Balancing taps and airflow calibration charts shall be provided for field airflow measurements.

2.3 EXHAUST-APPLICATION AIR TERMINAL UNITS

A. General: All specifications above for “Air Terminal Units, General” apply to air terminal units used in return or exhaust applications in which the primary air-movement fan is downstream of, not upstream of, the terminal unit; except as noted below:

1. Casing does not require thermal insulation unless needed to achieve specified sound performance.
2. Both inlet and outlet dimensions shall be round (not rectangular).
3. Type 304 or 316 stainless steel duct assembly is required for applications in which the adjoining duct is constructed of stainless steel. See Division 23 Section “Metal Ducts” and/or the Drawings for notation of which ducts shall be stainless steel.
4. Manufacturer shall conspicuously mark intended direction of airflow on the exterior of the terminal unit.

2.4 UNIT INSULATION

A. Fibrous-Glass Liner: All Air Terminal Units of all types shall include factory-installed internal liner. Comply with NFPA 90A and UL 181.

1. Materials: Rigid, rectangular, fibrous-glass duct board; factory molded and faced on airstream side with fire-resistive, reinforced, foil-scrim-kraft barrier. 4-pound density, 475 flexural rigidity, standard duty. All cut edges or exposed fibers not encapsulated by the foil scrim surface shall be sealed from the airstream by mechanically bonded metal edge strips or nosings.
2. Alternative Materials: Subject to compliance with other requirements specified herein, including but not limited to acoustic requirements, manufacturer's standard internal fiberglass liner will be accepted if entirely isolated from the airstream by an inner solid liner constructed of 26-gage galvanized sheet metal or 0.032-inch aluminum sheet.
3. Thickness: ½-inch (13 mm) minimum; thicker if required to meet specified or scheduled values for thermal and/or acoustic performance.
4. Thermal Conductivity (k-Value): 0.26 at 75°F (0.037 at 24°C) mean temperature per ASTM C518.
5. Fire-Hazard Classification: Maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E84.

2.5 INTEGRAL HYDRONIC HEATING COILS

A. Casing: Minimum 20-gauge galvanized steel, factory-installed, with flanged connection for outlet ductwork. See “Air Terminal Units, General” subsection above for sizing criteria.

B. Pressure Rating: Leak test to 300 psi air under water; minimum burst pressure of 2000 psi.

C. Performance Ratings: As scheduled on Drawings. Coils shall be designed, tested and rated according to AHRI Standard 410-2001 Forced-Circulation Air-Cooling and Air-Heating Coils.

D. Tube Construction: Copper, ½-inch O.D. with 0.016-inch minimum wall.

E. Fin Construction: Aluminum, 0.006-inch minimum thickness, not more than 12 per inch, mechanically-bonded to tubes.

F. Piping Connections: Male solder header. Coil connections shall be on the side of the unit indicated on the Drawings.
2.6 AIR TERMINAL UNIT CONTROLS

A. Direct Digital Controls: Bidirectional damper operator and microprocessor-based controller. Control devices shall be compatible with temperature controls specified in Division 23 Section “HVAC Instrumentation and Controls” and shall have the following features.

B. Damper Actuator: 24-Volt, powered closed, powered open, fail in last position unless noted otherwise. Suitable for operation with duct pressures between 0.25- and 3.0-inch wg (60- and 750-Pa) inlet static pressure.

C. Terminal Unit Controller: Pressure-independent, variable-air-volume controller with electronic airflow transducer with multipoint velocity sensor at air inlet, factory calibrated to minimum and maximum air volumes, and having the following features:
 1. Occupied and unoccupied operating mode.
 2. Remote reset of airflow or temperature set points.
 3. Adjusting and monitoring with portable terminal.
 4. Dual maximum logic, in which the first stage of heating consists of modulating the zone supply air temperature setpoint up to a maximum setpoint no higher than 95°F while the airflow is maintained at the minimum (dead-band) flow rate; and the second stage of heating consists of modulating the airflow rate from the minimum (dead-band) flow rate up to the heating maximum flow rate.
 5. A fully-programmable zone controller, or a configurable controller with dual maximum logic pre-installed as described above. Configurable controllers without this feature will not be acceptable.
 6. The terminal unit controller shall convert the velocity pressure signal from the airflow sensor into an analog electronic control signal using a transducer and an analog-to-digital (A/D) converter.
 7. The controller shall be stable at a velocity pressure setpoint as low as 0.004 in. w.g. (1 Pa) using a 10-bit (or greater) A/D converter and a 0-1 in. w.g. (0-250 Pa) or 0-1.5 in. w.g. (0-375 Pa) range transducer.
 8. Fully compatible for two-way communication with temperature-control system specified in Division 23 Section “HVAC Instrumentation and Controls.”

D. Room Sensor: Wall mounted with temperature set-point adjustment and access for connection of portable operator terminal.

E. Supply air temperature sensor: As specified in Division 23 Section “HVAC Instrumentation and Controls” and required for all Air Terminal Units.

G. Test and rate air terminal unit controls in accordance with ANSI/ASHRAE 195-2013 Method of Test for Rating Air Terminal Unit Controls.

2.7 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Steel Cables: Galvanized steel complying with ASTM A603.

C. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

D. Air Terminal Unit Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

E. Trapeze and Riser Supports: Steel shapes and plates for units with steel casings; aluminum for units with aluminum casings.

2.8 SOURCE QUALITY CONTROL

A. Identification: Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, coil type, and AHRI certification seal.
B. Verification of Performance: Test and rate air terminal units according to AHRI 880-2017 Standard for Performance Rating of Air Terminals.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install air terminal units level and plumb, according to manufacturer’s written instructions, rough-in drawings, original design, and referenced standards. Maintain sufficient clearance for normal service and maintenance.

B. Protect all openings of air terminal units with filters or temporary covers throughout project storage, handling, and placement, to keep clean the interiors of air terminal units.

C. Terminal units shall be continuously insulated with thermal insulation and vapor barrier, in unbroken path from inlet duct through to outlet duct, so that no bare metal surfaces are left uninsulated. Field-insulate any portions of terminal unit if not factory-insulated, including but not limited to heating coil casing and duct inlet collar. Field insulation and vapor barrier are specified in Division 23 Section “Mechanical Insulation.”

D. After completing system installation, inspect exposed finish. Remove burrs, dirt, and construction debris, and repair damaged finishes. Vacuum clean the interior of air terminals if the openings were not protected during construction.

3.2 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA’s “HVAC Duct Construction Standards – Metal and Flexible,” Chapter 4, “Hangers and Supports.”

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches (100 mm) thick.
 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches (100 mm) thick.

C. Hangers Exposed to View: Threaded rod and angle or channel supports.

D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.3 MECHANICAL CONNECTIONS

A. Ductwork: Connect ductwork to air terminals according to Division 23 ductwork Sections and Details on Drawings.

B. Hot Water Piping: Connect heating coils in accordance with Details on Drawings. Install piping adjacent to air terminal units to allow service and maintenance. Piping installation requirements are specified Division 23 Section “Hydronic Piping.” Drawings indicate general arrangement of piping, fittings, and specialties.

3.4 electrical CONNECTIONS

A. Power, signal, and control wiring for cooling-only Air Terminal Units and/or Air Terminal Units with hydronic heating coils is the work of Division 23 Section “Control Systems”.

3.5 IDENTIFICATION

A. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows. Comply with requirements in Division 23 Section “Basic Mechanical Materials and Methods” for equipment labels and warning signs and labels.
3.6 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative perform the services listed below. Report results in writing.

B. Remove and replace malfunctioning units and retest as specified above.

C. Engage a factory-authorized service representative to train Owner's maintenance personnel in proper adjustment, operation, troubleshooting, and maintenance of air terminal units. Refer to Division 01 for requirements.

END OF SECTION
SECTION 23 37 13
DIFFUSERS, REGISTERS AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Special Conditions and Division 01 Specification Sections, apply to this Section.
B. Section 230100 “Basic Mechanical Requirements,” and Section 230500 “Basic Mechanical Materials and Methods” apply to the work of this Section as if fully repeated herein.

1.2 SUMMARY
A. This Section includes ceiling- and wall-mounted diffusers, registers, and grilles.
B. Related Sections include the following:
 1. Division 08 Section “Louvers and Vents” for fixed and adjustable louvers and wall vents installed in exterior walls, whether or not they are connected to ducts.
 2. Division 23 Section “Duct Accessories” for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.
 3. Division 23 Section “Testing, Adjusting, and Balancing” for balancing diffusers, registers and grilles.

1.3 DEFINITIONS
A. Diffuser: Circular, square, or rectangular air distribution outlet, generally located in the ceiling and comprised of deflecting members discharging supply air in various directions and planes and arranged to promote mixing of primary air with secondary room air.
B. Grille: A louvered or perforated covering for an opening in an air passage, which can be located in a sidewall, ceiling, or floor.
C. Register: A combination grille and damper assembly over an air opening.

1.4 SUBMITTALS
A. Product Data: For each product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate Drawing designation, room location, quantity, model number, size, and accessories furnished.
B. Samples for Initial Selection: Submit manufacturer's color charts showing the full range of colors available for diffusers, registers, and grilles with factory-applied color finishes; where required or indicated by note on Schedule.

1.5 QUALITY ASSURANCE
B. NFPA Compliance: Install diffusers, registers, and grilles according to NFPA 90A, “Standard for the Installation of Air-Conditioning and Ventilating Systems.” Where located less than 84 inches above finish floor, diffusers, registers and grilles shall be designed to prohibit passage of a 1/2-inch sphere.
C. Single-Source: Unless noted otherwise, a single manufacturer shall furnish all diffusers, registers, and grilles.

PART 2 - PRODUCTS

2.1 COMMON REQUIREMENTS, ALL UNITS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Diffusers, Registers and Grilles:
a. Carnes Co.
c. Krueger.
d. Metalaire, Inc.; Metal Industries Inc.
e. Price Industries.
f. Titus; Air System Components LP.
g. Tuttle & Bailey.

B. Diffusers, registers, and grilles are scheduled on Drawings. All model numbers, finish designs, border types, and accessory designsations are based one manufacturer identified therein. Products by other manufacturers listed above may be furnished, but must be equal in all respects to the device identified, including but not limited to NC, pressure, and cfm ratings.

C. Diffusers, Registers, and Grilles Finish: Acrylic baked enamel paint, pencil hardness HB to H, color as scheduled. The finish shall pass a 250-hour ASTM 870 Water Immersion Test, a 100-hour ASTM D117 Corrosive Environments Salt Spray Test, and a 50 inch-pound ASTM D-2794 Reverse Impact Cracking Test.

D. Integral Balancing Damper: Where dampers are scheduled as an integral part of diffusers and grilles (registers), provide multi-blade gang-operated opposed-blade type, radial-style if used with round ducts; 24 gage galvanized steel, except that aluminum dampers shall be used with aluminum diffusers and registers. Integral dampers shall be operable from the room side of the diffuser or register without special tools.

E. Diffusers, Registers, and Grilles Mounting: Provide border frame mounting type as scheduled. If not scheduled, provide border frame mounting type compatible with ceiling or wall type indicated on Architectural Drawings. Distinguish between flush flat-tee lay-in ceilings, drop-face lay-in ceilings, and the narrow-tee or screw-slot lay-in ceilings by providing a border type specifically designed for each as applicable; a generic standard lay-in border frame will not be acceptable for multiple lay-in ceiling types.

2.2 PRODUCT SPECIFICATIONS

A. Plenum Slot Diffuser: Extruded aluminum slot diffuser with length, number, and width of slots as scheduled, and integral 24-gage unlined galvanized steel plenum with a factory-drawn side inlet and minimum 1-inch collar for connection and attachment of flexible duct. Provide aerodynamic steel deflector blades for supply diffusers, capable of full 180-degree pattern adjustment, dampering, and shut-off. No screws, clips, or other mounting hardware shall be visible from the room served.

B. High-Performance Grille: Double adjustable-deflection supply grilles, single fixed-deflection return grilles, of sizes and performance as scheduled. Frame shall be 20-gage steel with 1-inch minimum flange and reinforced full penetration welds at the corners. Where aluminum is scheduled, aluminum frame shall be 0.040-inch thick with 1-inch minimum mechanically staked flange, interlocked at the corners. Exposed screw holes shall be countersunk for flush finish surface. Supply grille blades shall be heavy-duty solid aluminum airfoil shape, shall be individually adjustable and held in place without rattling or slip by tension wire or metal friction pivots.

C. Square Plaque Ceiling Diffuser: 22-gage steel (use 0.040-inch aluminum where scheduled) face panel that captures a secondary panel of equal material and thickness. The face panel shall be removable via four hanger brackets. The exposed surface of the face panel shall be smooth, flat, and free of visible fasteners. The face panel shall project not more than 1/4-inch below the outer border of the diffuser back pan. The back of the face panel shall have a rolled edge, shaped for horizontal discharge. Face panel shall be no smaller than 18-inch by 18-inch for diffusers nominally 24-inch by 24-inch. Face panel shall be no smaller than 9-inch by 9-inch for diffusers nominally 12-inch by 12-inch. The back pan shall be one-piece die-stamped and include an integrally drawn inlet (welded-in inlets and corner joints are not acceptable). Include a diffuser neck of minimum 1¼-inch depth for connection and attachment of round or rectangular (as scheduled) duct.
1. Include directional blow clips to restrict the discharge air in certain directions.
2. Include molded insulation blanket of R-6, foil-backed. Provide an additional 1-inch gap around the neck to install insulated flex duct.
3. Where an aluminum or stainless steel grille or diffuser is indicated by Schedule or note, the entire product shall be constructed of aluminum or stainless steel as applicable, including but not limited to face plate, pattern controllers, border, back pan, neck, collar, etc.

D. Standard-Performance Grille: Adjustable double-deflection supply grilles, single fixed deflection return grilles, of sizes and performance as scheduled. Blades shall be heavy-duty solid aluminum construction; supply grille blades shall be individually adjustable and held in place without rattling or slip by tension wire or metal friction pivots. Frame shall be roll-formed heavy-duty solid aluminum construction or with 1-inch minimum flange and full penetration welds at the corners. Exposed screw holes shall be countersunk for flush finish surface.
1. Include only as called out on schedule: Integral volume control damper shall be of the opposed blade type and shall be aluminum construction. The damper shall be operable from the register face. The damper shall be finish aluminum.
2. The grille shall be finished in aluminum powered coat. Color will be selected by the Architect during shop drawing submittal review.

E. Critical Environment Diffusers: Radial-pattern diffuser constructed using a maximum 6-inch tall backpan with integral hanger tabs for securing the unit to structure above. The diffuser shall be constructed of 22-gage steel (use 22-gage Type 304 stainless steel or 0.040-inch aluminum where scheduled). The backpan shall be divided into an upper and lower chamber, separated by a pressure induction plate. The lower chamber shall include integral air pattern controllers. Construct diffuser face with a 51% free area perforated face with 3/16-inch diameter holes located on 1/4-inch staggered centers. The face shall hang below the ceiling by not more than 5/8-inch and shall have six fastening clips (quarter-turn latches on the face are not acceptable). The face, lower air chamber, directional blades, and the pressure induction plate shall be one assembly removable through the face for sanitizing. Include safety cable to prevent dropping of the face after opening. Include a neck of minimum 1¾-inch depth for connection and attachment of round duct. Provide full radial or half-radial (one-way) air pattern as indicated on the Drawings; full radial if not otherwise indicated.
1. Where an aluminum or stainless steel grille or diffuser is indicated by Schedule or note, the entire product shall be constructed of aluminum or stainless steel as applicable, including but not limited to face plate, pattern controllers, border, back pan, neck, collar, etc.

F. Critical Environment Diffusers: Radial-pattern diffuser constructed using a maximum 6-inch tall backpan with integral hanger tabs for securing the unit to structure above. The diffuser shall be constructed of 22-gage steel (use 22-gage Type 304 stainless steel or 0.040-inch aluminum where scheduled). The backpan shall be divided into an upper and lower chamber, separated by a pressure induction plate. The lower chamber shall include integral air pattern controllers. Construct diffuser face with a 51% free area perforated face with 3/16-inch diameter holes located on 1/4-inch staggered centers. The face shall hang below the ceiling by not more than 5/8-inch and shall have six fastening clips (quarter-turn latches on the face are not acceptable). The face, lower air chamber, directional blades, and the pressure induction plate shall be one assembly removable through the face for sanitizing. Include safety cable to prevent dropping of the face after opening. Include a neck of minimum 1¾-inch depth for connection and attachment of round duct. Provide full radial or half-radial (one-way) air pattern as indicated on the Drawings; full radial if not otherwise indicated.
1. Where an aluminum or stainless steel grille or diffuser is indicated by Schedule or note, the entire product shall be constructed of aluminum or stainless steel as applicable, including but not limited to face plate, pattern controllers, border, back pan, neck, collar, etc.
G. Other grilles, registers and diffusers not specified above may be specified on the Drawings or by virtue of make and model number on the Schedule.

2.3 FIELD-PROVIDED ACCESSORIES

A. Other accessories may be required by virtue of notations on the Schedule or as detailed on the Drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment. Proceed with installation only after unsatisfactory conditions have been corrected.

B. Install diffusers, registers, and grilles level and plumb.

C. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practicable. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

D. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

E. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

F. After installation of diffusers, registers, and grilles, inspect exposed finish. Clean exposed surfaces to remove burrs, dirt, and smudges. Replace diffusers, registers, and grilles that have damaged finishes.

END OF SECTION
SECTION 23 8123
COMPUTER-ROOM AIR-CONDITIONING SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Floor-mounted computer-room air conditioners, 6 tons (21 kW) and larger.

1.2 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
B. Section 23 0100 “Basic Mechanical Requirements,” and Section 23 0500 “Basic Mechanical Materials and Methods” all apply to the work of this Section as if fully repeated herein.

1.3 DEFINITION
A. BAS: Building automation system.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings: For computer-room air conditioners. Include plans, elevations, sections, details, and attachments to other work. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
C. Wiring Diagrams: For power, signal, and control wiring; differentiating between field-installed and factory-installed wiring.
D. Field quality-control reports.
E. Warranty: Sample of special warranty.
F. Operation and Maintenance Data: For computer-room air conditioners to include in emergency, operation, and maintenance manuals.

1.5 SPARE MATERIALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fan Belts: One complete set for each belt-driven fan.
 2. Filters: One complete set of filters for each unit.

1.6 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. ASHRAE Compliance:
C. ASME Compliance: Fabricate and label water-cooled condenser shell to comply with ASME Boiler and Pressure Vessel Code: Section VIII, “Pressure Vessels,” Division 1.

1.7 COORDINATION
A. Coordinate layout and installation of computer-room air conditioners and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.
B. Coordinate installation of computer-room air conditioners with computer-room access flooring Installer.
C. Coordinate sizes and locations of concrete bases with actual equipment provided.
D. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.8 WARRANTY
A. Special Warranty: Manufacturer’s standard form in which manufacturer agrees to repair or replace components of computer-room air conditioners that fail in materials or workmanship within specified warranty period.
1. Warranty Period for Compressors: Manufacturer’s standard, but not less than five years from date of Substantial Completion.
2. Warranty Period for Humidifiers: Manufacturer’s standard, but not less than three years from date of Substantial Completion.
3. Warranty Period for Control Boards: Manufacturer’s standard, but not less than three years from date of Substantial Completion.

PART 2 - PRODUCTS
2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. APC by Schneider Electric.
2. Compu-Aire, Inc.
3. Data Aire Inc.
4. Stulz-ATS
5. Vertiv Corporation.

2.2 FLOOR-MOUNTED UNITS 6 TONS (21 kW) AND LARGER
A. Description: Packaged, factory assembled, prewired, and pre-piped; consisting of cabinet, fans, filters, humidifier, and controls. Up flow supply plenum discharge front return.
B. Cabinet and Frame: Welded steel, braced for rigidity, and supporting compressors and other mechanical equipment and fittings.
2. Insulation: Thermally and acoustically insulate cabinet interior with 1-inch- (25-mm-) thick duct liner.
3. Finish of Interior Surfaces: Surfaces in contact with the airstream shall feature a 20-gauge sheet metal liner to sandwich the unit insulation between interior and exterior surfaces.
4. Finish of Exterior Surfaces: Baked-on, textured vinyl enamel; color
C. Supply-Air Fan(s): The fans shall be plug/plenum type, single inlet and shall be dynamically balanced. The drive package shall be direct drive, electronically commuted and variable speed. The fans shall be located to draw air over the coil to ensure even air distribution and maximum coil performance. EC fans shall be available on upflow models and fans shall operate outside the unit in a factory-provided plenum with a minimum height of 24 inches. Direct-drive is also acceptable.
D. Unit shall be dual cooling with chilled water and refrigerant coils.
E. Refrigeration System:
1. Compressors: The compressor shall be semi-hermetic with a suction gas cooled motor, vibration isolators, thermal overloads, oil sight glass, automatic reset high pressure switch with control lockout after three failures, pump down low-pressure transducer, suction-line strainer, service valves, reversible oil pumps for forded feed lubrication, a maximum operating speed of 1750 rpm. The system shall include cylinder unloaders on the semi-hermetic compressors. The unloaders shall be activated by solenoid valves which are
controlled from the microprocessor control. In response to the return air temperature, the microprocessor control shall activate the unloader solenoids and the liquid line solenoid such that four stages of refrigeration are obtained. The stages shall be 1) one compressor, partially loaded 2) two compressors partially loaded, 3) one compressor partially loaded, one compressor fully loaded, 4) two compressors fully loaded.

2. Refrigeration Circuits: No fewer than two; each with hot-gas mufflers, thermal-expansion valve with external equalizer, liquid-line solenoid valve, liquid-line filter-dryer, sight glass with moisture indicator, service shutoff valves, charging valves, and charge of refrigerant.

3. Refrigerant: R-407C or R-410A.

4. Refrigerant Evaporator Coil: Alternate-row or split-face-circuit, direct-expansion coil of seamless copper tubes expanded into aluminum fins.

5. Mount coil assembly over stainless-steel drain pan complying with ASHRAE 62.1.

6. Integral, Water-Cooled Refrigerant Condenser: Shell-and-tube type fabricated and labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, or coaxial tube-in-tube type; with liquid-line stop valve and head-pressure-actuated, two-way regulating valve. Terminate fluid connections outside cabinet. Cooling medium shall be [water] [glycol solution].

F. Filters: Filters are indicated via unit schedule on drawings and shall meet specifications found in Division 23 Section "Air Filters." For upflow units with front return, the filters shall be located within the cabinet and removed from the front of the unit. Filters shall be deep pleated 4-inch filters with an ASHARE 52.2-2007 MERV 11 efficiency filter.

G. Infrared Humidifier: High-intensity quartz lamps mounted above stainless-steel evaporator pan, serviceable without disconnecting water, drain, or electrical connections; pre-piped and using condensate water from cooling coils with stainless-steel or brass float-valve mechanism; located in bypass airstream; with flush-cycle timer and solenoid drain valve.

1. Plumbing Components and Valve Bodies: Plastic, linked by flexible rubber hosing, with water fill with air gap and solenoid valve incorporating built-in strainer, pressure-reducing and flow-regulating orifice, and drain with integral air gap.

2. Control: Fully modulating to provide gradual 0 to 100 percent capacity with field-adjustable maximum capacity; with high-water probe.

3. Drain Cycle: Field-adjustable drain duration and drain interval.

H. Integral Electrical Controls: Unit-mounted electrical enclosure with piano-hinged door, grounding lug, combination magnetic starters with overload relays, circuit breakers and cover interlock, and fusible control-circuit transformer.

I. The dual cooling source system shall consist of an air cooled compressor system with the addition of a chilled water coil, a modulating control valve, and a comparative temperature sensor. The system shall be able to function either as a modulating chilled water system or a compressors system or a combination of both. The primary mode of cooling shall be chilled water. Switchover between the two cooling modes shall be performed automatically by the micro pressor control.

J. The water circuit shall include a pre-piped two-way modulating valve. The Liebert iCOM control positions the valve in response to room conditions. Cooling capacity will be controlled by bypassing chilled water around the coil. The modulating valve travel for dehumidification shall be proportional.

K. Required Accessories:

1. High Temperature Sensor: The firestat shall be factory-installed in the unit and shall be factory-set to 125°F (52°C). It shall immediately shut down the environmental control system when activated. The sensor shall be mounted with the sensing element in the return air.

2. Smoke Sensor: The smoke sensor shall be mounted in the electrical panel within the return air compartment. The smoke sensor is not intended to function as or replace any smoke detection
system that may be required by local or national codes. The smoke sensor shall include a supervision contact closure.

3. Condensate Pump, Dual Float: The condensate pump shall have a minimum capacity of 145 GPH (548 l/h) at 20 ft. (58 kPa) head. It shall be complete with integral dual-float switches, pump-and-motor assembly and reservoir. The secondary float shall send a signal to the local alarm and shut down the unit upon high water condition.

4. Low Voltage Terminal Package: Factory-installed and wired terminals shall be provided for field connection to lock out the reheat and humidifier upon contact closure. Two (2) extra normally-open common alarm contacts shall be provided. Two (2) extra remote shutdown terminals shall be provided.

5. Main Fan Overload: A pair of normally-open contacts shall be factory-installed and wired to indicate Main Fan Overload.

6. Compressor Overload: A pair of normally-open contacts shall be factory-installed and wired to each compressor to indicate Compressor Overload.

7. Liquid-On-Floor Sensors: Provide four (4) single-point or one (1) 18-foot cable-type solid state water sensors for installation under the raised floor; to detect and warn of liquid on floor.

8. The manual disconnect switch shall be mounted in the high-voltage section of the electrical panel. The switch shall be accessible from the outside of the unit with the door closed, and shall prevent access to the high-voltage electrical components until switched to the “OFF” position. Disconnect Switch: Non-automatic, molded-case circuit breaker with handle accessible when panel is closed and capable of preventing access until switched to off position.

L. Electronic-Control System: Solid state, with start button, stop button, temporary loss of power indicator, manual-reset circuit breakers, temperature control, humidity control, and monitor panel.

1. Monitor Panel: Backlighted, with no visible indicator lights until operating function is activated; indicators include cooling, humidification, loss of airflow, change filters, high temperature, low temperature, high humidity, low humidity, high head pressure (each compressor), and low suction pressure (each compressor).

2. Temperature- and Humidity-Control Modules: Solid state, plug-in; with adjustable set point, push-to-test calibration check button, and built-in visual indicators to show mode of operation.

3. Location: Behind hinged door in front of unit; isolated from conditioned airstream to allow service while system is operating.

M. Microprocessor-Control System: Continuously monitors operation of process cooling system; continuously displays room temperature and room relative humidity; sounds alarm on system malfunction and simultaneously displays problem. If more than one malfunction occurs, system displays fault in sequence with room temperature and continues to display fault when malfunction is cleared until system is reset.

1. Malfunctions: Power loss; loss of airflow; clogged air filter; high room temperature; low room temperature; high humidity; low humidity; smoke/fire; water under floor; supply fan overload; compressor overload (each compressor individually); compressor low pressure (each compressor individually); and compressor high pressure (each compressor individually).

2. Digital Display: Control power on; humidifying; dehumidifying; compressor operating (each compressor individually); heat operating; economy cooling.

3. Push buttons shall stop and start process cooling system, silence audible alarm, test indicators, and display room’s relative humidity.

4. BAS Interface: Factory-installed hardware and software to enable the BAS to monitor, control, and display unit status and alarms. Monitor on-off status, common trouble alarm, and space temperature; provide control of enable-disable operation and space temperature set-point adjustment.
2.3 FAN MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Motors."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.

B. Power Cable Raceway: Any and all power cable installed inside the unit proper, such as (but not limited to) power cabling to the fan/motor assembly, shall be installed inside flexible or rigid conduit as further specified in Division 26 Section “Raceways.” Cabling installed inside a separate dedicated power or control enclosure need not be installed in raceway.

2.4 AIR-COOLED CONDENSER

1. The condenser shall be designed to reject waste heat to outdoor air and to control refrigerant head pressure as indoor equipment loading and outdoor ambient conditions change.
2. The manufacturer shall design and furnish all equipment in the quantities and configurations shown on the project drawings.
3. The air-cooled condenser shall be factory-assembled unit, complete with integral panel, designed for outdoor installation. The condenser shall be a draw-through design.
4. Condenser shall consist of microchannel condenser coil(s), propeller fan(s) direct-driven by individual fan motor(s), electrical controls, housing and mounting legs. The Liebert air-cooled condenser shall provide superior heat transfer, reduce air-side pressure drop, increase energy efficiency and significantly reduce the system refrigerant volume required. EC fans and fan operation techniques shall reduce sound levels. Various methods shall be available to match indoor unit type, maximum outdoor design ambient and maximum sound requirements.
5. Coils shall be constructed of aluminum microchannel tubes, fins, and manifolds. Tubes shall be flat and contain multiple, parallel-flow microchannels and span between aluminum heads. Full-depth louvered aluminium fins shall fill spaces between the tubes. Tubes, fins and aluminium headers shall be oven-brazed to from a complete refrigerant to air heat exchanger coil. Copper stub pipes shall be electric resistance-welded to aluminium coils and joints protected with polyolefin to seal joints from corrosive environmental elements. Coil assemblies shall be factory leak tested at a minimum of 300 psig (2069 kPag). Hot-gas and liquid lines shall be copper and shall be brazed using nitrogen gas flow to the stub pipes with spun-closed ends for customer piping connections. Complete coil/piping assembly shall be then filled and sealed with an inert gas holding charge for shipment.
6. Aluminum microchannel coil with E-coat shall provide a flexible epoxy coating to all coil surface areas without material bridging between fins. E-coat shall increase coil corrosion protection and shall reduce heat rejection capacity degradation to less than 10% after a severe 2000 hour 5% neutral salt-spray test.
7. The fan motor.blade assembly shall have an exterior rotor motor, fan blades and fan/finger guard. Fan blades shall be constructed of cast aluminum or glass-reinforced polymeric material. Fan guards shall be heavy gauge, close-meshed steel wire, coated with a black, corrosion-resistant finish. Fan terminal blocks shall be in an IP54 enclosure on the top of the fan motor. Fan assemblies shall be factory-balanced, tested before shipment, and mounted securely to the condenser structure.
8. The EC-fan motors shall be electronically commutated for variable-speed operation and shall have ball bearings. The EC fans shall provide internal overload protecting through built-in electronics. Each EC-fan motor shall have a built-in controller and communication module linked via RS485 communication wire to each fan and the Premium Control Board, allowing each fan to receive and respond to precise fan speed inputs from the Premium control boards.
9. Electronic controls and service-connection terminals shall be provided and factory-wired inside the attached control panel section. Only high-voltage supply wiring and low-voltage indoor unit communication interlock wiring are required at condenser installation.

10. The EC fan premium control system shall include an electronic control board, ec-fan motor with integral overload protection, refrigerant and ambient temperature thermistors and refrigerant pressure transducers. The premium control board shall communicated directly with the indoor units’ control via field supplied CAN bus communication wires and field-supplied low-voltage interlock wires. The controls board shall use sensor and communication inputs to maintain refrigerant pressure by control lowing each ec fan on the same refrigerant circuit to the same speed. The premium control board shall be rated to a temperature of 30 degrees F to 125 degrees F.

11. A locking type disconnect switch shall be factory-mounted and wired to the electrical panel and be capable of disrupting the flow of power to the unit and controlled via an externally-mounted locking and lockable door handle. The locking disconnect shall be lockable in support of lockout tagout safety programs.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for hydronic piping systems to verify actual locations of piping connections before equipment installation.

C. Examine walls, floors, and roofs for suitable conditions where computer-room air conditioners will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Layout and install computer-room air conditioners and suspension system coordinated with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

B. Install computer-room air conditioners level and plumb, maintaining manufacturer’s recommended clearances. Install according to AHRI Guideline B. Comply with requirements for vibration isolation devices specified in Division 23 Section “Mechanical Vibration Isolation.” Comply with requirements for hangers and supports (suspended units only) as specified in Division 23 Section “Hangers and Supports.”

3.3 CONNECTIONS

A. Piping installation requirements are specified in other heating, ventilating, and air-conditioning Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to machine to allow service and maintenance.

C. Water Connections: Comply with applicable requirements in Division 22 Section “Domestic Water Piping.” Provide adequate connections for humidifier makeup and flushing system.

D. Chilled Water, Refrigerant, and Condensate drain Piping: Comply with applicable requirements in Division 23 Section “Hydronic Piping.” Provide shutoff valves in inlet and outlet piping to heating coils.

3.4 FIELD REFRIGERANT PIPING

A. Copper Tube: ASTM B 280, Type ACR.

B. Wrought-Copper Fittings: ASME B16.22.

C. Wrought-Copper Unions: ASME B16.22.

D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
E. Suction Lines, Hot-Gas and Liquid Lines: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.

F. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.

G. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

H. Install refrigerant piping according to ASHRAE 15.

I. Install piping adjacent to machines to allow service and maintenance.

J. Install piping free of sags and bends.

K. Install fittings for changes in direction and branch connections.

L. Select system components with pressure rating equal to or greater than system operating pressure.

M. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

N. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection.

O. Slope refrigerant piping as follows:
 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps and double risers to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

P. When soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

Q. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

R. Identify refrigerant piping and valves according to Division 23 Section “Basic Mechanical Materials and Methods.”

S. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

T. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

U. Soldered Joints: Construct joints according to ASTM B 828 or CDA’s “Copper Tube Handbook.”

V. Hanger, support, and anchor products are specified in Division 23 Section “Hangers and Supports.”

W. System Charging: Charge system using the following procedures:
 1. Install core in filter dryers after leak test but before evacuation.
 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers (67 Pa). If vacuum holds for 12 hours, system is ready for charging.
 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig (14 kPa).
 4. Charge system with a new filter-dryer core in charging line.

3.5 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
 1. Inspect for and remove shipping bolts, blocks, and tie-down straps.
2. After installing computer-room air conditioners and after electrical circuitry has been energized, test for compliance with requirements.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Prepare test and inspection reports. Computer-room air conditioners will be considered defective if they do not pass tests and inspections.

D. After startup service and performance test, change filters and flush humidifier.

3.6 ADJUSTING

A. Adjust initial temperature and humidity set points.

B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain computer-room air conditioners.

END OF SECTION
SECTION 23 82 16
DUCT-MOUNTED COILS

PART 1 - GENERAL
1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.
 B. Section 23 0100 “Basic Mechanical Requirements,” and Section 23 0500 “Basic Mechanical
 Materials and Methods” all apply to the work of this Section as if fully repeated herein.

1.2 SUMMARY
 A. Section includes stand-alone duct-mounted heating and cooling coils that are not part of any
 packaged piece of equipment; of the following types:
 1. Hydronic Air Coils.
 B. See other Division 23 Sections for specification of heating and cooling coils that are factory-
 installed as part of packaged equipment.

1.3 SUBMITTALS
 A. Product Data: For each type of product. Include construction details, material descriptions,
 dimensions of individual components and profiles, and finishes for each air coil. Include rated
 capacities, operating characteristics, and pressure drops for each air coil.
 B. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which coil location and
 ceiling-mounted access panels are shown and coordinated with each other.
 C. Operation and Maintenance Data: For air coils to include in operation and maintenance
 manuals.

1.4 REFERENCED STANDARDS
 A. ASHRAE Compliance: Comply with applicable requirements in ASHRAE 62.1, Section 5 –
 “Systems and Equipment” and Section 7 – “Construction and Startup.”

PART 2 - PRODUCTS
2.1 MANUFACTURERS
 A. Hydronic Coils: Subject to compliance with requirements, provide products by one of the
 following.
 1. Aerofin.
 2. Carrier Corporation.
 3. Dunham-Bush, Inc.
 5. Heatcraft Worldwide.
 6. Trane.
 7. Commercial Coil, Inc.

2.2 HYDRONIC COILS
 A. Performance Ratings: Tested and rated according to AHRI 410 and ASHRAE 33.
 B. Minimum Working-Pressure/Temperature Ratings: 200 psig (1380 kPa), 325°F (163°C).
 C. Source Quality Control: Factory tested to 300 psig (2070 kPa) air under water.
 D. Tubes: Copper 5/8-inch O.D. with 0.025-inch minimum wall. Select coils for not less than 1 fps
 water velocity and not more than 6 fps water velocity.
 E. Provide coils with copper tube return bends with the final minimum thickness of 0.035 inch for
 5/8 inch diameter tubing.
 F. Fins: Aluminum of minimum thickness 0.006-inch. Spacing shall not exceed 8 per inch for
 heating coils.
 G. Headers: Seamless copper tube with brazed joints, prime coated.
H. Frames (Heating Coils): Galvanized-steel channel frame, minimum 20-gauge thickness, for flanged mounting.

I. Duct mounted access door shall be installed upstream and downstream of all hydronic coils.

2.3 DUCT-MOUNTED COIL CONTROLS

A. Thermostats, control valves, and other devices associated with control of duct-mounted coils are specified in Division 23 Section “HVAC Instrumentation and Control.”

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine ducts, plenums, and casings to receive air coils for compliance with requirements for installation tolerances and other conditions affecting coil performance.

B. Examine roughing-in for piping systems to verify actual locations of piping connections before coil installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install coils level and plumb.

B. Install coils in metal ducts and casings constructed according to SMACNA’s “HVAC Duct Construction Standards, Metal and Flexible.”

C. Install moisture eliminators for cooling coils. Extend drain pan under moisture eliminator.

D. Straighten bent fins on air coils.

E. Clean coils using materials and methods recommended in writing by manufacturers, and clean inside of casings and enclosures to remove dust and debris.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties. Do not connect coils to piping with flexible hoses of any type unless expressly detailed on Drawings.

B. Arrange the piping adjacent to coils to allow access for service and maintenance.

C. Connect water piping with unions and shutoff valves to allow coils to be disconnected without draining piping.

D. Clean coils using materials and methods recommended in writing by manufacturers, and clean inside of casings and enclosures to remove dust and debris.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After electrical circuitry has been energized, operate electric coils to confirm proper unit operation.

2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Prepare test and inspection reports.

END OF SECTION
SECTION 26 0500
COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Electrical equipment coordination and installation.
 2. Common electrical installation requirements.

1.3 COORDINATION
A. Coordinate arrangement, mounting, and support of electrical equipment:
 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 3. To allow right of way for piping and conduit installed at required slope.
 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

E. Coordinate sleeve selection and application and installation as specified in Division 26 Section "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION
A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items unless specifically noted otherwise.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL RACEWAY AND CABLE PENETRATIONS
A. Install sleeves as specified in Division 26 Section "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."
3.3 SLEEVE-SEAL INSTALLATION
 A. Install sleeve-seals as specified in Division 26 Section “Sleeves and Sleeve Seals for Electrical Raceways and Cabling.”

3.4 FIRESTOPPING
 A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical raceway and cabling installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

3.5 DEMONSTRATION
 A. At substantial completion, contractor shall walk owner and facility maintenance personnel through the building to point out major electrical equipment locations including but not limited to:
 1. Panelboards
 2. Disconnects
 3. Driver Locations
 4. Inverter Locations
 5. Lighting Control equipment
 6. Fire alarm equipment consisting of fire alarm control panel, annunciator, power supplies, etc.
 7. Access panels

END OF SECTION 26 0500
SECTION 26 0519
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Copper building wire rated 600 V or less.
 2. Metal-clad cable, Type MC, rated 600 V or less.
 3. Connectors, splices, and terminations rated 600 V and less.

1.3 DEFINITIONS
A. EPDM: Ethylene-propylene-diene terpolymer rubber
B. NBR: Acrylonitrile-butadiene rubber
C. RoHS: Restriction of Hazardous Substances.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Product Schedule: Indicate type, use, location, and termination locations.

1.5 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

1.6 QUALITY ASSURANCE
A. Testing Agency Qualifications: Member company of NETA.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.
B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE
A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.
B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Alcan Products Corporation; Alcan Cable Division.
 3. General Cable Corporation.
 4. Senator Wire & Cable Company.
 5. Southwire Company.
C. Standards:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 2. RoHS compliant.
 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
D. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8
E. Conductor Insulation:
 1. **Type THHN and Type THWN-2**: Comply with UL 83. *(Minimum insulation rating shall be 90 deg C)*

2.2 **METAL-CLAD CABLE, TYPE MC**
 A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath.
 B. **MC Cable only to be used for dedicated light fixture whips up to 6'-0" long or where specifically permitted on drawings.**
 C. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Alcan Products Corporation; Alcan Cable Division.
 3. General Cable Corporation.
 4. Senator Wire & Cable Company.
 5. Southwire Company.
 D. Standards:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 2. Comply with UL 1569.
 3. RoHS compliant.
 4. Conductor and Cable Marking: Comply with wire and cable marking according to UL’s "Wire and Cable Marking and Application Guide."
 E. Circuits:
 1. **Single circuit with color-coded conductors.**
 F. Conductors: **Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.**
 G. Ground Conductor: **Insulated.**
 H. Conductor Insulation:
 1. **Type THHN/THWN-2**: Comply with UL 83.
 I. Armor: **Steel**, interlocked.
 J. Jacket: PVC applied over armor.

2.3 **CONNECTORS AND SPLICES**
 A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AFC Cable Systems, Inc.
 3. O-Z/Gedney; EGS Electrical Group LLC.
 4. 3M; Electrical Products Division.
 5. Tyco Electronics Corp.
 C. **Use of 3M ScotchLok connectors or push-in wire connectors (similar to WAGO push-in connectors) are not permitted.** All wiring to be done with wire nut type connectors.
PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
B. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THHN/THWN-2, single conductors in raceway.
B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.
C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.
E. Exposed Branch Circuits, Including in Crawlsspaces: Type THHN/THWN-2, single conductors in raceway.
F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.
 1. Metal-clad cable, Type MC cable is only allowed for lighting fixture whips up to 6'-0" long. They must be dedicated whips.
 2. Refer to drawings for other specific locations where MC cable is permitted. (for difficult to reach spaces with a maximum length of 6ft. Longer lengths to be pre-approved by owner)
G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.
H. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.
I. Class 1 Control Circuits: Type THHN/THWN-2, in raceway.
J. Class 2 Control Circuits: Type THHN/THWN-2, in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips that will not damage cables or raceway.
E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."
G. Complete cable tray systems installation according to Section 260536 "Cable Trays for Electrical Systems" prior to installing conductors and cables.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least **12 inches** of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. After installing conductors and cables and before electrical circuitry has been energized, test feeder conductors **over 200 amps** for compliance with requirements.

2. Perform each of the following visual and electrical tests:
 - a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 - b. Test bolted connections for high resistance using one of the following:
 - 1) A low-resistance ohmmeter.
 - 2) Calibrated torque wrench.
 - 3) Thermographic survey.
 - c. Inspect compression-applied connectors for correct cable match and indentation.
 - d. Inspect for correct identification.
 - e. Inspect cable jacket and condition.
 - f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
 - g. Continuity test on each conductor and cable.
 - h. Uniform resistance of parallel conductors.

3. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 - a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
4. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.

B. Cables will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION 26 0519
SECTION 26 0526
GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes grounding and bonding systems and equipment.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Plans showing dimensioned locations of grounding features specified in “Field Quality Control” Article, including the following:
 1) Grounding arrangements and connections for separately derived systems.
B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 “Operation and Maintenance Data,” include the following:
 a. Plans showing as-built, dimensioned locations of grounding features specified in “Field Quality Control” Article, including the following:
 1) Grounding arrangements and connections for separately derived systems.
 b. Instructions for periodic testing and inspection of grounding features at grounding connections for separately derived systems based on NETA MTS.
 1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 2) Include recommended testing intervals.

1.6 QUALITY ASSURANCE
A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the work include, but are not limited to, the following:
 1. Allen-Bradley Co
 2. Alltec Corporation
 3. Appleton Electric Co
 4. Calpipe Industries Incorporated
 5. Eric, Inc.
6. Harger Lightning & Grounding.
7. Lyncole XIT Grounding
8. Mk3 Entgerprises, LLC Electrical Contractor
9. Superior Grounding Systems, INC.

2.3 CONDUCTORS
A. Insulated Conductors: **Copper** wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
B. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

2.4 CONNECTORS
A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless **compression**-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
D. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.
E. Cable-to-Cable Connectors: Compression type, copper or copper alloy.
F. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.
G. Conduit Hubs: Mechanical type, terminal with threaded hub.
H. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
I. Lay-in Lug Connector: Mechanical type, **copper rated for direct burial** terminal with set screw.
J. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.
K. Signal Reference Grid Clamp: Mechanical type, stamped-steel terminal with hex head screw.
L. Straps: Solid copper, **copper lugs**. Rated for 600 A.
M. Tower Ground Clamps: Mechanical type, copper or copper alloy, terminal **two-piece** clamp.
N. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.
O. Water Pipe Clamps:
 1. Mechanical type, two pieces with **stainless-steel** bolts.
 a. Material: **Tin-plated aluminum**.
 b. Listed for direct burial.
2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

2.5 GROUNDING ELECTRODES
A. Ground Rods: Copper-clad steel, sectional type; 3/4 inch by 10 feet.

PART 3 - EXECUTION

3.1 APPLICATIONS
A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
B. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.
C. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 EQUIPMENT GROUNDING
A. Install insulated equipment grounding conductors with all feeders and branch circuits.
B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
D. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.
E. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.
F. Signal and Communication Equipment: In addition to grounding and bonding required by NFPA 70, provide a separate grounding system complying with requirements in TIA/ATIS J-STD-607-A.
 1. For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
 3. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.
3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.

C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

D. Grounding and Bonding for Piping:
 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

E. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

C. Grounding system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

E. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 1 ohm(s).

F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 26 0526
SECTION 26 0529
HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Steel slotted support systems.
2. Aluminum slotted support systems.
3. Nonmetallic slotted support systems.
4. Conduit and cable support devices.
5. Support for conductors in vertical conduit.
6. Structural steel for fabricated supports and restraints.
7. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
8. Fabricated metal equipment support assemblies.
B. Related Requirements:
1. Section 260548.16 "Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 a. Slotted support systems, hardware, and accessories.
 b. Hangers and supports for electrical equipment and systems.
2. Include rated capacities and furnished specialties and accessories.
B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.
2. Slotted support systems.
3. Equipment supports.
4. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
C. Delegated-Design Submittal: For hangers and supports for electrical systems.
1. Include design calculations and details of hangers.
2. Include design calculations for seismic restraints.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
1. Suspended ceiling components.
2. Ductwork, piping, fittings, and supports.
3. Structural members to which hangers and supports will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Items penetrating finished ceiling, including the following:
 a. Luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Projectors.

B. Seismic Qualification Data: Certificates, for hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.

B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified."
 2. Component Importance Factor: 1.0.
 3. Component Amplification Factor: Per Table 13.6-1 of the ASCE 7-10.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-diameter holes at a maximum of 8 inches o.c. in at least one surface.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube and Conduit
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. Erico International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.
 2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
3. Material for Channel, Fittings, and Accessories: **Galvanized steel.**
4. Channel Width: **Selected for applicable load criteria.**
5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
6. Nonmetallic Coatings: Manufacturer’s standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
7. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Conduit and Cable Support Devices: **Steel** hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 1. Mechanical-Expansion Anchors: Insert-wedge-type, **zinc-coated stainless** steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.
 2. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
 3. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
 4. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 5. Toggle Bolts: **All-steel** springhead type.

PART 3 - EXECUTION

3.1 **APPLICATION**

A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
 1. NECA 1.
 2. NECA 101
 3. NECA 105.

B. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.

C. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
1. Secure raceways and cables to these supports with two-bolt conduit clamps.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
6. To Light Steel: Sheet metal screws.
7. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.

D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 CONCRETE BASES

A. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 “Cast-in-Place Concrete.”

C. Anchor equipment to concrete base as follows:
1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.4 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
B. Touchup: Comply with requirements in Division 09 painting Sections for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 26 0529
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 26 0533
RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Nonmetal conduits, tubing, and fittings.
 3. Metal wireways and auxiliary gutters.

1.3 DEFINITIONS
A. GRC: Galvanized rigid steel conduit.
B. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS
A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 1. Structural members in paths of conduit groups with common supports.
 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
B. Seismic Qualification Certificates: For enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.
C. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AFC Cable Systems, Inc.
 2. Alflex Inc.
 3. Allied Tube & Conduit; a Tyco International Ltd. Co.
4. Anamet Electrical, Inc.; Anaconda Metal Hose.
5. Electri-Flex Co.
7. Maverick Tube Corporation.

B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. GRC: Comply with ANSI C80.1 and UL 6.
D. IMC: Comply with ANSI C80.6 and UL 1242.
E. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 1. Comply with NEMA RN 1.
 2. Coating Thickness: 0.040 inch, minimum.
F. EMT: Comply with ANSI C80.3 and UL 797.
G. FMC: Comply with UL 1; zinc-coated steel.
H. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
I. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
 2. Fittings for EMT:
 a. Material: Steel.
 b. Type: compression.
 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.
J. Joint Compound for IMC, or GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AFC Cable Systems, Inc.
 2. Anamet Electrical, Inc.; Anaconda Metal Hose.
 3. Arnco Corporation.
 4. CANTEX Inc.
 7. ElecSYS, Inc.
 8. Electri-Flex Co.
 9. Lamson & Sessions; Carlon Electrical Products.
 10. Manhattan/CDT/Cole-Flex.
 11. RACO; a Hubbell Company.
 12. Thomas & Betts Corporation.
B. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. ENT: Comply with NEMA TC 13 and UL 1653.

D. RNC: **Type EPC-40-PVC**, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

E. LFNC: Comply with UL 1660.

F. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

G. Fittings for LFNC: Comply with UL 1660.

H. Solvents and Adhesives: As recommended by conduit manufacturer.
 1. Solvent cements and adhesive primers shall have a VOC content of 510 and 550g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper B-Line, Inc.
 2. Hoffman.
 3. Square D; Schneider Electric.

B. Description: Sheet metal, complying with UL 870 and NEMA 250, **Type 1** unless otherwise indicated, and sized according to NFPA 70.
 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: **Screw-cover type** unless otherwise indicated.

E. Finish: Manufacturer’s standard enamel finish.

2.4 PLUG-IN RACEWAY SYSTEM

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on the drawings. Universal Electric Corporation Starline Plug-in Raceway Model Series 60A, power and data configuration.

B. Plug-in Raceway shall be design and manufactured to the following standards.
 1. Low voltage directive (73/23/EEC) including amendment (93/68/EEC)
 2. IEC 60439-1:1999
 3. IEC 60439-2:2000
 4. IEC 61534-1: Requirement for Powertrack (PT) System
 5. UL 857
 6. NEC Article 368 & 386
 7. cETLus
 8. NFPA 70

C. System Description
 1. Electrical Requirement
 a. Voltage: 208Y/120V as indicated on drawings.
 b. Frequency: 60Hz
 c. Ampacity: 60A or as indicated on drawings
d. Neutral Ampacity: 60A

e. Conductors: Quantity: 4 (Phase A,B,C and Neutral)

f. Grounding: copper conductor.

g. Support: To be supported every 32 inches max

h. Short Circuit Rating: 10,000 RMS symmetrical amperes

i. System: Power-Data

D. Components

1. Power End Feeds

a. Installer to configure for left hand, right hand, top or rear wire entry point. All units rated at 480 Volts max, 60amps.

b. Plug-in Module: Plug-in modules to be provided with circuit breaker overcurrent protection. The circuit breakers and receptacles are factory wired.

c. Raceway covers to be of either plug-in modules or blank cover filler sections.

2. Plug-in units shall be polarized to avoid incorrect installation.

3. Provide plug-in units as indicated on the drawings.

E. Installation

1. Install in configuration as shown in drawings at the overhead carrier locations.

2. Connecting Sections of Plug-in Raceway: At a junction of raceway sections, install a joint kit to the end of housing and position the next housing onto the connector.

3. End of runs: Provide end caps at the end of each run.

4. Covers: Install a blank cover filler to sections that don’t have a plug-in module.

5. End Feed: Provide 60amp End Feed power unit at the end of each raceway run. Configure to feed the Plug-in Raceway from behind as shown in details.

2.5 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.

2. EGS/Appleton Electric.

7. RACO; a Hubbell Company.

10. Spring City Electrical Manufacturing Company.

B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, **aluminum**, Type FD, with gasketed cover.

E. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.

F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, **cast aluminum** with gasketed cover.

H. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

I. Device Box Dimensions: **4 inches square by 2-1/8 inches deep** or **4 inches by 2-1/8 inches deep** depending on device configuration or as noted on drawings.

J. Gangable boxes are allowed.

K. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, **Type 1** with continuous-hinge cover with flush latch unless otherwise indicated.

1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.

L. Cabinets:

 1. NEMA 250, **Type 1** galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed Conduit: **GRC**.
2. Concealed Conduit, Aboveground: **GRC**.
3. Underground Conduit: RNC, **Type EPC-40-PVC**, direct buried or concrete encased as noted on drawings.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): **LFMC**.
5. Boxes and Enclosures, Aboveground: NEMA 250, **Type 3R**.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: **EMT**.
2. Exposed, Not Subject to Severe Physical Damage: **EMT**.
3. Exposed and Subject to Severe Physical Damage: **GRC**. Raceway locations include the following:
 a. Loading dock.
 b. Mechanical rooms on walls below 8’ AFF.
4. Concealed in Ceilings and Interior Walls and Partitions: **EMT**.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): **FMC**, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: **GRC**.
7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

F. Install surface raceways only where indicated on Drawings.

G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

G. Conceal conduit and EMT within finished walls and ceilings unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Raceways Embedded in Slabs:
 1. Only Feeders to be installed under slabs (12" below) Branch circuits are not to be run in slabs.
 2. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 3. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 4. Arrange raceways to keep a minimum of 1 inch of concrete cover in all directions.
 5. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 6. Change from ENT to GRC or IMC before rising above floor.

J. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer’s written instructions.

L. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

N. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

O. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

P. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

Q. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

R. Surface Raceways:
 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer’s written instructions. Tape and glue are not acceptable support methods.

S. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

T. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where an underground service raceway enters a building or structure.
 3. Where otherwise required by NFPA 70.

U. Comply with manufacturer’s written instructions for solvent welding RNC and fittings.

V. Expansion-Joint Fittings:
 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RNC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.

4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

W. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for **recessed and semirecessed luminaires**, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

 1. Use LFMC in damp or wet locations subject to severe physical damage.
 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

X. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to **center** of box unless otherwise indicated.

Y. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

Z. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

AA. Locate boxes so that cover or plate will not span different building finishes.

BB. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

CC. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

DD. Set metal floor boxes level and flush with finished floor surface.

3.3 FIRESTOPPING

 A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 PROTECTION

 A. Protect coatings, finishes, and cabinets from damage and deterioration.

 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 26 0533
SECTION 26 0536
CABLE TRAYS FOR ELECTRICAL/COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Wire-mesh cable tray.
 2. Cable tray accessories.
 3. Warning signs.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of cable tray.
 1. Include data indicating dimensions and finishes for each type of cable tray indicated.
B. Shop Drawings: For each type of cable tray.
 1. Show fabrication and installation details of cable trays, including plans, elevations, and sections of components and attachments to other construction elements. Designate components and accessories, including clamps, brackets, hanger rods, splice-plate connectors, expansion-joint assemblies, straight lengths, and fittings.
 2. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 a. Vertical and horizontal offsets and transitions.
 b. Clearances for access above and to sides of cable trays.
 c. Vertical elevation of cable trays above the floor or below bottom of ceiling structure.
 d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
C. Delegated-Design Submittal: For seismic restraints.
 1. Seismic-Restraint Details: Signed and sealed by a qualified professional engineer, licensed in the state where Project is located, who is responsible for their preparation.
 2. Design Calculations: Calculate requirements for selecting seismic restraints.
 3. Detail fabrication, including anchorages and attachments to structure and to supported cable trays.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Floor plans and sections, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Scaled cable tray layout and relationships between components and adjacent structural, electrical, and mechanical elements.
 2. Vertical and horizontal offsets and transitions.
 3. Clearances for access above and to side of cable trays.
 4. Vertical elevation of cable trays above the floor or below bottom of ceiling structure.
B. Seismic Qualification Certificates: For cable trays, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design cable tray supports and seismic bracing.

B. Seismic Performance: Cable trays and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the cable trays will remain in place without separation of any parts when subjected to the seismic forces specified."
 2. Component Importance Factor: 1.0.
 3. Component Amplification Factor: Per Table 13.6-1 of the ASCE 7-10.

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes in cable tray installed outdoors.
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 GENERAL REQUIREMENTS FOR CABLE TRAYS

A. Cable Trays and Accessories: Identified as defined in NFPA 70 and marked for intended location, application, and grounding.
 1. Source Limitations: Obtain cable trays and components from single manufacturer.

B. Sizes and Configurations: See the Cable Tray Schedule on Drawings for specific requirements for types, materials, sizes, and configurations.

C. Structural Performance: See articles for individual cable tray types for specific values for the following parameters:
 1. Uniform Load Distribution: Capable of supporting a uniformly distributed load on the indicated support span when supported as a simple span and tested according to NEMA VE 1.
 2. Concentrated Load: A load applied at midpoint of span and centerline of tray.
 3. Load and Safety Factors: Applicable to both side rails and rung capacities.

2.3 WIRE-MESH CABLE TRAY

A. Existing tray is COOPER B-line Fextray system. New tray shall be tied into the existing tray where noted on drawings.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Cooper B-Line, Inc.
 4. GS Metals Corp.; GLOBETRAY Products.
 5. MONO-SYSTEMS, Inc.
 6. MPHusky.
 7. PW Industries.
 8. Legrand, Cablofil

C. Description:
2. Width: **24 inches** unless otherwise indicated on Drawings.
3. Minimum Usable Load Depth: **4 inches** unless otherwise indicated on Drawings.
4. Straight Section Lengths: **10 feet**, except where shorter lengths are required to facilitate tray assembly.
5. Structural Performance: Capable of supporting a maximum cable load, with a safety factor of 1.5, plus a 200-lb concentrated load, when tested according to NEMA VE 1.
6. Class Designation: Comply with NEMA VE 1, **Class (75lbs/ft) minimum**
7. Splicing Assemblies: Bolted type using serrated flange locknuts.
8. Splice-Plate Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.

D. Materials and Finishes:

1. Steel:
 a. Straight Sections and Fittings: Steel complies with the minimum mechanical properties of ASTM A 1008/A 1008M, Grade 33, Type 2.
 b. Steel Tray Splice Plates: ASTM A 1011/A 1011M, HSLAS, Grade 50, Class 1.
 c. Fasteners: Steel complies with the minimum mechanical properties of ASTM A 510/A 510M, Grade 1008.
 1) Hardware: Galvanized, ASTM B 633.

E. Sizes and Configurations: Refer to drawings for specific requirements.
1. Center Hanger supports may be used only when specifically indicted.
2. Cable tray shall be sized to accept a minimum of 20% spare capacity.

2.4 CABLE TRAY ACCESSORIES

A. Fittings: Tees, crosses, risers, elbows, and other fittings as indicated, of same materials and finishes as cable tray.
B. Barrier Strips: Same materials and finishes as for cable tray.
C. Cable tray supports and connectors, including bonding jumpers, as recommended by cable tray manufacturer.
D. Provide **cable tray liner** where passing through exposed ceilings.

2.5 WARNING SIGNS

A. Lettering: **1-1/2-inch** high, black letters on yellow background, with legend "WARNING! NOT TO BE USED AS WALKWAY, LADDER, OR SUPPORT FOR LADDERS OR PERSONNEL."
B. Comply with requirements for fasteners in Section 260553 "Identification for Electrical Systems."

2.6 SOURCE QUALITY CONTROL

A. Testing: Test and inspect cable trays according to **NEMA VE 1**.

PART 3 - EXECUTION

3.1 CABLE TRAY INSTALLATION

A. Install cable trays according to **NEMA VE 2**.
B. Install cable trays as a complete system, including fasteners, hold-down clips, support systems, barrier strips, adjustable horizontal and vertical splice plates, elbows, reducers, tees, crosses, cable dropouts, adapters, covers, and bonding.
C. Install cable trays so that the tray is accessible for cable installation and all splices are accessible for inspection and adjustment.
D. Remove burrs and sharp edges from cable trays.
E. Join aluminum cable tray with splice plates; use four square neck-carriage bolts and locknuts.
F. Fasten cable tray supports to building structure and install seismic restraints.
G. Design fasteners and supports to carry cable tray, the cables, and a concentrated load of 200 lb. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems."
 Comply with seismic-restraint details according to Section 260548.16 "Seismic Controls for Electrical Systems."
H. Place supports so that spans do not exceed maximum spans on schedules and provide clearances shown on Drawings. Install intermediate supports when cable weight exceeds the load-carrying capacity of the tray rungs.
I. Construct supports from channel members, threaded rods, and other appurtenances furnished by cable tray manufacturer. Arrange supports in trapeze or wall-bracket form as required by application.
J. Support bus assembly to prevent twisting from eccentric loading.
K. Install center-hung supports for single-rail trays designed for 60 versus 40 percent eccentric loading condition, with a safety factor of 3.
L. Locate and install supports according to NEMA VE 2. Do not install more than one cable tray splice between supports.
M. Support wire-basket cable trays with trapeze hangers.
N. Support trapeze hangers for wire-basket trays with 3/8-inch diameter rods.
O. Make connections to equipment with flanged fittings fastened to cable trays and to equipment. Support cable trays independent of fittings. Do not carry weight of cable trays on equipment enclosure.
P. Install expansion connectors where cable trays cross building expansion joints and in cable tray runs that exceed dimensions recommended in NEMA VE 2. Space connectors and set gaps according to applicable standard.
Q. Make changes in direction and elevation using manufacturer's recommended fittings.
R. Make cable tray connections using manufacturer's recommended fittings.
S. Seal penetrations through fire and smoke barriers. Comply with requirements in Section 078413 "Penetration Firestopping."
T. Install capped metal sleeves for future cables through firestop-sealed cable tray penetrations of fire and smoke barriers.
U. Install cable trays with enough workspace to permit access for installing cables.
V. Install barriers to separate cables of different systems, such as power, communications, and data processing; or of different insulation levels, such as 600, 5000, and 15 000 V.
W. Install permanent covers, if used, after installing cable. Install cover clamps according to NEMA VE 2.
X. Clamp covers on cable trays installed outdoors with heavy-duty clamps.
Y. Install warning signs in visible locations on or near cable trays after cable tray installation.

3.2 CABLE TRAY GROUNDING
A. Ground cable trays according to NFPA 70 unless additional grounding is specified. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems."
B. Cable trays shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.
C. Cable trays with single-conductor power conductors shall be bonded together with a grounding conductor run in the tray along with the power conductors and bonded to the tray at 72-inch
intervals. The grounding conductor shall be sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors," and Article 392, "Cable Trays."

D. When using epoxy- or powder-coat painted cable trays as a grounding conductor, completely remove coating at all splice contact points or ground connector attachment. After completing splice-to-grounding bolt attachment, repair the coated surfaces with coating materials recommended by cable tray manufacturer.

E. Bond cable trays to power source for cables contained within with bonding conductors sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors."

3.3 CABLE INSTALLATION

A. Install cables only when each cable tray run has been completed and inspected.

B. Fasten cables on horizontal runs with cable clamps or cable ties according to NEMA VE 2. Tighten clamps only enough to secure the cable, without indenting the cable jacket. Install cable ties with a tool that includes an automatic pressure-limiting device.

C. Fasten cables on vertical runs to cable trays every 18 inches.

D. Fasten and support cables that pass from one cable tray to another or drop from cable trays to equipment enclosures. Fasten cables to the cable tray at the point of exit and support cables independent of the enclosure. The cable length between cable trays or between cable tray and enclosure shall be no more than 72 inches.

E. Tie MI cables down every 36 inches where required to provide a 2-hour fire rating and every 72 inches elsewhere.

3.4 CONNECTIONS

A. Remove paint from all connection points before making connections. Repair paint after the connections are completed.

B. Connect pathways to cable trays according to requirements in NEMA VE 2 and NEMA FG 1.

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. After installing cable trays and after electrical circuitry has been energized, survey for compliance with requirements.

2. Visually inspect cable insulation for damage. Correct sharp corners, protuberances in cable trays, vibrations, and thermal expansion and contraction conditions, which may cause or have caused damage.

3. Verify that the number, size, and voltage of cables in cable trays do not exceed that permitted by NFPA 70. Verify that communications or data-processing circuits are separated from power circuits by barriers or are installed in separate cable trays.

4. Verify that there are no intruding items such as pipes, hangers, or other equipment in the cable tray.

5. Remove dust deposits, industrial process materials, trash of any description, and any blockage of tray ventilation.

6. Visually inspect each cable tray joint and each ground connection for mechanical continuity. Check bolted connections between sections for corrosion. Clean and retorque in suspect areas.

7. Check for improperly sized or installed bonding jumpers.

8. Check for missing, incorrect, or damaged bolts, bolt heads, or nuts. When found, replace with specified hardware.

9. Perform visual and mechanical checks for adequacy of cable tray grounding; verify that all takeoff raceways are bonded to cable trays. Test entire cable tray system for continuity. Maximum allowable resistance is 1 ohm.

B. Prepare test and inspection reports.
3.6 PROTECTION

A. Protect installed cable trays and cables.
 1. Install temporary protection for cables in open trays to safeguard exposed cables against falling objects or debris during construction. Temporary protection for cables and cable tray can be constructed of wood or metal materials and shall remain in place until the risk of damage is over.
 2. Repair damage to galvanized finishes with zinc-rich paint recommended by cable tray manufacturer.
 3. Repair damage to paint finishes with matching touchup coating recommended by cable tray manufacturer.

END OF SECTION 26 0536
SECTION 26 0544
SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
B. Related Requirements:
 1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES
A. Wall Sleeves:
B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
C. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
D. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS
A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Advance Products & Systems, Inc.
 b. CALPICO, Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.
2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating of length required to secure pressure plates to sealing elements.

2.3 GROUT
A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION
3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS
A. Comply with NECA 1.
B. Comply with NEMA VE 2 for cable tray and cable penetrations.
C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.
D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

END OF SECTION 26 0544
SECTION 26 0548.16
SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Restraint channel bracings.
 2. Restraint cables.
 4. Mechanical anchor bolts.
 5. Adhesive anchor bolts.

B. Related Requirements:
 1. Section 260529 "Hangers and Supports for Electrical Systems" for commonly used electrical supports and installation requirements.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES.
 b. Annotate to indicate application of each product submitted and compliance with requirements.

B. Delegated-Design Submittal: For each seismic-restraint device.
 1. Include design calculations and details for selecting seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 2. Design Calculations: Calculate static and dynamic loading caused by equipment weight, operation, and seismic forces required to select seismic restraints and for designing vibration isolation bases.
 a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 3. Seismic-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
d. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints.
B. Qualification Data: For professional engineer and testing agency.
C. Welding certificates.
D. Field quality-control reports.

1.5 QUALITY ASSURANCE
A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.
B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis. They shall bear anchorage preapproval from OSHPD in addition to preapproval, showing maximum seismic-restraint ratings, by ICC-ES or another agency acceptable to authorities having jurisdiction. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) that support seismic-restraint designs must be signed and sealed by a qualified professional engineer.
E. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Seismic-Restraint Loading:
 1. Seismic Design Category as Defined in the IBC: B.
 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: I.
 a. Component Importance Factor: 1.0.
 c. Component Amplification Factor: 1.0.
 3. Design Spectral Response Coefficient, Sds: 0.196.
 4. Design Spectral Response Coefficient, Sd1: 0.088

2.2 RESTRAINT CHANNEL BRACINGS
A. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end, with other matching components, and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.3 RESTRAINT CABLES
A. Restraint Cables: ASTM A 603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.
2.4 SEISMIC-RESTRAINT ACCESSORIES
A. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
B. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
C. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings and matched to type and size of anchor bolts and studs.
D. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings and matched to type and size of attachment devices used.
E. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.5 MECHANICAL ANCHOR BOLTS
A. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.6 ADHESIVE ANCHOR BOLTS
A. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine areas and equipment to receive seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Examine roughing-in for reinforcement and cast-in-place anchors to verify actual locations before installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS
A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an evaluation service member of ICC-ES.
B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods caused by seismic forces.
C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION
A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."
B. Equipment and Hanger Restraints:
 1. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 2. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES providing required submittals for component.
C. Install cables so they do not bend across edges of adjacent equipment or building structure.
D. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

E. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

F. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 5. Set anchors to manufacturer's recommended torque using a torque wrench.
 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION
A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where connection is terminated to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.5 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Perform the following tests and inspections:
 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 5. Test to 90 percent of rated proof load of device.
C. Seismic controls will be considered defective if they do not pass tests and inspections.
D. Prepare test and inspection reports.

3.6 ADJUSTING
A. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 26 0548.16
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Color and legend requirements for raceways, conductors, and warning labels and signs.
 2. Labels.
 4. Tapes and stencils.
 5. Tags.
 7. Cable ties.
 9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components
 and profiles, and finishes for electrical identification products.
 B. Identification Schedule: For each piece of electrical equipment and electrical system components
 to be an index of nomenclature for electrical equipment and system components used in
 identification signs and labels. Use same designations indicated on Drawings.
 C. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Comply with ASME A13.1.
B. Comply with NFPA 70.
D. Comply with ANSI Z535.4 for safety signs and labels.
E. Comply with NFPA 70E and Section 260574 "Overcurrent Protective Device Arc-Flash
 Study" requirements for arc-flash warning labels.
F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used
 by label printers, shall comply with UL 969.
G. Thermal Movements: Allow for thermal movements from ambient and surface temperature
 changes.
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS
A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.
B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder and branch-circuit conductors.

1. Color shall be factory applied.
2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
 d. Neutral: White
3. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
 c. Phase C: Yellow.
 d. Neutral: Gray
5. Colors for Isolated Grounds: Green with white stripe.

C. Raceways and Cables Carrying Circuits at More Than 600 V:

1. Black letters on an orange field.
2. Legend: "DANGER - CONCEALED HIGH VOLTAGE WIRING."

D. Warning Label Colors:

1. Identify system voltage with black letters on an orange background.

E. Warning labels and signs shall include, but are not limited to, the following legends:

1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.3 LABELS

A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

B. Snap-around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters and that stay in place by gripping action.

1. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized such that the clear shield overlaps the entire printed legend.
2. Marker for Labels: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

D. Self-Adhesive Labels: Vinyl, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.

1. Minimum Nominal Size:
 a. 1-1/2 by 6 inches for raceway and conductors.
 b. 3-1/2 by 5 inches for equipment.
 c. As required by authorities having jurisdiction.
2.4 **BANDS AND TUBES**
A. Snap-around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters and that stay in place by gripping action.

2.5 **TAPES AND STENCILS**
A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.
C. Floor Marking Tape: 2-inch- wide, 5-mil pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.

2.6 **TAGS**
A. Write-on Tags:
 1. Polyester Tags: **0.010 inch** thick, with corrosion-resistant grommet and cable tie for attachment.
 2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.7 **SIGNS**
A. Metal-Backed Butyrate Signs:
 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch galvanized-steel backing, punched and drilled for fasteners, and with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal Size: 10 by 14 inches.
B. Laminated Acrylic or Melamine Plastic Signs:
 1. Engraved legend.
 2. Thickness:
 a. For signs up to 20 sq. in, minimum 1/16 inch.
 b. For signs larger than 20 sq. in., 1/8 inch thick.
 c. Engraved legend with **black letters on white face**.
 d. Punched or drilled for mechanical fasteners with 1/4-inch grommets in corners for mounting.
 e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 **CABLE TIES**
A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.
B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 7000 psi.
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F.
 5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.

D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.

G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 1. Secure tight to surface of conductor, cable, or raceway.

I. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch- high letters for emergency instructions at equipment used for power transfer.

J. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.

K. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:
 1. "POWER/VOLTAGE."
 2. "EMERGENCY POWER."
 3. "FIRE ALARM SYSTEM POWER."

L. Vinyl Wraparound Labels:
1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.

2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

M. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.

N. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.

O. Self-Adhesive Labels:
 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.

P. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.

Q. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.

R. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.

S. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.

T. Write-on Tags:
 1. Place in a location with high visibility and accessibility.
 2. Secure using cable ties appropriate for location.

U. Metal-Backed Butyrate Signs:
 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.

V. Laminated Acrylic or Melamine Plastic Signs:
 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.

W. Cable Ties: General purpose, for attaching tags, except as listed below:
 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.

C. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120V to Ground: Identify with self-adhesive **vinyl tape applied in bands**.
 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
D. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:

1. "EMERGENCY POWER."
2. "POWER"
3. "FIRE ALARM SYSTEM"

E. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use **self-adhesive wraparound labels** to identify the phase.

1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

F. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use **self-adhesive labels** with the conductor or cable designation, origin, and destination.

G. Control-Circuit Conductor Termination Identification: For identification at terminations, provide **self-adhesive labels** with the conductor designation.

H. Conductors to Be Extended in the Future: Attach **marker tape** to conductors and list source.

I. Auxiliary Electrical Systems Conductor Identification: **Marker tape** that is uniform and consistent with system used by manufacturer for factory-installed connections.

1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.

J. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.

K. Workspace Indication: Apply **floor marking tape** to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

L. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.

M. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: **Metal-backed, butyrate warning signs.**

1. Apply to exterior of door, cover, or other access.
2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

O. Operating Instruction Signs: **Laminated acrylic or melamine plastic signs.**

P. Emergency Operating Instruction Signs: **Laminated acrylic or melamine plastic signs** with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for **power transfer.**

Q. Equipment Identification Labels:

1. Indoor Equipment: **Laminated acrylic or melamine plastic sign.**
2. Outdoor Equipment: **Laminated acrylic or melamine sign.**
3. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of an **engraved**, laminated acrylic or melamine label.
b. Enclosures and electrical cabinets.

c. Access doors and panels for concealed electrical items.

d. Switchgear.

e. Switchboards.

f. Transformers: Label that includes tag designation indicated on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.

g. Emergency system boxes and enclosures.

h. Enclosed switches.

i. Enclosed circuit breakers.

j. Enclosed controllers.

k. Variable-speed controllers.

l. Push-button stations.

m. Power-transfer equipment.

n. Contactors.

o. Remote-controlled switches, dimmer modules, and control devices.

p. Battery-inverter units.

q. Battery racks.

r. Power-generating units.

s. Monitoring and control equipment.

END OF SECTION 26 0553
SECTION 26 0572
OVERCURRENT PROTECTIVE DEVICE SHORT-CIRCUIT STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.
B. Study only limited to new panels provided as part of this project as applicable.

1.3 DEFINITIONS
A. One-Line Diagram: A diagram which shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
B. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.
C. SCCR: Short-circuit current rating.
D. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS
A. Product Data: For computer software program to be used for studies.
B. Other Action Submittals: Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
 1. Short-circuit study input data, including completed computer program input data sheets.
 2. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.
 a. Submit study report for action prior to receiving final approval of the distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that the selection of devices and associated characteristics is satisfactory.
 b. Single-line diagram, reflecting field investigation results and results of short-circuit study.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Short-Circuit Study Specialist.
B. Product Certificates: For short-circuit study software, certifying compliance with IEEE 399.

1.6 QUALITY ASSURANCE
A. Studies shall use SKM Power Tools Electrical Engineering Software computer program (PTW32). Manual calculations or studies utilizing other software programs are not acceptable.
B. Short-Circuit Study Specialist Qualifications: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE
B. Comply with IEEE 399 and IEEE 551.
C. Analytical features of fault-current-study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
D. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS

A. Executive summary.
B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of the computer printout.
C. One-line diagram, showing the following:
 1. Protective device designations and ampere ratings.
 2. Cable size and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center, and panelboard designations.
 6. Calculated X/R ratios and equipment interrupting rating (1/2 cycle) fault currents.
D. Comments and recommendations for system improvements, where needed.
E. Protective Device Evaluation:
 1. Evaluate equipment and protective devices and compare to short-circuit ratings.
 2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.
 3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.
 5. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
G. Short-Circuit Study Output:
 1. Short Circuit Study Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated fault-current magnitude and angle.
 c. Show calculated X/R ratio and equipment interrupting rating (1/2 cycle fault currents on electrical distribution system diagram).
 2. Equipment Evaluation Report:
 a. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 b. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.
c. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

3. Electronic models of all studies performed shall be turned over to the owner in digital format and shall include the complete SKM data files for the project.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Obtain all data necessary for the conduct of the study.
 1. Verify completeness of data supplied on the Riser diagram. Call any discrepancies to the attention of Engineer.
 2. For equipment provided that is Work of this Project, use characteristics submitted under the provisions of action submittals and information submittals for this Project.
 3. For equipment and which is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. The qualifications of technicians and engineers shall be qualified as defined by NFPA 70E.

B. Gather and tabulate the following input data to support the short-circuit study. Comply with recommendations in IEEE 551 as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT Level III certification or NICET Electrical Power Testing Level III certification.
 1. Product Data for Project's overcurrent protective devices involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 2. Obtain electrical power utility impedance at the service.
 3. Power sources and ties.
 4. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
 5. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
 6. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip, SCCR, current rating, and breaker settings.
 7. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
 8. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
 9. Motor horsepower and NEMA MG 1 code letter designation.
 10. Cable sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).

3.2 SHORT-CIRCUIT STUDY

A. Perform study following the general study procedures contained in IEEE 399.
B. Calculate short-circuit currents according to IEEE 551.
C. Base study on the device characteristics supplied by device manufacturer.
D. Begin short-circuit current analysis at the service, extending down to the system overcurrent protective devices as follows:
 1. To normal system low-voltage load buses where fault current is 10 kA or less.
2. Exclude equipment rated 240-V ac or less when supplied by a single transformer rated less than 125 kVA.

E. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.

F. The calculations shall include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and shall apply to low- and medium-voltage, three-phase ac systems. The calculations shall also account for the fault-current dc decrement, to address the asymmetrical requirements of the interrupting equipment.

 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

G. Calculate the maximum available short-circuit current in amperes rms symmetrical at circuit-breaker positions of the electrical power distribution system. The calculation shall be for a current immediately after initiation and for a three-phase bolted short circuit at each of the following:

 1. Switchgear and switchboard bus.
 2. Medium-voltage controller.
 3. Motor-control center.
 4. Distribution panelboard.
 5. Branch circuit panelboard.
 6. Three phase branch circuits with overcurrent protective devices installed with a rating equal to or greater than 30 amps.
 7. Motor circuit overcurrent protective devices for motors with a rating equal to or greater than 10 horsepower

3.3 ADJUSTING

 A. Make minor modifications to equipment as required to accomplish compliance with short-circuit study.

3.4 DEMONSTRATION

 A. Train Owner's operating and maintenance personnel in the use of study results.

END OF SECTION 26 0572
SECTION 26 0573
OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes computer-based, overcurrent protective device coordination studies to determine overcurrent protective devices and to determine overcurrent protective device settings for selective tripping.

B. Study is only limited to new panels provided as part of this project as applicable.

1.3 DEFINITIONS
A. One-Line Diagram: A diagram which shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

B. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.

C. SCCR: Short-circuit current rating.

D. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS
A. Product Data: For computer software program to be used for studies.

B. Other Action Submittals: Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
 1. Coordination-study input data, including completed computer program input data sheets.
 2. Study and equipment evaluation reports.
 3. Overcurrent protective device coordination study report; signed, dated, and sealed by a qualified professional engineer.

a. Submit study report for action prior to receiving final approval of the distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that the selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Coordination Study Specialist.

B. Product Certificates: For overcurrent protective device coordination study software, certifying compliance with IEEE 399.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For the overcurrent protective devices to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

a. The following parts from the Protective Device Coordination Study Report:
 1) One-line diagram.
 2) Protective device coordination study.
 3) Time-current coordination curves.
b. Power system data.

1.7 QUALITY ASSURANCE
A. Studies shall use SKM Power Tools Electrical Engineering Software computer program (PTW32). Manual calculations or studies utilizing other software programs are not acceptable.
B. Coordination Study Specialist Qualifications: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

PART 2 - PRODUCTS
2.1 COMPUTER SOFTWARE
B. Comply with IEEE 242 and IEEE 399.
C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
D. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.

2.2 PROTECTIVE DEVICE COORDINATION STUDY REPORT CONTENTS
A. Executive summary.
B. Study descriptions, purpose, basis and scope. Include case descriptions, definition of terms and guide for interpretation of the computer printout.
C. One-line diagram, showing the following:
 1. Protective device designations and ampere ratings.
 2. Cable size and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center, and panelboard designations.
D. Study Input Data: As described in "Power System Data" Article.
E. Short-Circuit Study Output: As specified in "Short-Circuit Study Output" Paragraph in "Short-Circuit Study Report Contents" Article in Section 260572 "Overcurrent Protective Device Short-Circuit Study."
F. Protective Device Coordination Study:
 1. Report recommended settings of protective devices, ready to be applied in the field. Use manufacturer's data sheets for recording the recommended setting of overcurrent protective devices when available.
 a. Phase and Ground Relays:
 1) Device tag.
 2) Relay current transformer ratio and tap, time dial, and instantaneous pickup value.
 3) Recommendations on improved relaying systems, if applicable.
 b. Circuit Breakers:
 1) Adjustable pickups and time delays (long time, short time, ground).
 2) Adjustable time-current characteristic.
3) Adjustable instantaneous pickup.
4) Recommendations on improved trip systems, if applicable.

c. Fuses: Show current rating, voltage, and class.

G. Time-Current Coordination Curves: Determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:

1. Device tag and title, one-line diagram with legend identifying the portion of the system covered.
2. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.
3. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.
4. Plot the following listed characteristic curves, as applicable:
 a. Power utility's overcurrent protective device.
 b. Medium-voltage equipment overcurrent relays.
 c. Medium- and low-voltage fuses including manufacturer's minimum melt, total clearing, tolerance, and damage bands.
 d. Low-voltage equipment circuit-breaker trip devices, including manufacturer's tolerance bands.
 e. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves.
 f. Cables and conductors damage curves.
 g. Ground-fault protective devices.
 h. Motor-starting characteristics and motor damage points.
 i. Generator short-circuit decrement curve and generator damage point.
 j. The largest feeder circuit breaker in each motor-control center and panelboard.
5. Provide adequate time margins between device characteristics such that selective operation is achieved.
6. Comments and recommendations for system improvements.

H. Coordination Study shall include the stamp or seal and signature of the preparing engineer, and shall be reviewed and approved by the Engineer of Record.

I. Electronic models of all studies performed shall be turned over to the owner.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance. Devices to be coordinated are indicated on Drawings.

1. Submit preliminary coordination study analysis with equipment submittals.
 a. The coordination analysis shall included but not be limited to:
 1) Service entrance equipment
 a) All overcurrent protective devices installed in service entrance panels.
 2) Feeder Circuits
a) All three (3) phase Feeder circuit overcurrent protective devices installed with a rating equal to or greater than 30 amps.

3) Branch Circuits.
 a) All three (3) phase branch circuit overcurrent protective devices installed with a rating equal to or greater than 30 amps.
 b) All motor circuit overcurrent protective devices for motors with a rating equal to or greater than 10 horsepower.

2. Revise coordination study analysis after relevant equipment submittals have been approved. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study. Provide in both hardcopy and electronic disk format. The computer disk shall include the complete coordination file including all device curves (Use the SKM “Project-Backup” command).

3. Prior to project completion, the coordination study and arc flash hazard analysis shall be provided in both hard copy and on USB drive. The hard copy shall include time current curves (for phase and ground fault settings) for each panel and the corresponding TCC report clearly showing each device set point. The digital format shall include the complete coordination file including all device curves (Use the SKM “Project-Backup” command).

 The digital format shall include the complete SKM data files for the project.

3.2 PROTECTIVE DEVICE COORDINATION STUDY

A. Comply with IEEE 242 for calculating short-circuit currents and determining coordination time intervals.

B. Comply with IEEE 399 for general study procedures.

C. The study shall be based on the device characteristics supplied by device manufacturer.

D. Begin analysis at the service, extending down to the system overcurrent protective devices as follows:
 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 2. Exclude equipment rated 240-V ac or less when supplied by a single transformer rated less than 125 kVA.

E. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.

F. Transformer Primary Overcurrent Protective Devices:
 1. Device shall not operate in response to the following:
 a. Inrush current when first energized.
 b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.
 2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

G. Motor Protection:
 1. Select protection for low-voltage motors according to IEEE 242 and NFPA 70.
 2. Select protection for motors served at voltages more than 600 V according to IEEE 620.

H. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and protection recommendations in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.
I. Generator Protection: Select protection according to manufacturer's written recommendations and to IEEE 242.

J. The calculations shall include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and shall apply to low- and medium-voltage, three-phase ac systems. The calculations shall also account for the fault-current dc decrement, to address the asymmetrical requirements of the interrupting equipment.

1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

K. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and single line-to-ground fault at each of the following:

1. Electric utility's supply termination point.
2. Switchgear.
3. Unit substation primary and secondary terminals.
4. Low-voltage switchgear.
5. Motor-control centers.

L. Protective Device Evaluation:

1. Evaluate equipment and protective devices and compare to short-circuit ratings.
2. Adequacy of switchgear, motor-control centers, and panelboard bus bars to withstand short-circuit stresses.

3.3 POWER SYSTEM DATA

A. Obtain all data necessary for the conduct of the overcurrent protective device study.

1. Verify completeness of data supplied in the riser diagram on Drawings. Call discrepancies to the attention of Architect.
2. For new equipment, use characteristics submitted under the provisions of action submittals and information submittals for this Project.
3. For existing equipment, whether or not relocated obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. The qualifications of technicians and engineers shall be qualified as defined by NFPA 70E.

B. Gather and tabulate the following input data to support coordination study. The list below is a guide. Comply with recommendations in IEEE 551 for the amount of detail required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT Level III certification or NICET Electrical Power Testing Level III certification.

1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. Electrical power utility impedance at the service.
3. Power sources and ties.
4. Short-circuit current at each system bus, three phase and line-to-ground.
5. Full-load current of all loads.
6. Voltage level at each bus.
7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
8. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
12. Maximum demands from service meters.
13. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
14. Motor horsepower and NEMA MG 1 code letter designation.
15. Low-voltage cable sizes, lengths, number, conductor material, and conduit material (magnetic or nonmagnetic).
16. Medium-voltage cable sizes, lengths, conductor material, and cable construction and metallic shield performance parameters.
17. Data sheets to supplement electrical distribution system diagram, cross-referenced with tag numbers on diagram, showing the following:
 a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
 c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
 d. Generator thermal-damage curve.
 e. Ratings, types, and settings of utility company's overcurrent protective devices.
 f. Special overcurrent protective device settings or types stipulated by utility company.
 g. Time-current-characteristic curves of devices indicated to be coordinated.
 h. Manufacturer, frame size, interrupting rating in amperes rms symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
 i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
 j. Panelboards, switchboards, motor-control center ampacity, and SCCR in amperes rms symmetrical.

3.4 FIELD ADJUSTING
A. Make minor modifications to equipment as required to accomplish compliance with short-circuit and protective device coordination studies.

END OF SECTION 26 0573
SECTION 26 0574
OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance
 and the incident energy to which personnel could be exposed during work on or near electrical
 equipment.
 B. Study is only limited to new panels provided as part of this project as applicable.

1.3 DEFINITIONS
 A. One-Line Diagram: A diagram which shows, by means of single lines and graphic symbols, the
 course of an electric circuit or system of circuits and the component devices or parts used therein.
 B. Protective Device: A device that senses when an abnormal current flow exists and then removes
 the affected portion from the system.
 C. SCCR: Short-circuit current rating.
 D. Service: The conductors and equipment for delivering electric energy from the serving utility to
 the wiring system of the premises served.

1.4 ACTION SUBMITTALS
 A. Product Data: For computer software program to be used for studies.
 B. Study Submittals: Submit the following submittals after the approval of system protective devices
 submittals. Submittals shall be in digital form.
 1. Arc-flash study input data, including completed computer program input data sheets.
 2. Arc-flash study report; signed, dated, and sealed by a qualified professional engineer.
 a. Submit initial study report for action prior to receiving final approval of the
 distribution equipment submittals. If formal completion of studies will cause delay
 in equipment manufacturing, obtain approval from Architect for preliminary submittal
 of sufficient study data to ensure that the selection of devices and associated
 characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For Arc-Flash Study Specialist.
 B. Product Certificates: For arc-flash hazard analysis software, certifying compliance with
 IEEE 1584 and NFPA 70E.

1.6 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data:
 1. Maintenance procedures according to requirements in NFPA 70E shall be provided in the
 equipment manuals.
 2. Operation and Maintenance Procedures: In addition to items specified in Section 017823
 "Operation and Maintenance Data," provide maintenance procedures for use by Owner's
 personnel that comply with requirements in NFPA 70E.

1.7 QUALITY ASSURANCE
 A. Studies shall use SKM Power Tools Electrical Engineering Software computer program (PTW
 32). Manual calculations or studies utilizing other software programs are not acceptable.
 B. Arc-Flash Study Specialist Qualifications: Professional engineer in charge of performing the
 study, analyzing the arc flash, and documenting recommendations, licensed in the state where
Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE

 1. Do not use the “Use Equipment Specific Arc Flash Equation in Protective Device Library” method for arc flash calculations in the SKM software.

B. Comply with IEEE 1584 and NFPA 70E.

C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

2.2 ARC-FLASH STUDY REPORT CONTENT

A. Executive summary.

B. Study descriptions, purpose, basis and scope.

C. One-line diagram, showing the following:
 1. Protective device designations and ampere ratings.
 2. Cable size and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center and panelboard designations.

D. Study Input Data: As described in "Power System Data" Article.

E. Short-Circuit Study Output: As specified in "Short Circuit Study Output" Paragraph in "Short-Circuit Study Report Contents" Article in Section 260572 "Overcurrent Protective Device Short-Circuit Study."

F. Protective Device Coordination Study Report Contents: As specified in "Protective Device Coordination Study Report Contents" Article in Section 260573 "Overcurrent Protective Device Coordination Study."

G. Arc-Flash Study Output:
 1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

H. Incident Energy and Flash Protection Boundary Calculations:
 1. Arcing fault magnitude.
 2. Protective device clearing time.
 3. Duration of arc.
 5. Working distance.
6. Incident energy.

I. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and guide for interpretation of the computer printout.

2.3 ARC-FLASH WARNING LABELS
A. Comply with requirements in Section 260553 "Identification for Electrical Systems" for self-adhesive equipment labels. Produce a waterproof, 3.5-by-5-inch self-adhesive, machine printed, equipment label for each work location included in the analysis.
B. The label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:
 1. Location designation.
 2. Nominal voltage.
 3. Flash protection boundary.
 5. Incident energy.
 7. Proper level of PPE (Personal Protective Equipment)
 8. Engineering report number, revision number, and issue date.
C. Labels shall be machine printed, with no field-applied markings. Submit sample of label for Owner Approval prior to installation.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance.
1. Submit preliminary arc flash hazard analysis with equipment submittals.
 a. The coordination and arc flash hazard analysis shall included but not be limited to:
 1) Service entrance equipment
 a) All overcurrent protective devices installed in service entrance panels.
 2) Feeder Circuits
 a) All three (3) phase Feeder circuit overcurrent protective devices installed with a rating equal to or greater than 30 amps.
 3) Branch Circuits.
 a) All three (3) phase branch circuit overcurrent protective devices installed with a rating equal to or greater than 30 amps.
 b) All motor circuit overcurrent protective devices for motors with a rating equal to or greater than 10 horsepower.
 2. Revise arc flash hazard analysis after relevant equipment submittals have been approved and as installed feeder lengths verified. Overcurrent protective devices that have not been submitted and approved prior to study may not be used in study. Provide in both hardcopy and electronic disk format. The computer disk shall include the complete coordination file including all device curves (Use the SKM "Project-Backup" command).
 3. Prior to project completion, the coordination study and arc flash hazard analysis shall be provided in both hard copy and on USB drive. The hard copy shall include time current curves (for phase and ground fault settings) for each panel and the corresponding TCC report clearly showing each device set point. The digital format shall include the complete
coordination file including all device curves (Use the SKM “Project-Backup” command).
The digital format shall include the complete SKM data files for the project.

3.2 ARC-FLASH HAZARD ANALYSIS

A. Comply with NFPA 70E and its Annex D for hazard analysis study.

B. Preparatory Studies:
1. Short-Circuit Study Output: As specified in Section 260572 "Overcurrent Protective Device
 Short-Circuit Study."
2. Protective Device Coordination Study Report Contents: As specified in Section 260573
 "Overcurrent Protective Device Coordination Study."

C. Calculate maximum and minimum contributions of fault-current size.
1. The minimum calculation shall assume that the utility contribution is at a minimum and shall
 assume no motor load.
2. The maximum calculation shall assume a maximum contribution from the utility and shall
 assume motors to be operating under full-load conditions.

D. Calculate the arc-flash protection boundary and incident energy at locations in the electrical
 distribution system where personnel could perform work on energized parts.
1. Identify any location other than the Service Entrance Main with a HCR>2 and provide
 recommendations for improvement.

E. Include medium- and low-voltage equipment locations, except equipment rated 240-V ac or less
 fed from transformers less than 125 kVA.
1. Switchgear and switchboard bus.
 a. All overcurrent protective devices installed in service entrance panels.
2. Motor-control center.
 a. All motor circuit overcurrent protective devices for motors with a rating equal to or
 greater than 10 horsepower.
3. Distribution panelboard.
5. Three phase branch circuits with overcurrent protective devices installed with a rating equal
 to or greater than 30 amps.
6. Motor circuit overcurrent protective devices for motors with a rating equal to or greater than
 10 horsepower.

F. Safe working distances shall be specified for calculated fault locations based on the calculated
 arc-flash boundary, considering incident energy of 1.2 cal/sq.cm.

G. Incident energy calculations shall consider the accumulation of energy over time when performing
 arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account
 the changing current contributions, as the sources are interrupted or decremented with time. Fault
 contribution from motors and generators shall be decremented as follows:
1. Fault contribution from induction motors should not be considered beyond three to five
 cycles.
2. Fault contribution from synchronous motors and generators should be decayed to match
 the actual decrement of each as closely as possible (e.g., contributions from permanent
 magnet generators will typically decay from 10 per unit to three per unit after 10 cycles).

H. Arc-flash computation shall include both line and load side of a circuit breaker as follows:
1. When the circuit breaker is in a separate enclosure.
2. When the line terminals of the circuit breaker are separate from the work location.
I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing time at two seconds based on IEEE 1584, Section B.1.2.

J. Arc flash hazard analysis shall include the stamp or seal and signature of the preparing engineer, and shall be reviewed and approved by the Engineer of Record.

K. Electronic models of all studies performed shall be turned over to the owner.

3.3 POWER SYSTEM DATA

A. Obtain all data necessary for the conduct of the arc-flash hazard analysis.
 1. Verify completeness of data supplied on the riser diagram on Drawings. Call discrepancies to the attention of Architect.
 2. For new equipment, use characteristics submitted under the provisions of action submittals and information submittals for this Project.
 3. For existing equipment, whether or not relocated, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers.

B. Electrical Survey Data: Gather and tabulate the following input data to support study. Comply with recommendations in IEEE 1584 and NFPA 70E as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT Level III certification or NICET Electrical Power Testing Level III certification.
 1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 2. Obtain electrical power utility impedance at the service.
 3. Power sources and ties.
 4. Short-circuit current at each system bus, three phase and line-to-ground.
 5. Full-load current of all loads.
 6. Voltage level at each bus.
 7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in per cent, and phase shift.
 8. For reactors, provide manufacturer and model designation, voltage rating and impedance.
 9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
 10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
 11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
 12. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
 13. Motor horsepower and NEMA MG 1 code letter designation.
 14. Low-voltage cable sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
 15. Medium-voltage cable sizes, lengths, conductor material, and cable construction and metallic shield performance parameters.
3.4 LABELING

A. Apply one owner approved arc-flash label for 600-V ac, 480-V ac, and applicable 208-V ac panelboards, disconnects and transformers.

END OF SECTION 26 0574
SECTION 26 0923
LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Photoelectric switches.
 2. Indoor occupancy and vacancy sensors.
 4. Digital timer light switches.
 5. Lighting contactors.
B. Related Requirements:
 1. Section 2627 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings:
 1. Show installation details for the following:
 a. Occupancy sensors.
 b. Vacancy sensors.
 2. Interconnection diagrams showing field-installed wiring.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.
B. Sample Warranty: For manufacturer's warranties.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.

1.6 WARRANTY
A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Faulty operation of lighting control devices.
 2. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 DIGITAL TIME SWITCHES
A. Basis of Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following Manufacturers:
 1. Cooper Industries, Inc.
 2. Intermatic, Inc.
 3. Lightolier Controls; a Genlyte Company
5. Watt Stopper (The).
6. Hubbell

B. Digital time switch

1. The digital time switch shall be programmable to turn lights off after a preset time.
2. Time switch shall be a completely self-contained control system that replaces the standard toggle switch. It shall have a ground wire and ground strap for safety. Switching mechanism shall be a latching air gap relay.
3. Zero Crossing Circuitry shall be used to increase the relay life, protect from the effects of inrush current, and increase the switch’s longevity.
4. Time switch shall be compatible with all LED, electronic ballasts, ELV, MLV and motor loads. Triac and other harmonic generating devices shall not be allowed.
5. Time switch shall operate at universal voltages of 100-300 VAC; 50/60 Hz.
6. Time switch shall have no minimum load requirement and shall be capable of controlling 0 to 800 watt incandescent, fluorescent @ 100/120 VAC, 50/60 Hz.
7. Time scroll feature shall allow manual overriding of the preset time-out period. Selecting time scroll UP shall allow time-out period to scroll up throughout the timer possibilities to the maximum. Time scroll DN (down) shall allow time-out period to scroll down to minimum.
8. Time switch shall have the option for a one second light flash warning at five minutes before the timer runs out and twice when the countdown reaches one minute (when used to control lighting loads).
9. Time switch shall have the option for a beep warning that shall sound every five seconds once the time switch countdown reaches one minute.
10. Time switch shall have manual feature for timer reset where pressing the ON/OFF switch for more than 2 seconds resets the timer to the programmed time-out period.
11. Time switch shall have an electroluminescent backlit Liquid Crystal Display that shows the timer’s countdown.
12. Time switch shall fit behind a decorator style faceplate. The calibration switch for setting time-out, time scroll, one second light flash, and beep warning shall be concealed to prevent tampering of adjustments and hardware.
13. Time-out period shall be adjustable in increments of 5 minutes from 5 minutes to 1 hour, and in increments of 15 minutes from 1 hour to 12 hours.
14. Time switch shall be capable of operating as an ON/OFF switch.
15. For ease of installation and cleaner wiring, the switch shall utilize terminal style wiring.
16. The time switch shall not protrude more than 1/8” from the wall and should blend in aesthetically.
17. For safety, the time switch shall have a 100% OFF override switch with no leakage current to the load.
18. For safety, in the event there is an open circuit in the AC line such as a ballast or lamp failure, the time switch shall automatically switch to OFF mode.
19. To ensure quality and reliability, time switch shall be manufactured by an ISO 9002 certified manufacturing facility and shall have a defect rate of less than 1/3 of 1%.
20. Time switch shall have 5 year warranty and shall be UL and CUL listed.

2.2 DIGITAL OCCUPANCY CONTROL SYSTEM

A. Basis of design product: Subject to compliance with requirements, provide Wattstopper Digital Lighting Management (DLM) system as indicated on Drawings:

1. This is an extension of and existing system.
B. Digital Ceiling mounted occupancy sensor system.
 1. Ceiling mounted passive infrared (PIR), ultrasonic or dual technology digital (passive infrared and ultrasonic) occupancy sensor. Furnish the Company’s system which accommodates the square-foot coverage requirements for each area controlled, utilizing room controllers, digital occupancy sensors and accessories which suit the lighting and electrical system parameters.
 2. Digital Occupancy Sensors shall provide graphic LCD display for digital calibration and electronic documentation. Features include the following:
 a. Digital calibration and pushbutton programming for the following variables:
 1) Sensitivity – 0-100% in 10% increments
 2) Time delay – 1-30 minutes in 1 minute increments
 3) Test mode – Five second time delay
 4) Detection technology – PIR, Ultrasonic or Dual Technology activation and/or re-activation.
 5) Walk-through mode
 6) Load parameters including Auto/Manual-ON, blink warning, and daylight enable/disable when photosensors are included in the DLM local network.
 b. One or two RJ-45 port(s) for connection to DLM local network.
 c. Two-way infrared (IR) transceiver to allow remote programming through handheld commissioning tool and control by remote personal controls.
 d. Device Status LEDs including:
 1) PIR Detection
 2) Ultrasonic detection
 3) Configuration mode
 4) Load binding
 e. Assignment of occupancy sensor to a specific load within the room without wiring or special tools.
 3. Units shall not have any dip switches or potentiometers for field settings.
 4. Multiple occupancy sensors may be installed in a room by simply connecting them to the free topology DLM local network. No additional configuration will be required.
 5. WattStopper product numbers: LMPX, LMDX, LMPC, LMUC, LMDC

C. DIGITAL WALL SWITCHES
 1. Low voltage momentary pushbutton switches in 1, 2, 3, 4, 5 and 8 button configuration; available in white, light almond, ivory, grey and black; compatible with wall plates with decorator opening. Wall switches shall include the following features:
 a. Two-way infrared (IR) transceiver for use with personal and configuration remote controls.
 b. Removable buttons for field replacement with engraved buttons and/or alternate color buttons. Button replacement may be completed without removing the switch from the wall.
 c. Red configuration LED on each switch that blinks to indicate data transmission.
 d. Blue Load/Scene Status LED on each switch button with the following characteristics:
 1) Bi-level LED
2) Dim locator level indicates power to switch
3) Bright status level indicates that load or scene is active
e. Dimming switches shall include seven bi-level LEDs to indicate load levels using 14 steps.

2. Two RJ-45 ports for connection to DLM local network.
3. Multiple digital wall switches may be installed in a room by simply connecting them to the free topology DLM local network. No additional configuration will be required to achieve multi-way switching.
4. The following switch attributes may be changed or selected using a wireless configuration tool:
 a. Load and Scene button function may be reconfigured for individual buttons (from Load to Scene, and vice versa).
 b. Individual button function may be configured to Toggle, On only or Off only.
 c. Individual scenes may be locked to prevent unauthorized change.
 d. Fade Up and Fade Down times for individual scenes may be adjusted from 0 seconds to 18 hours.
 e. Ramp rate may be adjusted for each dimmer switch.
 f. Switch buttons may be bound to any load on a room controller and are not load type dependant; each button may be bound to multiple loads.

D. ROOM CONTROLLERS
1. Room Controllers automatically bind the room loads to the connected devices in the space without commissioning or the use of any tools. Room Controllers shall be provided to match the room lighting load and control requirements. The controllers will be simple to install and will not have, dip switches, potentiometers or require special configuration. The control units will include the following features:
 a. Automatic room configuration to the most energy-efficient sequence of operation based upon the devices in the room.
 b. Simple replacement – Using the default automatic configuration capabilities, a room controller may be replaced with an off-the-shelf unit without requiring any configuration or setup.
 c. Device Status LEDs to indicate:
 1) Data transmission
 2) Device has power
 3) Status for each load
 4) Configuration status
d. Quick installation features including:
 1) Standard junction box mounting
 2) Quick low voltage connections using standard RJ-45 patch cable
e. Plenum rated
f. Manual override and LED indication for each load
g. Dual voltage (120/277 VAC, 60 Hz)
h. Zero cross circuitry for each load.
2. On/Off Room Controllers shall include:
 a. One or two relay configuration
 b. Efficient 150 mA switching power supply
 c. Three RJ-45 DLM local network ports
 d. Discrete model listed for connection to receptacles, for occupancy-based control of plug loads within the space.
 e. One relay configuration only
 1) Automatic-ON/OFF configuration
 f. WattStopper product numbers: LMRC-101, LMRC-102, LMPL-101

3. On/Off/Dimming enhanced Room Controllers shall include:
 a. Real time current monitoring
 b. One, two or three relay configuration
 c. Efficient 250 mA switching power supply
 d. Four RJ-45 DLM local network ports.
 e. One 0-10 volt analog output per relay for control of compatible ballasts and LED drivers.
 f. The following dimming attributes may be changed or selected using a wireless configuration tool:
 1) Establish preset level for each load from 0-100%
 2) Set high and low trim for each load
 3) Set lamp burn in time for each load up to 100 hours
 g. Discrete model listed for connection to receptacles, for occupancy-based control of plug loads within the space.
 1) One relay configuration only
 2) Automatic-ON/OFF configuration
 h. WattStopper product numbers: LMRC-211, LRMC-212, LRMC-213, LMPL-201, LMRC-311, LMRC-312, LMRC-313.

E. ISOLATED RELAY INTERFACE
 1. Output interface for integration of third party systems
 2. Single pole double throw isolated relay
 3. Status LED for isolated relay
 4. Over current protection
 5. Two RJ45 ports with hinged dust cover
 6. UL 2043 plenum rated
 7. Watt Stopper product number: LMRL-100

F. DIGITAL INTERFACE
 1. Operating voltage 24VDC from DLM network
 2. Maximum current consumption 15Ma
 3. DLM local network connection: 2 RJ45 ports
 4. Terminal block for connection to third party system. RS-232 Data Wiring.
 5. Baud rate configurable to 9600, 19200, 38400, 57600 or 115200
6. Wattsopper product number: LMDI-100

G. ROOM NETWORK (DLM Local Network)

1. The DLM local network is a free topology lighting control physical connection and communication protocol designed to control a small area of a building. Digital room devices connect to the network using CAT 5e cables with RJ-45 connectors which provide both data and power to room devices. Features of the DLM local network include:
 a. Plug n’ Go automatic configuration and binding of occupancy sensors, switches and lighting loads to the most energy-efficient sequence of operation based upon the device attached.
 b. Simple replacement of any device in the network with a standard off the shelf unit without requiring commissioning, configuration or setup.
 c. Push n’ Learn configuration to change the automatic configuration, including binding and load parameters without tools, using only the buttons on the digital devices in the local network.
 d. Two-way infrared communications for control by handheld remotes, and configuration by a handheld tool including adjusting load parameters, sensor configuration and binding, within a line of sight of up to 30 feet from a sensor, wall switch or IR receiver.

H. CONFIGURATIONS TOOLS

1. A configuration tool facilitates optional customization of DLM local networks, and is used to set up open loop daylighting sensors. A wireless configuration tool features infrared communications, while PC software connects to each local network via a USB interface.

2. Features and functionality of the wireless configuration tool shall include:
 a. Two-way infrared (IR) communication with DLM IR-enabled devices within a range of approximately 30 feet.
 b. High visibility organic LED (OLED) display, pushbutton user interface and menu-driven operation.
 c. Read, modify and send parameters for occupancy sensors, room controllers and buttons on digital wall switches.
 d. Save up to nine occupancy sensor setting profiles, and apply profiles to selected sensors.
 e. Temporarily adjust light level of any load(s) on the local network, and incorporate those levels in scene setting.

3. WattStopper Product Numbers: LMCT-100, LMCI-100/LMCS-100

2.3 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

A. Basis of Design Product: Subject to compliance with requirements provide product as indicated on Drawings or pre-approved comparable product by one of the following:

1. Bryant Electric; a Hubbell company.
2. Cooper Industries, Inc.
3. Hubbell Building Automation, Inc.
5. Littolier Controls.
6. Lithonia Lighting; Acuity Lighting Group, Inc.
7. Lutron Electronics Co., Inc.
8. Sensor Switch, Inc.
9. Square D; a brand of Schneider Electric.
10. Watt Stopper.

B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor, suitable for mounting in a single gang switchbox.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
3. Switch Rating: Not less than 800-VA fluorescent at 120 V, 1200-VA fluorescent at 277 V, and 800-W incandescent.

C. Wall-Switch Sensor Tag ‘MS’:

1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft.
2. Sensing Technology: Dual technology - PIR and ultrasonic.
3. Switch Type: SP.
4. Voltage: Dual voltage, 120 and 277 V; dual-technology type.
5. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
6. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.

2.4 OUTDOOR MOTION SENSORS

A. Basis of Design Product: Subject to compliance with requirements provide product as indicated on Drawings or pre-approved comparable product by one of the following:

2.5 LIGHTING CONTACTORS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

2. ASCO Power Technologies, LP; a division of Emerson Electric Co.
4. General Electric Company; GE Consumer & Industrial - Electrical Distribution; Total Lighting Control.
5. Square D; a brand of Schneider Electric.
6. TORK
7. Watt Stopper (The)

B. Description: Electrically operated and electrically held, combination-type lighting contactors, complying with NEMA ICS 2 and UL 508.

1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
3. Enclosure: Comply with NEMA 250.
4. Provide with control and pilot devices as indicated on Drawings, matching the NEMA type specified for the enclosure.

2.6 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

D. Color coding of DLM System conductors shall be WHITE. Obtain pre-approval of color from owner prior to ordering.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.

B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SENSOR INSTALLATION

A. Comply with NECA 1.

B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.

C. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.3 CONTACTOR INSTALLATION

A. Comply with NECA 1.

B. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structure-borne vibration unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.4 WIRING INSTALLATION

A. Comply with NECA 1.

C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.

D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.

E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

F. Provide white colored cable for all lengths when making DLM System connections with CAT5e with RJ45 connectors. Contractor shall submit cable color and obtain confirmation from owner prior to ordering.

3.5 IDENTIFICATION

A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."

1. Identify controlled circuits in lighting contactors.

2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.

B. Label time switches and contactors with a unique designation.
3.6 PROGRAMMING
A. On a room by room basis, after approved programming is completed and verified, the lighting control system lock-out features on switches, sensors, etc. shall be enabled to prevent accidental re-programming and to maintain programmed scenes and sequences.
B. System switches shall be configured for auto-on (and auto-off) control of associated lighting unless otherwise noted.

3.7 FIELD QUALITY CONTROL
A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
B. Lighting control devices will be considered defective if they do not pass tests and inspections.
C. Prepare test and inspection reports.

3.8 ADJUSTING
A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
 2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.

3.9 FACTORY COMMISSIONING
A. Upon completion of the installation, the system shall be commissioned by the manufacturer's factory authorized representative who will verify a complete fully functional system.
B. The electrical contractor shall provide both the manufacturer and the electrical engineer with ten working days written notice of the system startup and adjustment date.
C. After commissioning and after switches have been programmed, system lockout features shall be activated such that programming function is locked out to avoid unintentional re-setting of switches.

3.10 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 26 0923
SECTION 26 2416
PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS
A. ATS: Acceptance testing specification.
B. GFCI: Ground-fault circuit interrupter.
C. GFEP: Ground-fault equipment protection.
D. MCCB: Molded-case circuit breaker.
E. SPD: Surge protective device.
F. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of panelboard.
 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details.
 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
 4. Detail bus configuration, current, and voltage ratings.
 5. Short-circuit current rating of panelboards and overcurrent protective devices.
 6. Include evidence of NRTL listing for SPD as installed in panelboard.
 7. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 8. Include wiring diagrams for power, signal, and control wiring.
 9. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing agency.
B. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.
1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Keys: Two spares for each type of panelboard cabinet lock.

1.8 QUALITY ASSURANCE
A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING
A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
B. Handle and prepare panelboards for installation according to NECA 407.

1.10 FIELD CONDITIONS
A. Environmental Limitations:
 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding minus 22 deg F to plus 104 deg F.
 b. Altitude: Not exceeding 6600 feet.
B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet.
C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Owner no fewer than two days in advance of proposed interruption of electric service.
 2. Do not proceed with interruption of electric service without Owner's written permission.
 3. Comply with NFPA 70E.

1.11 WARRANTY
A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 1. Panelboard Warranty Period: 24 months from date of Substantial Completion.
B. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace SPD that fails in materials or workmanship within specified warranty period.
 1. SPD Warranty Period: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NEMA PB 1.

E. Comply with NFPA 70.

F. Enclosures: Surface-mounted, dead-front cabinets.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4, Stainless Steel.
 d. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
 2. Height: 84 inches maximum.
 3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
 4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
 5. Finishes:
 a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.

G. Incoming Mains:
 1. Location: Convertible between top and bottom.
 2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

H. Phase, Neutral, and Ground Buses:
 a. Plating shall run entire length of bus.
 b. Bus shall be fully rated the entire length.
 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.

6. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others designated on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.

I. Conductor Connectors: Suitable for use with conductor material and sizes.

1. Material: **Hard-drawn copper, 98 percent conductivity**.
2. Terminations shall allow use of 75 deg C rated conductors without derating.
3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
4. Main and Neutral Lugs: **Compression** type, with a lug on the neutral bar for each pole in the panelboard.
5. Ground Lugs and Bus-Configured Terminators: Two bolt **Compression** type, with a lug on the bar for each pole in the panelboard.
6. Feed-Through Lugs: **Compression** type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
7. Subfeed (Double) Lugs: **Compression** type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
8. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.

J. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

K. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

L. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

B. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 1.

2.3 POWER PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, **provide products by one of the following**:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
3. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than 36 inches high, provide two latches, keyed alike.

D. Mains: Circuit breaker or Lugs only as indicated on drawings.

F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

G. Branch Overcurrent Protective Devices (MCCB) frame sizes 100A and larger shall be electronic trip and shall have adjustable trip settings as indicated in Section 2.6 below to allow for coordination and limiting arch flash hazard.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 3. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or Lugs only as indicated in panelboard schedules.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

F. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 3. Square D; a brand of Schneider Electric.

B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
 1. Adjustable trip setting for circuit-breaker frame sizes 200 A and larger.
 a. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replaceable electronic trip; and the following field-adjustable settings:
 1) Instantaneous trip.
 2) Long- and short-time pickup levels.
 3) Long- and short-time time adjustments.
 4) Ground-fault pickup level, time delay, and I^2t response.
 2. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
3. **GFCI Circuit Breakers:** Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

4. **Ground-Fault Equipment Protection (GFEP) Circuit Breakers:** Class B ground-fault protection (30-mA trip).

5. **Molded-Case Circuit-Breaker (MCCB) Features and Accessories:**
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: **Mechanical** style, suitable for number, size, trip ratings, and conductor materials.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: **Integrally mounted** relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 f. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 g. Multipole units enclosed in a single housing or factory assembled to operate as a single unit.
 h. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
 i. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.
 j. Any device that can trip the breakers shall have a visible indication on the front of the panel.

2.6 **IDENTIFICATION**

A. **Panelboard Label:** Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

B. **Breaker Labels:** Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

C. **Circuit Directory:** Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.

1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.7 **ACCESSORY COMPONENTS AND FEATURES**

A. **Accessory Set:** Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. **Portable Test Set:** For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 **EXAMINATION**

A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.

B. Receive, inspect, handle, and store panelboards according to **NECA 407**.

C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Comply with NECA 1.

C. Install panelboards and accessories according to NECA 407.

D. Equipment Mounting:
 1. Attach panelboard to the vertical finished or structural surface behind the panelboard.
 2. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

F. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

G. Mount top of trim 90 inches above finished floor unless otherwise indicated.

H. Mount panelboard cabinet plumb and rigid without distortion of box.

I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

J. Mount surface-mounted panelboards to steel slotted supports 5/8 inch in depth. Orient steel slotted supports vertically.

K. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.
 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.

L. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

M. Install filler plates in unused spaces.

N. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

O. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

C. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers and low-voltage surge arrestors stated in NETA ATS, Paragraph 7.6 Circuit Breakers and Paragraph 7.19.1 Surge Arrestors, Low-Voltage. Do not perform optional tests. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

D. Panelboards will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573 "Overcurrent Protective Device Coordination Study."

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.
 1. Measure loads during period of normal facility operations.
 2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.

4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 26 2416
SECTION 26 2726
WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Straight-blade convenience and isolated-ground receptacles.
 2. USB charger devices.
 3. GFCI receptacles.
 4. Twist-locking receptacles.
 5. Pendant cord-connector devices.
 6. Cord and plug sets.
 7. Toggle switches.
 8. Decorator-style convenience.
 9. Wall plates.
 10. Floor service outlets.
 11. Poke-through assemblies.

1.3 DEFINITIONS
 A. Abbreviations of Manufacturers' Names:
 1. Cooper: Cooper Wiring Devices; Division of Cooper Industries, Inc.
 B. GFCI: Ground-fault circuit interrupter.
 C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

1.5 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS
 A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. Comply with NFPA 70.
 C. Devices that are manufactured for use with modular plug-in connectors are to be used:
1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
2. Devices shall comply with the requirements in this Section.
3. Connector shall be at right angle. Twist type shall not be permitted.

D. Devices for Owner-Furnished Equipment:
1. Receptacles: Match plug configurations.
2. Cord and Plug Sets: Match equipment requirements.

E. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STRAIGHT-BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
1. All convenience receptacles to be of the quick connect type to have a right angle connector feature with pre-stripped leads. Connector contacts are to be crimped and welded.
2. Products: Basis of design: Pass & Seymour, PT5362 (duplex)
 a. Subject to compliance with requirements, provide one of the following:
 1) Cooper. (Arrowlink Series)
 2) Hubbell. (Snapconnect Series)

B. Isolated-Ground, Duplex Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
1. All Isolated Ground receptacles to be of the quick connect type to have a right angle connector feature with pre-stripped leads. Connector contacts are to be crimped and welded.
2. Products: Basis of design: Pass & Seymour, PTIG5362 (duplex)
 a. Subject to compliance with requirements, provide one of the following:
 1) Cooper. (Arrowlink Series)
 2) Hubbell. (Snapconnect Series)
3. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.3 USB CHARGER DEVICES

A. Tamper-Resistant, USB Charger Receptacles: 5.1 V dc, 3.1 A for charging capability, USB Type A. Transformer is not to be “on” until USB senses Load. Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 1310, and FS W-C-596.
1. Products: Basis of design: Pass & Seymour, TR5362USB (2 USB Charging Ports, 1 Nema 5-20R Duplex)
 a. Subject to compliance with requirements, provide one of the following:
 1) Cooper. TR7746 (2 USB Charging Ports, 1 Nema 5-20R Duplex)
 2) Hubbell. USB20X2 (2 USB Charging Ports, 1 Nema 5-20R Duplex)
3. USB Receptacles: Dual, Type A.
4. Line Voltage Receptacles: Dual, two pole, three wire, and self-grounding.
2.4 **GFCI RECEPTACLES**

A. General Description:
 1. 125 V, 20 A, straight blade, **non-feed**-through type.
 2. Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 943 Class A, and FS W-C-596.
 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.
 4. When ground fault protection is lost, power to the receptacle is disconnected.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
 1. All convenience receptacles to be of the quick connect type to have a right angle connector feature with pre-stripped leads. Connector contacts are to be crimped and welded.
 2. Products: Basis of design: Pass & Seymour, PT2095LA (duplex)
 a. Subject to compliance with requirements, provide one of the following:
 1) Cooper. (Arrowlink Series)
 2) Hubbell. (Snapconnect Series)

2.5 **TWIST-LOCKING RECEPTACLES**

A. Twist-Lock, Single Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; L520R.
 b. Hubbell; HBL2310.
 c. Leviton; 2310.
 d. Pass & Seymour; L520-R.

2.6 **PENDANT CORD-CONNECTOR DEVICES**

A. Description:
 1. Matching, locking-type plug and receptacle body connector.
 2. NEMA WD 6 Configurations L5-20P and L5-20R, heavy-duty grade, and FS W-C-596.

2.7 **CORD AND PLUG SETS**

A. Description:
 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.

2.8 **TOGGLE SWITCHES**

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.
 1. Switches not associated with the DLM Lighting system: All Snap switches to be of the quick connect type to have a right angle connector feature with pre-stripped leads. Connector contacts are to be crimped and welded.

B. Switches, 120/277 V, 20 A:
1. Products: Basis of design: Pass & Seymour, PT20AC1 (single pole), PT20AC2 (two pole), PT20AC3 (three way), PT20AC4 (four way).
 a. Subject to compliance with requirements, provide one of the following:
 1) Cooper. (Arrowlink Series)
 2) Hubbell. (Snapconnect Series)

2.9 WALL PLATES
A. Single and combination types shall match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 2. Material for Finished Spaces: Where Gray devices are used, provide 0.035-inch- thick, satinfinished, Type 302 stainless steel faceplates.
 4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

2.10 POKE-TROUGH ASSEMBLIES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hubbell Incorporated; Wiring Device-Kellems
 2. Pass & Seymour/Legrand; Wiring Devices and Accessories
 3. Thomas & Betts Corporation
 4. Wiremold Company (The)

B. Description: Factory-fabricated and -wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service-outlet assembly.
 1. Comply with UL 514 scrub water exclusion requirements
 2. Compartments: Barrier separates power from voice and data communication cabling.
 3. Service-Outlet Assembly: Flush type with two simplex receptacles and space for two RJ-45 jacks."
 4. Size: Selected to fit nominal 4-inch cored holes in floor and matched to floor thickness.
 5. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
 6. Closure Plug: Arranged to close unused 4-inch cored openings and reestablish fire rating of floor.
 7. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of four, CAT6A cables."

2.11 FINISHES
A. Device Color:
 1. Wiring Devices Connected to Normal Power System: Gray throughout unless otherwise indicated or required by NFPA 70 or device listing.

B. Wall Plate Color: match device color.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.

2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.

3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.

4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.

2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.

3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.

D. Device Installation:

1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.

2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.

3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.

4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.

5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.

6. Use a torque screwdriver when a torque is recommended or required by manufacturer.

7. When conductors larger than No. 12 AWG are installed on 20-A circuits, splice No. 12 AWG pigtails for device connections.

8. Tighten unused terminal screws on the device.

9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:

1. Install dimmers within terms of their listing.

2. Verify that dimmers used for fan-speed control are listed for that application.

3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.
3.2 GFCI RECEPTACLES
 A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION
 A. Comply with Section 260553 "Identification for Electrical Systems."
 B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL
 A. Test Instruments: Use instruments that comply with UL 1436.
 B. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
 C. Perform the following tests:
 1. Test Instruments: Use instruments that comply with UL 1436.
 2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
 D. Tests for Convenience Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
 E. Test straight-blade for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz.
 F. Wiring device will be considered defective if it does not pass tests and inspections.
 G. Prepare test and inspection reports.

END OF SECTION 26 2726
SECTION 26 2813
FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Cartridge fuses rated 600 V ac and less for use in enclosed switches.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:
 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.
 2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit in electronic format suitable for use in SKM coordination software.
 5. Coordination charts and tables and related data.
 6. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Ambient temperature adjustment information.
 2. Current-limitation curves for fuses with current-limiting characteristics.
 3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project. Submit in electronic format suitable for use in SKM coordination software.
 4. Coordination charts and tables and related data.

1.5 FIELD CONDITIONS
A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Bussman, Inc.
2. Edison Fuse, Inc.
3. Ferraz Shawmut, Inc.
4. Littelfuse, Inc.

B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES
A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
 1. Type RK-1 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 2. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, fast acting.
 3. Type J: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 4. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, time delay.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS
A. Cartridge Fuses:
 1. Service Entrance: Class RK1, time delay.
 2. Feeders: Class RK1, time delay.
 3. Motor Branch Circuits: Class RK1, time delay.
 4. Large Motor Branch (601-4000 A): Class L, time delay.
 5. Power Electronics Circuits: Class J, high speed.
 6. Other Branch Circuits: Class RK1, time delay.
 7. Control Transformer Circuits: Class CC, time delay, control transformer duty.
 8. Provide open-fuse indicator fuses or fuse covers with open fuse indication.

3.3 INSTALLATION
A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.
3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 26 2813
SECTION 26 2816
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.
 3. Enclosures.

1.3 DEFINITIONS
A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers’ technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 5. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in electronic format compatible with SKM Software.
B. Shop Drawings: For enclosed switches and circuit breakers.
 1. Include plans, elevations, sections, details, and attachments to other work.
 2. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified testing agency.
B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
C. Field quality-control reports.
1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 “Operation and Maintenance Data,” include the following:
 a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 b. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF and electronic format compatible with SKM Software.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.8 QUALITY ASSURANCE
A. Testing Agency Qualifications: Accredited by NETA.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.9 FIELD CONDITIONS
A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.

1.10 WARRANTY
A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS
2.1 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.2 GENERAL REQUIREMENTS
A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.
B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
D. Comply with NFPA 70.

2.3 FUSIBLE SWITCHES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
3. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty:
1. **Single** throw, **Three** pole, **600-V ac, 1200 A and smaller**.
2. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses.
3. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
5. Auxiliary Contact Kit: **Two** NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - **120-V ac**.
6. Hookstick Handle: Allows use of a hookstick to operate the handle.
7. Lugs: **Compression** type, suitable for number, size, and conductor material.
8. Service-Rated Switches: Labeled for use as service equipment.

2.4 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, **provide products by one of the following**:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
3. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Three Pole, Single Throw, **600-V ac, 1200 A and Smaller**: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Type HD, Heavy Duty, Three Pole, Double Throw, **600-V ac, 1200 A and Smaller**: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Accessories:
1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
1. Auxiliary Contact Kit: **Two** NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - **120-V ac**.
2. Hookstick Handle: Allows use of a hookstick to operate the handle.
3. Lugs: **Compression** type, suitable for number, size, and conductor material.
4. Service-Rated Switches: Labeled for use as service equipment.

2.5 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

B. Enclosure Finish: The enclosure shall be **finished with gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1)**.

C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.

D. Operating Mechanism: The circuit-breaker operating handle shall be **externally operable with the operating mechanism being an integral part of the box, not the cover**. The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.

E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.

F. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 PREPARATION

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify **Owner** no fewer than **seven** days in advance of proposed interruption of electric service.

2. Indicate method of providing temporary electric service.

3. Do not proceed with interruption of electric service without **Owner's** written permission.

4. Comply with NFPA 70E.

3.3 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.

1. Indoor, Dry and Clean Locations: NEMA 250, **Type 1**.
2. Outdoor Locations: NEMA 250, **Type 3R**.
3. **Wash-Down** Areas: NEMA 250, **Type 4X, stainless steel**.
4. Other Wet or Damp, Indoor Locations: NEMA 250, **Type 4**.
5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
3.4 INSTALLATION
A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

C. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

D. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in fusible devices.

F. Comply with NFPA 70 and NECA 1.

3.5 IDENTIFICATION
A. Comply with requirements in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.

2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.6 FIELD QUALITY CONTROL
A. Perform tests and inspections.

B. Tests and Inspections for Switches:

1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, grounding, and clearances.
 c. Verify that the unit is clean.
 d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 e. Verify that fuse sizes and types match the Specifications and Drawings.
 f. Verify that each fuse has adequate mechanical support and contact integrity.
 g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 1) Use a low-resistance ohmmeter.
 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
 h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
 i. Verify correct phase barrier installation.
 j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.

2. Electrical Tests:
a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.

e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."

C. Tests and Inspections for Molded Case Circuit Breakers:

1. Visual and Mechanical Inspection:
 a. Verify that equipment nameplate data are as described in the Specifications and shown on the Drawings.
 b. Inspect physical and mechanical condition.
 c. Inspect anchorage, alignment, grounding, and clearances.
 d. Verify that the unit is clean.
 e. Operate the circuit breaker to ensure smooth operation.
 f. Inspect bolted electrical connections for high resistance using one of the two following methods:
 1) Use a low-resistance ohmmeter.
 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
 g. Inspect operating mechanism, contacts, and chutes in unsealed units.
 h. Perform adjustments for final protective device settings in accordance with the coordination study.

2. Electrical Tests:
 a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 b. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with circuit breaker closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of
manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

c. Perform a contact/pole resistance test. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

d. Perform insulation resistance tests on all control wiring with respect to ground. Applied potential shall be 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable. Test duration shall be one minute. For units with solid state components, follow manufacturer's recommendation. Insulation resistance values shall be no less than two megohms.

e. Determine the following by primary current injection:

1) Long-time pickup and delay. Pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.

2) Short-time pickup and delay. Short-time pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.

3) Ground-fault pickup and time delay. Ground-fault pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.

4) Instantaneous pickup. Instantaneous pickup values shall be as specified and within manufacturer's published tolerances.

f. Perform minimum pickup voltage tests on shunt trip and close coils in accordance with manufacturer's published data. Minimum pickup voltage of the shunt trip and close coils shall be as indicated by manufacturer.

g. Verify correct operation of auxiliary features such as trip and pickup indicators; zone interlocking; electrical close and trip operation; trip-free, anti-pump function; and trip unit battery condition. Reset all trip logs and indicators. Investigate units that do not function as designed.

h. Verify operation of charging mechanism. Investigate units that do not function as designed.

3. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

4. Perform the following infrared scan tests and inspections and prepare reports:

a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.

b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.

c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.
1. Test procedures used.
2. Include identification of each enclosed switch and circuit breaker tested and describe test results.
3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.7 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573 "Overcurrent Protective Device Coordination Study"

END OF SECTION 26 2816
SECTION 26 5119
LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes LED luminaires:
B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS
A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Fixture: See "Luminaire."
D. IP: International Protection or Ingress Protection Rating.
E. LED: Light-emitting diode.
F. Lumen: Measured output of lamp and luminaire, or both.
G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 6. Photometric data and adjustment factors based on laboratory tests, complying with IES Lighting Measurements Testing and Calculation Guides, of each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project. IES LM-79 and IES LM-80.
 a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.
C. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Luminaires.
 2. Suspended ceiling components.
 3. Partitions and millwork that penetrate the ceiling or extend to within 12 inches of the plane of the luminaires.
 4. Structural members to which equipment and luminaires will be attached.
 5. Initial access modules for acoustical tile, including size and locations.
 6. Items penetrating finished ceiling, including the following:
 a. Other luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Ceiling-mounted projectors.
 7. Moldings.
 8. Accoustical Panels

B. Qualification Data: For testing laboratory providing photometric data for luminaires.

C. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

D. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

E. Product Certificates: For each type of luminaire.

F. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.

G. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers’ codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 2. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.
1.8 QUALITY ASSURANCE
 A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
 B. Provide luminaires from a single manufacturer for each luminaire type.
 C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

1.9 DELIVERY, STORAGE, AND HANDLING
 A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY
 A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS
2.1 PERFORMANCE REQUIREMENTS
 A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE 7.
 B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified."

2.2 LUMINAIRE REQUIREMENTS
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. Standards:
 1. UL Listing: Listed for damp location.
 2. Recessed luminaires shall comply with NEMA LE 4.
 3. User Replaceable Lamps:
 a. Bulb shape complying with ANSI C78.79.
 b. Lamp base complying with ANSI C81.61 or IEC 60061-1].
 C. CRI of minimum 90. CCT of 3500 K.
 D. Rated lamp life of 50,000 hours to L70.
 E. Lamps dimmable from 100 percent to 0 percent of maximum light output.
 F. Internal driver.
 1. Provide remote driver for fixtures in Large RR, Traditional Performance Space, Isolation Rooms and Live Room/Jazz Combo Rehearsal as noted on the drawings.
 G. Nominal Operating Voltage: 277 V ac or as noted on the drawings.
 1. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
 H. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. powder-coat painted finish or as noted in Luminaire Schedule.

2.3 LUMINAIRE TYPES
 A. Refer to Luminaire Schedule on the Drawings for each Luminaire Type.
1. **Contractor may submit substitution request for equal products to those listed in the Luminaire schedule prior to bid for evaluation. If approved, formal approval will be issued. No substitutions will be entertained and/or permitted after bid date.**

2.4 MATERIALS

A. Metal Parts:
1. Free of burrs and sharp corners and edges.
2. Sheet metal components shall be steel unless otherwise indicated.
3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
1. **prismatic acrylic**
2. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
1. Label shall include the following lamp characteristics:
 a. “USE ONLY” and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.

2.5 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.6 LUMINAIRE SUPPORT

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.

D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with NECA 1.
B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
C. Install lamps in each luminaire.
D. Supports:
 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Provide support for luminaire without causing deflection of ceiling or wall.
 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.
E. Flush-Mounted Luminaire Support:
 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.
F. Wall-Mounted Luminaire Support:
 1. Attached to a minimum 20 gauge backing plate attached to wall structural members.
 2. Do not attach luminaires directly to gypsum board.
G. Ceiling-Mounted Luminaire Support:
 1. Ceiling mount with two 5/32-inch-diameter aircraft cable supports adjustable to 120 inches in length.
H. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
I. Ceiling-Grid-Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.
J. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.3 IDENTIFICATION
A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL
A. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.

2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 26 5119
SECTION 26 5219
EMERGENCY AND EXIT LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Emergency lighting units.
 2. Exit signs.
 3. Luminaire supports.

1.3 DEFINITIONS
A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Emergency Lighting Unit: A lighting unit with internal or external emergency battery powered supply and the means for controlling and charging the battery and unit operation.
D. Fixture: See "Luminaire" Paragraph.
E. Lumen: Measured output of lamp and luminaire, or both.
F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of emergency lighting unit, exit sign, and emergency lighting support.
 1. Include data on features, accessories, and finishes.
 2. Include physical description of the unit and dimensions.
 3. Battery and charger for light units.
 4. Include life, output of luminaire (lumens, CCT, and CRI), and energy-efficiency data.
 5. Include photometric data and adjustment factors based on laboratory tests, complying with IES LM-45, for each luminaire type.
 a. Manufacturers’ Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.
C. Product Schedule:
 1. For emergency lighting units. Use same designations indicated on Drawings.
 2. For exit signs. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing laboratory providing photometric data for luminaires.
B. Product Certificates: For each type of luminaire.
C. Seismic Qualification Data: For luminaires, accessories, and components, from manufacturer.
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

4. Provide seismic qualification certificate for each piece of equipment.

D. Product Test Reports: For each luminaire for tests performed by manufacturer and witnessed by a qualified testing agency.

E. Sample Warranty: For manufacturer's special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in emergency, operation, and maintenance manuals.

1. Provide a list of all lamp types used on Project; use ANSI and manufacturers’ codes.

1.7 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.9 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five year(s) from date of Substantial Completion.

B. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Emergency Power Unit Batteries: Five years from date of Substantial Completion. Full warranty shall apply for first year and prorated warranty for the remaining four years.

2. Warranty Period for Self-Powered Exit Sign Batteries: Five years from date of Substantial Completion. Full warranty shall apply for the entire warranty period.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7 Luminaires and lamps shall be labeled vibration and shock resistant.

1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified."

2.2 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.

C. Comply with NFPA 70 and NFPA 101.
D. Comply with NEMA LE 4 for recessed luminaires.
E. Comply with UL 1598 for fluorescent luminaires.
F. Lamp Base: Comply with ANSI C81.61 or IEC 60061-1.
G. Bulb Shape: Complying with ANSI C79.1.

2.3 **EMERGENCY LIGHTING**

A. Refer to Luminaire Schedule on the Drawings for each Luminaire Type.
 1. **Contractor may submit substitution request for equal products to those listed in the Luminaire schedule prior to bid for evaluation. If approved, formal approval will be issued. No substitutions will be entertained and/or permitted after bid date.**

B. General Requirements for Emergency Lighting Units: Self-contained units.

C. Emergency Lighting Unit:
 1. **Wall** with universal junction box adaptor.
 2. UV stable thermoplastic housing, **rated for damp locations**.
 3. Two **LED** lamp heads.
 4. **Internal** emergency power unit.
 5. **Self-Diagnostics**

D. Remote Emergency Lighting Units:
 1. **Wall** with universal junction box adaptor.
 2. UV stable thermoplastic housing, **rated for damp locations**.
 3. Two **LED** lamp heads.
 4. External emergency power unit.

2.4 **EXIT SIGNS**

A. Refer to Luminaire Schedule on the Drawings for each Luminaire Type.
 1. **Contractor may submit substitution request for equal products to those listed in the Luminaire schedule prior to bid for evaluation. If approved, formal approval will be issued. No substitutions will be entertained and/or permitted after bid date.**

B. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.
 1. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.
 2. Self-Powered Exit Signs (Battery Type): Internal emergency power unit.
 3. Master/Remote Sign Configurations:
 a. **Master Unit**: Comply with requirements above for self-powered exit signs, and provide additional capacity in **LED power supply battery** for power connection to remote unit.
 b. **Remote Unit**: Comply with requirements above for self-powered exit signs, except omit power supply, battery, and test features. Arrange to receive full power requirements from master unit. Connect for testing concurrently with master unit as a unified system.
 4. **Self-Diagnostics**

2.5 **MATERIALS**

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.
B. Doors, Frames, and Other Internal Access:
 1. Smooth operating, free of light leakage under operating conditions.
 2. Designed to permit relamping without use of tools.
 3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
 1. Clear, UV-stabilized acrylic.
 2. Acrylic: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Conduit: Electrical metallic tubing, minimum 3/4 inch in diameter.

2.6 METAL FINISHES
A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.7 LUMINAIRE SUPPORT COMPONENTS
A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for conditions affecting performance of luminaires.
B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
C. Examine walls, floors, roofs, and ceilings for suitable conditions where emergency lighting luminaires will be installed.
D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Comply with NECA 1.
B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
C. Install lamps in each luminaire.
D. Supports:
 1. Sized and rated for luminaire and emergency power unit weight.
 2. Able to maintain luminaire position when testing emergency power unit.
 3. Provide support for luminaire and emergency power unit without causing deflection of ceiling or wall.
 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire and emergency power unit weight and vertical force of 400 percent of luminaire weight.
E. Wall-Mounted Luminaire Support:
 1. Attached to a minimum 20-gage backing plate attached to wall structural members.
 2. Do not attach luminaires directly to gypsum board.
F. Suspended Luminaire Support:
1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.

3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.

4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

G. Ceiling Grid Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure emergency power unit using approved fasteners in a minimum of four locations, spaced near corners of emergency power unit.
 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

3.3 IDENTIFICATION
A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL
A. Perform the following tests and inspections:
 1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.5 STARTUP SERVICE
A. Perform startup service:
 1. Charge emergency power units and batteries minimum of 24 hours and conduct one-hour discharge test.

3.6 ADJUSTING
A. Adjustments: Within 12 months of date of Substantial Completion, provide on-site visit to do the following:
 1. Inspect all luminaires. Replace lamps, emergency power units, batteries, signs, or luminaires that are defective.
 a. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 2. Conduct short-duration tests on all emergency lighting.

END OF SECTION 26 5219
SECTION 27 0500
COMMON WORK RESULTS FOR COMMUNICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Communications equipment coordination and installation.
 2. Common communications installation requirements.

1.3 COORDINATION
 A. Coordinate arrangement, mounting, and support of communications equipment:
 1. To allow maximum possible headroom unless specific mounting heights that reduce
 headroom are indicated.
 2. To provide for ease of disconnecting the equipment with minimum interference to other
 installations.
 3. To allow right of way for piping and conduit installed at required slope.
 4. So connecting pathways, cables, wireways, cable trays, and busways will be clear of
 obstructions and of the working and access space of other equipment.
 B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete,
 masonry walls, and other structural components as they are constructed.
 C. Coordinate location of access panels and doors for communications items that are behind finished
 surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section
 "Access Doors and Frames."
 D. Coordinate sleeve selection and application with selection and application of firestopping
 specified in Division 07 Section "Penetration Firestopping."
 E. Coordinate sleeve selection and application and installation as specified in Division 27 Section
 "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR COMMUNICATIONS INSTALLATION
 A. Comply with NECA 1.
 B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit
 for wall-mounting items.
 C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange
 and install components and equipment to provide maximum possible headroom consistent with
 these requirements.
 D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components
 of both communications equipment and other nearby installations. Connect in such a way as to
 facilitate future disconnecting with minimum interference with other items in the vicinity.
 E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR COMMUNICATIONS PENETRATIONS
 A. Install sleeves as specified in Division 27 Section “Sleeves and Sleeve Seals for Communications
 Pathways and Cabling.”
3.3 SLEEVE-SEAL INSTALLATION
 A. Install sleeve-seals as specified in Division 27 Section “Sleeves and Sleeve Seals for Communications Pathways and Cabling.”

3.4 FIRESTOPPING
 A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for communications installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section “Penetration Firestopping.”

END OF SECTION 27 0500
SECTION 27 0544
SLEEVES AND SLEEVE SEALS FOR COMMUNICATIONS PATHWAYS AND CABLES

PART 1 - GENERAL
1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Sleeves for pathway and cable penetration of non-fire-rated construction walls and floors.
2. Sleeve-seal systems.
B. Related Requirements:
1. Division 07 Section "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. LEED Submittals:
1. Product Data for Credit EQ 4.1: For sealants, documentation including printed statement of VOC content.

PART 2 - PRODUCTS
2.1 SLEEVES
A. Wall Sleeves:
2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
1. Use EZ-PATH Smoke and Acoustical Pathways as noted on drawings (or pre-approved equal)
C. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
D. Sleeves for Rectangular Openings:
2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.
PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and pathway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and pathway or cable unless sleeve seal is to be installed.

 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 1. Where noted on drawings, use the EZ-Path smoke and acoustical pathways. (Or pre-approved equal)

 2. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.

 3. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual pathways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between pathway or cable and sleeve for installing sleeve-seal system.

END OF SECTION 27 0544
SECTION 28 3111
DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
B. Building has an existing fire alarm system. Existing Main Fire Alarm Control panel is Gamewell FCI E3 Series.

1.2 SUMMARY
A. Section Includes:
 1. System smoke detectors.
 4. Addressable interface device.

1.3 DEFINITIONS
A. LED: Light-emitting diode.

1.4 SYSTEM DESCRIPTION
A. Noncoded addressable system, with automatic sensitivity control of certain smoke detectors and multiplexed signal transmission, dedicated to fire-alarm service only.

1.5 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Fire-alarm control unit and raceways shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.6 SUBMITTALS
A. General Submittal Requirements:
 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
 2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified fire-alarm technician, Level IV minimum.
 c. Licensed or certified by authorities having jurisdiction.
B. Product Data: For each type of product indicated.
C. Shop Drawings: For fire-alarm system. Include plans, elevations, sections, details, and attachments to other work.
 2. Provide design calculation showing current draw on each notification circuit with allowance for minimum of 20% expansion.
 3. Include voltage drop calculations for notification appliance circuits.
 4. Include battery-size calculations and show that they are sized a minimum of 125% of calculated requirement.
 a. Show supervisory power requirements for all equipment.
b. Show alarm power requirements for all equipment

c. Show power supply rating justification showing power requirements for each of the system power supplies. Power supplies shall be sized to furnish the total connected load in a worst case condition.

5. Include performance parameters and installation details for each detector, verifying that each detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.

6. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale and coordinating installation of duct smoke detectors and access to them. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators. Locate detectors according to manufacturer's written recommendations.

7. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.

8. Indicate wattage and speaker tap settings for each speaker in plan.

9. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits.

10. Complete riser diagram including devices with associated tags/room no. and circuits.

D. Qualification Data: For qualified Installer.

E. Field quality-control reports.

F. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. Comply with the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.

2. Provide "Record of Completion Documents" according to NFPA 72 article "Permanent Records" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter.

3. Record copy of site-specific software.

4. Provide "Maintenance, Inspection and Testing Records" according to NFPA 72 article of the same name and include the following:

 a. Frequency of testing of installed components.

 b. Frequency of inspection of installed components.

 c. Requirements and recommendations related to results of maintenance.

 d. Manufacturer's user training manuals.

5. Manufacturer's required maintenance related to system warranty requirements.

6. Abbreviated operating instructions for mounting at fire-alarm control unit.

7. Copy of NFPA 25.

G. Software and Firmware Operational Documentation:

1. Software operating and upgrade manuals.

2. Program Software Backup: On magnetic media or compact disk, complete with data files.

3. Device address list.

4. Printout of software application and graphic screens.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level II technician.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by
a qualified testing agency, and marked for intended location and application.

C. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

1.8 PROJECT CONDITIONS

A. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities
occupied by Owner or others unless permitted under the following conditions and then only after
arranging to provide temporary guard service according to requirements indicated:

1. Notify Owner no fewer than five days in advance of proposed interruption of fire-alarm
service.

2. Do not proceed with interruption of fire-alarm service without Owner’s written permission.

1.9 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning with Substantial Completion, provide software support for two
years.

C. Upgrade Service: Update software to latest version at Project completion. Install and program
software upgrades that become available within two years from date of Substantial Completion.
Upgrading software shall include operating system. Upgrade shall include new or revised
licenses for use of software.

1. Provide 30 days’ notice to Owner to allow scheduling and access to system and to allow
Owner to upgrade computer equipment if necessary.

PART 2 - PRODUCTS

2.1 FIRE-ALARM CONTROL UNIT [Existing Gamewell FCI E3 Series to remain]

2.2 MANUAL FIRE-ALARM BOXES [Existing to remain]

2.3 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:

1. Comply with UL 268; operating at 24-V dc, nominal.

2. Detectors shall be two-wire type.

3. Base Mounting: Detector and associated electronic components shall be mounted in a
twist-lock module that connects to a fixed base. Provide terminals in the fixed base for
connection to building wiring.

4. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore
them to normal operation.

5. Integral Visual-Indicating Light: LED type indicating detector has operated and power-on
status.

6. Remote Control: Unless otherwise indicated, detectors shall be analog-addressable type,
individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm
condition and individually adjustable for sensitivity by fire-alarm control unit.

a. Rate-of-rise temperature characteristic shall be selectable at fire-alarm control unit
for 15 or 20 deg F per minute.

b. Fixed-temperature sensing shall be independent of rate-of-rise sensing and shall be
settable at fire-alarm control unit to operate at 135 or 155 deg F.

c. Provide multiple levels of detection sensitivity for each sensor.

B. Dual Smoke/Heat Detectors:

1. Basis of Design: Gamewell FCI Velociti Series MCS-ACCLIMATE2F

2. Detector uses a combination of photoelectric and thermal sensing technologies.
3. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.

4. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
 f. Capable of heat-only alarm mode, enabled by a special command from the panel.

C. Photoelectric Smoke Detectors:
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

D. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector.
 4. Each sensor shall have multiple levels of detection sensitivity.
 5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.

2.4 NOTIFICATION APPLIANCES

A. General Requirements for Notification Appliances: Connected to notification appliance signal circuits, zoned as indicated, equipped for mounting as indicated and with screw terminals for system connections.
 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated and with screw terminals for system connections.
 2. System Sensor devices compatible with fire alarm system and complying with specifications are approved manufacturer.
B. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 85 dBA, measured 10 feet (3 m) from the horn, using the coded signal prescribed in UL 464 test protocol.
 1. Horns shall be Wheelock NH or AH series or equal.
C. Visible Notification Appliances: Xenon strobe lights comply with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch high letters on the lens.
 1. Rated Light Output:
 a. 15/30/75/110 cd, selectable in the field.
 2. Mounting: Wall mounted unless otherwise indicated.
 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
 4. Flashing shall be in a temporal pattern, synchronized with other units.
 5. Strobe Leads: Factory connected to screw terminals.
 7. Strobes shall be Wheelock RSS series with Wheelock SM, DSM synchronization control module or equal.

2.5 MAGNETIC DOOR HOLDERS
A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching doorplate.
 1. Electromagnet: Requires no more than 3 W to develop 25-lbf holding force.
 2. Wall-Mounted Units: Flush mounted unless otherwise indicated.
 3. Rating: 24-V ac or dc.
B. Material and Finish: Match door hardware.

2.6 ADDRESSABLE INTERFACE DEVICE
A. Description: Microelectronic monitor module, NRTL listed for use in providing a system address for alarm-initiating devices for wired applications with normally open contacts.
B. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall.

PART 3 - EXECUTION
3.1 EQUIPMENT INSTALLATION
A. Comply with NFPA 72 for installation of fire-alarm equipment.
B. Equipment Mounting: Install fire-alarm control unit on finished floor with tops of cabinets not more than 72 inches above the finished floor.
 1. Comply with requirements for seismic-restraint devices specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
C. Smoke- or Heat-Detector Spacing:
 3. Smooth ceiling spacing shall not exceed 30 feet.
 4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Appendix A in NFPA 72.
5. HVAC: Locate detectors not closer than 3 feet from air-supply diffuser or return-air opening.

6. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture.

D. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct.

E. Remote Status and Alarm Indicators: Install near each smoke detector and each sprinkler water-flow switch and valve-tamper switch that is not readily visible from normal viewing position.

F. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille.

G. Visible Alarm-Indicating Devices: Install adjacent to each alarm speaker and at least 6 inches below the ceiling.

H. Device Location-Indicating Lights: Locate in public space near the device they monitor.

I. All fire alarm wiring shall be run in conduit tight to structure. No conduit runs shall run across structural pans. Mount it tight to bottom of joists/beams. Junction boxes and covers to be red.

3.2 CONNECTIONS

A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Division 08 Section "Door Hardware." Connect hardware and devices to fire-alarm system.

1. Verify that hardware and devices are NRTL listed for use with fire-alarm system in this Section before making connections.

B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 3 feet from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.

1. Smoke dampers in air ducts of designated air-conditioning duct systems.

2. Alarm-initiating connection to elevator recall system and components.

3. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.

4. Supervisory connections at valve supervisory switches.

5. Supervisory connections at low-air-pressure switch of each dry-pipe sprinkler system.

7. Supervisory connections at fire-pump power failure including a dead-phase or phase-reversal condition.

8. Supervisory connections at fire-pump engine control panel.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.4 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

3.5 FIELD QUALITY CONTROL

A. Field tests shall be witnessed by authorities having jurisdiction.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:
 1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed Record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" Table in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter.
 b. Comply with "Visual Inspection Frequencies" Table in the "Inspection" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
 4. Test audible appliances for the private operating mode according to manufacturer's written instructions.
 5. Test visible appliances for the public operating mode according to manufacturer's written instructions.

E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

F. Fire-alarm system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

I. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.6 DEMONSTRATION
 A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 28 3111