PROJECT MANUAL FOR:
UNIVERSITY OF MISSOURI LIBRARY DEPOSITORY
CONSTRUCT PHASE 2

BID DOCUMENTS – JANUARY 02, 2020

MU PROJECT NUMBER: # CP180161
PGAV PROJECT NUMBER: 53551-00

AT:
UNIVERSITY OF MISSOURI LIBRARY DEPOSITORY
2908 LEMONE INDUSTRIAL BLVD
COLUMBIA, MISSOURI 65201

FOR:
THE CURATORS OF THE UNIVERSITY OF MISSOURI

PREPARED BY:

PGAV Architects
Architect of Record
1900 W 47th Place, Suite 300
Westwood, KS 66205
(913) 362-6500

Bob D. Campbell & Co.
Structural Engineer
4338 Bellevue Avenue
Kansas City, MO 64111
(816) 531-4144

WL Cassell & Associates
Mechanical, Plumbing and Fire Protection Engineer
1600 Baltimore, Suite 300
Kansas City, MO 64108
(816) 842-8437

Antella Consulting Engineering
Electrical Engineer
1600 Genessee, Suite 260
Kansas City, MO 64102
(816) 421-0950

SK Design Group
Civil Engineer
4600 College Blvd Suite 100
Overland Park, KS 66211
(913) 451-1818

Confluence
Landscape Architect
417 Delaware Street
Kansas City, MO 64105
(816) 531-7227

VOLUME 2 OF 2
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>210500</td>
<td>COMMON WORK RESULTS FOR FIRE SUPPRESSION</td>
</tr>
<tr>
<td>210548</td>
<td>VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>211313</td>
<td>WET-PIPE SPRINKLER SYSTEMS</td>
</tr>
</tbody>
</table>
SECTION 210500 - COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Mechanical sleeve seals.
 3. Sleeves.
 4. Escutcheons.
 5. Coordination drawings.
 6. Project record drawings.
 7. Fire-suppression equipment and piping demolition.
 8. Equipment installation requirements common to equipment sections.
 10. Supports and anchorages.

1.3 DEFINITIONS
A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
C. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
D. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

E. The following are industry abbreviations for rubber materials:
 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS
A. Product Data: For the following:
 1. Mechanical sleeve seals.
 2. Escutcheons.
B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Electrical Characteristics for Fire-Suppression Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. Any additional costs as a result of these modifications shall be borne by the contractor. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Protect stored pipes and tubes from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor, if stored inside.

C. Protect flanges, fittings, and piping specialties from moisture and dirt.

1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for fire-suppression installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for fire-suppression items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

D. Sequence, coordinate, and integrate installations of fire suppression materials and equipment for efficient flow of the Work. Coordinate installation of large equipment requiring positioning before closing in building.

E. Coordinate installation of identifying devices after completing covering and painting, if devices are applied to surfaces. Install identifying devices before installing acoustical ceilings and similar concealment.

F. Sequence, coordinate, and integrate removal of existing equipment and material as required to maintain services for existing building and for portions of remodeled areas at all times.

1.8 SCHEDULING AND PHASING

A. All fire suppression work shall be scheduled to meet project completion data. Fire suppression work shall be phased for projects requiring phasing of work. Install additional fittings, valves, caps as required to support phasing. Refer to phasing schedule on drawings.
PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.
 2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS
A. Refer to individual Division 21 piping Sections for pipe, tube, and fitting materials and joining methods.
B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS
A. Refer to individual Division 21 piping Sections for special joining materials not listed below.
B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

2.4 MECHANICAL SLEEVE SEALS
A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 1. Acceptable Manufacturers:
 a. GPT (Pipeline Seal and Insulator), Inc.
 2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 3. Pressure Plates: Carbon steel. Include two for each sealing element.
 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.
2.5 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.

2.6 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated or Rough brass.

C. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

D. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.

E. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw or spring clips, and chrome-plated finish.

F. One-Piece, Floor-Plate Type: Cast-iron floor plate.

G. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.7 COORDINATION DRAWINGS

A. The Contractor shall prepare CAD generated drawings (min. ¼" scale) showing following systems/items as a minimum:
 1. Fire suppression piping routing including locations of valves, drops to sprinkler heads, risers, etc.
 2. Fire suppression equipment locations and clearances required.

B. The Contractor shall submit the CAD generated drawings to HVAC contractor for coordination with other trades. The drawings shall be submitted either in electronic format or printed copies as requested by HVAC Contractor.

C. The Contractor shall participate in coordination meetings when requested by HVAC Contractor.

2.8 PROJECT RECORD DRAWINGS

A. Drawings shall be furnished in electronic-media (CD-Rewritable type) and at least one hard copy prints.
1. Format: Same CAD program, version and operating system as the original Contract Drawings.
2. Incorporate changes and additional information previously marked on Record prints. Delete, re-draw and add details and notations where applicable.

B. Identify and date each drawing and include the designation “PROJECT RECORD DRAWINGS” or “AS-BUILT DRAWING” in a prominent location.

PART 3 - EXECUTION

3.1 FIRE-SUPPRESSION DEMOLITION

A. Refer to Division 01 Section "Cutting and Patching" and Division 02 Section "Selective Structure Demolition" for general demolition requirements and procedures.

3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 21 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping minimum 8 inches above accessible ceilings to allow sufficient space for ceiling panel removal and service access.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

1. New Piping:

 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with rough-brass finish.
g. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
h. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

2. Install sleeves in new walls and slabs as new walls and slabs are constructed.

3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section “Sheet Metal Flashing and Trim” for flashing.

1) Seal space outside of sleeve fittings with grout.

Q. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section “Penetration Firestopping” for materials.

R. Verify final equipment locations for roughing-in.

S. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.3 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 21 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
E. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.4 PAINTING

A. Painting of fire-suppression systems, equipment, and components is specified in Division 09 Sections "Interior Painting."

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.5 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor fire-suppression materials and equipment.

B. Field Welding: Comply with AWS D1.1.

END OF SECTION 210500
SECTION 210548 - VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Isolation mounts.
2. Restrained elastomeric isolation mounts.
3. Restraining braces.

1.3 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 SUBMITTALS

A. Product Data: For the following:

1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.

B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators, seismic restraints, and for designing vibration isolation bases.
2. Seismic-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.

C. Welding certificates.
1.5 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC and NFPA 13 unless requirements in this Section are more stringent.

B. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel".

C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall be pre-approved by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If pre-approved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Amber/Booth Company, Inc.
 3. Mason Industries.
 4. Vibration Eliminator Co., Inc.
 5. Vibration Isolation.
 6. Vibration Mountings & Controls, Inc.

B. Elastomeric Hangers Type B.4: Single or double-deflection type, fitted with molded, oil-resistant elastomeric isolator elements bonded to steel housings with threaded connections for hanger rods. Color-code or otherwise identify to indicate capacity range.

C. Pipe Riser Resilient Support Type D.1: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of ½-inch-thick neoprene. Include steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions. Design support for a maximum load on the isolation material of 500 psig and for equal resistance in all directions.

D. Resilient Pipe Guides: Telescopic arrangement of 2 steel tubes or post and sleeve arrangement separated by a minimum of ½-inch-thick neoprene. Where clearances are not readily visible, a factory-set guide height with a shear pin to allow vertical motion due to pipe expansion and contraction shall be fitted. Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.2 SEISMIC-RESTRAINT DEVICES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Amber/Booth Company, Inc.
 2. Cooper B-Line, Inc.; a division of Cooper Industries.
 3. Hilti, Inc.
 5. Mason Industries.
 6. Unistrut; Tyco International, Ltd.
B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as acceptable to authorities having jurisdiction.

 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.

D. Hanger Rod Stiffener: Reinforcing steel angle clamped to hanger rod.

E. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings and matched to type and size of attachment devices used.

F. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

G. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.

H. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.3 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.

 1. Powder coating on springs and housings.
 2. All hardware shall be galvanized.
 3. Baked enamel or powder coat for metal components on isolators for interior use.
 4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application.
B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Piping Restraints:
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.
B. Install cables so they do not bend across edges of adjacent equipment or building structure.
C. Install seismic-restraint devices using methods approved by authorities having jurisdiction providing required submittals for component.
D. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
E. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
F. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
G. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 VIBRATION ISOLATOR AND SEISMIC-RESTRAINT SCHEDULE FOR SLAB ON GRADE LOCATED EQUIPMENT

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Mounting</th>
<th>Size</th>
<th>Base Type</th>
<th>Isol. Type</th>
<th>Static Deflection</th>
</tr>
</thead>
</table>

VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT 210548 - 4/5
Piping – Horizontal | Suspended | All sizes | -- | B.4 | 0.25”
Piping – Vertical | Floor | All sizes | -- | D.1 | 0.25”

Notes: 1. The table indicates minimum static deflection for the isolator. The Contractor shall provide isolators with proper deflection, for equipment furnished, as recommended by the isolator manufacturer.
2. Isolators indicated for horizontal piping is only for three (3) hangers on discharge/outlet and three (3) hangers on suction/inlet pipes for pumps, air compressors, vacuum pumps, and equipment mounted on type “B” isolators. Remaining piping does not require isolation.

3.5 VIBRATION ISOLATOR AND SEISMIC – RESTRANE SCHEDULE FOR EQUIPMENT LOCATED ABOVE GRADE

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Mounting</th>
<th>Size</th>
<th>Base Type</th>
<th>Isol. Type</th>
<th>Static Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping – Horizontal</td>
<td>Suspended</td>
<td>All sizes</td>
<td>--</td>
<td>B.4</td>
<td>0.25”</td>
</tr>
<tr>
<td>Piping – Vertical</td>
<td>Floor</td>
<td>All sizes</td>
<td>--</td>
<td>D.1</td>
<td>0.25”</td>
</tr>
</tbody>
</table>

Notes: 1. The table indicates minimum static deflection for the isolator. The Contractor shall provide isolators with proper deflection, for equipment furnished, as recommended by the isolator manufacturer.
2. Isolators indicated for horizontal piping is only for three (3) hangers on discharge/outlet and three (3) hangers on suction/inlet pipes for pumps, air compressors, vacuum pumps, and equipment mounted on type “B” isolators. Remaining piping does not require isolation.

END OF SECTION 210548
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 211313 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Pipes, fittings, and specialties.
2. Fire-protection valves.
3. Fire-department connections.
4. Sprinklers.
5. Alarm devices.
6. Control panels.
7. Pressure gages.

1.3 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175 psig maximum.

1.4 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.5 PERFORMANCE REQUIREMENTS

A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1. Contractor shall obtain fire-hydrant flow test records from authorities having jurisdiction.

C. Sprinkler system design shall be approved by Engineer and authorities having jurisdiction.

1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
2. Sprinkler Occupancy Hazard Classifications According to NFPA 13 Unless Otherwise Noted:
 a. Building Service Areas: Ordinary Hazard, Group 1.
 b. General Storage Areas: Ordinary Hazard, Group 1.
 c. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
d. Office and Public Areas: Light Hazard.
e. Library Storage Module: Ordinary Hazard, Group 2.

3. Minimum Density for Automatic-Sprinkler Piping Design According to NFPA 13 Unless Noted Otherwise:
 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.

4. Maximum Protection Area per Sprinkler According to NFPA 13 Unless Noted Otherwise:
 a. Office Spaces and Classrooms: 225 sq. ft.
 b. Storage Areas: 130 sq. ft.
 c. Mechanical Equipment Rooms: 130 sq. ft.
 d. Electrical Equipment Rooms: 130 sq. ft.
 e. In-Rack Sprinklers: 100 sq. ft.
 f. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.

5. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 a. Light-Hazard Occupancies: 100 gpm for 30 minutes.
 b. Ordinary-Hazard Occupancies: 250 gpm for 60 to 90 minutes.
 c. Extra-Hazard Occupancies: 500 gpm for 90 to 120 minutes.

D. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to NFPA 13 and ASCE/SEI 7.

1.6 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.

1. Wiring Diagrams: For power, signal, and control wiring.

C. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

D. Coordination Drawings: Sprinkler systems, drawn to minimum ¼” scale, on CAD generated drawings. Refer to Section “Common Work Results for Fire Suppression”.

E. Qualification Data: For qualified Installer.

F. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been signed and stamped by registered Fire Protection Engineer, including hydraulic calculations.

G. Welding certificates.

H. Fire-hydrant flow test report.

I. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."
J. Field quality-control reports.

K. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 1. NFPA 13, "Installation of Sprinkler Systems."
 2. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

1.8 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies. Refer to Section "Common Work Results for Fire Suppression" for details.

1.9 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

A. Standard Weight, Black-Steel Pipe: ASTM A 53, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.

C. Uncoated, Steel Couplings: ASTM A 865, threaded.

E. Malleable- or Ductile-Iron Unions: UL 860.

F. Cast-Iron Flanges: ASME 16.1, Class 125.

G. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.

I. Grooved-Joint, Steel-Pipe Appurtenances:
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Victaulic Company.
 2. Pressure Rating: 175 psig minimum.
 3. Uncoated, Grooved-End Fittings for Steel Piping: ASTM A 47, malleable-iron casting or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

J. Steel Pressure-Seal Fittings: UL 213, FM-approved, 175-psig pressure rating with steel housing, rubber O-rings, and pipe stop; for use with fitting manufacturers' pressure-seal tools.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free.

 1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.
 2. Class 250, Cast-Iron Flanges and Class 300, Steel Raised-Face Flanges: Ring-type gaskets.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

2.4 LISTED FIRE-PROTECTION VALVES

A. General Requirements:

 1. Valves shall be UL listed or FM approved.
 3. Minimum Pressure Rating for High-Pressure Piping: 250 psig.

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Anvil International, Inc.
 2. Crane Co.
4. Metraflex, Inc.
5. Milwaukee Valve Company.
7. NIBCO INC.
8. Potter Roemer.
9. Reliable Automatic Sprinkler Co., Inc.
10. Tyco Fire & Building Products LP.
11. Victaulic Company.

C. Ball Valves:
2. Valves NPS 1-1/2 and Smaller: Bronze body with threaded ends.
3. Valves NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
4. Valves NPS 3: Ductile-iron body with grooved ends.

D. Bronze Butterfly Valves:
4. End Connections: Threaded.

E. Iron Butterfly Valves:
3. Body Material: Cast or ductile iron.
5. End Connections: Grooved.

F. Check Valves:
2. Pressure Rating: 250 psig minimum.
3. Type: Swing check.
5. End Connections: Flanged or grooved.

G. Bronze OS&Y Gate Valves:
4. End Connections: Threaded.

H. Iron OS&Y Gate Valves:
2. Pressure Rating: 250 psig minimum.
3. Body Material: Cast or ductile iron.
4. End Connections: Flanged or grooved.

I. Indicating-Type Butterfly Valves:
2. Pressure Rating: 175 psig minimum.
3. Valves NPS 2 and Smaller:
 a. Valve Type: Ball or butterfly.
 b. Body Material: Bronze.
 c. End Connections: Threaded.
4. Valves NPS 2-1/2 and Larger:
 a. Valve Type: Butterfly.
 b. Body Material: Cast or ductile iron.
 c. End Connections: Flanged, grooved, or wafer.
5. Valve Operation: Integral electrical, 115-V ac, prewired, two-circuit, supervisory switch visual indicating device.

J. NRS Gate Valves:
 2. Pressure Rating: 250 psig minimum.
 5. End Connections: Flanged or grooved.

2.5 SPECIALTY VALVES

A. General Requirements:
 2. Pressure Rating:
 a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
 b. High-Pressure Piping Specialty Valves: 250 psig minimum.
 3. Body Material: Cast or ductile iron.
 4. Size: Same as connected piping.
 5. End Connections: Flanged or grooved.

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Reliable Automatic Sprinkler Co., Inc.
 3. Tyco Fire & Building Products LP.
 4. Victaulic Company.
 5. Viking Corporation.

C. Alarm Valves:
 2. Design: For horizontal or vertical installation.
 3. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, retarding chamber, and fill-line attachment with strainer.
 4. Drip Cup Assembly: Pipe drain without valves and separate from main drain piping.
 5. Drip Cup Assembly: Pipe drain with check valve to main drain piping.

D. Automatic (Ball Drip) Drain Valves:
2. Pressure Rating: 175 psig minimum.
3. Type: Automatic draining, ball check.
5. End Connections: Threaded.

2.6 HOSE CONNECTIONS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Fire-End & Croker Corporation.
3. Fire Protection Products, Inc.
5. Potter Roemer.
6. Tyco Fire & Building Products LP.
7. Wilson & Cousins Inc.
8. Zurn Plumbing Products Group; Wilkins Water Control Products Division.

B. Nonadjustable-Valve Hose Connections:

1. Standard: UL 668 hose valve for connecting fire hose.
2. Pressure Rating: 300 psig minimum.
3. Material: Brass or bronze.
4. Size: NPS 2-1/2, as indicated.
5. Inlet: Female pipe threads.
6. Outlet: Male hose threads with lugged cap, gasket, and chain. Include hose valve threads according to NFPA 1963 and matching Columbia, Missouri fire-department threads.
7. Pattern: Angle or gate.

C. Roof Manifolds:

1. Standard: UL 668 hose valve for connecting fire hose.
2. Pressure Rating: 300 psig
3. Material: Brass or bronze.
4. Size: NPS 2-1/2 x 2-1/2 x 2-1/2 x 4 3-way
5. Inlet: Female pipe threads.
6. Outlet: Male hose threads with lugged cap, gasket, and chain. Include hose valve threads according to NFPA 1963 and matching Columbia, Missouri fire-department threads.
7. Pattern: Angle or gate.

2.7 FIRE-DEPARTMENT CONNECTIONS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Fire-End & Croker Corporation.
3. Fire Protection Products, Inc.
4. GMR International Equipment Corporation.
5. Guardian Fire Equipment, Inc.
6. Tyco Fire & Building Products LP.
7. Wilson & Cousins Inc.

B. Exposed-Type, Fire-Department Connection:
2. Type: Exposed, projecting, for wall mounting.
5. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
6. Caps: Brass, lugged type, with gasket and chain.
7. Escutcheon Plate: Round, brass, wall type.
8. Outlet: Back, with pipe threads.
9. Number of Inlets: Two or as required by local fire department.
10. Escutcheon Plate Marking: Similar to "AUTO SPKR & STANDPIPE."
12. Outlet Size: NPS 4 STORZ type or as required by Columbia fire department.

2.8 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:

2. Pressure Rating: 175 psig minimum.
4. Type: Mechanical-T and -cross fittings.
5. Configurations: Ductile-iron housing with branch outlets.
6. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
7. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:

2. Pressure Rating: 175 psig minimum.
3. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
4. Size: Same as connected piping.
5. Inlet and Outlet: Threaded.

C. Branch Line Testers:

4. Size: Same as connected piping.
5. Inlet: Threaded.
6. Drain Outlet: Threaded and capped.
7. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector’s Test Fittings:

2. Pressure Rating: 175 psig minimum.
3. Body Material: Cast- or ductile-iron housing with sight glass.
4. Size: Same as connected piping.
5. Inlet and Outlet: Threaded.

E. Adjustable Drop Nipples:

2. Pressure Rating: 250 psig minimum.
4. Size: Same as connected piping.
5. Length: Adjustable.
6. Inlet and Outlet: Threaded.

2.9 SPRINKLERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Reliable Automatic Sprinkler Co., Inc.
 3. Tyco Fire & Building Products LP.
 4. Victaulic Company.
 5. Viking Corporation.

B. General Requirements:
 2. Type: All sprinklers shall be quick response type.
 4. Pressure Rating for High-Pressure Automatic Sprinklers: 250 psig minimum.

C. Sprinkler Finishes:
 1. Chrome plated.
 2. Bronze.
 3. Painted.

D. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 1. Ceiling Mounting: Chrome-plated steel, one piece, flat.
 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

E. Sprinkler Guards:
 2. Type: Wire cage with fastening device for attaching to sprinkler.

2.10 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Electrically Operated Alarm Bell:
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Notifier; a Honeywell company.
 c. Potter Electric Signal Company.
 3. Type: Vibrating, metal alarm bell.
4. Size: 6-inch minimum diameter.
5. Finish: Red-enamel factory finish, suitable for outdoor use.

C. Water-Flow Indicators:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ADT Security Services, Inc.
 b. McDonnell & Miller; ITT Industries.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
 e. Viking Corporation.
 f. Watts Industries (Canada) Inc.

4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
5. Type: Paddle operated.
7. Design Installation: Horizontal or vertical.

D. Pressure Switches:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Detroit Switch, Inc.
 b. Potter Electric Signal Company.
 c. System Sensor; a Honeywell company.
 d. Tyco Fire & Building Products LP.
 e. United Electric Controls Co.
 f. Viking Corporation.

3. Type: Electrically supervised water-flow switch with retard feature.
5. Design Operation: Rising pressure signals water flow.

E. Valve Supervisory Switches:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.

3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.

F. Indicator-Post Supervisory Switches:
1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. System Sensor; a Honeywell company.

3. Type: Electrically supervised.
5. Design: Signals that controlled indicator-post valve is in other than fully open position.

2.11 PRESSURE GAGES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AMETEK; U.S. Gauge Division.
 2. Ashcroft, Inc.
 4. WIKA Instrument Corporation.

B. Standard: UL 393.

C. Dial Size: 3-1/2- to 4-1/2-inch diameter.

D. Pressure Gage Range: 0 to 250 psig.

E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

2.12 ESCUTCHEONS

A. General: Manufactured ceiling, floor, and wall escutcheons and floor plates.

B. One-Piece, Cast-Brass Escutcheons: Polished chrome-plated or rough-brass finish with set-screws.

D. One-Piece, Stamped-Steel Escutcheons: Chrome-plated finish with set-screw or spring clips.

E. Split-Casting, Cast-Brass Escutcheons: Polished chrome-plated or rough-brass finish with concealed hinge and set-screw.

F. Split-Plate, Stamped-Steel Escutcheons: Chrome-plated finish with concealed hinge, set-screw or spring clips.

G. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

H. Split-Casting Floor Plates: Cast brass with concealed hinge.

2.13 SLEEVES

A. Cast-Iron Wall Pipe Sleeves: Cast or fabricated of cast iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, standard weight, zinc coated, plain ends.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set-screws.

2.14 SLEEVE SEALS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex, Inc.
 4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 1. Sealing Elements: EPDM-rubber or NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel.
 3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements.

PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.

B. Report test results promptly and in writing.

3.2 SERVICE-ENTRANCE PIPING

A. Connect sprinkler piping to water-service piping for service entrance to building.

B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-service piping. Comply with requirements for backflow preventers in Division 22.

C. Install shutoff valve, check valve, pressure gage, and drain at connection to water service.

3.3 WATER-SUPPLY CONNECTIONS

A. Connect sprinkler piping to building's interior water-distribution piping. Comply with requirements for interior piping in Division 22 Section "Domestic Water Piping."
B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-distribution piping. Comply with requirements for backflow preventers in Division 22 Section "Domestic Water Piping Specialties."

C. Install shutoff valve, check valve, pressure gage, and drain at connection to water supply.

3.4 PIPING INSTALLATION

A. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.

C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install unions adjacent to each valve in pipes NPS 2 and smaller.

E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

F. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

G. Install sprinkler piping with drains for complete system drainage.

H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

I. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.

J. Install alarm devices in piping systems.

K. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

L. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

M. Fill sprinkler system piping with water.

3.5 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

G. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

H. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

3.6 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:
 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.

3.7 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of narrow dimension of acoustical ceiling panels.

3.8 FIRE-DEPARTMENT CONNECTION INSTALLATION

A. Install wall-type, fire-department connections.

B. Install automatic (ball drip) drain valve at each check valve for fire-department connection.

C. Install alarm bell above fire department connection.

3.9 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors.

B. Escutcheons for New Piping:
 1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
4. Bare Piping in Unfinished Service Spaces: One piece, cast brass with rough-brass finish or stamped steel with set-screw or spring clips.
5. Bare Piping in Equipment Rooms: One piece, cast brass stamped steel with set-screw or spring clips.
6. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

3.10 SLEEVE INSTALLATION

A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls.
B. Sleeves are not required for core-drilled holes.
C. Permanent sleeves are not required for holes formed by removable PE sleeves.
D. Cut sleeves to length for mounting flush with both surfaces unless otherwise indicated.
E. Install sleeves in new partitions, slabs, and walls as they are built.
F. For interior wall penetrations, seal annular space between sleeve and pipe or pipe insulation using joint sealants appropriate for size, depth, and location of joint. Comply with requirements for joint sealants in Division 07 Section “Joint Sealants.”
G. For exterior wall penetrations above grade, seal annular space between sleeve and pipe using joint sealants appropriate for size, depth, and location of joint. Comply with requirements for joint sealants in Division 07 Section “Joint Sealants.”
H. Seal space outside of sleeves in concrete slabs and walls with grout.
I. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation unless otherwise indicated.
J. Install sleeve materials according to the following applications:
 1. Sleeves for Piping Passing through Concrete Floor Slabs: Galvanized-steel pipe.
 2. Sleeves for Piping Passing through Concrete Floor Slabs of Mechanical Equipment Areas or Other Wet Areas: Galvanized-steel pipe.
 a. Extend sleeves 2 inches above finished floor level.
 b. For pipes penetrating floors with membrane waterproofing, extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements for flashing in Division 07 Section “Sheet Metal Flashing and Trim.”
 3. Sleeves for Piping Passing through Gypsum-Board Partitions:
 b. Galvanized-steel-sheet sleeves for pipes NPS 6 and larger.
 c. Exception: Sleeves are not required for water-supply tubes and waste pipes for individual plumbing fixtures if escutcheons will cover openings.
 4. Sleeves for Piping Passing through Concrete Roof Slabs: Molded PE or Galvanized-steel pipe.
 5. Sleeves for Piping Passing through Exterior Concrete Walls:

b. Cast-iron wall-pipe sleeves for pipes NPS 6 and larger.
c. Install sleeves that are large enough to provide 1-inch annular clear space between sleeve and pipe or pipe insulation when sleeve seals are used.

6. Sleeves for Piping Passing through Interior Concrete Walls:
 b. Galvanized-steel-sheet sleeves for pipes NPS 6 and larger.

K. Fire-BARRIER Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestop materials and installations in Division 07 Section "Penetration Firestopping."

3.11 SLEEVE SEAL INSTALLATION

A. Install sleeve seals in sleeves in exterior concrete walls at water-service piping entries into building.

B. Select type and number of sealing elements, minimum two rows required for pipe material and size. Position pipe in center of sleeve. Assemble sleeve seal components and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal. All bolts shall be accessible from inside of building.

3.12 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.13 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
 5. Coordinate with fire-alarm tests. Operate as required.
 6. Verify that equipment hose threads are same as local fire-department equipment.

C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.14 CLEANING

A. Clean dirt and debris from sprinklers.

B. Remove and replace sprinklers with paint other than factory finish.
3.15 PIPING SCHEDULE

A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends; cast-iron threaded fittings; and threaded or grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.

B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.

C. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.

D. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 and larger, shall be one of the following:
 1. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

3.16 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:
 1. Rooms without Ceilings: Upright sprinklers.
 2. Rooms with Suspended Ceilings: Concealed sprinklers.
 3. Wall Mounting: Concealed sidewall sprinklers.
 4. Spaces Subject to Freezing: Upright, pendent, dry sprinklers; and sidewall, dry sprinklers as indicated.
 5. Special Applications: Extended-coverage, flow-control, sprinklers where indicated.
 6. In-Rack: Upright (Face) and Pendant Sprinklers (Longitudinal Flues)

B. Provide sprinkler types in subparagraphs below with finishes indicated.
 1. Concealed Sprinklers: Rough brass, with factory-painted cover plate color as directed by Architect.
 2. Upright and Pendent Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes. Provide head guards for in-rack sprinklers for protection.

END OF SECTION 211313
THIS PAGE INTENTIONALLY LEFT BLANK
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>220500</td>
<td>COMMON WORK RESULTS FOR PLUMBING</td>
</tr>
<tr>
<td>220513</td>
<td>COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT</td>
</tr>
<tr>
<td>220519</td>
<td>METERS AND GAGES FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220523</td>
<td>GENERAL-DUTY VALVES FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220529</td>
<td>HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>220553</td>
<td>IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>220700</td>
<td>PLUMBING INSULATION</td>
</tr>
<tr>
<td>221116</td>
<td>DOMESTIC WATER PIPING</td>
</tr>
<tr>
<td>221119</td>
<td>DOMESTIC WATER PIPING SPECIALTIES</td>
</tr>
<tr>
<td>221316</td>
<td>SANITARY WASTE AND VENT PIPING</td>
</tr>
<tr>
<td>221319</td>
<td>SANITARY WASTE PIPING SPECIALTIES</td>
</tr>
<tr>
<td>221600</td>
<td>FACILITY NATURAL-GAS PIPING</td>
</tr>
<tr>
<td>224000</td>
<td>PLUMBING FIXTURES</td>
</tr>
<tr>
<td>224700</td>
<td>DRINKING FOUNTAINS AND WATER COOLERS</td>
</tr>
</tbody>
</table>
SECTION 220500 - COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Transition fittings.
 3. Dielectric fittings.
 4. Mechanical sleeve seals.
 5. Sleeves.
 7. Grout.
 8. Coordination drawings.
 10. Trenchings, excavating and backfilling.
 11. Plumbing demolition.
 12. Equipment installation requirements common to equipment sections.
 13. Painting and finishing.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.4 SUBMITTALS

A. Product Data: For the following:
 1. Transition fittings.
 2. Dielectric fittings.
3. Mechanical sleeve seals.
4. Escutcheons.

1.5 QUALITY ASSURANCE

A. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. Any additional costs as a result of these modifications shall be borne by the Contractor. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

B. Plumbing work to comply with International Plumbing Code (IPC) as listed on Drawings and General Conditions.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Protect stored pipes and tubes from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor, if stored inside.

C. Protect flanges, fittings, and piping specialties from moisture and dirt.

1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

D. Sequence, coordinate, and integrate installations of plumbing materials and equipment for efficient flow of the Work. Coordinate installation of large equipment requiring positioning before closing in building.

E. Coordinate connection of plumbing systems with exterior underground utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies.

F. Coordinate installation of identifying devices after completing covering and painting, if devices are applied to surfaces. Install identifying devices before installing acoustical ceilings and similar concealment.

G. Sequence, coordinate, and integrate removal of existing equipment and material as required to maintain services for existing building and for portions of remodeled areas at all times.

1.8 SCHEDULING AND PHASING

A. All plumbing work shall be scheduled to meet project completion date. Plumbing work shall be phased for projects requiring phasing of work. Install additional fittings, valves, caps as required to support phasing. Refer to phasing schedule on drawings.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 22 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

2.4 TRANSITION FITTINGS

A. Acceptable Manufacturers:

3. Ford Meter Box Company, Incorporated (The); Pipe Products Div.
4. JCM Industries.
5. Smith-Blair, Inc.
6. Viking Johnson.

B. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.
2.5 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Acceptable Manufacturers:
1. Capitol Manufacturing Co.
2. Calpico, Inc.
3. Epcos Sales, Inc.
5. Lochinvar Corp.

D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.

E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
1. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.6 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Acceptable Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Link Seal
 d. Metraflex Co.
 e. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
3. Pressure Plates: Carbon steel. Include two for each sealing element.
4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.

2.8 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated or rough brass.

D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

E. One-Piece, Floor-Plate Type: Cast-iron floor plate.

F. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.9 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.

 2. Design Mix: 5000-psi, 28-day compressive strength.

2.10 COORDINATION DRAWINGS

A. The contractor shall prepare CAD generated drawings (min. ¼" scale) showing following systems/items as a minimum:

 1. Plumbing piping routing including locations of valves, drops to fixtures, risers, etc.
 2. Plumbing equipment locations and clearances required.

B. The contractor shall submit the CAD generated drawings to mechanical contractor for coordination with other trades. The drawings shall be submitted either in electronic format or printed copies as requested by HVAC Contractor.

C. The contractor shall participate in coordination meetings when requested by HVAC Contractor.

2.11 PROJECT RECORD DRAWINGS

A. Drawings shall be furnished in electronic-media (CD-Rewritable type) and at least one hard copy prints.
1. Format: Same CAD program, version and operating system as the original Contract Drawings.
2. Incorporate changes and additional information previously marked on Record prints. Delete, re-draw and add details and notations where applicable.

B. Identify and date each drawing and include the designation “PROJECT RECORD DRAWING” or “AS-BUILT DRAWING” in a prominent location.

PART 3 - EXECUTION

3.1 TRENCHING, EXCAVATING AND BACKFILLING

A. Excavate to required dimensions and depth. The trench excavation shall be in open cut from surface and shall be minimum width necessary to permit the placing of the pipe as required. Excess excavation shall be backfilled with crusher run rock. Such rocks shall be placed at the Contractor’s expense. Lines shall be used to lay out trenches.

B. All excavations shall be properly protected by the necessary bracing and timbers, to prevent any cave-ins or injury to adjacent improvements. The sides of the excavations shall be securely held by bracing or sheathing, which bracing or sheathing shall not be removed until the level of the backfill has reached the point where such removal can be safely carried out. Where adjacent improvements might be injured by the removal of such bracing, the braces shall be left in place to prevent such injury. The thickness of the sheathing and dimensions of the brass braces, shoes and miscellaneous supports to be used by the Contractor shall be of the type required to properly protect the sides of the trench and to prevent injurious cave-ins or erosions.

C. The Contractor shall do all pumping and bailing necessary to keep all excavations free of water and shall provide for the uninterrupted flow of the surface water adjacent to the line of the work during the progress of the work. The Contractor shall inspect the ground where excavation is required to ascertain the structure of the soil. Additional consideration will not be allowed for encountering rock, stone, old foundations or other unfavorable excavating conditions.

D. The Contractor shall replace all existing walks, roads, street pavements, curbs, retaining walls, steps and miscellaneous work removed or damaged in connection with the utility service installation, whether or not the improvement is shown on the drawings. Such repairs shall be done to the satisfaction of the Architect. All street cuts shall be repaired in a manner meeting the approval of the Owner.

E. In cases where existing water, sewer, electric, steam or other pipes are encountered, they shall not be displaced or disturbed unless necessary, in which case they shall promptly be replaced in good condition. All water, sewer, steam or electric lines damaged or disturbed in the construction shall be replaced or repaired at the Contractor’s expense, unless, in the opinion of the Architect, such damage was caused through no fault of the Contractor.

F. Contractor shall provide all temporary bridges, steel plates, barricades, lanterns, and such other signs and signals by day as shall be necessary to warn the public of and protect the public from the dangers caused by excavations and other obstructions, day and night.

G. The backfilling of trenches shall be carried out as rapidly as the testing and acceptance of the finished sections of the installation will permit. The trench shall be backfilled in layers of not to exceed eight inches (8”) with good selected clean earth, thoroughly tamped with mechanical tamper to a 95% optimum compaction. Density shall be tested by an approved laboratory, using a standard method. Tests shall be made for each 2 ft. depth on the basis of one test per 1000 sq. ft. of fill area. Last 12” of backfill (except under streets, drives, and walks) shall be made with good clean top soil. Contractor shall obtain and pay for tests. Submit five (5) copies of tests for approval. Note: Broken stones, cinders, wood and rubbish are not acceptable for backfilling. Backfill all street cuts in a manner meeting the approval of the Architect.

H. In spaces between walls and line of excavation, fill with thin layers of selected clean earth; thoroughly tamp in eight inches (8”) thick layers and bring up to a finished level of established grades. All wood and foreign materials shall be removed from excavation prior to backfilling.
I. After backfilling, all surplus excavated materials shall be removed from the property.

J. The work shall be executed so that existing culverts, walks, retaining walls, steps, fences or any permanent structure along and adjacent to the new work are properly protected. Any damage occurring to these structures shall be repaired by the Contractor at his own expense.

K. The Contractor shall make a field inspection of the location along which the underground piping is to be constructed, and note all obstructions and improvements at the surface and overhead which may affect the method of operation in the construction of these lines. Such overhead wires and underground pipes or conduits which may exist, or which may be encountered, shall be protected by the Contractor during this construction. Any expense or inconvenience caused by their existence and the necessary protection for utilities adjacent thereto shall be considered as covered and included in the contract, without additional cost to the Owner.

3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping minimum 8 inches above accessible ceilings to allow sufficient space for ceiling panel removal and service access. In general install piping tight to slab, beams, joists and structural members if possible.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with rough-brass finish.
g. Bare Piping in Equipment Rooms: One-piece, cast-brass type.

h. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

2. Install sleeves in new walls and slabs as new walls and slabs are constructed.

3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 1) Seal space outside of sleeve fittings with grout.

4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Install steel pipe for sleeves smaller than 6 inches in diameter.
2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
T. Verify final equipment locations for roughing-in.

U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

V. Draining and Refilling of Systems: Provide all shutoff valves, drain valves, pipe, fittings, and miscellaneous material required to drain each existing system as required for new work. After new work is completed, tested, and found tight, refill each system as required. Time for shutting down existing system for draining shall be coordinated with all other work and with Owner’s representative. Cost for all chemicals and additives for refill shall be borne by the Contractor.

3.3 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA’s “Copper Tube Handbook,” using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.4 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:

1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
3. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.6 PAINTING

A. Painting of plumbing systems, equipment, and components is specified in Division 09 Sections "Interior Painting."

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.

B. Field Welding: Comply with AWS D1.1.

3.8 GROUTING

A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout around anchors.

G. Cure placed grout.

END OF SECTION 220500
SECTION 220513 - COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:

1. Motor controllers.
2. Torque, speed, and horsepower requirements of the load.
3. Ratings and characteristics of supply circuit and required control sequence.
4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with requirements in this Section except when stricter requirements are specified in plumbing equipment schedules or Sections.

B. Comply with NEMA MG 1 unless otherwise indicated. All motors shall meet minimum ASHRAE energy efficiency requirements.

C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

A. Motors ½ HP and Larger: Three phase, unless shown otherwise.

B. Motors Smaller than ½ HP: Single phase, unless shown otherwise.

C. Frequency Rating: 60 Hz.

D. Voltage Rating: NEMA standard voltage selected to operate on nominal circuit voltage to which motor is connected.

E. Service Factor: 1.15 for open dripproof motors; 1.0 for totally enclosed motors.

F. Duty: Continuous duty at ambient temperature of 105 deg F and at altitude of 3300 feet above sea level.
G. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designed speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

H. Enclosure: Open dripproof.

2.3 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 220513
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Thermometers.
 2. Gages.
 3. Test plugs.

B. Related Sections:
 1. Division 22 Section "Domestic Water Piping" for domestic and fire-protection water service meters inside the building.

1.3 DEFINITIONS

A. CR: Chlorosulfonated polyethylene synthetic rubber.

B. EPDM: Ethylene-propylene-diene terpolymer rubber.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated; include performance curves.

B. Shop Drawings: Schedule for thermometers and gages indicating manufacturer's number, scale range, and location for each.

C. Product Certificates: For each type of thermometer and gage, signed by product manufacturer.

PART 2 - PRODUCTS

2.1 DIRECT-MOUNTING, VAPOR-ACTUATED DIAL THERMOMETERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Marsh Bellofram.
 3. Trerice, H. O. Co.
 4. Weiss Instruments, Inc.
 5. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
B. Case: Dry or liquid-filled type, drawn steel or cast aluminum 4-1/2-inch diameter.

C. Element: Bourdon tube or other type of pressure element.

D. Movement: Mechanical, connecting element and pointer.

E. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.

F. Pointer: Red or other dark-color metal.

G. Window: Glass or plastic.

H. Ring: Metal.

I. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.

J. Thermal System: Liquid- or mercury-filled bulb in copper-plated steel, aluminum, or brass stem for thermowell installation and of length to suit installation.

K. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.2 BIMETALLIC-ACTUATED DIAL THERMOMETERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Eugene Ernst Products Co.
3. Marsh Bellofram.
4. Palmer - Wahl Instruments Inc.
5. Trerice, H. O. Co.
6. Weiss Instruments, Inc.
7. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.

B. Description: Direct-mounting, bimetallic-actuated dial thermometers complying with ASME B40.3.

C. Case: Dry or liquid-filled type, stainless steel with 5-inch diameter.

D. Element: Bimetal coil.

E. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.

F. Pointer: Red or other dark-color metal.

G. Window: Glass or plastic.

H. Ring: Stainless steel.

I. Connector: Adjustable angle type.

J. Stem: Metal, for thermowell installation and of length to suit installation.

K. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.
2.3 PRESSURE GAGES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AMETEK, Inc.; U.S. Gauge Div.
3. Ernst Gage Co.
5. Palmer - Wahl Instruments Inc.
6. Trerice, H. O. Co.
7. Weiss Instruments, Inc.
8. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.

B. Direct-Mounting, Dial-Type Pressure Gages: Indicating-dial type complying with ASME B40.100.

1. Case: Dry or liquid-filled type, drawn steel or cast aluminum, 4-1/2-inch diameter.
2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
3. Pressure Connection: Brass, NPS 1/4, bottom-outlet type unless back-outlet type is indicated.
4. Movement: Mechanical, with link to pressure element and connection to pointer.
6. Pointer: Red or other dark-color metal.
7. Window: Glass or plastic.
8. Ring: Metal.
9. Accuracy: Grade A, plus or minus 1 percent of middle half scale.
10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure.
11. Range for Fluids under Pressure: Two times operating pressure.

C. Pressure-Gage Fittings:

1. Valves: NPS 1/4 brass or stainless-steel needle type.
2. Snubbers: ASME B40.5, NPS 1/4 brass bushing with corrosion-resistant, porous-metal disc of material suitable for system fluid and working pressure.

PART 3 - EXECUTION

3.1 THERMOMETER APPLICATIONS

A. Install thermometers in the inlet and outlet of each domestic water heater.

B. Install vapor or bimetallic-actuated dial thermometers at suction and discharge of each pump.

C. Provide the following temperature ranges for thermometers:

1. Domestic Cold Water: 0 to 100 deg F, with 2-degree scale divisions.

3.2 GAGE APPLICATIONS

A. Install dry-case-type pressure gages for discharge of each pressure-reducing valve.

B. Install pressure gages at suction and discharge of each pump.

C. Install pressure gage after the building backflow preventer.

D. Install pressure gage after the water meter.
E. Install pressure gages after the branch or isolation valve on each floor for both the hot and cold water piping.

3.3 INSTALLATIONS

A. Install direct-mounting thermometers and adjust vertical and tilted positions.

B. Install direct-mounting pressure gages in piping tees with pressure gage located on pipe at most readable position.

C. Install needle-valve and snubber fitting in piping for each pressure gage.

D. Install thermometers and gages adjacent to machines and equipment to allow service and maintenance for thermometers, gages, machines, and equipment.

E. Adjust faces of thermometers and gages to proper angle for best visibility.

END OF SECTION 220519
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Bronze angle valves.
2. Brass ball valves.
3. Bronze ball valves.
5. Iron, grooved-end butterfly valves.
8. Iron, grooved-end swing check valves.
10. Iron gate valves.
13. Chainwheels.

B. Related Sections:

1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
3. Division 33 water distribution piping Sections for general-duty and specialty valves for site construction piping.

1.3 DEFINITIONS

A. CWP: Cold working pressure.

B. EPDM: Ethylene propylene copolymer rubber.

C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

D. NRS: Nonrising stem.

E. OS&Y: Outside screw and yoke.

F. RS: Rising stem.

G. SWP: Steam working pressure.
1.4 SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 and NSF-372 (lead free) for valve materials for potable water service.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 5. Set butterfly valves closed or slightly open.
 6. Block check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
 2. Handwheel: For valves other than quarter-turn types.
 3. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
 4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every ten (10) plug valves, for each size square plug-valve head.
5. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.

E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:

1. Gate Valves: With rising stem.
2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:

1. Flanged: With flanges according to ASME B16.1 for iron valves.
2. Grooved: With grooves according to AWWA C606.
4. Threaded: With threads according to ASME B1.20.1.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Valve, Inc.
2. Conbraco Industries, Inc.; Apollo Valves.
3. Crane Co.; Crane Valve Group; Crane Valves.
5. Milwaukee Valve Company.
6. NIBCO INC.
7. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:

1. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Lead Free Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

2.3 IRON, SINGLE-FLANGE BUTTERFLY VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Crane Co.; Crane Valve Group; Jenkins Valves.
3. Crane Co.; Crane Valve Group; Stockham Division.
4. DeZurik Water Controls.
5. Hammond Valve.
7. NIBCO INC.
9. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum Bronze Disc:

1. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: EPDM.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: Aluminum Bronze.

2.4 IRON, GROOVED-END BUTTERFLY VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Crane Co.; Crane Valve Group; Stockham Division.
2. Hammond Valve.
3. Kennedy Valve; a division of McWane, Inc.
4. NIBCO Inc.
5. Tyco Fire Products LP; Grinnell Mechanical Products.

B. 175 CWP, Iron, Grooved-End Butterfly Valves:

1. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 175 psig.
 c. Body Material: Coated, ductile iron.
 e. Disc: Aluminum bronze disc.
 f. Seal: EPDM.

2.5 BRONZE SWING CHECK VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Valve, Inc.
2. Crane Co.; Crane Valve Group; Crane Valves.
3. Crane Co.; Crane Valve Group; Jenkins Valves.
4. Crane Co.; Crane Valve Group; Stockham Division.
5. Hammond Valve.
7. NIBCO Inc.
8. Powell Valves.
9. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Class 125, Bronze Swing Check Valves with Bronze Disc:
1. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

C. Class 150, Bronze Swing Check Valves with Bronze Disc:
 1. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 300 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

2.6 IRON SWING CHECK VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Crane Co.; Crane Valve Group; Crane Valves.
 2. Crane Co.; Crane Valve Group; Jenkins Valves.
 3. Crane Co.; Crane Valve Group; Stockham Division.
 5. Milwaukee Valve Company.
 6. NIBCO Inc.
 7. Powell Valves.
 8. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Class 125, Iron Swing Check Valves with Metal Seats:
 1. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.

2.7 IRON, GROOVED-END SWING CHECK VALVES

A. 300 CWP, Iron, Grooved-End Swing Check Valves:
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Tyco Fire Products LP; Grinnell Mechanical Products.
 c. Victaulic Company.
2. Description:
 a. CWP Rating: 300 psig.
 c. Seal: EPDM.
 d. Disc: Spring-operated, ductile iron or stainless steel.

2.8 IRON, CENTER-GUIDED CHECK VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Anvil International, Inc.
 2. DFT Inc.
 3. Hammond Valve.
 4. Metraflex, Inc.
 5. Milwaukee Valve Company.
 7. NIBCO INC.
 9. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Class 125, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:
 1. Description:
 b. CWP Rating: 200 psig.
 d. Style: Compact wafer.
 e. Seat: Bronze.

C. Class 150, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:
 1. Description:
 b. CWP Rating: 300 psig.
 d. Style: Compact wafer.
 e. Seat: Bronze.

D. Class 125, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:
 1. Description:
 b. CWP Rating: 200 psig.
 d. Style: Compact wafer.
 e. Seat: EPDM or NBR.

E. Class 150, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:
 1. Description:
 b. CWP Rating: 300 psig.
d. Style: Compact wafer.
e. Seat: EPDM or NBR.

2.9 BRONZE GATE VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Valve, Inc.
2. Crane Co.; Crane Valve Group; Crane Valves.
3. Crane Co.; Crane Valve Group; Jenkins Valves.
4. Crane Co.; Crane Valve Group; Stockham Division.
5. Hammond Valve.
7. NIBCO Inc.
8. Powell Valves.
9. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Class 125, NRS Bronze Gate Valves:

1. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded or solder joint.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

C. Class 125, RS Bronze Gate Valves:

1. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded or solder joint.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

D. Class 150, NRS Bronze Gate Valves:

1. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.
E. Class 150, RS Bronze Gate Valves:

1. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

2.10 IRON GATE VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Crane Co.; Crane Valve Group; Crane Valves.
2. Crane Co.; Crane Valve Group; Jenkins Valves.
3. Crane Co.; Crane Valve Group; Stockham Division.
5. Milwaukee Valve Company.
6. NIBCO Inc.
7. Powell Valves.
8. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Class 125, NRS, Iron Gate Valves:

1. Description:
 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 200 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Disc: Solid wedge.
 g. Packing and Gasket: Asbestos free.

C. Class 125, OS&Y, Iron Gate Valves:

1. Description:
 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 200 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Disc: Solid wedge.
 g. Packing and Gasket: Asbestos free.

D. Class 250, NRS, Iron Gate Valves:

1. Description:
 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 500 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
E. Class 250, OS&Y, Iron Gate Valves:

1. Description:
 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 500 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Disc: Solid wedge.
 g. Packing and Gasket: Asbestos free.

2.11 BRONZE GLOBE VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Crane Co.; Crane Valve Group; Crane Valves.
2. Crane Co.; Crane Valve Group; Stockham Division.
3. Hammond Valve.
5. NIBCO Inc.
6. Powell Valves.
7. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Class 125, Bronze Globe Valves with Bronze Disc:

1. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded or solder joint.
 e. Stem and Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron.

C. Class 125, Bronze Globe Valves with Nonmetallic Disc:

1. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded or solder joint.
 e. Stem: Bronze.
 f. Disc: PTFE or TFE.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

D. Class 150, Bronze Globe Valves with Nonmetallic Disc:

1. Description:
a. Standard: MSS SP-80, Type 2.
b. CWP Rating: 300 psig.
d. Ends: Threaded.
e. Stem: Bronze.
f. Disc: PTFE or TFE.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron.

2.12 IRON GLOBE VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Crane Co.; Crane Valve Group; Crane Valves.
2. Crane Co.; Crane Valve Group; Jenkins Valves.
3. Crane Co.; Crane Valve Group; Stockham Division.
5. Milwaukee Valve Company.
6. NIBCO Inc.
7. Powell Valves.
8. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Class 125, Iron Globe Valves:

1. Description:
 a. Standard: MSS SP-85, Type I.
 b. CWP Rating: 200 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Packing and Gasket: Asbestos free.

C. Class 250, Iron Globe Valves:

1. Description:
 a. Standard: MSS SP-85, Type I.
 b. CWP Rating: 500 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Packing and Gasket: Asbestos free.

2.13 CHAINWHEELS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Babbitt Steam Specialty Co.
2. Roto Hammer Industries.
3. Trumbull Industries.

B. Description: Valve actuation assembly with sprocket rim, brackets, and chain.

1. Brackets: Type, number, size, and fasteners required to mount actuator on valve.
2. Attachment: For connection to valve stems.
3. Sprocket Rim with Chain Guides: Ductile iron of type and size required for valve. Include zinc coating.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install chainwheels on operators for valves 6 inches and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.

F. Install check valves for proper direction of flow and as follows:

1. Swing Check Valves: In horizontal position with hinge pin level.
2. Center-Guided Check Valves: In horizontal or vertical position, between flanges.
3. Lift Check Valves: With stem upright and plumb.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:

1. Shutoff Service: Ball, butterfly, gate, or plug valves.
3. Throttling Service: Globe or angle, ball, or butterfly valves.
4. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze or nonmetallic disc.
 b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight or with spring or iron, center-guided, metal or resilient-seat check valves.
 c. NPS 2-1/2 and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.

B. Pressure ratings for valves shall not be less than as required by system pressures.

C. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

D. Select valves, except wafer types, with the following end connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Copper Tubing, NPS 2-1/2 and Larger: Flanged ends.
 3. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 4. For Steel Piping, NPS 2-1/2 and Larger: Flanged ends.
 5. For Grooved-End Copper Tubing and Steel Piping: Valve ends may be grooved.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Bronze Angle Valves: Class 125 or Class 150, bronze or nonmetallic disc.
 3. Ball Valves: Two piece, full port, bronze with brass, bronze, stainless-steel trim.
 4. Bronze Swing Check Valves: Class 125 or Class 150, bronze or nonmetallic disc.
 5. Bronze Globe Valves: Class 125 or Class 150, bronze or nonmetallic disc.

B. Pipe NPS 2-1/2 and Larger:
 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 3. Iron, Grooved-End Butterfly Valves: 175 CWP.
 4. Iron Swing Check Valves: Class 125, metal seats.
 5. Iron, Grooved-End Swing Check Valves: 300 CWP.
 6. Iron, Center-Guided Check Valves: Class 125 or Class 150, compact-wafer, metal or resilient seat.
 7. Iron Gate Valves: Class 125, NRS or OS&Y.

END OF SECTION 220523
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following hangers and supports for plumbing system piping and equipment:
 1. Steel pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Thermal-hanger shield inserts.
 5. Fastener systems.
 6. Pipe stands.
 7. Pipe positioning systems.
 8. Equipment supports.

B. Related Sections include the following:
 1. Division 21 Section "Water-Based Fire-Suppression Systems" for pipe hangers for fire-suppression piping.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

A. Supports should be provided according to International Plumbing Code and MSS SP-58.

B. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 SUBMITTALS

A. Product Data: For the following:
 1. Steel pipe hangers and supports.
 2. Thermal-hanger shield inserts.
 3. Powder-actuated fastener systems.
 4. Pipe positioning systems.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

B. Acceptable Manufacturers:

2. Carpenter & Paterson, Inc.
3. Empire Industries, Inc.
5. Grinnell Corp.
6. GS Metals Corp.
8. Piping Technology & Products, Inc.

C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.

B. Acceptable Manufacturers:

2. GS Metals Corp.
4. Thomas & Betts Corporation.
5. Unistrut Corp.; Tyco International, Ltd.
C. Coatings: Manufacturer's standard finish unless bare metal surfaces are indicated.
D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS
A. Description: 100-psig minimum, compressive-strength insulation insert encased in sheet metal shield.
B. Acceptable Manufacturers:
1. Amacell
2. Carpenter & Paterson, Inc.
3. PHS Industries, Inc.
4. Pipe Shields, Inc.
5. Rilco Manufacturing Company, Inc.
6. Value Engineered Products, Inc.
C. Insulation-Insert Material for Cold Piping: Load bearing segments of CFC free PUR/PIR embedded in closed cell insulation with painted outer shell.
D. Insulation-Insert Material for Hot Piping: Load bearing segments of CFC free PUR/PIR embedded in closed cell insulation with painted outer shell.
E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS
A. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened Portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 1. Acceptable Manufacturers:
 b. Empire Industries, Inc.
 c. Hilti, Inc.
 d. ITW Ramset/Red Head.
 e. MKT Fastening, LLC.
 f. Powers Fasteners.

2.7 PIPE STAND FABRICATION
A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
C. Low-Type, Single-Pipe Stand: One-piece plastic or stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
2.8 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A36/A36M, steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use padded hangers for piping that is subject to scratching.

F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
 5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 8.
 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 8.
 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 8.
 10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
 11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
 12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.

16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.

17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.

18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.

19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
a. Light (MSS Type 31): 750 lb.
b. Medium (MSS Type 32): 1500 lb.
c. Heavy (MSS Type 33): 3000 lb.

13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.
 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.
 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

O. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

3.2 HANGER AND SUPPORT INSTALLATION

A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:

1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer’s written instructions.

F. Pipe Stand Installation:

1. Pipe Stand Types except Curb-Mounting Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.

G. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Insulated Piping: Comply with the following:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.

5. Insert Material: Length at least as long as protective shield.
6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS
A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS
A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

3.5 ADJUSTING
A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING
A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 220529
SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Pipe labels.
 3. Stencils.
 4. Valve tags.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
C. Valve numbering scheme.
D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:
 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS
A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.
C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: At least 1-1/2 inches high.

2.3 STENCILS
A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.
1. Stencil Material: Fiberboard or metal.
2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
3. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

2.4 VALVE TAGS
A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link or beaded chain; or S-hook.
B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-
operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutdown and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting".

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels complying with ASME A13.1, on each piping system.

1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment and within mechanical rooms, boiler rooms, chiller rooms, etc.
7. On piping above removable acoustical ceilings.

D. Pipe Label Color Schedule:

1. Domestic Water Piping:
 a. Background Color: Blue.

2. Sanitary Waste and Storm Drainage Piping:
 a. Background Color: Black.
3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:

2. Valve-Tag Color:
 b. Hot Water: Natural.

3. Letter Color:
 b. Hot Water: Black.

END OF SECTION 220553
SECTION 220700 - PLUMBING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Insulation Materials:
 a. Flexible elastomeric.
 b. Mineral fiber.
 c. Molded Close Cell.

2. Insulating cements.
3. Adhesives.
5. Lagging adhesives.
7. Factory-applied jackets.
8. Field-applied jackets.
10. Securements.
11. Corner angles.

B. Related Sections include the following:

1. Division 23 Section "HVAC Insulation."

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).

B. Shop Drawings:

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
3. Detail removable insulation at piping specialties, equipment connections, and access panels.
4. Detail application of field-applied jackets.
5. Detail field application for each equipment type.
1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application and equipment Installer for equipment insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following:
 a. Aeroflex USA Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. NOMACO Insulation.
 2. Thermal Conductivity: Not exceeding 0.25 BTU-in/hour sq. ft. °F at 75°F mean temperature.

 1. Acceptable Manufacturers: Subject to compliance with requirements provide product by IFS Corporation; Truebro.

2.2 INSULATING CEMENTS

B. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA Inc.
 b. Armacell LLC.
 c. Foster Products Corporation, H. B. Fuller Company.
 d. RBX Corporation.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. ASJ Adhesive, and FSK Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Products, Division of ITW.
 b. Foster Products Corporation, H. B. Fuller Company.
 c. ITW TACC, Division of Illinois Tool Works.
 d. Marathon Industries, Inc.
 e. Mon-Eco Industries, Inc.
2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dow Chemical Company (The).
 c. P.I.C. Plastics, Inc.
 d. Speedline Corporation.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Childers Products, Division of ITW.
 3. ITW TACC, Division of Illinois Tool Works.
 4. Marathon Industries, Inc.
 5. Mon-Eco Industries, Inc.

C. Vapor-Barrier Mastic: Water or solvent based; suitable for indoor and outdoor use on below ambient services.

 1. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.05 perm at 43-mi dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F.

D. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.

 1. Water-Vapor Permeance: ASTM F 1249, 3 perms at 0.0625-inch dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 200 deg F.
 3. Solids Content: 63 percent by volume and 73 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Childers Products, Division of ITW.
b. Foster Products Corporation, H. B. Fuller Company.
c. Marathon Industries, Inc.
d. Mon-Eco Industries, Inc.

3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over equipment and pipe insulation.
4. Service Temperature Range: Minus 50 to plus 180 deg F.

2.6 SEALANTS

A. Acceptable Manufacturers:
Subject to compliance with requirements, provide products by one of the following:

1. Childers Products, Division of ITW.
3. Marathon Industries, Inc.
4. Mon-Eco Industries, Inc.
5. Pittsburgh Corning Corporation.

B. Joint Sealants for Cellular-Glass:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Permanently flexible, elastomeric sealant.
3. Service Temperature Range: Minus 100 to plus 300 deg F.
5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. FSK and Metal Jacket Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.
5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. ASJ Flashing Sealants and PVC Jacket Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.
5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, Kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. **FSK Jacket**: Aluminum-foil, fiberglass-reinforced scrim with Kraft-paper backing; complying with ASTM C 1136, Type II.

2.8 FIELD-APPLIED JACKETS

A. **Field-applied jackets** shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. **Metal Jacket**:

1. **Acceptable Manufacturers**: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Products, Division of ITW.
 b. PABCO Metals Corporation.
 c. RPR Products, Inc.

2. **Aluminum Jacket**: Comply with ASTM B 209, Alloy 3003, 3005, 3105 or 5005, Temper H-14.
 a. Factory cut and rolled to size.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 c. **Moisture Barrier for Indoor Applications**: 1-mil-thick, heat-bonded polyethylene and kraft paper.
 d. **Moisture Barrier for Outdoor Applications**: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 e. **Factory-Fabricated Fitting Covers**:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.9 TAPES

A. **Acceptable Manufacturers**: Subject to compliance with requirements, provide products by one of the following:

1. Avery Dennison Corporation, Specialty Tapes Division.
2. Compac Corp.
4. Venture Tape.

B. **ASJ Tape**: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Width: 3 inches.
2. Thickness: 11.5 mils.
4. Elongation: 2 percent.
5. Tensile Strength: 40 lbf/inch in width.
6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

C. **FSK Tape**: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
1. Width: 3 inches.
2. Thickness: 6.5 mils.
4. Elongation: 2 percent.
5. Tensile Strength: 40 lbf/inch in width.
6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.10 SECUREMENTS

A. Bands:
1. Stainless Steel: ASTM A 167 or ASTM A 240, Type 304; 0.015 inch thick, 1/2 inch wide with wing or closed seal.
2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.

B. Insulation Pins and Hangers:
1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel or aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.

1. Verify that systems and equipment to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated.
3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Division 07 Section "Penetration Firestopping" and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.
3.6 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturers’ recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:

1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant...
recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.8 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

B. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one (1) location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.

2. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three (3) locations of straight pipe, locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:

1. NPS ½” through 6”: Insulation shall be the following:
 a. Flexible elastomeric: 1 inch thick.

B. Domestic Hot and Recirculated Hot Water:

1. NPS ½” through 6”: Insulation shall be the following:
 a. Flexible elastomeric: 1 inch thick.
C. Stormwater and Overflow:
 1. All Pipe Sizes (vertical and horizontal): Insulation shall be the following:
 a. Flexible elastomeric: 1 inch thick.

D. Roof Drain and Overflow Drain Bodies:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch thick.

E. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Molded Closed Cell: 1/2 inch thick.

F. Condensate, Drinking Fountain Waste and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 3/4 inch thick.

G. Floor Drains/Floor Sinks Bodies and Traps Located in Mechanical Rooms, and Sanitary Drain Piping from these drains/sinks, up to main risers:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 3/4 inch thick.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Equipment, Concealed:
 1. None.

D. Equipment, Exposed:
 1. None.

E. Piping, Concealed:
 1. None.

F. Piping, exposed that is within 6 ft. of the floor:
 1. Aluminum, Smooth: 0.016 inch thick.
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
2. Specialty valves.
3. Flexible connectors.
4. Escutcheons.
5. Sleeves and sleeve seals.
6. Wall penetration systems.

1.3 SUBMITTALS

A. Product Data: For the following products:

1. Specialty valves.
2. Transition fittings.
3. Dielectric fittings.
4. Flexible connectors.
5. Water meters.
7. Escutcheons.
8. Sleeves and sleeve seals.
9. Water penetration systems.

B. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Comply with NSF 61 for potable domestic water piping and components.

1.5 PROJECT CONDITIONS

A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:

1. Notify Architect no fewer than seven (7) days in advance of proposed interruption of water service.
2. Do not proceed with interruption of water service without Architect's written permission.
2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.

4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
5. Grooved-Joint Copper-Tube Appurtenances:
 a. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Anvil International.
 2) Shurjoint Piping Products.
 3) Victaulic Company.
 b. Copper Grooved-End Fittings: ASTM B 75 copper tube or ASTM B 584 bronze castings.
 c. Grooved-End-Tube Couplings: Copper-tube dimensions and design similar to AWWA C606. Include ferrous housing sections, EPDM-rubber gaskets suitable for hot and cold water, and bolts and nuts.
6. Copper Pressure-Seal-Joint Fittings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Elkhart Products Corporation.
 2) NIBCO Inc.
 3) Viega.
 b. Fittings for NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber, O-ring seal in each end.
 c. Fittings for NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber, O-ring seal in each end.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.
2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Calpico, Inc.
2. Capitol Manufacturing Company.
3. Central Plastics Company.
4. EPCO Sales, Inc.
6. Lochinvar Corp.
7. Victaulic
8. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
9. Zurn Plumbing Products Group; Wilkins Water Control Products.

C. Dielectric Flanges:

1. Description:
 a. Factory-fabricated, bolted, companion-flange assembly.
 b. Pressure Rating: 150 psig.
 c. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Kits:

1. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.

E. Dielectric Couplings:

1. Description:
 a. Galvanized-steel coupling.
 b. Pressure Rating: 300 psig at 225 deg F.
 c. End Connections: Female threaded.
 d. Lining: Inert and noncorrosive, thermoplastic.

F. Dielectric Nipples:

1. Description:
 a. Electroplated steel nipple complying with ASTM F 1545 (Victaulic Style 47).
 b. Pressure Rating: 300 psig at 225 deg F.
 c. End Connections: Male threaded or grooved.
 d. Lining: Inert and noncorrosive, propylene.

2.5 ESCUTCHEONS

A. General: Manufactured ceiling, floor, and wall escutcheons and floor plates.
B. One Piece, Cast Brass: Polished, chrome-plated finish with setscrews.
D. One Piece, Stamped Steel: Chrome-plated finish with setscrew.
E. Split Casting, Cast Brass: Polished, chrome-plated finish with concealed hinge and setscrew.
F. Split Plate, Stamped Steel: Chrome-plated finish with concealed hinge, setscrew.
G. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
H. Split-Casting Floor Plates: Cast brass with concealed hinge.

2.6 SLEEVES
A. Cast-Iron Wall Pipes: Fabricated of cast iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint or ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc-coated, with plain ends.
C. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with setscrews.

2.7 SLEEVE SEALS
A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex, Inc.
 4. Pipeline Seal and Insulator, Inc.
B. Description: Modular sealing element unit, designed for field assembly, used to fill annular space between pipe and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel.
 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating of length required to secure pressure plates to sealing elements.

2.8 WALL PENETRATION SYSTEMS
A. Description: Wall-sleeve assembly, consisting of housing and gland, gaskets, and pipe sleeve.
 1. Carrier-Pipe Deflection: Up to 5 percent without leakage.
 2. Housing: Ductile-iron casting with hub, waterstop, anchor ring, and locking devices. Include gland, bolts, and nuts.
 3. Housing-to-Sleeve Gasket: EPDM rubber.

2.9 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section "Common Work Results for Plumbing" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.

C. Install shutoff valve immediately upstream of each dielectric fitting.

D. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.

E. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

F. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

G. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

H. Install piping adjacent to equipment and specialties to allow service and maintenance.

I. Install piping to permit valve servicing.

J. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.

K. Install piping free of sags and bends.
L. Install fittings for changes in direction and branch connections.

M. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

N. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.

E. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.

G. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

H. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE INSTALLATION

A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.

B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball or gate valves for piping NPS 2 and smaller. Use butterfly or gate valves for piping NPS 2-1/2 and larger.

C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.

3.5 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.
B. Transition Fittings in Underground Domestic Water Piping:
 1. NPS 1-1/2 and Smaller: Fitting-type waterways.
 2. NPS 2 and Larger: Sleeve-type coupling.
C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.

3.6 DIELECTRIC FITTING INSTALLATION
A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings.
C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

3.7 HANGER AND SUPPORT INSTALLATION
A. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.
 1. Vertical Piping: MSS Type 8 or 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet If Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.
B. Support vertical piping and tubing at base and at each floor.
C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
E. Install supports for vertical copper tubing every 10 feet.
F. Install supports for vertical steel piping every 15 feet.
G. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.8 CONNECTIONS
A. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to equipment and machines to allow service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 2. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
 3. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.9 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors.

B. Escutcheons for New Piping:
 1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 4. Bare Piping in Unfinished Service Spaces: One piece, stamped steel with set screw.
 5. Bare Piping in Equipment Rooms: One piece, stamped steel with set screw.
 6. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

3.10 SLEEVE INSTALLATION

A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls.

B. Sleeves are not required for core-drilled holes.

C. Permanent sleeves are not required for holes formed by removable PE sleeves.

D. Cut sleeves to length for mounting flush with both surfaces unless otherwise indicated.

E. Install sleeves in new partitions, slabs, and walls as they are built.

F. For interior wall penetrations, seal annular space between sleeve and pipe or pipe insulation using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants" for joint sealants.

G. For exterior wall penetrations above grade, seal annular space between sleeve and pipe using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants" for joint sealants.

H. For exterior wall penetrations below grade, seal annular space between sleeve and pipe using sleeve seals specified in this Section.

I. Seal space outside of sleeves in concrete slabs and walls with grout.
J. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation unless otherwise indicated.

K. Install sleeve materials according to the following applications:

1. Sleeves for Piping Passing through Concrete Floor Slabs: Steel pipe.
2. Sleeves for Piping Passing through Concrete Floor Slabs of Mechanical Equipment Areas or Other Wet Areas: Steel pipe.
 a. Extend sleeves 2 inches above finished floor level.
 b. For pipes penetrating floors with membrane waterproofing, extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements in Division 07 Section "Sheet Metal Flashing and Trim" for flashing.

3. Sleeves for Piping Passing through Gypsum-Board Partitions:
 b. Galvanized-steel sheet sleeves for pipes NPS 6 and larger.
 c. Exception: Sleeves are not required for water supply tubes and waste pipes for individual plumbing fixtures if escutcheons will cover openings.

4. Sleeves for Piping Passing through Concrete Roof Slabs: Steel pipe.

5. Sleeves for Piping Passing through Exterior Concrete Walls:
 a. Steel pipe sleeves for pipes smaller than NPS 6.
 b. Cast-iron wall pipe sleeves for pipes NPS 6 and larger.
 c. Install sleeves that are large enough to provide 1-inch annular clear space between sleeve and pipe or pipe insulation when sleeve seals are used.
 d. Do not use sleeves when wall penetration systems are used.

6. Sleeves for Piping Passing through Interior Concrete Walls:
 a. Steel pipe sleeves for pipes smaller than NPS 6.
 b. Galvanized-steel sheet sleeves for pipes NPS 6 and larger.

L. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestop materials and installations.

3.11 SLEEVE SEAL INSTALLATION

A. Install sleeve seals in sleeves in exterior concrete walls at water-service piping entries into building.

B. Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble sleeve seal components and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.12 WALL PENETRATION SYSTEM INSTALLATION

A. Install wall penetration systems in new, exterior concrete walls.

B. Assemble wall penetration system components with sleeve pipe. Install so that end of sleeve pipe and face of housing are flush with wall. Adjust locking devices to secure sleeve pipe in housing.
3.13 IDENTIFICATION

A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.

B. Label pressure piping with system operating pressure.

3.14 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Piping Inspections:
 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

C. Piping Tests:
 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 3. Leave new, altered, extended, or replaced domestic water piping uncovered and un Concealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
 6. Prepare reports for tests and for corrective action required.

D. Domestic water piping will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.15 ADJUSTING

A. Perform the following adjustments before operation:
 1. Close drain valves, hydrants, and hose bibbs.
 2. Open shutoff valves to fully open position.
 3. Open throttling valves to proper setting.
 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide flow of hot water in each branch.
b. Adjust calibrated balancing valves to flows indicated.

5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.16 CLEANING

A. Clean and disinfect potable and non-potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets. Flush at 10 ft/sec to comply with NFPA standards.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

B. Prepare and submit reports of purging and disinfecting activities.

C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.17 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and brazed or soldered joints.

D. Aboveground domestic water piping, NPS 2-1/2 and larger, shall be one of the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper solder-joint fittings; and brazed or soldered joints.
 2. Hard copper tube, ASTM B 88, Type L; grooved-joint copper-tube appurtenances; and grooved joints.
3. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.

3.18 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

C. Iron grooved-end valves may be used with grooved-end piping.

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following domestic water piping specialties:

1. Vacuum breakers.
2. Backflow preventers.
4. Temperature-actuated water mixing valves.
5. Strainers.
6. Hose bibbs.
7. Wall hydrants.
8. Drain valves.
10. Air vents.

B. Related Sections include the following:

1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
2. Division 22 Section "Domestic Water Piping" for water meters.
3. Division 22 Section "Drinking Fountains and Water Coolers" for water filters for water coolers.

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. NSF Compliance:
2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 VACUUM BREAKERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Conbraco Industries, Inc.
2. FEBCO; SPX Valves & Controls.
4. Toro Company (The); Irrigation Div.
7. Zurn Industries, LLC; Wilkins Div.

B. Pipe-Applied, Atmospheric-Type Vacuum Breakers:

2. Size: NPS 1/4 to NPS 3, as required to match connected piping.
4. Inlet and Outlet Connections: Threaded.
5. Finish: Chrome plated.

C. Hose-Connection Vacuum Breakers:

2. Body: Bronze, nonremovable, with manual drain.
4. Finish: Chrome or nickel plated.

2.2 BACKFLOW PREVENTERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Conbraco Industries, Inc.
2. FEBCO; SPX Valves & Controls.
3. McDonald, A.Y. Mfg Co.
6. Zurn Industries, LLC; Wilkins Div.

B. Intermediate Atmospheric-Vent Backflow Preventers:

1. Standard: ASSE 1012.
2. Operation: Continuous-pressure applications.
5. End Connections: Union, solder joint.
6. Finish: Chrome plated.

C. Reduced-Pressure-Principle Backflow Preventers:
2. Operation: Continuous-pressure applications.
3. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
4. Size: To match pipe size.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Configuration: Designed for horizontal, straight through flow.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

D. Double-Check Backflow-Prevention Assemblies:

2. Operation: Continuous-pressure applications, unless otherwise indicated.
3. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
4. Size: To match pipe size.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Configuration: Designed for horizontal, straight through flow.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

E. Hose-Connection Backflow Preventers:

2. Operation: Up to 10-foot head of water back pressure.
3. Inlet Size: NPS 1/2 or NPS 3/4.
5. Capacity: At least 3-gpm flow.

F. Backflow-Preventer Test Kits:

1. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with test-procedure instructions.

2.3 HOSE BIBBS

A. Hose Bibbs:

4. Supply Connections: NPS 1/2 threaded or solder-joint inlet.
5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
10. Finish for Finished Rooms: Chrome or nickel plated.
11. Operation for Equipment Rooms: Wheel handle or operating key.
12. Operation for Service Areas: Operating key.
14. Include operating key with each operating-key hose bibb.
15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.4 WALL HYDRANTS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Josam Company.
3. Tyler Pipe; Wade Div.
4. Watts Drainage Products Inc.
5. Woodford Manufacturing Company.
6. Zurn Industries, LLC; Light Commercial Operation.
7. Zurn Industries, LLC; Specification Drainage Operation.

B. Vacuum Breaker Wall Hydrants:

1. Standard: ASSE 1019, Type A or Type B.
2. Type: Freeze-resistant, automatic draining with integral air-inlet valve.
3. Classification: Type B, for automatic draining with hose removed or with hose attached and nozzle closed.
5. Operation: Loose key.
6. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
7. Inlet: NPS 1/2 or NPS 3/4.

2.5 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

2.6 WATER HAMMER ARRESTERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AMTROL, Inc.
2. Josam Company.
5. Tyler Pipe; Wade Div.
6. Watts Drainage Products Inc.
7. Zurn Plumbing Products Group; Specification Drainage Operation.
B. Water Hammer Arresters:

2. Type: Metal bellows.
3. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.

1. Locate backflow preventers in same room as connected equipment or system.
2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
3. Do not install bypass piping around backflow preventers.

C. Install water control valves with inlet and outlet shutoff valves and bypass with globe valve. Install pressure gages on inlet and outlet.

D. Install balancing valves in locations where they can easily be adjusted.

E. Install water hammer arresters in water piping according to PDI-WH 201.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:

1. Pressure vacuum breakers.
2. Intermediate atmospheric-vent backflow preventers.
3. Reduced-pressure-principle backflow preventers.
5. Water pressure-reducing valves.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."
3.4 FIELD QUALITY CONTROL

A. Perform the following tests and prepare test reports:

1. Test each pressure vacuum breaker, reduced-pressure-principle backflow preventer and double-check backflow-prevention assembly according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.5 ADJUSTING

A. Set field-adjustable flow set points of balancing valves.

B. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 221119
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following for soil, waste, and vent piping inside the building:
 1. Pipe, tube, and fittings.

1.3 PERFORMANCE REQUIREMENTS
 A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:

1.4 SUBMITTALS
 A. Product Data: For pipe, tube, fittings, and couplings.
 B. Field quality-control inspection and test reports.

1.5 QUALITY ASSURANCE
 A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIALS
 A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.
2.3 PVC PIPE AND FITTINGS

A. Solid-Wall PVC Pipe: ASTM D 1785, drain, waste, and vent.

B. PVC Socket Fittings: ASTM D 1785, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

C. Adhesive Primer: ASTM F 656.

1. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2. Adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Solvent Cement: ASTM D 2564.

1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2. Solvent cement shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 SPECIALTY PIPE FITTINGS

A. Transition Couplings:

1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.

2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

3. Unshielded, Nonpressure Transition Couplings:

 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 2) Fernco Inc.
 3) Mission Rubber Company; a division of MCP Industries, Inc.
 4) Plastic Oddities; a division of Diverse Corporate Technologies, Inc.

 c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.

 d. Sleeve Materials:

 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

4. Shielded, Nonpressure Transition Couplings:

 a. Manufacturers: Subject to compliance with requirements available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 2) Mission Rubber Company; a division of MCP Industries, Inc.
c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

PART 3 - EXECUTION

3.1 EXCAVATION

A. Refer to Section "Common Work Results for Plumbing" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

A. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.

B. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:
 1. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints for all other piping.

C. Aboveground, vent piping NPS 4 and smaller shall be any of the following:
 1. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints for all other piping.

D. Underground, soil, waste, and vent piping shall be any of the following:
 1. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints for all other piping.

3.3 PIPING INSTALLATION

A. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."

B. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers.

C. Install cleanout fitting with closure plug inside the building in sanitary force-main piping.

D. Install underground, steel, force-main piping.

E. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 22 Section "Common Work Results for Plumbing."

F. Install wall-penetration fitting at each service pipe penetration through foundation wall. Make installation watertight.

 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105.

H. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees,
elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

I. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

J. Install soil and waste drainage and vent piping at the following minimum slopes, unless otherwise indicated:

1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

K. Install engineered soil and waste drainage and vent piping systems as follows:

L. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.

M. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.4 JOINT CONSTRUCTION

A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."

B. PVC Nonpressure Piping Joints: Join piping according to ASTM D 2665.

3.5 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:

1. Install transition couplings at joints of piping with small differences in OD's.
2. In Drainage Piping: Shielded, non-pressure transition couplings.

3.6 VALVE INSTALLATION

A. General valve installation requirements are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

B. Backwater Valves: Install backwater valves in piping subject to sewage backflow.

1. Horizontal Piping: Horizontal backwater valves.
2. Floor Drains: Drain outlet backwater valves, unless drain has integral backwater valve.
3. Install backwater valves in accessible locations.
4. Backwater valve are specified in Division 22 Section "Sanitary Waste Piping Specialties."
3.7 HANGER AND SUPPORT INSTALLATION

A. Pipe hangers and supports are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment." Install the following:

1. Vertical Piping: MSS Type 8 or Type 42, clamps.
2. Install individual, straight, horizontal piping runs according to the following:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for PVC soil piping with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 2. NPS 3: 48 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.

F. Install supports for vertical PVC soil piping every 10 feet.

G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/4: 84 inches with 3/8-inch rod.
 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 3. NPS 2: 10 feet with 3/8-inch rod.
 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 5. NPS 3: 12 feet with 1/2-inch rod.
 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.

H. Install supports for vertical steel piping every 15 feet.

3.8 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:

 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
4. Equipment: Connect drainage piping as indicated. Provide shutoff valve, if indicated, and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

3.9 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 60 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
6. Prepare reports for tests and required corrective action.

3.10 CLEANING

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION 221316
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and
 Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following sanitary drainage piping specialties:
 1. Metal cleanouts.
 2. Floor drains.
 3. Roof flashing assemblies.
 4. Through-penetration firestop assemblies.
 5. Miscellaneous sanitary drainage piping specialties.
 6. Flashing materials.
 B. Related Sections include the following:
 1. Division 22 Section "Storm Drainage Piping Specialties" for trench drains for storm water, channel
 drainage systems for storm water, roof drains, and catch basins.

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated. Include rated capacities for grease interceptors.
 B. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and
 maintenance manuals.

1.4 QUALITY ASSURANCE
 A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

1.5 COORDINATION
 A. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 METAL CLEANOUTS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Mifab
 3. Tyler Pipe; Wade Div.
4. Watts Drainage Products Inc.

B. Exposed Metal Cleanouts:

1. Standard: ASME A112.36.2M for cast iron/ASME A112.3.1 for stainless steel for cleanout test tee.
2. Size: Same as connected drainage piping.
3. Body Material: As required to match connected piping.
4. Closure: Raised-head, brass or cast-iron plug.
5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

C. Metal Floor Cleanouts:

1. Standard: ASME A112.36.2M for heavy-duty, adjustable housing cleanout.
2. Size: Same as connected branch.
3. Type: Heavy-duty, adjustable housing.
4. Body or Ferrule: Cast iron.
5. Clamping Device: Required.
7. Closure: Brass plug with straight threads and gasket.
8. Adjustable Housing Material: Cast iron with threads.
10. Frame and Cover Shape: Round.
11. Top Loading Classification: Heavy Duty.
12. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
14. Size: Same as connected branch.
15. Housing: Stainless steel.
17. Riser: Stainless-steel drainage pipe fitting to cleanout.

D. Cast-Iron Wall Cleanouts:

1. Standard: ASME A112.36.2M. Include wall access.
2. Size: Same as connected drainage piping.
3. Body: As required to match connected piping.
4. Closure: Raised-head, brass or cast-iron plug.
5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.2 FLOOR DRAINS

A. Floor Drains:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Tyler Pipe; Wade Div.
 d. Watts Industries, Inc.
 e. Zurn Industries, LLC.

2. Standard: ASME A112.6.3.
4. Seepage Flange: Required.
5. Clamping Device: Required.
6. Outlet: Bottom or Side.
10. Top or Strainer Material: Gray iron/Nickel bronze/Stainless steel.
12. Top Shape: Round.
13. Dimensions of Top or Strainer: Minimum 8 inch diameter.
16. Inlet Fitting: Gray iron, with threaded inlet and threaded or spigot outlet. Trap-seal primer valve connection where shown on drawings.
17. Trap Material: Cast iron.
19. Trap Features: ProSet Trap Guard or equal.

2.3 FLOOR SINKS

A. Floor Sinks:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Tyler Pipe, Wade Div.
 d. Watts Industries, Inc.
 e. Zurn Industries, LLC.

2. Standard: ASME A112.3.1.
4. Seepage Flange: Required.
5. Outlet: Bottom or side.
6. Exposed Surfaces and Interior Lining: Acid-resistant enamel.
7. Sediment Bucket: Required.
8. Interior Dome Strainer: Required.
9. Top of Body and Strainer Finish: Nickel bronze or gray iron.
10. Top Shape: Square.
11. Dimensions of Top or Strainer: Minimum 12” x 12” with 8” sump and ½ grate.
12. Top Loading Classification: Light duty.
13. Inlet Fitting: Gray iron, with threaded inlet and threaded or spigot outlet, and trap seal primer valve connection.

2.4 ROOF FLASHING ASSEMBLIES

A. Roof Flashing Assemblies:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Acorn Engineering Company; Elmdor/Stoneman Div.
 b. Thaler Metal Industries Ltd.

B. Description: Manufactured assembly made of 4.0-lb/sq. ft. thick, lead flashing collar and skirt extending at least 6 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.

2.5 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:
 2. Size: Same as connected soil, waste, or vent stack.
 3. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
 5. Special Coating: Corrosion resistant on interior of fittings.

2.6 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Deep-Seal Traps:
 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
 2. Size: Same as connected waste piping.
 - a. NPS 2: 4-inch- minimum water seal.
 - b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.

B. Air-Gap Fittings:
 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 2. Body: Bronze or cast iron.
 3. Inlet: Opening in top of body.
 4. Outlet: Larger than inlet.
 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

C. Sleeve Flashing Device:
 1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 2 inches above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 2. Size: As required for close fit to riser or stack piping.

D. Stack Flashing Fittings:
 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
 2. Size: Same as connected stack vent or vent stack.

E. Vent Caps:
 1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
 2. Size: Same as connected stack vent or vent stack.

F. Frost-Resistant Vent Terminals:
1. Description: Manufactured or shop-fabricated assembly constructed of copper, lead-coated copper, or galvanized steel.
2. Design: To provide 1-inch enclosed air space between outside of pipe and inside of flashing collar extension, with counterflashing.

2.7 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Use: 4.0-lb/sq. ft. thickness.

B. Copper Sheet: ASTM B 152/B 152M, of the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Applications: 12 oz./sq. ft.
 2. Vent Pipe Flashing: 8 oz./sq. ft.

C. Fasteners: Metal compatible with material and substrate being fastened.

D. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

E. Solder: ASTM B 32, lead-free alloy.

F. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet.
 4. Locate at base of each vertical soil and waste stack.

C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

F. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.
G. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.
H. Install through-penetration firestop assemblies in plastic conductors and stacks at floor penetrations.
I. Install deep-seal traps on floor drains and other waste outlets, if indicated.
J. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
K. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.
L. Install vent caps on each vent pipe passing through roof.
M. Install frost-resistant vent terminals on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.
N. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.
O. Install frost-proof vent caps on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.
P. Install wood-blocking reinforcement for wall-mounting-type specialties.
Q. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.
R. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
2. Copper Sheets: Solder joints of copper sheets.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Division 07 Section "Sheet Metal Flashing and Trim."

F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

3.5 FLOOR DRAINS SCHEDULE

A. Floor Drains Schedule:
 1. Unfinished Areas on Grade:
 b. Top of Body and Strainer Finish: Gray iron.
 c. Strainer Material: Gray iron.
 d. Top Loading Classification: Extra heavy duty.
 e. Integral Tray and Cleanout: Required.
 f. Backwater Valve: Required.

 2. Unfinished Areas above Ground:
 b. Top of Body and Strainer Finish: Gray iron.
 c. Top Loading Classification: Extra heavy duty.
 d. Strainer Material: Gray iron.
 e. Integral Trap and Cleanout: Required.

 3. Finished Areas on Grade:
b. Top of Body and Strainer: Nickel bronze.
c. Top Loading Classifications: Light duty.
d. Integral Trap and Cleanout: Required.
e. Backwater Valve: Required.

4. Finished Areas above Grade:
 c. Top Loading Classification: Light duty.

5. Mechanical Rooms on Grade:
 b. Top of Body and Strainer Finish: Gray iron.
 c. Top Loading Classification: Extra heavy duty.
 d. Strainer Material: Gray iron.
 e. Trap and Cleanout: Required.
 f. Backwater Valve: Required.
 g. Sediment Bucket: Aluminum.
 h. Drain with 9" deep sump.

6. Mechanical Rooms above Grade:
 b. Top of Body and Strainer Finish: Gray iron.
 c. Top Loading Classification: Extra heavy duty.
 d. Strainer Material: Gray iron.
 e. Sediment Bucket: Aluminum.
 f. Drain with 9" deep sump.

7. Funnel Floor Drains: Same as floor drains specified above, but with elongated 8x3 funnel.

END OF SECTION 221319
SECTION 221600 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. All work shall comply with NFPA 54, the International Fuel Gas Code for installation and purging of natural-gas piping.

1.2 SUMMARY

A. Section Includes:

1. Pipes, tubes, and fittings.
2. Piping specialties.
3. Piping and tubing joining materials.
4. Valves.
5. Mechanical sleeve seals.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:

1. Piping and Valves: 100 psig minimum unless otherwise indicated.
2. Service Regulators: 65 psig minimum unless otherwise indicated.

B. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 2 psig but not more than 5 psig, and is reduced to secondary pressure of more than 0.5 psig but not more than 2 psig.

1.5 SUBMITTALS

A. Product Data: For each type of the following:

1. Piping specialties.
2. Corrugated, stainless-steel tubing with associated components.
3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
4. Pressure regulators. Indicate pressure ratings and capacities.
5. Dielectric fittings.
6. Mechanical sleeve seals.
7. Escutcheons.

B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

1. Shop Drawing Scale: 1/4 inch per foot.
2. Detail mounting, supports, and valve arrangements for service meter assembly and pressure regulator assembly.

C. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.

D. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.

E. Welding certificates.

F. Field quality-control reports.

G. Operation and Maintenance Data: For motorized gas valves, pressure regulators to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.

B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

D. Protect stored PE pipes and valves from direct sunlight.
1.8 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:

1. Notify Owner’s representative no fewer than seven days in advance of proposed interruption of natural-gas service.
2. Do not proceed with interruption of natural-gas service without Architect/Owner written permission.

1.9 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53, black steel, Schedule 40, Type E or S, Grade B.

4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.

2.2 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

B. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.3 MANUAL GAS SHUTOFF VALVES

A. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
1. CWP Rating: 125 psig.
3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

2.4 SLEEVES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Close equipment shutoff valves before turning off natural gas to premises or piping section.

B. Inspect natural-gas piping according to NFPA 54, the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.

C. Comply with NFPA 54, the International Fuel Gas Code requirements for prevention of accidental ignition.

3.3 INDOOR PIPING INSTALLATION

A. Comply with NFPA 54, the International Fuel Gas Code for installation and purging of natural-gas piping.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
F. Install piping minimum 12" above accessible ceilings to allow sufficient space for ceiling panel removal. In general gas piping shall not be installed in occupied areas. If piping is required to be installed above occupied areas, then utilize steel piping with welded joints or copper piping with brazed joints. Install shut-off valves on either end of occupied areas for isolation.

G. Locate valves for easy access.

H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Install escutcheons at penetrations of interior walls, ceilings, and floors.

1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 c. Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 d. Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
 e. Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 f. Piping in Equipment Rooms: One-piece, cast-brass type.
 g. Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

2. Existing Piping:
 a. Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.
 b. Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge and spring clips.
 c. Piping at Ceiling Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.
 d. Piping in Unfinished Service Spaces: Split-casting, cast-brass type with polished chrome-plated finish.
 e. Piping in Equipment Rooms: Split-casting, cast-brass type.
 f. Piping at Floor Penetrations in Equipment Rooms: Split-casting, floor-plate type.

L. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

M. Verify final equipment locations for roughing-in.

N. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

O. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
P. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

Q. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

R. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.

1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
2. In Floors: Install natural-gas piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.
3. In Floor Channels: Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.
4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 a. Exception: Tubing passing through partitions or walls does not require striker barriers.
5. Prohibited Locations:
 a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 b. Do not install natural-gas piping in solid walls or partitions.

S. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

T. Connect branch piping from top or side of horizontal piping.

U. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

V. Do not use natural-gas piping as grounding electrode.

3.4 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.

3.5 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
2. Bevel plain ends of steel pipe.
3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.

F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

G. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

3.6 HANGER AND SUPPORT INSTALLATION
A. Comply with requirements for pipe hangers and supports specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
 5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

3.7 CONNECTIONS
A. Connect to utility's gas main according to utility's procedures and requirements.
B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
C. Install piping adjacent to appliances to allow service and maintenance of appliances.
D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.8 LABELING AND IDENTIFYING
A. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for piping and valve identification.
B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.9 PAINTING
A. Comply with requirements in Division 09 painting Sections for painting interior and exterior natural-gas piping.
B. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.10 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Tests and Inspections:
 1. Test, inspect, and purge natural gas according to NFPA 54 and the International Fuel Gas Code and authorities having jurisdiction.
C. Natural-gas piping will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports.

3.11 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain earthquake valves.

3.12 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG
A. Aboveground, branch piping NPS 1 and smaller shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

3.13 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE
A. Valves in branch piping for single appliance shall be one of the following:
 1. Bronze plug valve.

END OF SECTION 221600
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following conventional plumbing fixtures and related components:

 1. Faucets for lavatories and sinks.
 2. Flushometers.
 3. Toilet seats.
 4. Protective shielding guards.
 5. Fixture supports.
 7. Urinals.
 8. Lavatories.

B. Related Sections include the following:

 1. Division 10 Section "Toilet, Bath, and Laundry Accessories."
 2. Division 22 Section "Domestic Water Piping Specialties" for backflow preventers, floor drains, and specialty fixtures not included in this Section.
 3. Division 22 Section "Emergency Plumbing Fixtures."
 4. Division 22 Section "Drinking Fountains and Water Coolers."

1.3 DEFINITIONS

B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.

C. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.

D. Cultured Marble: Cast-filled-polymer-plastic material with surface coating.

E. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.

F. FRP: Fiberglass-reinforced plastic.

G. PMMA: Polymethyl methacrylate (acrylic) plastic.

H. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.

D. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.

1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

F. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.

G. Comply with the following applicable standards and other requirements specified for plumbing fixtures:

2. Vitreous-China Fixtures: ASME A112.19.2M.

H. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:

1. Faucets: ASME A112.18.1.

I. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:
 2. Brass and Copper Supplies: ASME A112.18.1.

J. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 2. Floor Drains: ASME A112.6.3.
 4. Off-Floor Fixture Supports: ASME A112.6.1M.

1.6 WARRANTY
 A. Special Warranties: Manufacturer's standard form in which manufacturer agrees to repair or replace components of whirlpools that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures of unit shell.
 b. Faulty operation of controls, blowers, pumps, heaters, and timers.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 2. Warranty Period for Commercial Applications: One (1) year from date of final acceptance by Owner.

1.7 EXTRA MATERIALS
 A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed but not less than 2.
 2. Flushometer Valve, Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than six of each type.

PART 2 - PRODUCTS

2.1 FAUCETS
 A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Standard Companies, Inc.
 2. Bradley Corporation.
 3. Chicago Faucets.
4. Delta Faucet Company.
5. Eljer.
6. Kohler Co.
7. Moen, Inc.
10. T & S Brass and Bronze Works, Inc.
11. Zurn Industries, LLC; Commercial Brass Operation.

B. Description: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture holes; coordinate outlet with spout and fixture receptor.

2. Finish: Polished chrome plate.
3. Maximum Flow Rate: 0.5 gpm unless rated otherwise.

2.2 FLUSHOMETERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Sloan Valve Company.
2. Zurn Industries, LLC; Commercial Brass Operation.

B. Description: Flushometer for urinal or water-closet-type fixture. Include brass body with corrosion-resistant internal components, control stop with check valve, vacuum breaker, sensor operated battery powered copper or brass tubing, and polished chrome-plated finish on exposed parts.

2.3 TOILET SEATS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Standard Companies, Inc.
3. Church Seats.
4. Eljer.
5. Kohler Co.
6. Olsonite Corp.
8. Zurn Industries, LLC; Commercial Fixtures.

B. Description: Toilet seat for water-closet-type fixture.

1. Material: Molded, solid plastic with antimicrobial agent.
2. Configuration: Open front with cover.
4. Hinge Type: stainless steel, self-sustaining, external check.
5. Color: White, unless noted otherwise.

2.4 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Insul-Tect Products Co.; a Subsidiary of MVG Molded Products.
b. McGuire Manufacturing Co., Inc.
c. TRUEBRO, Inc.
d. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.

2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

B. Protective Shielding Piping Enclosures:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. TRUEBRO, Inc.
 b. Sloan Valve Co.

2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

2.5 Fixture Supports

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Josam Company.
3. Tyler Pipe; Wade Div.
5. Zurn Industries, LLC; Specification Drainage Operation.

B. Water-Closet Supports:

1. Description: Combination carrier designed for mounting height of wall-mounting or floor mounting, water-closet-type fixture. Include single or double, vertical or horizontal, hub-and-spigot or hubless waste fitting as required for piping arrangement; faceplates; couplings with gaskets; feet; and fixture bolts and hardware matching fixture. Include additional extension coupling, faceplate, and feet for installation in wide pipe space. Support shall be designed to withstand minimum 300 lbs. weight on fixture.

C. Urinal Supports:

1. Description: Type for wall-mounting, urinal-type fixture. Include steel uprights with feet.

D. Lavatory Supports:

1. Description: Type for wall-mounting, lavatory-type fixture. Include steel uprights with feet.

2.6 Water Closets

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Standard Companies, Inc.
2. Kohler Co.
B. Description Wall/Floor-mounting, back/floor-outlet, vitreous-china fixture designed for operation. Minimum 300 lbs. weight capacity. Fixture shall be ADA compatible where specified.
 1. Bowl Type: Elongated with siphon-jet design.
 2. Design Consumption: Maximum 1.26 gal./flush.
 3. Color: White, unless noted otherwise.

2.7 URINALS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Standard Companies, Inc.
 2. Kohler Co.

B. Description: Wall-mounting, back-outlet, vitreous-china fixture designed for flushometer valve operation. Fixture shall be ADA compatible where specified.
 1. Design Consumption: 0.125 gal./flush unless noted otherwise.
 2. Color: White, unless noted otherwise.

2.8 LAVATORIES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Standard Companies, Inc.
 2. Kohler Co.

B. Description: Wall or Counter-mounting, vitreous-china fixture.
 1. Color: White, unless noted otherwise.

2.9 COMMERCIAL SINKS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Standard Co., Inc.
 2. Elkay Manufacturing Co.
 4. Kohler Co.
 5. Marlo Manufacturing.

B. Description: Counter-mounting/Wall mounting, stainless-steel commercial sink fixture.
 1. Material: 18 gauge, type 304. Stainless steel with satin finish.
 2. Type: Self-rimming for counter mounting, with back-splash for wall mounting.
 3. Number of Compartment: As shown on drawings.
2.10 JANITOR'S SINKS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Acorn Engineering Company.
2. Crane Plumbing, L.L.C./Fiat Products.
3. Florestone Products Co., Inc.
4. Precast Terrazzo Enterprises, Inc.
5. Stern-Williams Co., Inc.
6. Zurn Industries, LLC; Light Commercial Operation.

B. Description: Flush-to-wall, floor-mounting, precast terrazzo fixture with stainless steel rim guard.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.

B. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers' written instructions.

B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.

1. Use carrier supports with waste fitting and seal for back-outlet fixtures.
2. Use carrier supports without waste fitting for fixtures with tubular waste piping.
3. Use chair-type carrier supports with rectangular steel uprights for accessible fixtures.

C. Install back-outlet, wall-mounting fixtures onto waste fitting seals and attach to supports.

D. Install floor-mounting fixtures on closet flanges or other attachments to piping or building substrate.

E. Install wall-mounting fixtures with tubular waste piping attached to supports.

F. Install floor-mounting, back-outlet water closets attached to building floor substrate and wall bracket and onto waste fitting seals.

G. Install counter-mounting fixtures in and attached to casework.

H. Install fixtures level and plumb according to roughing-in drawings.

I. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.

1. Exception: Use ball, gate, or globe valves if supply stops are not specified with fixture. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
J. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.

K. Install toilet seats on water closets.

L. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

M. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.

N. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

O. Install traps on fixture outlets.
 1. Exception: Omit trap on fixtures with integral traps.
 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.

P. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."

Q. Set shower receptors and janitor's sinks in leveling bed of cement grout. Grout is specified in Division 22 Section "Common Work Results for Plumbing."

R. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."

S. Gaskets for wall mounted water closets shall be neoprene as recommended by fixture manufacturer.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.

B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.

C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.

D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

E. Install fresh batteries in sensor-operated mechanisms.
3.5 ADJUSTING

A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.

B. Operate and adjust disposers/hot-water dispensers and controls. Replace damaged and malfunctioning units and controls.

C. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.

D. Replace washers and seals of leaking and dripping faucets and stops.

E. Install fresh batteries in sensor-operated mechanisms.

3.6 CLEANING

A. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:
 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 2. Remove sediment and debris from drains.

B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.7 PROTECTION

A. Provide protective covering for installed fixtures and fittings.

B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 224000
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following drinking fountains and water coolers and related components:

 1. Pressure water coolers.
 2. Fixture supports.

1.3 DEFINITIONS

A. Accessible Drinking Fountain or Water Cooler: Fixture that can be approached and used by people with disabilities.

B. Cast Polymer: Dense, cast-filled-polymer plastic.

C. Drinking Fountain: Fixture with nozzle for delivering stream of water for drinking.

D. Fitting: Device that controls flow of water into or out of fixture.

E. Fixture: Drinking fountain or water cooler unless one is specifically indicated.

F. Water Cooler: Electrically powered fixture for generating and delivering cooled drinking water.

1.4 SUBMITTALS

A. Product Data: For each fixture indicated. Include rated capacities, furnished specialties, and accessories.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For fixtures to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

F. ASHRAE Standard: Comply with ASHRAE 34, "Designation and Safety Classification of Refrigerants," for water coolers. Provide HFC 134a (tetrafluoroethane) refrigerant, unless otherwise indicated.

PART 2 - PRODUCTS

2.1 PRESSURE WATER COOLERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Elkay Manufacturing Co.
2. Halsey Taylor.
3. Haws Corporation

B. Description: Accessible, ARI 1010, Type PB, pressure with bubbler, Style W, wall-mounting water cooler for adult/child-mounting height.

2. Bubbler: One, with adjustable stream regulator, located on each cabinet deck.
6. Filter: One or more water filters complying with NSF 42 and NSF 53 for cyst and lead reduction to below EPA standards; with capacity sized for unit peak flow rate.
7. Drain(s): Grid with NPS 1-1/4 minimum horizontal waste and trap complying with ASME A112.18.1.
8. Cooling System: Electric, with hermetically sealed compressor, cooling coil, air-cooled condensing unit, corrosion-resistant tubing, refrigerant, corrosion-resistant-metal storage tank, and adjustable thermostat.
 a. Electrical Characteristics: Minimum 1/6 hp; 120-V ac; single phase; 60 Hz.

2.2 FIXTURE SUPPORTS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Josam Co.
3. Tyler Pipe; Wade Div.
4. Watts Drainage Products Inc.
5. Zurn Plumbing Products Group.
B. Description: ASME A112.6.1M, water cooler carriers. Include vertical, steel uprights with feet and tie rods and bearing plates with mounting studs matching fixture to be supported.

1. Type I: Hanger-type carrier with two vertical uprights.
2. Type II: Bilevel, hanger-type carrier with three vertical uprights.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water and waste piping systems to verify actual locations of piping connections before fixture installation. Verify that sizes and locations of piping and types of supports match those indicated.

B. Examine walls and floors for suitable conditions where fixtures are to be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Use carrier off-floor supports for wall-mounting fixtures, unless otherwise indicated.

B. Use chrome-plated brass or copper tube, fittings, and valves in locations exposed to view. Plain copper tube, fittings, and valves may be used in concealed locations.

3.3 INSTALLATION

A. Install off-floor supports affixed to building substrate and attach wall-mounting fixtures, unless otherwise indicated.

B. Install fixtures level and plumb.

C. Install water-supply piping with shutoff valve on supply to each fixture to be connected to water distribution piping. Use ball, gate, or globe valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Division 22 Section “General-Duty Valves for Plumbing Piping.”

D. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.

E. Install pipe escutcheons at wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding pipe fittings. Escutcheons are specified in Division 22 Section “Common Work Results for Plumbing.”

F. Seal joints between fixtures and walls and floors using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section “Joint Sealants.”

3.4 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.5 FIELD QUALITY CONTROL

A. Water Cooler Testing: After electrical circuitry has been energized, test for compliance with requirements. Test and adjust controls and safeties.

1. Remove and replace malfunctioning units and retest as specified above.
2. Report test results in writing.

3.6 ADJUSTING

A. Adjust fixture flow regulators for proper flow and stream height.

B. Adjust water cooler temperature settings.

3.7 CLEANING

A. After completing fixture installation, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.

END OF SECTION 224700
DIVISION 23 - HVAC

230500 COMMON WORK RESULTS FOR HVAC
230513 COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
230516 EXPANSION LOOPS FOR HVAC PIPING
230519 METERS AND GAGES FOR HVAC PIPING
230523 GENERAL-DUTY VALVES FOR HVAC PIPING
230529 HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
230548 VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT
230553 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
230593 TESTING, ADJUSTING AND BALANCING FOR HVAC
230700 HVAC INSULATION
230800 MECHANICAL COMMISSIONING REQUIREMENTS
230900 CONTROL SYSTEMS
232113 HYDRONIC PIPING
232123 HYDRONIC PUMPS
232300 REFRIGERANT PIPING
233113 METAL DUCTS
233300 AIR DUCT ACCESSORIES
233423 HVAC POWER VENTILATORS
233713 DIFFUSERS, Registers, AND GRILLES
233723 HVAC GRAVITY VENTILATORS, LOUVERS AND VENTS
234100 PARTICULATE AIR FILTRATION
235100 BREECHINGS, CHIMNEYS, AND STACKS
235216 FIRE-TUBE CONDENSING BOILERS
236200 PACKAGED CONDENSING UNITS
237000 DESICCANT DEHUMIDIFICATION AIR HANDLING UNIT
237313 MODULAR INDOOR CENTRAL STATION AIR-HANDLING UNITS
238233 RADIATORS
238239 UNIT HEATERS
238413 HUMIDIFIERS
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 230500 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Transition fittings.
 3. Dielectric fittings.
 4. Mechanical sleeve seals.
 5. Sleeves.
 7. Grout.
 8. Coordination drawings.
 9. Project Record Drawings.
 10. Trenching, excavating and backfilling.
 11. Equipment installation requirements common to equipment sections.
 12. Painting and finishing.
 13. Concrete bases.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

F. The following are industry abbreviations for plastic materials:
 1. CPVC: Chlorinated polyvinyl chloride plastic.
 2. PE: Polyethylene plastic.
 3. PVC: Polyvinyl chloride plastic.
G. The following are industry abbreviations for rubber materials:

1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For the following:

1. Transition fittings.
2. Dielectric fittings.
3. Mechanical sleeve seals.
4. Escutcheons.

B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel".

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications".

1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping".
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. Any additional costs as a result of these modifications shall be borne by the contractor. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Mechanical contractor shall be responsible for furnishing and installing access doors required for their work.
D. Sequence, coordinate, and integrate installations of HVAC materials and equipment for efficient flow of the Work. Coordinate installation of large equipment requiring positioning before closing in building.

E. Coordinate connection of HVAC systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies.

F. Coordinate installation of identifying devices after completing covering and painting, if devices are applied to surfaces. Install identifying devices before installing acoustical ceilings and similar concealment.

G. Sequence, coordinate, and integrate removal of existing equipment and material as required to maintain services for existing building and for portions of remodeled areas at all times.

1.8 SCHEDULING AND PHASING

A. All HVAC work shall be scheduled to meet project completion date. HVAC work shall be phased for projects requiring phasing of work. Install additional fittings, valves, caps, and dampers as required to support phasing. Refer to phasing schedule on drawings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

H. Solvent Cements for Joining Plastic Piping:
 1. CPVC Piping: ASTM F 493.
 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

I. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

2.4 TRANSITION FITTINGS

A. Acceptable Manufacturers:
 1. Eslon Thermoplastics.
 2. NIBCO, Inc.
 3. Thompson Plastics, Inc.

B. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.

C. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.

D. Plastic-to-Metal Transition Unions: MSS SP-107, CPVC and PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.

2.5 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Acceptable Manufacturers:
 1. Capitol Manufacturing Co.
 2. Capico Inc.
 3. Epco Sales, Inc.

D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.

1. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.6 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Acceptable Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

3. Pressure Plates: Carbon steel. Include two for each sealing element.

4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.

F. Molded PE: Reusable, PE, tapered-cup shaped and smooth-outer surface with nailing flange for attaching to wooden forms.

2.8 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated or rough brass.

D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

E. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.

F. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw or spring clips, and chrome-plated finish.

G. One-Piece, Floor-Plate Type: Cast-iron floor plate.

H. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.9 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.

2.10 COORDINATION DRAWINGS

A. The contractor shall prepare CAD generated overall coordination drawings (min ¼” scale) to coordinate HVAC systems installation with other trades. Following systems/items shall be indicated and coordinated, but not limited to, with each other based on input from installers of these systems:
 1. Ceiling layout.
 2. Sheet metal ductwork including locations of boxes, diffusers, grilles/registers, duct risers, fire/smoke dampers, etc.
 3. HVAC piping routing including locations of valves, expansion loops, risers, etc.
 4. Fire suppression piping mains, sprinkler heads, flow switches, etc.
 5. Plumbing piping routing including locations of valves, drops to fixtures, risers, etc.
 6. Medical gas piping routing including locations of zone valves, drops to outlets/headwalls, etc.
 7. Electrical systems including locations of light fixtures, routing of main feeders/conduits larger than 3” dia., routing of cable tray, etc.

B. Contractor shall obtain information of other systems from General Contractor, Electrical Contractor, Fire Suppression Contractor, Plumbing Contractor and others as required for incorporation in the coordination drawings.

C. Contractor shall arrange coordination meeting with other contractors, whose systems need coordination, to resolve conflicts.

2.11 PROJECT RECORD DRAWINGS

A. Drawings shall be furnished in electronic-media (CD-Rewritable type) and at least one hard copy prints.
 1. Format: Same CAD program, version and operating system as the original Contract Drawings.
2. Incorporate changes and additional information previously marked on Record prints. Delete, re-draw and add details and notations where applicable.

B. Identify and date each drawing and include the designation “AS-BUILT DRAWING” in a prominent location.

PART 3 - EXECUTION

3.1 TRENCHING, EXCAVATING AND BACKFILLING

A. Excavate to required dimensions and depth. The trench excavation shall be in open cut from surface and shall be minimum width necessary to permit the placing of the pipe as required. Excess excavation shall be backfilled with crusher run rock. Such rocks shall be placed at the Contractor's expense. Lines shall be used to lay out trenches.

B. All excavations shall be properly protected by the necessary bracing and timbers, to prevent any cave-ins or injury to adjacent improvements. The sides of the excavations shall be securely held by bracing or sheathing, which bracing or sheathing shall not be removed until the level of the backfill has reached the point where such removal can be safely carried out. Where adjacent improvements might be injured by the removal of such bracing, the braces shall be left in place to prevent such injury. The thickness of the sheathing and dimensions of the brass braces, shoes and miscellaneous supports to be used by the Contractor shall be of the type required to properly protect the sides of the trench and to prevent injurious cave-ins or erosions.

C. The Contractor shall do all pumping and bailing necessary to keep all excavations free of water and shall provide for the uninterrupted flow of the surface water adjacent to the line of the work during the progress of the work. The Contractor shall inspect the ground where excavation is required to ascertain the structure of the soil. Additional consideration will not be allowed for encountering rock, stone, old foundations or other unfavorable excavating conditions.

D. The Contractor shall replace all existing walks, roads, street pavements, curbs, retaining walls, steps and miscellaneous work removed or damaged in connection with the utility service installation, whether or not the improvement is shown on the drawings. Such repairs shall be done to the satisfaction of the Architect. All street cuts shall be repaired in a manner meeting the approval of the Owner.

E. In cases where existing water, sewer, electric, steam or other pipes are encountered, they shall not be displaced or disturbed unless necessary, in which case they shall promptly be replaced in good condition. All water, sewer, steam or electric lines damaged or disturbed in the construction shall be replaced or repaired at the Contractor's expense, unless, in the opinion of the Architect, such damage was caused through no fault of the Contractor.

F. Contractor shall provide all temporary bridges, steel plates, barricades, lanterns, and such other signs and signals by day as shall be necessary to warn the public of and protect the public from the dangers caused by excavations and other obstructions, day and night.

G. The backfilling of trenches shall be carried out as rapidly as the testing and acceptance of the finished sections of the installation will permit. The trench shall be backfilled in layers of not to exceed eight inches (8") with good selected clean earth, thoroughly tamped with mechanical tamper to a 95% optimum compaction. Density shall be tested by an approved laboratory, using a standard method. Tests shall be made for each 2 ft. depth on the basis of one test per 1000 sq. ft. of fill area. Last 12” of backfill (except under streets, drives, and walks) shall be made with good clean top soil. Contractor shall obtain and pay for tests. Submit five (5) copies of tests for approval. Note: Broken Stones, cinders, wood and rubbish are not acceptable for backfilling. Backfill all street cuts in a manner meeting the approval of the Architect.

H. In spaces between walls and line of excavation, fill with thin layers of selected clean earth; thoroughly tamp in eight inches (8") thick layers and bring up to a finished level of established grades. All wood and foreign materials shall be removed from excavation prior to backfilling.
I. After backfilling, all surplus excavated materials shall be removed from the property.

J. The work shall be executed so that existing culverts, walks, retaining walls, steps, fences or any permanent structure along and adjacent to the new work are properly protected. Any damage occurring to these structures shall be repaired by the Contractor at his own expense.

K. The Contractor shall make a field inspection of the location along which the underground piping is to be constructed, and note all obstructions and improvements at the surface and overhead which may affect the method of operation in the construction of these lines. Such overhead wires and underground pipes or conduits or conduits which may exist, or which may be encountered, shall be protected by the Contractor during this construction. Any expense or inconvenience caused by their existence and the necessary protection for utilities adjacent thereto shall be considered as covered and included in the contract, without additional cost to the Owner.

3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas. Mechanical contractor shall be responsible for furnishing and installing access doors required for their work.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping minimum 8 inches above accessible ceilings to allow sufficient space for ceiling panel removal and service access.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

 1. New Piping:

 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with rough-brass finish.
g. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
h. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

2. Existing Piping: Use the following:
 a. Chrome-Plated Piping: Split-casting, cast-brass type with chrome-plated finish.
b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge and spring clips.
c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.
d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.
e. Bare Piping in Unfinished Service Spaces: Split-casting, cast-brass type with rough-brass finish.
f. Bare Piping in Equipment Rooms: Split-casting, cast-brass type.
g. Bare Piping at Floor Penetrations in Equipment Rooms: Split-casting, floor-plate type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.

1) Seal space outside of sleeve fittings with grout.

4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Section 079200 "Joint Sealants" for materials and installation.

Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Install steel pipe for sleeves smaller than 6 inches in diameter.
2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.

T. Verify final equipment locations for roughing-in.

U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

V. Draining and Refilling of Systems: Provide all shutoff valves, drain valves, pipe, fittings, and miscellaneous material required to drain each existing system as required for new work. After new work is completed, tested, and found tight, refill each system as required. Time for shutting down existing system for draining shall be coordinated with all other work and with Owner’s representative. Fill glycol system with type and percentage solutions as directed by Owner.

3.3 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA’s “Copper Tube Handbook,” using lead-free solder alloy complying with ASTM B 32.

E. Brazed Joints: Construct joints according to AWS’s “Brazing Handbook”, “Pipe and Tube” Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
3. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
4. PVC Nonpressure Piping: Join according to ASTM D 2855.

J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.

K. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

L. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

M. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.4 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.6 PAINTING

A. Painting of HVAC systems, equipment, and components is specified in Section 099123 "Interior Painting".

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.
3.7 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement.

3.8 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.

B. Field Welding: Comply with AWS D1.1.

3.9 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor HVAC materials and equipment.

B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.

3.10 GROUTING

A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.
END OF SECTION 230500
SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
 A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
 A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.
 B. Comply with NEMA MG 1 unless otherwise indicated. All motor shall meet minimum ASHRAE energy efficiency requirements.
 C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
 A. Motors ½ HP and Larger: Three phase, unless shown otherwise.
 B. Motors Smaller than ½ HP: Single phase, unless shown otherwise.
 C. Frequency Rating: 60 Hz/
 D. Voltage Rating: NEMA standard voltage selected to operate on nominal circuit voltage to which motor is connected.
 E. Service Factor: 1.15 for open dripproof motors; 1.0 for totally enclosed motors.
F. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.

G. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

H. Enclosure: Open drip-proof.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Separate winding for each speed.

F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

G. Temperature Rise: Match insulation rating.

H. Insulation: Class F unless otherwise noted.

I. Code Letter Designation:

1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.

1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
5. Motors under 100 hp – Provide Aegis or Helwig Carbon shaft grounding ring on either the drive end or non-drive end of the motor in accordance with manufacturer’s recommendations.
6. Motors 100 hp and above – Provide ceramic bearing or bearing journal on non-drive end of the motor and Aegis or Helwig Carbon shaft grounding ring on the opposite end in accordance with manufacturer’s recommendations.
2.5 SEVERE-DUTY MOTORS

A. General: Severe-duty motors are required wherever indicated in other Division 23 Specifications, or where noted on the Drawings, or as listed here:

1. Primary Heating Water Pumps.
2. Secondary Heating Water Pumps.

B. Specification Requirements: Comply with all requirements of polyphase motors specified elsewhere in this Section, except where more stringent requirements are necessary to meet IEEE-841 and as further specified below.

C. Type: Totally enclosed fan-cooled (TEFC) horizontal and vertical single speed, squirrel cage, polyphase induction motors; meeting all severe-duty requirements of IEEE-841.

D. Design Characteristics: NEMA MG 1, Design B, unless otherwise indicated. Degree of protection shall IP55. Motor bearings shall have a degree of protection of IP56 via the use of non-contact bearing isolator.

E. Service Factor: All motors shall be rated for 1.15 service factor but shall be selected so that the scheduled duty point is at or below 1.00 service factor.

F. Service Conditions: Motors shall be rated for continuous-duty operation without de-rating under the following service conditions:

1. Exposure to ambient temperatures from -25°C to 40°C.
2. Exposure to altitudes up to 1000 meters (3300 feet).
3. Rated for use in indoor or outdoor applications involving sever duty conditions such as high humidity or chemical-laden, corrosive, or salty atmospheres.
5. Variable Frequency Drive (VFD) or full-voltage, across-the-line starting.
7. Voltage unbalance at the motor terminals up to 1%.
8. Temperature rise of the stator winding up to 80°C when operated at rated horsepower.

G. Insulation: Non-hygroscopic, chemical and humidity-resistant insulation system with rating of Class F or better insulation and Class H spike-resistant wire.

H. Airborne Sound: Motor sound power level when measured at a no-load condition shall not exceed 90 dBA when determined in accordance with NEMA MG 1-1998 Part 9.

I. Vibration: Motor vibration measured in any direction on the bearing housing shall meet the levels listed below when tested per Part 7 of NEMA MG 1-1998:

1. Unfiltered vibration at rated voltage and frequency shall not exceed 0.08 in/s peak velocity for 4-pole motors.
2. Filtered vibration shall not exceed 0.05 in/s peak velocity at twice line frequency.
3. Unfiltered axial vibration shall not exceed 0.06 in/s peak velocity on bearing housing.

J. Manufacturer’s Special Warranty: Provide written warranty, signed by manufacturer, agreeing to repair or replace motors that fail in materials or workmanship within specified warranty period. Special warranty specified in here shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.

1. Warranty Period: Manufacturer’s standard, but not less than five (5) years after date of Substantial Completion for sine-wave power motors, and not less than three (3) years after date of Substantial Completion for motors powered through variable frequency drives. Warranty must include parts, labor, shipping and handling charges, and applicable taxes.
2.6 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513
SECTION 230516 - EXPANSION LOOPS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipe bends and loops.
 2. Alignment guides and anchors.

1.3 DEFINITIONS

A. BR: Butyl rubber.
B. Buna-N: Nitrile rubber.
C. CR: Chlorosulfonated polyethylene synthetic rubber.
D. CSM: Chlorosulfonyl-polyethylene rubber.
E. EPDM: Ethylene-propylene-diene terpolymer rubber.
F. NR: Natural rubber.
G. PTFE: Polytetrafluoroethylene plastic.

1.4 PERFORMANCE REQUIREMENTS

A. Compatibility: Products shall be suitable for piping system fluids, materials, working pressures, and temperatures.
B. Capability: Products shall absorb 200 percent of maximum axial movement between anchors.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Delegated-Design Submittal: For each anchor and alignment guide indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and bends.
2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.

3. Alignment Guide Details: Detail field assembly and attachment to building structure.

4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.

C. Welding certificates with picture ID.

D. Product Certificates: For each type of pipe expansion joint, signed by product manufacturer.

E. Maintenance Data: For pipe expansion joints to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:

2. Welding to Piping: ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 ALIGNMENT GUIDES

A. Description: Steel, factory fabricated, with bolted two-section outer cylinder and base for alignment of piping and two-section guiding spider for bolting to pipe.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Adsco Manufacturing, LLC.
 b. Flex-Hose Co., Inc.
 c. Flexicraft Industries.
 d. Hyspan Precision Products, Inc.
 e. Metraflex, Inc.
 f. Piping Technology & Products, Inc.
 g. Senior Flexonics, Inc.; Pathway Division.

2.2 MATERIALS FOR ANCHORS

A. Steel Shapes and Plates: ASTM A 36.

B. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel, hex head.

C. Washers: ASTM F 844, steel, plain, flat washers.

D. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, and tension and shear capacities appropriate for application.

2. Expansion Plug: Zinc-coated steel.

E. Chemical Fasteners: Insert-type-stud bonding system anchor for use with hardened portland cement concrete, and tension and shear capacities appropriate for application.
1. Bonding Material: ASTM C 881, Type IV, Grade 3, 2-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.

F. Concrete: Portland cement mix, 4500 psi minimum. Comply with requirements in Division 03 Section "Cast-in-Place Concrete" for formwork, reinforcement, and concrete.

G. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink, nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 PIPE BEND AND LOOP INSTALLATION
 A. Install pipe bends and loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.
 B. Attach pipe bends and loops to anchors.
 2. Concrete Anchors: Attach by fasteners. Follow fastener manufacturer's written instructions.

3.2 SWING CONNECTIONS
 A. Connect risers and branch connections to mains with at least four pipe fittings, including tee in main.
 B. Connect risers and branch connections to terminal units with at least four pipe fittings, including tee in riser.
 C. Connect mains and branch connections to terminal units with at least four pipe fittings, including tee in main.

3.3 ALIGNMENT-GUIDE INSTALLATION
 A. Install guides on piping adjoining pipe expansion fittings and loops.
 B. Attach guides to pipe and secure to building structure.

3.4 ANCHOR INSTALLATION
 A. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.
 B. Fabricate and install steel anchors by welding steel shapes, plates, and bars to piping and to structure. Comply with ASME B31.9 and AWS D1.1.
C. Construct concrete anchors of poured-in-place concrete of dimensions indicated and include embedded fasteners.

D. Install pipe anchors according to expansion-joint manufacturer's written instructions if expansion joints or compensators are indicated.

E. Use grout to form flat bearing surfaces for expansion fittings, guides, and anchors installed on or in concrete.

END OF SECTION 230516
SECTION 230519 - METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes meters and gages for mechanical systems and water meters installed inside the building.

B. Related Sections include the following:
 1. Mechanical equipment Sections that specify meters and gages as part of factory-fabricated equipment.

1.3 SUBMITTALS

A. Product Data: Include scale range, ratings, and calibrated performance curves for each meter, gage, fitting, specialty, and accessory specified.

B. Shop Drawings: Include schedule indicating manufacturer's number, scale range, fittings, and location for each meter and gage.

C. Product Certificates: Signed by manufacturers of meters and gages certifying accuracies under specified operating conditions and compliance with specified requirements.

D. Shop Drawings: For brackets for duct-mounting thermometers.

E. Maintenance Data: For meters and gages to include in maintenance manuals specified in Division 1.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Dial Type Thermometers:
 b. Ernst Gage Co.
 c. Marsh Bellofram.
 d. Trerice: H. O. Trerice Co.
 e. Weiss Instruments, Inc.

 2. Pressure Gages:
b. Ernst Gage Co.
c. Marsh Bellofram.
d. Trerice: H. O. Trerice Co.
e. Weiss Instruments, Inc.

2.2 THERMOMETERS, GENERAL

A. Scale Range: Temperature ranges for services listed are as follows:
1. Domestic Hot Water: 30 to 240 deg F, with 2-degree scale divisions.
2. Hot Water: 30 to 300 deg F, with 2-degree scale divisions.
3. Chilled Water: 0 to 100 deg F, with 2-degree scale divisions.
4. Steam and Condensate: 50 to 400 deg F, with 5-degree scale divisions.

B. Accuracy: Plus or minus 1 percent of range span or plus or minus one scale division to maximum of 1.5 percent of range span.

2.3 DIAL TYPE THERMOMETERS

A. Description: ASTM E 1.

B. Case: Die cast and aluminum finished in baked-epoxy enamel, glass front, spring secured, minimum 2” diameter, maximum 5” diameter, accurate to within 1% of full scale.

C. Adjustable Joint: Finish to match case, 180-degree adjustment in vertical plane, 360-degree adjustment in horizontal plane, with locking device.

D. Tube: Red or blue reading, organic-liquid filled with magnifying lens.

E. Scale: Satin-faced nonreflective aluminum with permanently etched markings.

F. Stem: Copper-plated steel, aluminum, or brass for separable socket; of length to suit installation.

2.4 SEPARABLE SOCKETS

A. Description: Fitting with protective socket for installation in threaded pipe fitting to hold fixed thermometer stem.

2. Extension-Neck Length: Nominal thickness of 2 inches (50 mm), but not less than thickness of insulation. Omit extension neck for sockets for piping not insulated.
3. Insertion Length: To extend to one-third of diameter of pipe.
4. Cap: Threaded, with chain permanently fastened to socket.
5. Heat-Transfer Fluid: Oil or graphite.

2.5 THERMOMETER WELLS

A. Description: Fitting with protective well for installation in threaded pipe fitting to hold test thermometer.

2. Extension-Neck Length: Nominal thickness of 2 inches (50 mm), but not less than thickness of insulation. Omit extension neck for wells for piping not insulated.
3. Insertion Length: To extend to one-third of diameter of pipe.
4. Cap: Threaded, with chain permanently fastened to socket.
5. Heat-Transfer Fluid: Oil or graphite.

2.6 DUCT THERMOMETER SUPPORT FLANGES

A. Description: Flanged-fitting bracket for mounting in hole of duct, with threaded end for attaching thermometer.
 1. Extension-Neck Length: Nominal thickness of 2 inches (50 mm), but not less than thickness of exterior insulation.
 2. Insertion-Neck Length: Nominal thickness of 2 inches (50 mm), but not less than thickness of insulation lining.

2.7 PRESSURE GAGES

A. Description: ASME B40.1, phosphor-bronze bourdon-tube type with bottom connection; dry type, unless liquid-filled-case type is indicated.
B. Case: Drawn steel, brass, or aluminum with 4-1/2-inch- (115-mm-) diameter, glass lens.
C. Connector: Brass, NPS 1/4 (DN8).
D. Scale: White-coated aluminum with permanently etched markings.
E. Accuracy: Grade A, plus or minus 1 percent of middle 50 percent of scale.
F. Range: Comply with the following:
 1. Vacuum: 30 inches Hg of vacuum to 15 psig of pressure (100 kPa of vacuum to 103 kPa of pressure).
 2. Fluids under Pressure: Two times the operating pressure.

2.8 PRESSURE-GAGE FITTINGS

A. Valves: NPS 1/4 (DN8) brass or stainless-steel needle type.
B. Syphons: NPS 1/4 (DN8) coil of brass tubing with threaded ends.
C. Snubbers: ASME B40.5, NPS 1/4 (DN8) brass bushing with corrosion-resistant porous-metal disc of material suitable for system fluid and working pressure.

PART 3 - EXECUTION

3.1 METER AND GAGE INSTALLATION, GENERAL

A. Install meters, gages, and accessories according to manufacturer's written instructions for applications where used.

3.2 THERMOMETER INSTALLATION

A. Install thermometers and adjust vertical and tilted positions.
B. Install in the following locations:
 1. Inlet and outlet of each hydronic coil in air-handling units systems.
 2. Inlet and outlet of each steam-to-hot water convertors.
 3. Chilled water supply and return mains at building entrance.

C. Install separable sockets in vertical position in piping tees where fixed thermometers are indicated.
 1. Install with socket extending to one-third of diameter of pipe.
 2. Fill sockets with oil or graphite and secure caps.

D. Install thermometer wells in vertical position in piping tees where test thermometers are indicated.
 1. Install with stem extending to one-third of diameter of pipe.
 2. Fill wells with oil or graphite and secure caps.

3.3 PRESSURE-GAGE INSTALLATION

A. Install pressure gages in piping tees with pressure-gage valve located on pipe at most readable position.

B. Install dry-type pressure gages in the following locations:
 1. Discharge of each steam or water pressure-reducing valve.
 2. Inlet and outlet of each condensate pump.
 3. Inlet and outlet of domestic water heaters.
 4. Inlet and outlet of hot water heat exchangers.
 5. Supply and return header of chilled water system.

C. Install liquid-filled-type pressure gages at suction and discharge of each pump.

D. Install pressure-gage needle valve and snubber in piping to pressure gages.
 1. Exception: Install syphon instead of snubber in piping to steam pressure gages.

3.4 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping and specialties. The following are specific connection requirements:
 1. Install meters and gages adjacent to machines and equipment to allow service and maintenance.
 2. Connect flow-measuring-system elements to meters.
 3. Connect flowmeter transmitters to meters.
 4. Connect thermal-energy-flowmeter transmitters to meters.

B. Make electrical connections to power supply and electrically operated meters and devices.

C. Install electrical connections for power and devices.

D. Electrical power, wiring, and connections are specified in Division 26 Sections.

3.5 ADJUSTING AND CLEANING

A. Calibrate meters according to manufacturer's written instructions, after installation.

B. Adjust faces of meters and gages to proper angle for best visibility.
C. Clean windows of meters and gages and clean factory-finished surfaces. Replace cracked and broken windows, and repair scratched and marred surfaces with manufacturer's touchup paint.

END OF SECTION 230519
SECTION 230523 - GENERAL-DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes general duty valves common to several mechanical piping systems.

B. Related Sections: The following Sections contain requirements that relate to this Section:

1. Special purpose valves are specified in Division 23 piping system Sections.
2. Valve tags and charts are specified in Division 23 Section "Mechanical Identification."

1.3 SUBMITTALS

A. General: Submit each item in this Article according to the Conditions of the Contract and Division 1 Specification Sections.

B. Product Data for each valve type. Include body material, valve design, pressure and temperature classification, end connection details, seating materials, trim material and arrangement, dimensions and required clearances, and installation instructions. Include list indicating valve and its application.

C. Maintenance data for valves to include in the operation and maintenance manual specified in Division 1. Include detailed manufacturer's instructions on adjusting, servicing, disassembling, and repairing.

1.4 QUALITY ASSURANCE

A. Single-Source Responsibility: Comply with the requirements specified in Division 1 Section "Materials and Equipment," under "Source Limitations" Paragraph.

B. ASME Compliance: Comply with ASME B31.9 for building services piping and ASME B31.1 for power piping.

C. MSS Compliance: Comply with the various MSS Standard Practice documents referenced.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:

1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, grooves, and weld ends.
3. Set globe and gate valves closed to prevent rattling.
4. Set ball and plug valves open to minimize exposure of functional surfaces.
5. Set butterfly valves closed or slightly open.
6. Block check valves in either closed or open position.
B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store indoors and maintain valve temperature higher than ambient dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use a sling to handle large valves. Rig to avoid damage to exposed parts. Do not use handwheels and stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Gate Valves:
 a. Crane Company; Valves and Fitting Division.
 b. Milwaukee Valve Company, Inc.
 c. NIBCO Inc.
 d. Stockham Valves & Fittings, Inc.

2. Ball Valves:
 a. Conbraco Industries, Inc.; Apollo Division.
 b. Milwaukee Valve Company, Inc.
 c. NIBCO Inc.
 d. Stockham Valves & Fittings, Inc.

3. Butterfly Valves:
 a. Crane Company; Valves and Fitting Division.
 b. Grinnell Corp.
 c. Milwaukee Valve Company, Inc.
 d. NIBCO Inc.
 e. Stockham Valves & Fittings, Inc.

4. Swing Check Valves:
 a. Crane Company; Valves and Fitting Division.
 b. Milwaukee Valve Company, Inc.
 c. NIBCO Inc.
 d. Stockham Valves & Fittings, Inc.

5. Lift Check Valves:
 a. Bonney Forge.

6. Globe Valves:
 a. Crane Company; Valves and Fitting Division.
 b. Milwaukee Valve Company, Inc.
 c. NIBCO Inc.
 d. Stockham Valves & Fittings, Inc.
2.2 BASIC, COMMON FEATURES

A. Pressure and Temperature Ratings: As indicated in the "Application Schedule" of Part 3 of this Section and as required to suit system pressures and temperatures.

B. Sizes: Same size as upstream pipe, unless otherwise indicated.

C. Operators: Use specified operators and handwheels, except provide the following special operator features:

1. Handwheels: For valves other than quarter turn.
2. Lever Handles: For quarter-turn valves 6 inches (DN150) and smaller, except for plug valves, which shall have square heads. Furnish Owner with 1 wrench for every 10 plug valves.
3. Chain-Wheel Operators: For valves 4 inches (DN100) and larger, installed 96 inches (2400 mm) or higher above finished floor elevation.
4. Gear-Drive Operators: For quarter-turn valves 8 inches (DN200) and larger.

D. Extended Stems: Where insulation is indicated or specified, provide extended stems arranged to receive insulation.

E. Bypass and Drain Connections: Comply with MSS SP-45 bypass and drain connections.

1. Caution: Where soldered end connections are used, use solder having a melting point below 840 deg F (450 deg C) for gate, globe, and check valves; below 421 deg F (216 deg C) for ball valves.

2.3 GATE VALVES

A. Steam Distribution (15 – 65 psig) – Gate Valves, 2" and Smaller: Threaded outside screw and yoke, Class 800 ASTM A105 forged steel body and bonnet, stainless steel wedge disc and seat; and with cast iron handwheel. Valves 2½" and larger, flanged, forged steel, outside screw and yoke, 150 lb. class.

B. Steam (below 15 psig in building) – Gate Valves 2" and Smaller: 150 lb. rising stem gate valves. Union shall not be integral to the valve. Valves 2½" and larger shall be flanged ends, outside screw and yoke, Class150.

2.4 BALL VALVES

A. Chilled Water and Hot Water - Ball Valves: MSS SP-110, 150 lb., 2" and smaller, ASTM B 584 bronze body and bonnet, 2-piece construction; stainless steel ball, full port blowout proof; stainless steel stem; Teflon seats and seals; soldered end connections, NIBCO T-595-Y, NIBCO S-595-Y or equal:

3. Memory Stop: For operator handles.

2.5 GLOBE VALVES

A. Chilled Water and Hot Water - Globe Valves, 3 Inches (DN65) and Smaller: MSS SP-80; Class 125, 200-psi (1380-kPa) CWP, or Class 150, 300-psi (2070-kPa) CWP; ASTM B 62 cast-bronze body and screwed
bonnet, rubber, bronze, or Teflon disc, silicon bronze-alloy stem, Teflon-impregnated packing with bronze nut, threaded or soldered end connections; and with aluminum or malleable-iron handwheel.

2.6 BUTTERFLY VALVES

A. Chilled Water and Hot Water - Butterfly Valves: MSS SP-67, 200-psi (1380-kPa) CWP, 150 psi maximum pressure differential, ASTM A 126 cast-iron full lug body and bonnet, extended neck, 316 stainless-steel stem, field-replaceable EPDM sleeve and stem seals, Grinnell Series 8000 or equal:

1. Disc Type: 316 stainless steel.
2. Operator for Sizes 2 Inches (DN50) to 5 Inches (DN150): Lever handle with latch lock with memory.
3. Operator for Sizes 6 Inches (DN200) to 24 Inches (DN600): Gear operator with position indicator with chain 6'-0" A.F.F.
4. Operator for Sizes 6 Inches (DN200) and Larger, 96 Inches (2400 mm) or Higher above Floor: Chain-wheel operator with chain 6'-0" A.F.F.

2.7 CHECK VALVES

A. Swing Check Valves, 2 Inches (DN65) and Smaller: 150 lb.; horizontal swing, Y-pattern, ASTM B 62 cast-bronze body and cap, soldered connections, NIBCO T-433 or equal:

B. Swing Check Valves, 2-1/2 Inches (DN80) and Larger: MSS SP-71, Class 125, 200-psi (1380-kPa) CWP, ASTM A 126 cast-iron body and bolted cap, horizontal-swing bronze disc, flanged end connections, NIBCO F-918 or equal.

C. Lift Check Valves (Pump Discharge): Class 800, forged steel ball type check valve, with bolted bonnet, male-female joint, spiral wound gasket made in F316L/graphite. Valves shall conform to MS-SP-118 and ASME B16.34 and shall be tested according to API 598.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine piping system for compliance with requirements for installation tolerances and other conditions affecting performance of valves. Do not proceed with installation until unsatisfactory conditions have been corrected.

B. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

C. Operate valves from fully open to fully closed positions. Examine guides and seats made accessible by such operation.

D. Examine threads on valve and mating pipe for form and cleanliness.

E. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Check gasket material for proper size, material composition suitable for service, and freedom from defects and damage.

F. Do not attempt to repair defective valves; replace with new valves.
3.2 INSTALLATION

A. Install valves as indicated, according to manufacturer's written instructions.

B. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate the general arrangement of piping, fittings, and specialties.

C. Install valves with unions or flanges at each piece of equipment arranged to allow servicing, maintenance, and equipment removal without system shutdown.

D. Locate valves for easy access and provide separate support where necessary.

E. Install valves in horizontal piping with stem at or above the center of the pipe.

F. Install valves in a position to allow full stem movement.

G. For chain-wheel operators, extend chains to 60 inches (1500 mm) above finished floor elevation.

H. Installation of Check Valves: Install for proper direction of flow as follows:
 1. Swing Check Valves: Horizontal position with hinge pin level.
 2. Lift Check Valve: With stem upright and plumb.

3.3 SOLDERED CONNECTIONS

A. Cut tube square and to exact lengths.

B. Clean end of tube to depth of valve socket with steel wool, sand cloth, or a steel wire brush to a bright finish. Clean valve socket.

C. Apply proper soldering flux in an even coat to inside of valve socket and outside of tube.

D. Open gate and globe valves to fully open position.

E. Remove the cap and disc holder of swing check valves having composition discs.

F. Insert tube into valve socket, making sure the end rests against the shoulder inside valve. Rotate tube or valve slightly to ensure even distribution of the flux.

G. Apply heat evenly to outside of valve around joint until solder melts on contact. Feed solder until it completely fills the joint around tube. Avoid hot spots or overheating valve. Once the solder starts cooling, remove excess amounts around the joint with a cloth or brush.

3.4 THREADED CONNECTIONS

A. Note the internal length of threads in valve ends and proximity of valve internal seat or wall to determine how far pipe should be threaded into valve.

B. Align threads at point of assembly.

C. Apply appropriate tape or thread compound to the external pipe threads, except where dry seal threading is specified.

D. Assemble joint, wrench tight. Wrench on valve shall be on the valve end into which the pipe is being threaded.
3.5 FLANGED CONNECTIONS

A. Align flange surfaces parallel.

B. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly with a torque wrench.

C. For dead-end service, butterfly valves require flanges both upstream and downstream for proper shutoff and retention.

3.6 VALVE END SELECTION

A. Select valves with the following ends or types of pipe/tube connections:

1. Copper Tube Size, 2-1/2 Inches (DN65) and Smaller: Threaded ends, except provide threaded ends for heating hot water and low-pressure steam service.
2. Steel Pipe Sizes, 2-1/2 Inches (DN65) and Smaller: Threaded.
3. Steel Pipe Sizes, 3 Inches (DN80) and Larger: Flanged.

3.7 APPLICATION SCHEDULE

A. General Application: Use gate, ball, and butterfly valves for shutoff duty; lubricated plug cocks, and balancing valves for throttling duty, and butterfly valves on pump discharge. Refer to piping system Specification Sections for specific valve applications and arrangements.

B. Heating and Chilled Water Systems: Use the following valve types:

1. Ball Valves (up to and including 2"):
2. Butterfly Valves 3" and Larger:
3. Bronze Swing Check: Class 150, with composition seat.
5. Balancing valves: Bell and Gossett CBV or Armstrong Flowsetter ΔP type

C. Low-Pressure Steam and Condensate Return Systems (Inside Building): Use the following valve types:

1. Gate Valves (2" and smaller): 150 lb., rising stem.
2. Gate Valves (steam supply 3" and larger): 150 lbs, OS&Y.
3. Globe Valves: Class 150, bronze body with Teflon disc (ahead of pressure gauges).

D. Steam and Condensate Return Distribution Systems: Use the following valve types:

1. Gate Valves (Steam Supply 2½" and Smaller): Threaded OS&Y, 800 lb.
2. Gate Valves (steam supply 3" and larger): Class 150, flanged cast steel body.
3. Globe Valves: Class 150, cast steel body with Teflon disc (ahead of pressure gauges).
4. Check Valves: Class 800, forged steel ball check.

3.8 ADJUSTING

A. Adjust or replace packing after piping systems have been tested and put into service, but before final adjusting and balancing. Replace valves if leak persists.

END OF SECTION 230523
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following hangers and supports for HVAC system piping and equipment:

1. Steel pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.
4. Thermal-hanger shield inserts.
5. Fastener systems.
6. Pipe stands.
7. Equipment supports.

B. Related Sections include the following:

1. Division 21 Section "Water-Based Fire-Suppression Systems" for pipe hangers for fire-protection piping.
2. Division 23 Section "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
3. Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment" for vibration isolation devices.
4. Division 23 Section(s) "Metal Ducts" and "Nonmetal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

A. Support requirements should follow International Mechanical Code and MSS SP-58.

B. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

D. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.
1.5 SUBMITTALS

A. Product Data: For the following:
 1. Steel pipe hangers and supports.
 2. Thermal-hanger shield inserts.
 3. Powder-actuated fastener systems.

B. Welding certificates with picture ID.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to the following:
 1. AWS D1.1, "Structural Welding Code--Steel."
 4. AWS D1.4, "Structural Welding Code--Reinforcing Steel."
 5. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

B. Acceptable Manufacturers:
 2. Carpenter & Paterson, Inc.
 3. Empire Industries, Inc.
 5. Grinnell Corp.
 6. GS Metals Corp.
 8. Piping Technology & Products, Inc.

C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.
2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.

B. Acceptable Manufacturers:

2. GS Metals Corp.
4. Thomas & Betts Corporation.
5. Unistrut Corp.; Tyco International, Ltd.

C. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

A. Description: 100-psig-minimum, compressive-strength insulation insert encased in sheet metal shield.

B. Acceptable Manufacturers:

1. Carpenter & Paterson, Inc.
2. PHS Industries, Inc.
3. Pipe Shields, Inc.
5. Value Engineered Products, Inc.

C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with vapor barrier.

D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate.

E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened Portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Acceptable Manufacturers:

b. Empire Industries, Inc.
c. Hilti, Inc.
d. ITW Ramset/Red Head.
e. MKT Fastening, LLC.
f. Powers Fasteners.

2.7 PIPE STAND FABRICATION

A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

1. Acceptable Manufacturers:

 a. ERICO/Michigan Hanger Co.
 b. MIRO Industries.

C. Low-Type, Single-Pipe Stand: One-piece plastic or stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.

2. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
3. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.

1. Bases: One or more plastic.
2. Vertical Members: Two or more protective-coated-steel channels.
3. Horizontal Member: Protective-coated-steel channel.

2.8 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes and then hot dipped or cold galvanized.

2.9 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.
3.1 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use padded hangers for piping that is subject to scratching.

F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 2.
10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.
18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.
19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

3.2 HANGER AND SUPPORT INSTALLATION

A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.

 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured.
 Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounting Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.

G. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

H. Equipment Support Installation: Fabricate from welded-structural-steel shapes and then hot dipped or cold galvanize.

I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.1 (for power piping) and ASME B31.9 (for building services piping) are not exceeded.

N. Insulated Piping: Comply with the following:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits according to ASME B31.1 for power piping and ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood inserts.
6. Insert Material: Length at least as long as protective shield.
7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Cold galvanize exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.
C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair stick to comply with ASTM A 780.
SECTION 230548 - VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Isolation pads.
2. Isolation mounts.
3. Freestanding and restrained spring isolators.
4. Housed spring mounts.
5. Elastomeric hangers.
7. Spring hangers with vertical-limit stops.
8. Pipe riser resilient supports.
9. Resilient pipe guides.
10. Steel and inertia, vibration isolation equipment bases.

1.3 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 SUBMITTALS

A. Product Data: For the following:

1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
2. Vibration Isolation Base Details: Detail overall dimensions, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.

 a. Coordinate vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Division 22 Sections for equipment mounted outdoors.

B. Welding certificates with photo ID.
C. Field quality-control test reports.
D. Operation and Maintenance Data: For air-mounting systems to include in operation and maintenance manuals.
1.5 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

B. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Amber/Booth Company, Inc.
3. Mason Industries.
4. Vibration Eliminator Co., Inc.
5. Vibration Isolation.
6. Vibration Mountings & Controls, Inc.

B. Pads Type A.1: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.

1. Resilient Material: Oil- and water-resistant neoprene or rubber.

C. Mounts Type A.2: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.

1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.

D. Spring Isolators Type B.1: Freestanding, laterally stable, open-spring isolators.

1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch-thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.
6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

E. Restrained Spring Isolators Type B.2: Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.

1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch-thick, neoprene or rubber isolator pad
attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as
blocking during installation.
2. Restraint: Seismic or limit stop as required for equipment and authorities having jurisdiction.
3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated
load.
4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or
failure.

F. Housed Spring Mounts Type B.3: Housed spring isolator with integral seismic snubbers.
1. Housing: Ductile-iron or steel housing to provide all-directional seismic restraint.
2. Base: Factory drilled for bolting to structure.
3. Snubbers: Vertically adjustable to allow a maximum of 1/4-inch travel up or down before contacting
a resilient collar.

G. Elastomeric Hangers Type B.4: Single or double-deflection type, fitted with molded, oil-resistant
elastomeric isolator elements bonded to steel housings with threaded connections for hanger rods. Color-
code or otherwise identify to indicate capacity range.

H. Spring Hangers Type B.5: Combination coil-spring and elastomeric-insert hanger with spring and insert in
compression.
1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30
degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated
load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or
failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to
support spring and bushing projecting through bottom of frame.
7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

I. Spring Hangers with Vertical-Limit Stop Type B.6: Combination coil-spring and elastomeric-insert hanger
with spring and insert in compression and with a vertical-limit stop.
1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30
degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated
load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or
failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Adjustable Vertical Stop: Steel washer with neoprene washer “up-stop” on lower threaded rod.
8. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

J. Thrust Limits – Type C.1: Combination coil spring and elastomeric insert with spring and insert in
compression with a load stop. Include rod and angle-iron brackets for attaching to equipment.
1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees
of angular rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated
load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of the rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Coil Spring: Factory set and field adjustable for a maximum of ¼-inch movement at start and stop.

K. Pipe Riser Resilient Support: - Type D.1: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of 1/2-inch-thick neoprene. Include steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions. Design support for a maximum load on the isolation material of 500 psig and for equal resistance in all directions.

L. Resilient Pipe Guides: Telescopic arrangement of 2 steel tubes or post and sleeve arrangement separated by a minimum of 1/2-inch-thick neoprene. Where clearances are not readily visible, a factory-set guide height with a shear pin to allow vertical motion due to pipe expansion and contraction shall be fitted. Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.2 VIBRATION ISOLATION EQUIPMENT BASES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Amber/Booth Company, Inc.
 3. Mason Industries.
 4. Vibration Eliminator Co., Inc.
 5. Vibration Isolation.
 6. Vibration Mountings & Controls, Inc.

B. Steel Base – Type E.1: Factory-fabricated, welded, structural-steel bases and rails.
 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 a. Include supports for suction and discharge elbows for pumps.
 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 a. Include supports for suction and discharge elbows for pumps.
 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
 4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.
2.3 FACTORY FINISHES

A. Finish: Manufacturer’s standard paint applied to factory-assembled and -tested equipment before shipping.

1. Powder coating on springs and housings.
2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
3. Baked enamel or powder coat for metal components on isolators for interior use.
4. Color-code or otherwise mark vibration isolation and seismic- and wind-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic- and wind-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application.

B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

3.3 VIBRATION-CONTROL DEVICE INSTALLATION

A. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

D. Drilled-in Anchors:

1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.

2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.

5. Set anchors to manufacturer's recommended torque, using a torque wrench.

6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Remove and replace malfunctioning units and retest as specified above.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

C. Adjust air-spring leveling mechanism.

D. Adjust active height of spring isolators.

3.6 VIBRATION ISOLATOR SCHEDULE FOR SLAB ON GRADE LOCATED EQUIPMENT

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Mounting</th>
<th>Size</th>
<th>Base Type</th>
<th>Isol. Type</th>
<th>Static Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifugal fans</td>
<td>Floor</td>
<td>Up to 60 HP</td>
<td>E.1</td>
<td>A.2</td>
<td>0.25"</td>
</tr>
<tr>
<td></td>
<td>Floor</td>
<td>75 HP and above</td>
<td>E.1</td>
<td>B.1</td>
<td>0.75"</td>
</tr>
<tr>
<td></td>
<td>Inline fans</td>
<td>Up to 40 HP</td>
<td>E.1</td>
<td>A.2</td>
<td>0.25"</td>
</tr>
<tr>
<td></td>
<td>Suspended</td>
<td>All sizes</td>
<td>--</td>
<td>B.5</td>
<td>0.75"</td>
</tr>
<tr>
<td>Utility sets</td>
<td>Floor/Roof</td>
<td>All sizes</td>
<td>--</td>
<td>A.2</td>
<td>0.25"</td>
</tr>
<tr>
<td></td>
<td>Suspended</td>
<td>All sizes</td>
<td>E.1</td>
<td>B.4</td>
<td>0.75"</td>
</tr>
<tr>
<td>Air Handling units</td>
<td>Floor</td>
<td>Up to 5” SP</td>
<td>--</td>
<td>A.1</td>
<td>0.25"</td>
</tr>
<tr>
<td></td>
<td>Floor</td>
<td>Above 5” SP</td>
<td>--</td>
<td>A.1</td>
<td>0.25"</td>
</tr>
<tr>
<td></td>
<td>Suspended</td>
<td>All sizes</td>
<td>--</td>
<td>B.5</td>
<td>0.75"</td>
</tr>
<tr>
<td>Centrifugal Pumps</td>
<td>Floor</td>
<td>Up to 50 HP</td>
<td>E.1</td>
<td>A.2</td>
<td>0.25"</td>
</tr>
<tr>
<td></td>
<td>Floor</td>
<td>Above 50 HP</td>
<td>E.2</td>
<td>B.1</td>
<td>0.75"</td>
</tr>
<tr>
<td></td>
<td>Suspended</td>
<td>All sizes</td>
<td>--</td>
<td>B.5</td>
<td>0.25"</td>
</tr>
<tr>
<td>Piping – Horizontal</td>
<td>Suspended</td>
<td>All sizes</td>
<td>-</td>
<td>B.4</td>
<td>0.25"</td>
</tr>
<tr>
<td>Piping – Vertical</td>
<td>Floor</td>
<td>All sizes</td>
<td>--</td>
<td>D.1</td>
<td>0.25"</td>
</tr>
</tbody>
</table>

Notes:

1. The table indicates minimum static deflection for the isolator. The Contractor shall provide isolators with proper deflection, for equipment furnished, as recommended by the isolator manufacturer.

2. Provide C.1 type (thrust limits) isolators for all fans, air handling units rated for more than 5” total static pressure.

3. Isolators indicated for horizontal piping is only for three (3) hangers on discharge/outlet and three (3) hangers on suction/inlet pipes for pumps, air compressors, vacuum pumps, and equipment mounted on type “B” isolators. Remaining piping does not require isolation.

4. Fans within air handling units, equipped with internal vibration isolators, shall not require isolation for fans as indicated in table above.
VIBRATION ISOLATOR SCHEDULE FOR EQUIPMENT LOCATED ABOVE GRADE

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Mounting</th>
<th>Size</th>
<th>Base Type</th>
<th>Isol. Type</th>
<th>Static Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inline Fans</td>
<td>Floor</td>
<td>Up to 40 HP</td>
<td>E.1</td>
<td>B.1</td>
<td>1.0"</td>
</tr>
<tr>
<td></td>
<td>Suspended</td>
<td>All sizes</td>
<td>--</td>
<td>B.6</td>
<td>1.0"</td>
</tr>
<tr>
<td>Air Compressors</td>
<td>Floor</td>
<td>All sizes</td>
<td>E.2</td>
<td>E.2</td>
<td>1.0"</td>
</tr>
<tr>
<td>Piping – Horizontal</td>
<td>Suspended</td>
<td>All sizes</td>
<td>--</td>
<td>B.4</td>
<td>0.25"</td>
</tr>
<tr>
<td>Piping – Vertical</td>
<td>Floor</td>
<td>All sizes</td>
<td>--</td>
<td>D.1</td>
<td>0.25"</td>
</tr>
</tbody>
</table>

Notes:
1. The table indicates minimum static deflection for the isolator. The Contractor shall provide isolators with proper deflection, for equipment furnished, as recommended by the isolator manufacturer.
2. Provide C.1 type (thrust limits) isolators for all fans, air handling units rated for more than 5" total static pressure.
3. Isolators indicated for horizontal piping is only for three (3) hangers on discharge/outlet and three (3) hangers on suction/inlet pipes for pumps, air compressors, vacuum pumps, and equipment mounted on type "B" isolators. Remaining piping does not require isolation.
4. Fans within air handling units, equipped with internal vibration isolators, shall not require isolation for fans as indicated in table above.

END OF SECTION 230548
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Duct labels.
 5. Stencils.
 6. Valve tags.
 7. Warning tags.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

C. Valve numbering scheme.

D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
3. Minimum Letter Size: 1/2 inch and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:
1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS
A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
C. Background Color: Red.
D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
F. Minimum Letter Size: 1/2 inch and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS
A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.4 DUCT LABELS
A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
C. Background Color: Black.
D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
F. Minimum Letter Size: 1/2 inch and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.5 STENCILS
A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of 1-1/4 inches for ducts; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.
 1. Stencil Material: Fiberboard or metal.
 2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
 3. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

2.6 VALVE TAGS
A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.7 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches.
2. Fasteners: Reinforced grommet and wire or string.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting."

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, on each piping system.

1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment, within mechanical rooms, boiler rooms, chiller rooms, etc.

D. In general follow Pipe Label Color Schedule as shown below, unless the Owner has different schedule standards in which case the Owner’s schedule shall be followed:

1. Heating Water Piping:
 a. Background Color: Orange.

2. Low-Pressure Steam Piping:
 a. Background Color: Yellow.

3. High-Pressure Steam Piping:
 a. Background Color: Yellow.

4. Steam Condensate Piping:
 a. Background Color: Yellow.

3.4 DUCT LABEL INSTALLATION

A. Install plastic-laminated or self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:

1. Blue: For cold-air supply ducts.
2. Yellow: For hot-air supply ducts.
4. ASME A13.1 Colors and Designs: For hazardous material exhaust.

B. Stenciled Duct Label Option: Stenciled labels, showing service and flow direction, may be provided instead of plastic-laminated duct labels, at Installer’s option, if lettering larger than 1 inch high is needed for proper identification because of distance from normal location of required identification.

C. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system. Reduce intervals to 25 feet in areas of congested piping and equipment, within mechanical rooms, etc.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
1. Valve-Tag Size and Shape:
 d. Low-Pressure Steam: 1-1/2 inches, round.
 e. High-Pressure Steam: 1-1/2 inches, round.
 f. Steam Condensate: 1-1/2 inches, round.

2. Valve-Tag Color:
 b. Hot Water: Natural.
 c. Low-Pressure Steam: Natural.
 d. High-Pressure Steam: Natural.
 e. Steam Condensate: Natural.

3. Letter Color:
 b. Hot Water: Black.
 c. Low-Pressure Steam: Black.
 d. High-Pressure Steam: Black.
 e. Steam Condensate: Black.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 230553
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DESCRIPTION OF WORK
A. This scope of services specified the requirements and procedures for mechanical systems testing, adjusting, and balancing. Requirements include measurement and establishment of the fluid quantities of the mechanical systems as required to meet design specifications, and recording and reporting the results. The test and balance work will be performed by the Owner’s personnel. It is the Contractor’s responsibility to assist as outlined below.

B. Test, adjust and balance the following mechanical systems which are shown in the construction documents.

1. Exhaust air systems.
2. Hydronic systems.
3. Steam distribution systems.
4. Verify temperature control system operation.

C. The contractor’s responsibilities are as follows:

1. Notify the Owner’s Representative fourteen (14) days prior to the schedule date for balancing the system.
2. Schedule a two (2) week allowance for the testing and balancing firm to complete the testing and balancing work when scheduling completion of all work required of the Contractor by the contract documents.
3. Cooperate with the testing and balancing firm and shall make all necessary preparations for the TAB efforts.
4. Complete the following work prior to requesting the TAB effort.
 a. Clean and flush all piping systems.
 b. Leak test and make tight all piping systems.
 c. Fill all piping systems with clean water.
 d. Clean and seal all ductwork systems.
 e. Service and tag all equipment.
 f. Set and align all motors and drives.
 g. Start up and prove all equipment and systems.
 h. Make preliminary settings on all control devices and have all systems operational.
 i. Operate all systems successfully for twenty-four (24) hours minimum.

5. Lubricate all motors and bearings.
6. Check fan belt tension.
7. Check fan rotation.
8. Patch insulation, ductwork and housing, using materials identical to those removed.
9. Seal ducts and piping, and test for and repair leaks.
10. Seal insulation to re-establish integrity of the vapor barrier.
11. Attend a coordination meeting prior to the balancing of the system and a coordination meeting following the balancing of the system.
12. Provide a complete set of as-built drawings prior to the TAB effort.
13. Provide craftsmen of the proper trade to work with the TAB firm to make adjustments and installation changes as required.
14. Change out fan sheaves when and if required by the TAB firm.
15. Dedicate the resources to accommodate all changes identified by the test and balance firm in a timely manner.
16. If a significant rebalance (Owner's determination) of the HVAC system is required due to the Contractor's failure to properly install and check out the HVAC system, the cost of rebalancing the system shall be borne by the Contractor.

1.3 PRE-BALANCING CONFERENCE

A. Prior to beginning of the testing, adjusting and balancing procedures, a conference with the Owner's Representative, Engineer and the Test and Balance Agency's representative will be held. The objective of the conference is final coordination and verification of system operation and readiness for testing, adjusting and balancing.

1.4 SEQUENCING AND SCHEDULING OF SERVICES

A. Test, adjust and balance the air conditioning systems during summer season and heating systems during winter season. This includes at least a period of operation at outside conditions within 5 deg. F wet bulb temperature of maximum summer design condition, and within 10 deg. F dry bulb temperature of minimum winter design conditions. Take final temperature readings during seasonal operation.
SECTION 230700 - HVAC INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Insulation Materials:
 a. Flexible elastomeric.
 b. Mineral fiber.
2. Fire-rated insulation systems.
3. Insulating cements.
4. Adhesives.
5. Mastics.
7. Sealants.
8. Factory-applied jackets.
10. Field-applied cloths.
11. Field-applied jackets.
12. Tapes.
13. Securements.

B. Related Sections:
1. Division 22 Section "Plumbing Insulation."

1.3 SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).

1.4 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION
 A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
 B. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING
 A. Schedule insulation application after pressure testing systems. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS
 A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.
 B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
 C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
 D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
 E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
 F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following:
 a. Aeroflex USA Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. NOMACO Insulation.
 2. Thermal Conductivity: Not exceeding 0.25 BTU-in/hour °F at 75°F mean temperature.
G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Manson Insulation Inc.
 e. Owens Corning Fiberglas Corp.

2. Density: 1.9 lbs/cu. ft.
3. Thermal Conductivity: Not exceeding 0.25 BTU-in/hour sq. ft. °F at 75°F mean temperature.

H. High-Temperature, Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type V, without factory-applied jacket.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Owens Corning Fiberglas Corp.

2. Density: 3.0 lbs/cu. ft.
3. Thermal Conductivity: Not exceeding 0.30 BTU-in/hour sq. ft. °F at 100°F mean temperature.

I. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ. For equipment applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Manson Insulation Inc.
 e. Owens Corning Fiberglas Corp.

2. Density: 3.0 lbs/cu. ft.
3. Thermal Conductivity: Not exceeding 0.23 BTU-in/hour sq. ft. °F at 75°F mean temperature.

J. High-Temperature, Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type III, without factory-applied jacket.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Owens Corning Fiberglas Corp.

2. Density: 3.0 lbs/cu. ft.
3. Thermal Conductivity: Not exceeding 0.30 BTU-in/hour sq. ft. °F at 100°F mean temperature.
K. Mineral-Fiber, Preformed Pipe Insulation:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Knauf Insulation.
 c. Manson Insulation Inc.
 d. Owens Corning Fiberglas Corp.

2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

3. Thermal Conductivity: Not exceeding 0.23 BTU-in/hour sq. ft. °F at 75°F mean temperature.

L. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. CertainTeed Corp.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Manson Insulation Inc.
 e. Owens Corning Fiberglas Corp.

2. Density: 2.5 lbs/cu. ft.
3. Thermal Conductivity: Not exceeding 0.27 BTU-in/hour sq. ft. °F at 75°F mean temperature.

2.2 INSULATING CEMENTS

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide one of the following:

 a. Aeroflex USA Inc.
 b. Armacell LCC.
 c. Foster Products Corporation, H. B. Fuller Company.
 d. RBX Corporation.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
1. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Products, Division of ITW.
 b. Foster Products Corporation, H. B. Fuller Company.
 c. ITW TACC, Division of Illinois Tool Works.
 d. Marathon Industries, Inc.
 e. Mon-Eco Industries, Inc.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dow Chemical Company (The).
 c. P.I.C. Plastics, Inc.
 d. Speedline Corporation

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.5 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of
the following:
 b. P.I.C. Plastics, Inc.
 c. Proto PVC Corporation.
 d. Speedline Corporation.

2. Adhesive: As recommended by jacket material manufacturer.

4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions,
 reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers
 for lavatories.

5. Factory-fabricated tank heads and tank side panels.

D. Metal Jacket:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of
the following:
 a. Childers Products, Division of ITW.
 b. PABCO Metals Corporation.
 c. RPR Products, Inc.

 a. Factory cut and rolled to size.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.6 TAPES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of
the following:
 1. Avery Dennison Corporation, Specialty Tapes Division.
 2. Compac Corp.
 4. Venture Tape.

B. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying
with ASTM C 1136.
1. Width: 3 inches.
2. Thickness: 11.5 mils.
4. Elongation: 2 percent.
5. Tensile Strength: 40 lbf/inch in width.
6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

C. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. Width: 3 inches.
2. Thickness: 6.5 mils.
4. Elongation: 2 percent.
5. Tensile Strength: 40 lbf/inch in width.
6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Width: 2 inches.
2. Thickness: 3.7 mils.
3. Adhesion: 100 ounces force/inch in width.
4. Elongation: 5 percent.
5. Tensile Strength: 34 lbf/inch in width.

2.7 SECUREMENTS

A. Bands:

1. Stainless Steel: ASTM A 167 or ASTM A 240, Type 304; 0.015 inch thick, 1/2 inch wide with wing or closed seal.
2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.

B. Insulation Pins and Hangers:

1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel or aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.
PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates and conditions for compliance with requirements for installation and other conditions
 affecting performance of insulation application.
 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely
 affect insulation application.
 B. Surface Preparation: Clean and prepare surfaces to be insulated.

3.3 GENERAL INSTALLATION REQUIREMENTS
 A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of
 voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and
 specialties.
 B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each
 item of equipment, duct system, and pipe system as specified in insulation system schedules.
 C. Install accessories compatible with insulation materials and suitable for the service. Install accessories
 that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
 D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
 E. Install multiple layers of insulation with longitudinal and end seams staggered.
 F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
 G. Keep insulation materials dry during application and finishing.
 H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive
 recommended by insulation material manufacturer.
 I. Install insulation with least number of joints practical.
 J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports,
 anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from
 point of attachment to supported item to point of attachment to structure. Taper and seal ends at
 attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation
 inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket,
 arranged to protect jacket from tear or puncture by hanger, support, and shield.
K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

O. For above ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 1. Comply with requirements in Division 07 Section "Penetration Firestopping" and fire-resistive joint sealers.

D. Insulation Installation at Floor Penetrations:
 1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 2. Pipe: Install insulation continuously through floor penetrations.
 3. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."
3.5 EQUIPMENT, TANK, AND VESSEL INSULATION INSTALLATION

A. Mineral Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
3. Protect exposed corners with secured corner angles.
4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 a. Do not weld anchor pins to ASME-labeled pressure vessels.
 b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 d. Do not overcompress insulation during installation.
 e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 f. Impale insulation over anchor pins and attach speed washers.
 g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.
7. Stagger joints between insulation layers at least 3 inches.
8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.

B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.

1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
2. Seal longitudinal seams and end joints.

C. Insulation Installation on Pumps:

1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch-diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
2. Fabricate boxes from galvanized steel or aluminum, at least 0.040 inch thick.
3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.
3.6 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

3.7 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.

4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.

2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.

2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.

3. Install insulation to flanges as specified for flange insulation application.

4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.

4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.

4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.

2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.

2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.

3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.
5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, alongbutt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.9 FIELD-APPLIED JACKET INSTALLATION

 A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
 3. Completely encapsulate insulation with coating, leaving no exposed insulation.

 B. Where FSK jackets are indicated, install as follows:
 1. Draw jacket material smooth and tight.
 2. Install lap or joint strips with same material as jacket.
 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

 C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

 D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.10 FIRE-RATED INSULATION SYSTEM INSTALLATION

 A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

 B. Insulate duct access panels and doors to achieve same fire rating as duct.
C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."

3.11 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

3.12 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.

2. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.

3. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.13 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:

1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return and relief air located in non-conditioned space.
4. Indoor, exposed return and relief air located in non-conditioned space, mechanical room.

B. Items Not Insulated:

1. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
2. Factory-insulated flexible ducts.
3. Factory-insulated plenums and casings.
4. Flexible connectors.
5. Vibration-control devices.
6. Factory-insulated access panels and doors.

3.14 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, rectangular, round and flat-oval, supply-air, outdoor-air, return air and relief-air duct insulation shall be one of the following:

B. Exposed rectangular, round and flat-oval, supply-air, outdoor-air, return-air and relief-air duct insulation shall be the following:

C. Exposed in Mechanical Rooms, supply-air, return-air, outdoor-air and relief-air plenum insulation shall be the following:
 1. Mineral-Fiber Board: 2 inches thick.

3.15 EQUIPMENT INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.

B. Insulate indoor equipment in paragraphs below that is not factory insulated.

C. Air Dirt Separator insulation shall be one of the following:
 1. Mineral-Fiber Pipe and Tank: 1 1/2 inches thick.

3.16 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.17 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch thick.

B. Refrigerant Suction:
 1. NPS 3" and Smaller: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.

C. Heating-Hot-Water Supply and Return:
 1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 1.5 inch thick.
 2. NPS 1-1/2 and larger: Insulation shall be one of the following:
a. Mineral-Fiber, Preformed Pipe, Type I: 2 inches thick.

D. Low Pressure Steam, Low and High Pressure Steam Condensate:
 1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 2.5 inch thick.
 2. NPS 1-1/2 and larger: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 2.5 inches thick.

3.18 OUTDOOR PIPING INSULATION SCHEDULE
A. Refrigerant Suction:
 1. NPS 3" and Smaller: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1.5 inch thick.

3.19 INDOOR, FIELD-APPLIED JACKET SCHEDULE
A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
B. Equipment, Air Dirt Separator:
 1. Embossed Aluminum Jacket.
C. Piping, Concealed:
 1. None.
D. Piping, Exposed to view in occupied area and within 6'-0" of finished floor:
 1. PVC Jacket.
E. Piping, Exposed in mechanical rooms including steam & steam condensate:
 1. Aluminum Jacket.

3.20 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE
A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
B. Refrigerant Suction Piping:
 1. Aluminum Jacket.
SECTION 230800 - MECHANICAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 WORK INCLUDES
A. Validation of proper installation of Division 23 systems and equipment
B. Systems and equipment testing and startup
C. Equipment performance verification
D. Functional testing of control systems
E. Documentation of tests, procedures and installations
F. Coordination of training

1.2 SCOPE INCLUDES
A. Systems to be commissioned include the following:
 1. HVAC Systems
 2. Heating Hot Water System
 3. Steam Systems
 4. Variable Frequency Drives
 5. Building Automation System
 6. Integrated Systems Testing (Fire Alarm/AHU Shutdown)

1.3 RELATED DOCUMENTS
A. Commissioning Plan - This plan is part of the Contract Documents and outlines many responsibilities, procedures and tasks throughout the commissioning process.
B. Section 019113 - General Commissioning Requirements
C. Division 23 Sections - Individual Sections stipulate installation, startup, warranty and training requirements for the system or device specified in that Section.

1.4 REFERENCES

1.5 GENERAL DESCRIPTION
A. Commissioning is a process to assure all building systems are installed and perform interactively according to the design intent; the systems are efficient, cost effective and meet the Owner’s operational needs; the installation is adequately documented; and operating personnel are adequately trained. Commissioning serves as a tool to minimize post-occupancy operational problems. It establishes testing and communication protocols in an effort to advance building systems from installation to fully optimized operation.
B. The Commissioning Authority will work with the Contractor and Design Engineer to coordinate, oversee, and document the commissioning process during the Construction Phase of this project.
C. This Section defines responsibilities of the Contractor to facilitate the commissioning process particularly during the Construction Phase of the project.

1.6 DEFINITIONS
A. Acceptance Phase - The phase of the project when the facility and its systems and equipment are inspected, tested and verified. Most of the functional performance testing and formal training occurs during this phase of the project. It will generally occur after the Construction Phase is complete including execution of checklists and startup. The Acceptance Phase typically begins with Substantial Completion and ends with Functional Completion.
B. ASHRAE - American Society of Heating, Refrigeration, and Air-Conditioning Engineers
C. Commissioning (Cx) - The process of verifying all building systems are installed and perform interactively according to the design intent; the systems are efficient, cost effective and meet the Owner’s operational needs; the installation is adequately documented; and operating personnel are adequately trained.
D. Commissioning Authority (CxA) - An individual or company who will oversee the commissioning process; stipulate many of the commissioning requirements; and verify that systems and equipment are designed, installed and tested to meet the Owner’s requirements.
E. Commissioning Team - A group of individuals who will collaborate to ensure the facility is fully and completely commissioned. This team will include the Commissioning Authority, the Owner’s representative, the TAB contractor and a commissioning coordinator provided by the Contractor. Generally the installing contractor, subcontractor and manufacturer will also be an integral member of the team for any given system or equipment.
F. Construction Phase - The phase of the project during which the facility is constructed and/or systems and equipment are installed and started. During this phase Contractors complete installation startup forms, submit operation and maintenance (O&M) information, establish trends, etc. The Construction Phase will generally end upon the completed startup and TAB of systems and equipment.

G. Contractor - As used herein is a general reference to the applicable installing party and can therefore refer to the general contractor, subcontractors or vendors.

H. Deficiency - An installation or condition that is not in conformance with the construction documents and/or the design intent.

I. Functional Completion - A milestone that marks the successful completion of the Acceptance Phase. It generally includes the functional performance testing of the systems in the initial season.

J. Functional Performance Testing (FPT) - The dynamic testing of systems and equipment under various modes of operation and different conditions. Both component performance and environmental objectives will be monitored during this testing.

K. NEBB - National Environmental Balancing Bureau.

L. Party - Individual, company or entity involved in the construction and commissioning activities of the project. Refer to the Commissioning Plan for names, roles and responsibilities.

M. Pre-functional Check (PFC) - The static testing of equipment to establish that the equipment has been installed correctly.

N. Scheduled Outage - A period of time scheduled by the Owner in which the system is out of service or not in use by the occupants.

O. Startup - A process whereby the Contractor verifies the proper installation of a device or piece of equipment, executes the manufacturer's starting procedures, completes the startup checklist, and energizes the device or system, and verifies it is in proper working order.

P. TAB - Testing, Adjusting and Balancing as specified in Section 230593.

Q. Warranty Phase - Includes the early occupancy of the building and continues through the warranty period into the opposite season from when the system was initially tested.

1.7 DOCUMENTATION
A. Contractor shall send Commissioning Authority one copy of the following per the procedures specified in other sections of the Specification:
 1. Shop drawings and product data related to systems and equipment to be commissioned on this project. CxA will review and incorporate comments via the Design Engineer.
 2. Initial draft of equipment startup plan checklists along with manufacturers' startup procedures. CxA will assist in development and recommend approval.
 3. System Test Reports. CxA will review and compile prior to FPT.
 4. System certificate of readiness including completed equipment startup forms along with the manufacturers’ field or factory performance test documentation. CxA will review and approve prior to FPT.
 5. Completed Test and Balance Reports. CxA will review and approve prior to FPT.
 8. O&M documentation per requirements of the Commissioning Plan and the Specifications, Division 1.
 9. Record Drawings: Contractor shall maintain at the site an updated set of record or "as-built" documents reflecting actual installed conditions. As-built drawings will be updated in electronic format by the Contractor and submitted to the CxA on a regular basis.

1.8 SEQUENCING AND SCHEDULING
A. Systems can be in various stages of the commissioning process where appropriate, in order to expedite close out of the facility. The CxA and Contractor shall cooperate to schedule Cx tasks to minimize the duration of Cx activities. Sequential priorities shall be followed per the Cx Plan.

B. Commissioning Schedule - Contractor shall incorporate the commissioning process into the project schedule. Startup, TAB and FPT shall be itemized as applicable for each system. Durations for each task shall be coordinated with the CxA.

1.9 COORDINATION MANAGEMENT PROTOCOLS
A. Coordination responsibilities and management protocols relative to Cx are initially defined in the Cx Plan but will be refined and documented at the commissioning scoping meeting. Contractor shall have input to the protocols and all parties will commit to scheduling obligations. The CxA will record and distribute notes from the meeting.

1.10 COMMISSIONING AUTHORITY RESPONSIBILITIES
A. Construction Phase
 1. Plan and conduct commissioning scoping meeting
2. Review applicable project documentation (shop drawings, product data, TAB reports, O&M information, record drawings, etc.) for adequacy and to verify system functionality.
3. Review and approve startup checklist forms.
4. Inspect equipment and system installations periodically.
5. Attend selected planning meetings to observe progress and help expedite completion.
6. Witness selected tests, startups and equipment training.

B. Acceptance Phase
1. Verify control component calibration for controlling sensors.
2. Verify (spot check) equipment performance certifications.
3. Analyze trend logs.
4. Functionally test systems and equipment.
5. Review training plan.
6. Assist the contractor in the coordination of training activities.
7. Record commissioning procedures.

1.11 CONTRACTOR RESPONSIBILITIES

A. Construction Phase
1. Include commissioning requirements in price and plan for work.
2. Attend scoping and coordination meetings scheduled by the CxA.
3. Remedy deficiencies identified during the construction period.
4. Prepare and submit required draft forms and equipment information requested by the CxA. Typically this will include detailed manufacturer installation and start-up, operating, troubleshooting and maintenance procedures, full details of any owner-contracted tests, fan and pump curves, full factory testing reports, if any, and full warranty information, including all responsibilities of the Owner to keep the warranty in force clearly identified. In addition, the installation, start-up and checkout materials that are actually shipped inside the equipment and the actual field checkout sheet forms to be used by the factory or field technicians shall be submitted to the CxA.
5. Assist (along with the design engineers) in clarifying the operation and control of commissioned equipment in areas where the specifications, control drawings or equipment documentation is not sufficient for writing detailed testing procedures.
6. Provide limited assistance to the CxA in preparing the specific functional performance test procedures. Contractors shall review test procedures to ensure feasibility, safety and equipment protection and provide necessary written alarm limits to be used during the tests.
7. Thoroughly complete and inspect installation of systems and equipment in accordance with the Contract Documents, reference or industry standards, and specifically Part 3 of this Section.
8. Startup systems and equipment prior to verification and performance testing by the CxA. Startup procedures shall be in accordance with Contract Documents, reference or industry standards, and specifically Part 3 of this Section.
9. Record startup and test procedures on startup forms and checklists and certify the systems and equipment have been started and tested in accordance with the Contract Documents, reference or industry standards, and specifically Part 3 of this Section. Each form shall be signed and dated by the individual responsible for the startup or test.
10. Complete pre-approved startup checklists and submit along with other installation certification documentation such as certificate of readiness, warranties, test results, etc.
11. Schedule and coordinate Cx efforts required by appropriate subcontractors and vendors. Participate in respective portions of start-ups and training.
12. Demonstrate the systems as specified.
13. Certify systems have been installed and are operating per Contract Documents through certificates of readiness.
15. Copy CxA on indicated documentation.
16. Conduct equipment operation, maintenance, diagnosis and repair training as required by the respective section of the Specifications.

B. Acceptance Phase
1. Assist CxA in verification and performance testing. Assistance will generally include the following:
 a. Provide skilled technicians to execute starting of equipment and to execute the functional performance tests. Ensure that they are available and present during the agreed upon schedules and for sufficient duration to complete the necessary tests, adjustments and problem-solving.
 b. Manipulate systems and equipment to facilitate testing.
 c. Manipulate control systems to facilitate verification and performance testing.
 d. Provide a Controls technician to work at the direction of CxA for up to 16 hours beyond assistance specified above.
2. Correct any work not in accordance with Contract Documents and non-conformances included in the commissioning issues log.
3. Participate in the systems and operational training as it relates to O&M information and the Preventative Maintenance (PM) program.

C. Warranty Phase
1. Provide warranty service.
2. Participate in the opposite season and deferred functional testing.
3. Correct any deficiencies identified.
4. Update record documentation to reflect any changes made throughout the Warranty Phase.

1.12 CONTROLS CONTRACTOR RESPONSIBILITIES
A. Sequences of Operation Submittals. The Controls Contractor’s submittals of control drawings shall include complete detailed sequences of operation for each piece of equipment, regardless of the completeness and clarity of the sequences in the specifications. They shall include:
1. An overview narrative of the system (1 or 2 paragraphs) generally describing its purpose, components and function.
2. All interactions and interlocks with other systems.
3. Detailed delineation of control between any packaged controls and the building automation system, listing what points the BAS monitors only and what BAS points are control points and are adjustable.
4. Written sequences of control for packaged controlled equipment. (Equipment manufacturers’ stock sequences may be included, but will generally require additional narrative).
5. Start-up sequences.
6. Warm-up mode sequences.
7. Normal operating mode sequences.
8. Unoccupied mode sequences.
10. Capacity control sequences and equipment staging.
11. Temperature and pressure control: setbacks, setups, resets, etc.
12. Detailed sequences for all control strategies, e.g., economizer control, optimum start/stop, staging, optimization, demand limiting, etc.
13. Effects of power or equipment failure with all standby component functions.
15. Seasonal operational differences and recommendations.
16. Initial and recommended values for all adjustable settings, setpoints and parameters that are typically set or adjusted by operating staff; and any other control settings or fixed values, delays, etc. that will be useful during testing and operating the equipment.
17. Schedules, if known.
18. Include commissioning requirements in price and plan for work.

B. Assist and cooperate with the TAB contractor in the following manner:
1. Meet with the TAB contractor prior to beginning TAB and review the TAB plan to determine the capabilities of the control system toward completing TAB. Provide the TAB any needed unique instruments for setting terminal unit boxes and instruct TAB in their use (handheld control system interface for use around the building during TAB, etc.).
2. For a given area, have all required prefunctional checklists, calibrations, startup and selected functional tests of the system completed and approved by the CxA prior to TAB.
3. Provide a qualified technician to operate the controls to assist the TAB contractor in performing TAB, or provide sufficient training for TAB to operate the system without assistance.

C. Assist and cooperate with the CxA in the following manner:
1. Using a skilled technician who is familiar with this building, execute the functional testing of the controls system as specified for the controls. Assist in the functional testing of all equipment specified in Part 3 of this specification.
2. Execute all control system trend logs specified in Part 3 of this specification.

1.13 CONTRACTOR NOTIFICATION
A. Contractor shall completely install, thoroughly inspect, startup, test adjust and balance systems and equipment. All activities shall be documented on specified forms. Contractor shall notify Design Engineer, Owner and CxA via the certification of readiness that systems are complete and ready for verification and functional performance testing.

B. Contractor shall notify CxA at least 14 days in advance of any tests, startups or training. CxA shall witness selected tests and startups.
1.14 STARTUP AND PREFUNCTIONAL CHECKLISTS

A. Startup checklists for each type of equipment and system shall be submitted to CxA for approval prior to startup. The forms shall be designed by the appropriate subcontractors or vendors to meet the requirements of the Contract Documents. Forms shall be developed for the specific equipment being installed for this project.

B. Startup checklists shall generally include the following for each (as applicable):
 1. Project specific designation, location and service
 2. Pertinent nameplate data
 3. Indication of the party performing the test
 4. Field for signature of the startup technician along with the date
 5. Clear explanation of the inspection, test, measurement, etc. with a pass/fail indication and a record of measurement parameters
 6. Checklist space indicating all O&M instructions, warranties, and record documents have been completed and submitted.
 7. Checklist space that proper maintenance clearances have been maintained
 8. Checklist space indicating that any required special tools and/or spare tools were turned over to the Owner
 9. Checklist space indicating that required prerequisite equipment and systems were successfully started.

C. Startup checklists shall incorporate the manufacturer-specified procedures. Contractor shall compile the startup and checkout procedures indicated in the manufacturer’s documentation prior to designing the forms. Include specified acceptance criteria as applicable. The manufacturer’s startup and checkout procedures shall be submitted to the CxA along with the draft startup checklists.

D. Completed startup plans for all pieces of equipment included in a system shall be submitted to CxA prior to verification and performance testing.

E. See specification 019113 for additional information regarding Startup and Prefunctional Checklists.

1.15 FUNCTIONAL PERFORMANCE TESTING

A. Participation: CxA will coordinate, test and/or witness functional performance tests after the successful startup and documentation of systems and equipment is complete. Contractor shall occasionally assist, as described above, with manipulation of the systems or equipment; provision of supporting equipment or materials (lifts, ladders, specialty test equipment, etc.); and on the spot remediation of minor identified deficiencies.

B. Detailed Test Forms: CxA will prepare detailed testing procedures and forms to conduct and document the FPT. These will be developed during the Construction Phase and completed during the Acceptance Phase.

C. Completeness: All systems must be complete and ready for FPT. TAB work must be complete and the control systems must be tested and started for the respective system or component.

D. Test Documentation: CxA will record test results on the forms developed for the testing. CxA will Pass or Fail the testing and record the date and time of the test. Deficiencies shall clearly indicate when the test has failed. CxA shall recommend acceptance of the system or component after all related testing is successfully complete.

E. Deficiencies and Retesting: When deficiencies are identified during testing, depending on their extent or magnitude, they can be corrected during the test and the testing can continue to successful completion. Significant deficiencies will fail the test and require retesting of the affected portions of the test. The CxA will subsequently track the resolution of the deficiency via the Project Deficiency List. All tests shall be repeated until successful completion.

F. Opposite Season Testing: Testing procedures shall be repeated and/or conducted as necessary during appropriate seasons. "Opposite season" testing will be required where scheduling prohibits thorough testing in all modes of operation.

1.16 TRAINING

A. Contractors shall prepare and conduct training sessions on the installed systems and equipment for which they are responsible.

B. Contractor shall compile the training plans of the subcontractors and vendors and present a comprehensive training plan as outlined in the individual MEP specification sections.

C. Equipment Specific Training: The appropriate Contractor shall instruct the Owner’s designated representative on the safe and proper operation, maintenance, diagnosis and repair of each piece of equipment. Submitted O&M information shall be used during training. Sessions shall include as a minimum:
 1. Conceptual overview of how the equipment works
 2. Contact information including names, addresses, phone numbers, etc. of sources for equipment information, tools, spare parts, etc.
 3. Details of the warranty or guarantee
4. Intended sequences of operation in all modes of operation
5. Limits of responsibility (ex: unit mounted control vs. building management system)
6. Sources of utility support
7. Routine operator tasks involving monitoring and operation covering all modes of operation and mode switching as applicable
8. Relevant health and safety practices/concerns
9. Common problems and their diagnosis and repair
10. Proper maintenance schedules, tasks and procedures with demonstrations
11. Emergency response, documentation and recovery procedures

D. Controls Contractor Training Involvement: Training on the proper use and operation of the control system is specified in the control section of the specification. Controls contractor shall also participate in the overall systems training.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 GENERAL
A. This Section outlines specific startup, checkout, and functional testing requirements for systems and equipment. Generally these procedures are the direct responsibility of the Contractor as a basic element of validating that the installation is correct. These requirements along with those specified in the individual Section provide a minimum guideline for development of startup procedures, checklists and tests. Contractor shall synthesize these requirements with that of the manufacturer’s and/or applicable codes and standards to develop specific and itemized startup procedures specific to that installed on this project.
B. Refer to all Division 23 Specifications for tests performed on installed equipment and systems.

3.2 STARTUP
A. The HVAC mechanical and controls contractors shall follow the start-up and initial checkout procedures listed in the Responsibilities list in this section and in 019113. The Contractor has start-up responsibility and is required to complete systems and sub-systems so they are fully functional, meeting the design objectives of the Contract Documents. The commissioning procedures and functional testing do not relieve or lessen this responsibility or shift that responsibility partially to the commissioning authority or Owner.
B. Functional testing is intended to begin upon completion of a system. Functional testing may proceed prior to the completion of systems or sub-systems at the discretion of the CxA and Contractor. Beginning system testing before full completion does not relieve the Contractor from fully completing the system, including all startup plan checklists as soon as possible.

3.3 VALVES - STARTUP/CHECKOUT
A. Operate all valves, manual and automatic, through their full stroke. Ensure smooth operation through full stroke and appropriate sealing or shutoff.
B. Verify actuators are properly installed with adequate clearance.
C. For automatic pneumatically operated valves, verify spring range and adjust pilot positioners where applicable.

3.4 METERS AND GAGES - STARTUP/CHECKOUT
A. Adjust faces of meters and gages to proper angle for best visibility.
B. Clean windows of meters and gages and factory-finished surfaces. Replace cracked and broken windows, and repair scratched and marred surfaces with manufacturer’s touch-up paint. For meters and gages requiring temporary manual connection of read-out device, such as pressure taps on a flow measuring device, ensure threads are clean and that connection can be made easily.
C. Meters and gages requiring manual connection of readout device shall be installed with adequate access to allow connection of device with normal tools.

3.5 MECHANICAL IDENTIFICATION - STARTUP/CHECKOUT
A. Verify all valve tags, piping, duct and equipment labeling corresponds with drawings and indexes and meets required Specifications. Correct any deficiencies for all piping and duct systems.
B. Adjusting: Relocate any mechanical identification device that becomes visually blocked by work from this Division or other Divisions.
C. Cleaning: Clean face of identification devices and frames of valve charts.

3.6 MECHANICAL INSULATION - STARTUP/CHECKOUT
A. Examine all systems and equipment that are specified to be insulated. Patch and repair all insulation damaged after installation. Ensure the integrity of vapor barrier around all cold surfaces.
3.7 PIPING - STARTUP/CHECKOUT
A. This applies to all piping systems installed including underground site utilities.
B. Inspect all piping for proper installation; adequate support with appropriate vibration isolation where applicable; and adequate isolation valves for required service.
C. Flush all piping and clean all strainers.
D. Ensure adequate drainage is provided at low points and venting is provided at high points. Ensure air is thoroughly removed from the system as applicable.
E. Ensure all piping is adequately supported and anchored to allow expansion. Bump across the line pumps and inspect for excessive pipe movement.
F. Pressure and/or leak test all applicable systems in accordance with requirements in Specifications, ASME B31.1 and B31.9 as applicable.
G. Sterilize applicable piping systems as specified in the Specifications and as required by regulatory authorities.
H. Submit test reports that document the testing results with certification of the results.
I. Verify the operation of safety relief valves, operating controls, safety controls, etc. to ensure a safe installation.
J. Set and adjust fill pressure and level controls to the required setting.

3.8 AC MOTORS - STARTUP/CHECKOUT
A. Verify proper alignment, installation and rotation.
B. Measure insulation resistance, phase balance, and resistance to ground.
C. Verify properly sized overloads are in place.
D. Measure voltage available to all phases. Measure amps and RPM after motor has been placed in operation under load.
E. Record all motor nameplate data.

3.9 VARIABLE SPEED DRIVES - STARTUP/CHECKOUT
A. General: Provide the services of a factory-authorized representative to test and inspect equipment installation, provide startup service and to demonstrate and train Owner’s personnel.
B. Startup Checks: Perform the following checks before startup and as specified in manufacturer’s startup instructions:
 1. Check for shipping damage.
 2. Perform a point-to-point continuity test for all field installed wiring interconnections. Verify terminations of field installed wiring.
 3. Check for proper torque on connections.
 4. Verify use of shielded cable where specified and check that shields have been terminated properly.
 5. Verify grounding.
 6. Check motor nameplate against drive input rating.
 7. Manually rotate motor shaft to ensure free rotation.
 8. Check that motor leads are not grounded.
C. Starting Procedures: Follow the manufacturer’s written procedures with the following as a minimum:
 1. Ensure device and system which drive is serving is configured to withstand the device operation specified below.
 2. Adjust the minimum voltage to enable starting but not to draw excessive power at start.
 3. Adjust the Volts/Hz to proper setting.
 4. Adjust the acceleration and deceleration rates to the specified times.
 5. Adjust current limiting to coordinate with the overcurrent device and protect the motor.
 6. Set the maximum and minimum speed.
 7. Manually ramp fan speed from minimum to maximum and check for excessive noise and vibration.
 8. Determine any critical speeds to avoid and set these in the drive.
 9. Check for acceptable voltage and current distortion on the power system. Record the input and output voltages and currents showing the harmonic content as a percentage of the base frequency.
 10. Measure and record overall efficiency at 50%, 75% and 100%.
 11. Record the motor terminal voltage.
D. Training: Train Owner’s maintenance personnel on the following:
 1. Procedures and schedules related to startup and shutdown, troubleshooting, servicing, preventative maintenance and how to obtain replacement parts.
 2. Review data in O&M manuals.

3.10 HYDRONIC PIPING - STARTUP/CHECKOUT
A. Prepare hydronic piping and test in accordance with requirements in the Specifications, ASME B31.1 and B31.9 as applicable.
B. Flush system with clean water and clean strainers.
C. Chemical Treatment: Provide a water analysis prepared by the chemical treatment supplier to determine the type and level of chemicals required for prevention of scale and corrosion. Perform initial treatment after completion of system testing.

D. Check expansion tanks to determine that they are not air bound and that the system is completely full of water.

E. Set automatic fill valves for required system pressure.

F. Check air vents at high points of systems and determine if all are installed and operating freely (automatic type) or to bleed air completely (manual type).

G. Set and coordinate automatic fill pressure and relief valve settings.

3.11 PUMPS - STARTUP/CHECKOUT

A. Check suction line connections for tightness to avoid drawing air into the pump.

B. Clean and lubricate all bearings.

C. Refer to AC Motors in this Section.

D. Check that pump is free to rotate by hand. Pump shall be free to rotate with the pump hot and cold for pumps handling hot liquids. If the pump is bound or even drags slightly do not operate the pump until the cause of the trouble is determined and corrected.

E. Check motor for proper rotation. Rotation shall match direction of rotation marked on pump casing. Rotation shall be checked with VFD operating in normal and bypass modes (if applicable).

F. Clean associated strainers.

G. Once system flush is complete, remove startup strainers and affix to adjacent piping to allow confirmation of removal.

H. Check that the proper overloads have been installed in the starter and are the correct size.

I. Verify that the integrity of the vibration isolation is maintained throughout the support and the connections.

J. Align pump within manufacturers recommended tolerances.

K. Ensure all associated piping has been cleaned, tested, and vented.

L. Start the pump per the manufacturer’s instructions.

M. Check the general mechanical operation of the pump and motor.

N. Verify that all thermometers and gages are installed, are clean and undamaged, and are functional.

O. Verify the check valve seal is appropriate.

P. Check noise and vibration levels and ensure they are within the manufacturer’s recommended tolerances.

Q. Refer to Section 230593 Testing, Adjusting and Balancing for detailed requirements for testing, adjusting and balancing hydronic systems.

R. Check the Net Positive Suction Head (NPSH) is within allowable limits for the operating condition.

3.12 BOILERS - STARTUP/CHECKOUT

A. Inspect the field assembly of components and installation of boilers including piping, flue, and electrical connections.

B. Verify unit is secure on mountings, supporting devices, and connections for piping, flue, and electrical are complete.

C. Verify adequate access for maintenance.

D. Check power and control voltages.

3.13 AIR HANDLING UNITS - STARTUP/CHECKOUT

A. Inspect the field assembly of components and installation of air handling units (AHU) including piping, ductwork and electrical connections.

B. Clean unit cabinet interiors to remove foreign material and construction dirt and dust. Vacuum fan wheel, fan cabinet and coils entering air face. Ensure volatile irritants are contained and kept out of occupied spaces.

C. Adjust and lubricate dampers and linkages for proper damper operation.

D. Ensure field fabricated unit sections are properly connected within acceptable tolerances.

E. Seal all penetrations air tight and ensure access doors seat tightly.

F. Verify unit is secure on mountings and supporting devices and connections for piping, ductwork and electrical are complete. Verify proper thermal overload protection is installed in motors, starters and disconnects.

G. Ensure vibration isolation integrity and the connections to it are maintained throughout the AHU installation.

H. Refer to AC Motors in this Section.

I. Disconnect fan drive from motor and verify proper motor rotation direction; verify fan wheel free rotation; and verify smooth bearing operations. Reconnect fan drive system, align belts and install belt guards. Rotation shall be checked with VFD operating in normal and bypass modes (if applicable).

J. Lubricate bearings, pulleys, belts and other moving parts with factory-recommended lubricants.

K. Comb coil fins for parallel orientation.
L. Install clean filters.
M. Ensure condensate drains properly and trap is adequate.
N. Stroke all valves and dampers to ensure free and full travel.
O. Pressure test units as required in the AHU Specification.
P. Refer to Section 230593 Testing, Adjusting and Balancing for detailed requirements for testing, adjusting and balancing air handling systems.
Q. Refer to Section 230900 HVAC Instrumentation and Controls for detailed requirements for starting the controls related to the air handling systems.
R. Training: Train Owner’s maintenance personnel on the following:
 1. Procedures and schedules related to startup and shutdown, troubleshooting, servicing, preventative maintenance and how to obtain replacement parts.
 2. Review data in O&M manuals.

3.14 FANS - STARTUP/CHECKOUT
A. Inspect the field assembly of components and installation of fans including ductwork and electrical connections.
B. Clean unit cabinet interiors to remove foreign material and construction dirt and dust. Vacuum fan wheel, fan cabinet and coils entering air face. Ensure volatile irritants are contained and kept out of occupied spaces.
C. Adjust and lubricate dampers and linkages for proper damper operation.
D. Verify unit is secure on mountings and supporting devices and connections for ductwork and electrical are complete.
E. Verify proper thermal overload protection is installed in motors, starters and disconnects.
F. Refer to AC Motors in this Section.
H. Disconnect fan drive from motor and verify proper motor rotation direction; verify fan wheel free rotation; and verify smooth bearing operations. Reconnect fan drive system, align belts and install belt guards. Rotation shall be checked with VFD operating in normal and bypass modes (if applicable).
I. Lubricate bearings, pulleys, belts and other moving parts with factory-recommended lubricants.
J. Stroke all dampers to ensure free and full travel.
K. Refer to Section 230593 Testing, Adjusting and Balancing for detailed requirements for testing, adjusting and balancing fans.
L. Refer to Section 230923 HVAC Instrumentation and Controls for detailed requirements for starting the controls related to the fans.
M. Training: Train Owner’s maintenance personnel on the following:
 1. Procedures and schedules related to startup and shutdown, troubleshooting, servicing, preventative maintenance and how to obtain replacement parts.
 2. Review data in O&M manuals.

3.15 METAL DUCTWORK - STARTUP/CHECKOUT
A. Leakage Tests: Refer to Section 233113 Ductwork for duct testing requirements.
B. Clean ductwork internally of dust and debris unit by unit as it is installed. Clean external surfaces of foreign substances, which might cause corrosive deterioration of metal or where ductwork is to be painted might interfere with painting or cause paint deterioration.
C. Strip protective paper from stainless ductwork surfaces and repair finish wherever it has been damaged.
D. Temporary Closure: Provide temporary closure at ends of ducts, which are not connected to equipment or air distribution devices at time of ductwork installation. Use polyethylene film or other covering that will prevent entrance of dust and debris until connections are completed.
E. Balancing: Refer to Section 230593 Testing, Adjusting and Balancing for detailed requirements for testing, adjusting and balancing fans.

3.16 DUCTWORK ACCESSORIES - STARTUP/CHECKOUT
A. Operate installed ductwork accessories to demonstrate compliance with requirements. Test for air leakage while system is operating. Repair or replace faulty accessories as required to obtain proper operation and leak proof performance.
 1. Adjusting: Adjust ductwork accessories for proper settings. Install fusible links in fire dampers and adjust for proper action.
 2. Label access doors in accordance with Section 230553 HVAC Identification.
 3. Final positioning of manual dampers is specified in Section 230593 Testing, Adjusting and Balancing.
B. Fire Damper Testing: For every fire damper, remove the fusible link and verify the damper operates freely and closes tightly. Reinstall the fusible link.
C. Cleaning: Clean factory-finished surfaces. Repair any marred or scratched surfaces with manufacturer's touch-up paint.
3.17 CONTROL SYSTEMS - STARTUP/CHECKOUT
A. Startup: Refer to Section 230900 HVAC Instrumentation and Controls. This Specification generally requires manufacturer’s authorized representative to startup, test, adjust and calibrate DDC control systems and demonstrate compliance with requirements. This includes verification of sequences, normal and emergency operations, calibration, interfaces, interlocks, etc.
B. Cleaning: Clean factory-finished surfaces. Repair any marred or scratched surfaces with manufacturer’s touch-up paint.

3.18 FUNCTIONAL TESTING
A. This section specifies the functional testing requirements for Division 23 systems and equipment. From these requirements, the Commissioning Authority (CxA) shall develop step-by-step procedures to be executed by the Contractors or the Commissioning Authority. The general functional testing process, requirements and test method definitions are described in Section 019113. The test requirements for each piece of equipment or system contain the following:
1. The contractors responsible to execute the tests, under the direction of the CxA
2. A list of the integral components being tested
3. Startup plan checklists associated with the components
4. Functions and modes to be tested
5. Required conditions of the test for each mode
6. Special procedures
7. Required methods of testing
8. Required monitoring
9. Acceptance criteria
10. Sampling strategies allowed

B. PREREQUISITES
The following applicable generic prerequisite checklist items are required to be completed and submitted with the equipment/system certificate of readiness and checked off by CxA prior to functional testing.
1. All related equipment has been started up and startup plan checklists submitted and approved ready for functional testing.
2. All control system functions for this and all interlocking systems are programmed and operable per contract documents, including final setpoints and schedules with debugging, loop tuning and sensor calibrations completed.
3. Piping system flushing complete and required report approved
4. Water treatment system complete and operational
5. Test and balance (TAB) complete and approved for the air and hydronic systems
6. All A/E punchlist items for this equipment corrected
7. Schedules and setpoints provided to the CxA
8. False loading equipment, system and procedures ready.
9. Crankcase heaters have been on long enough for immediate startup.
10. Sufficient clearance around equipment for servicing

C. MONITORING
1. Monitoring is a method of testing as a stand-alone method or to augment manual testing.
2. All points listed in the required monitoring section of the test requirements which are control system monitored points shall be trended by the controls contractor. Other points shall be monitored by the CxA using dataloggers. At the option of the CxA, some control system monitoring may be replaced with datalogger monitoring. At the CxA’s request, the controls contractor shall trend up to 20% more points than listed herein at no extra charge.
3. Trend output data must be in an ASCII delimited text file with time continuous down left column and point values in column(s) to the right.
4. All trends for points of a group must start at the same moment in time, unless specifically approved otherwise with the commissioning agent.

3.19 AIR HANDLER UNITS (AHU) FPT
A. Parties Responsible to Execute Functional Test
1. Controls contractor: operate the controls to activate the equipment as needed.
2. Electrical contractor: perform loss of power testing
3. CxA: to witness, direct and document testing.
B. Integral Components or Related Equipment Being Tested
1. AHU and components (fans, coils, valves, ducts, VFD)
2. Desiccant Wheel and Regen heater, fan, etc.
3. Condensing unit and Cooling Stages
4. Humidifier
C. Prerequisites: The applicable prerequisite checklist items listed in paragraph 3.20.B shall be listed on each certificate of readiness form and checked off prior to functional testing. The commissioning agent will also spot-check misc. items and calibrations on the startup plan checklists previously completed by the installer, before the beginning of functional testing.

D. Functions / Modes Required To Be Tested, Test Methods and Seasonal Test Requirements: The following testing requirements are an addition to and do not replace any testing requirements elsewhere in this Division.

<table>
<thead>
<tr>
<th>Function / Mode</th>
<th>Test Method</th>
<th>Required Seasonal Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Test each sequence in the sequence of operations, and other significant modes and sequences not mentioned; including startup, shutdown, unoccupied & manual modes and power failure. Test functionality of this piece of equipment or system in all control strategies or interlocks with which it is associated.</td>
<td>Manual</td>
<td></td>
</tr>
<tr>
<td>In addition to, or as part of (1) above, the following modes or tests are required:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Mixed & supply air, & reset temperature control functions.</td>
<td>Both</td>
<td>Both</td>
</tr>
<tr>
<td>3. Economizer functions.(AHU-04 only)</td>
<td>Both</td>
<td>Cooling</td>
</tr>
<tr>
<td>4. SF, RF and exhaust fan interlocks.</td>
<td>Either</td>
<td></td>
</tr>
<tr>
<td>5. No CCV flow when there is HCV flow.</td>
<td>Both</td>
<td></td>
</tr>
<tr>
<td>7. Duct static pressure (SP) control.</td>
<td>Both</td>
<td></td>
</tr>
<tr>
<td>8. Return or exhaust fan tracking and building SP.</td>
<td>Monitoring</td>
<td>Both</td>
</tr>
<tr>
<td>9. Damper interlocks and correct modulation in all modes</td>
<td>Manual</td>
<td></td>
</tr>
<tr>
<td>11. Verification of minimum OSA control.</td>
<td>Either</td>
<td>²</td>
</tr>
<tr>
<td>13. Verify TAB reported SF cfm with control system reading.</td>
<td>Manual</td>
<td>²</td>
</tr>
<tr>
<td>14. Dehumidification Operation (AHU-03 Only)</td>
<td>Both</td>
<td>Cooling</td>
</tr>
<tr>
<td>15. Regen Burner and Desiccant Wheel inlet/outlet (AHU-03 Only)</td>
<td>Both</td>
<td>Cooling</td>
</tr>
<tr>
<td>16. All alarms (low limits, high static, etc.).</td>
<td>Manual</td>
<td></td>
</tr>
<tr>
<td>17. Sensor and actuator calibration checks: on duct static pressure sensor on SAT, MAT, OSAT, OSA & RA damper and valve positions, SF cfm reading with TAB, and other random checks (BAS readout against hand-held calibrated instrument or observation must be within specified tolerances)</td>
<td>Manual</td>
<td></td>
</tr>
<tr>
<td>18. Verify schedules and setpoints to be reasonable and appropriate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Cooling season, Heating season or Both. -Design: means within 5° of season design or 95% of loading design. A blank cell denotes no special seasonal test is required and that test can be executed during any season, if condition simulation is appropriate.

²Seasonal test not required if seasonal conditions can be adequately simulated.

³Refer to Special Procedures

E. Required Monitoring

1. All points listed below which are control system monitored points shall be trended by the controls contractor. Other points shall be monitored by the CxA using dataloggers. Refer to the Monitoring section at paragraph 3.20.C for additional monitoring details.

<table>
<thead>
<tr>
<th>Point</th>
<th>Time Step (min.)</th>
<th>Minimum Time Period of Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each AHU being tested:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAT</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>SAT</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>SAT setpoint</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>CC LAT</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>HC LAT</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>MAT</td>
<td>15</td>
<td>7 days</td>
</tr>
</tbody>
</table>
MECHANICAL COMMISSIONING REQUIREMENTS

F. Acceptance Criteria

1. For the conditions, sequences and modes tested, the AHU, integral components and related equipment respond to varying loads and changing conditions and parameters appropriately as expected, as specified and according to acceptable operating practice.
2. AHU with supporting systems shall be able to maintain the SA temperature within 1.0°F either side of the deadband of the current setpoint without excessive hunting.
3. AHU and controls shall control the duct static pressure so that it does not drift more than an amount equal to 10% of the setpoint value either side of the deadband without excessive hunting.

END OF REQUIREMENTS FOR AHU TEST

3.20 BOILER SYSTEM (Heating Water) FPT

A. Parties Responsible to Execute Functional Test

1. Controls contractor: operate the controls, as needed.
2. HVAC mechanical contractor or vendor: assist in testing sequences.
3. CxA: to witness, direct and document testing.

B. Integral Components or Related Equipment Being Tested

1. Boiler
2. Heating water piping system
3. Primary HW supply pumps
4. VFD on Primary pumps

C. Prerequisites: The applicable prerequisite checklist items listed in paragraph 3.20.B shall be listed on each certificate of readiness form and checked off prior to functional testing. The commissioning agent will also spot-check misc. items and calibrations on the startup plan checklists previously completed by the installer, before the beginning of functional testing.

D. Functions / Modes Required to Be Tested, Test Methods and Seasonal Test Requirements: The following testing requirements are in addition to and do not replace any testing requirements elsewhere in this Division.

<table>
<thead>
<tr>
<th>Function / Mode</th>
<th>Test Method</th>
<th>Required Seasonal Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Manual</td>
<td>Heating</td>
</tr>
<tr>
<td>1. General</td>
<td>Manual</td>
<td>Heating</td>
</tr>
<tr>
<td>Primary Side</td>
<td>Both</td>
<td>Heating</td>
</tr>
<tr>
<td>Secondary Side</td>
<td>Both</td>
<td>Heating</td>
</tr>
<tr>
<td>Check all alarms and safety</td>
<td>Manual</td>
<td></td>
</tr>
<tr>
<td>Test each possible lead boiler as lead boiler, and each pump as lead pump. Test pump lockouts.</td>
<td>Manual</td>
<td></td>
</tr>
<tr>
<td>Function / Mode</td>
<td>Test Method</td>
<td>Required Seasonal Test¹</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>7. Sensor and actuator calibration checks on: HWST, HWRT, pressure sensor controlling pump speed, mixing valve and other random checks (BAS readout against hand-held calibrated instrument must be within 0.5°F for temps. or within a tolerance equal to 10% of the pressure setpoint, with a test gage)</td>
<td>Manual</td>
<td></td>
</tr>
<tr>
<td>8. Constancy of differential pressure (pump control parameter)</td>
<td>Monitoring</td>
<td>Heating</td>
</tr>
<tr>
<td>9. Verify schedules and setpoints to be reasonable and appropriate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Cooling season, Heating season or Both. -Design means within 5°F of season design or 95% of loading design. A blank cell denotes no special seasonal test is required and that test can be executed during any season, if condition simulation is appropriate.

E. Special Procedures
1. False load boiler, if necessary.

F. Required Monitoring
1. All points listed below which are control system monitored points shall be trended by the controls contractor. Other points shall be monitored by the CxA using dataloggers. Refer to the Monitoring section at paragraph 3.20.C for additional monitoring details

<table>
<thead>
<tr>
<th>Point</th>
<th>Time Step (min.)</th>
<th>Minimum Time Period of Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler current or status</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>HWST</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>HWRT</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>OSAT-DB</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>HWS primary pump speed, if variable</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>HWS primary pump flow rate, if in BAS</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>HWS primary pump speed controlling parameter value</td>
<td>15</td>
<td>7 days</td>
</tr>
</tbody>
</table>

G. Acceptance Criteria
1. For the conditions, sequences and modes tested, the boilers, integral components and related equipment respond to varying loads and changing conditions and parameters appropriately as expected, as specified and according to acceptable operating practice.
2. Boiler shall maintain the supply water setpoint to within +/- 1.0°F of setpoint deadband without excessive hunting.
3. Pumping system and controls shall maintain the current desired pressure setpoint to within an amount equal to 10% of the setpoint value either side of the deadband without excessive hunting.

END OF REQUIREMENTS FOR BOILER SYSTEM TEST

3.21 EXHAUST FANS FPT

A. Parties Responsible to Execute Functional Test
1. Controls contractor: operate the controls to activate the equipment, if BAS controlled.
2. Integral Components or Related Equipment Being Tested
3. Exhaust fans

B. Prerequisites: The applicable prerequisite checklist items listed in paragraph 3.20.B shall be listed on each certificate of readiness form and checked off prior to functional testing. The commissioning agent will also spot-check misc. items and calibrations on the startup plan checklists previously completed by the installer, before the beginning of functional testing.

C. Functions / Modes Required To Be Tested, Test Methods and Seasonal Test Requirements: The following testing requirements are an addition to and do not replace any testing requirements elsewhere in this Division.
Function / Mode	Test Method	Required Seasonal Test
General
1. Test each sequence in the sequence of operations, and other significant modes and sequences not mentioned; including startup, shutdown, unoccupied & manual modes and power failure. Test functionality of this piece of equipment or system in all control strategies or interlocks that it is associated with. | Manual |

In addition to, or as part of (1) above, the following modes or tests are required:

2. Verify schedules and setpoints to be reasonable and appropriate | Manual |
3. Function at fire alarm (off, depressurization, etc.) | Manual |
4. Interlocks to building pressurization control | Manual |
5. Speed controls | Either |
6. Sensor calibration checks on any controlling temperature or pressure sensor | Manual |

1Refer to Special Procedures

D. Special Procedures or Conditions

1. None

E. Required Monitoring

1. All points listed below which are control system monitored points shall be trended by the controls contractor. Other points shall be monitored by the CxA using dataloggers. Refer to the Monitoring section at paragraph 3.20.C for additional monitoring details

<table>
<thead>
<tr>
<th>Point</th>
<th>Time Step (min.)</th>
<th>Minimum Time Period of Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each fan:</td>
<td>EF speed, if variable, else status</td>
<td>15</td>
</tr>
</tbody>
</table>

F. Acceptance Criteria

1. For the conditions, sequences and modes tested, the fans, integral components and related equipment respond to changing conditions and parameters appropriately as expected, as specified and according to acceptable operating practice.

END OF REQUIREMENTS FOR EXHAUST FAN TEST

3.22 INDOOR AIR CLIMATE CONTROL - MISC. SYSTEMS FPT

All temperature controlled zones shall be verified to be maintaining proper climate control. Specific test requirements for this may have been identified elsewhere in this specification (e.g., under terminal units). For all areas not specifically specified, otherwise, the following tests shall be conducted.

A. Parties Responsible to Execute Functional Test

1. Controls contractor: operate the controls and provide trend logs
2. CxA: to witness, direct and document testing.

B. Integral Components or Related Equipment Being Tested

1. Cooling plant (entire system)
2. Heating plant (entire system)
3. Air, water or steam distribution system
4. Control system

C. Prerequisites All listed systems in Part B, above, shall have had successful functional tests completed prior to this test.

D. Functions / Modes Required To Be Tested, Test Methods and Seasonal Test Requirements

1. This is a performance test to verify that the HVAC systems can provide and maintain the temperature and relative humidity levels specified, during normal and extreme weather and occupancy conditions. The test consists of monitoring, via trend logs, of various points when temperatures reach to within 5°F of season design or 95% of loading design.

E. Special Procedures or Conditions

1. Building should be normally occupied during the test.

F. Required Monitoring
1. All points listed below which are control system monitored points shall be trended by the controls contractor. Other points shall be monitored by the CxA using dataloggers. Refer to the Monitoring section at paragraph 3.20.C for additional monitoring details.

<table>
<thead>
<tr>
<th>Point</th>
<th>Time Step (min.)</th>
<th>Minimum Time Period of Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space temperature control:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space temperature (summer design)</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>Space relative humidity (summer design)</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>Space temperature (winter design)</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>Space relative humidity (winter design)</td>
<td>15</td>
<td>7 days</td>
</tr>
<tr>
<td>OSAT-DB</td>
<td>15</td>
<td>7 days</td>
</tr>
</tbody>
</table>

G. Acceptance Criteria

1. Space temperature during occupied modes shall average within +/- 1°F of setpoint and always remain within 1°F of the ends of the deadband without excessive hunting of either the applicable damper or coil valve, or complaints of drafts or stuffiness from occupants.

END OF REQUIREMENTS FOR INDOOR AIR CLIMATE CONTROL TEST

END OF SECTION 230800
PART 1 - GENERAL

1.1 SUMMARY

A. University of Missouri Controls Specification.

B. This section contains requirements for electrical and digital control systems as indicated on the contract drawings.

C. Contractor is responsible for providing, installing and connecting all sensors, control valves, control dampers, electrical components and all interconnecting pneumatic tubing and electrical wiring between these devices and up to the Direct Digital Controllers (DDC).

D. DDC controllers consist of Johnson Controls METSYS controller, type NAE, DX, FEC, ION, AHU, VAV, VMA, or UNT controllers. Owner will provide Johnson Control METSYS controllers for the contractor to install.

E. After all equipment has been installed, wired and piped, Owner will be responsible for all termination connections at the DDC controller’s and for checking, testing, programming and start-up of the control system. Contractor must be on site at start-up to make any necessary hardware adjustments as required.

F. Once each mechanical system is completely operational under the new control system, contractor shall make any final connections and adjustments. For controls renovation jobs, contractor shall remove all unused sensors, operators, panels, wiring, tubing, conduit, etc. Owner shall have the option of retaining any removed pneumatic controls.

1.2 RELATED SECTIONS

A. Drawings and general provisions of Contract, including General and Special Conditions apply to work of this section.

1.3 QUALITY ASSURANCE

A. Contractor’s Qualifications:

1. Contractor shall be regularly engaged in the installation of digital control systems and equipment, of types and sizes required. Contractor shall have a minimum of five years experience installing digital control systems. Contractor shall supply sufficient and competent supervision and personnel throughout the project in accordance with General Conditions section 3.4.1 and 3.4.4.

B. Codes and Standards:

1. Electrical Standards: Provide electrical components of control systems which have been UL-listed and labeled, and comply with NEMA standards.

2. NEMA Compliance: Comply with NEMA standards pertaining to components and devices for control systems.

3. NFPA Compliance: Comply with NFPA 90A “Standard for the Installation of Air Conditioning and Ventilating Systems” where applicable to controls and control sequences.

4. NFPA Compliance: Comply with NFPA 70 “National Electric Code”.

CONTROL SYSTEMS 230900 - 1/12
1.4 SUBMITTALS

A. Shop Drawings: Submit shop drawings for each control system, containing the following information:

B. Product data for each damper, valve, and control device.

C. Schematic flow diagrams of system showing fans, pumps, coils, dampers, valves, and control devices.

D. Label each control device with setting or adjustable range of control.

E. Indicate all required electrical wiring. Clearly differentiate between portions of wiring that are factory-installed and portions to be field-installed.

F. Provide details of faces on control panels, including controls, instruments, and labeling.

G. Include written description of sequence of operation.

H. Provide wiring diagrams of contractor provided interface and I/O panels.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Conduit and Raceway:

1. Electrical metallic Tubing: EMT and fittings shall conform to ANSI C80.3.
2. Surface Metal Raceway and Fittings: Wiremold 500, Ivory, or approved equal.
3. Flexible Metal Conduit: Indoors, per National Electric Code for connection to moving or vibrating equipment.
4. Liquidtight Flexible Conduit: Outdoors, per National Electric Code for connection to moving or vibrating equipment.

B. Control Valves: Provide factory fabricated electric control valves of type, body material, and pressure class as indicated on the drawings. Butterfly style control valves are not acceptable except for two position applications. Equip control valves with proper shutoff rating for each individual application.

1. Steam and Hot Water:
 a. Manufacturer do not allow KMC valves and actuators.
 b. Water Service Valves: Equal percentage characteristics.
 c. Steam Service Valves: Equal percentage characteristics.
 d. Single Seated Valves: Cage type trim, providing seating and guiding surfaces for plug on “top and bottom” guided plugs.
 e. Valve Trim and Stems: Polished stainless steel.
 g. Control valves should have a minimum 100 psi close-off rating for chilled water applications.

2. Hydronic Chilled Water and Heating Water:
 a. Hydronic control valves shall be pressure independent. The flow through the valve shall not vary more than +/- 5% due to system pressure fluctuations across the valve in the selected operating range. The control valve shall accurately control the flow from 1 to 100% full rated flow.
 b. The valve bodies shall be of cast iron, steel or bronze and rated for 150 psi working pressure. All internal parts shall be stainless steel, steel, Teflon, brass or bronze.
 c. Valves shall be DeltaP Valves manufactured by Flow Control Industries, Belimo P Series, Danfoss AB-QM Series, or approved equal. Belimo EV050 Series is not acceptable.
d. The valves shall have pressure taps across the valve for measuring the pressure drop across the valve. The pressure taps shall have ½-inch extensions for accessibility.

e. Control valves shall be installed with unions or flanges as necessary for easy removal and replacement.

f. Valve Tag shall include the model number, AHU being served, design flow, and maximum flow for that valve.

g. The control valves shall be delivered preset to the scheduled design flow and should be capable of reaching 110% of the design flow to allow for field adjustment for capacity changes.

C. Control Dampers: Ruskin CD-50 or approved equal.

 1. Provide dampers with parallel blades for 2-position control.
 2. Provide opposed blades for modulating control.
 3. Dampers shall be low leakage design with blade and edge seals.
 4. Provide multiple sections and operators as required by opening size and sequence of operations, as indicated on the contract drawings.

D. Electric Actuators: Johnson Controls, Bray, Belmo, TAC or approved equal, KMC actuators are not approved. Size electric actuators to operate their appropriate dampers or valves with sufficient reserve power to provide smooth modulating action or 2-position action as specified. If mixed air AHU has return air, exhaust air and outside air dampers that are not mechanically linked then static safety switch must be installed and wired to safety circuit. Spring return actuators should be provided on heat exchanger control valves or dampers or as specified on the drawings. Control signal shall be 0 to 10 VDC unless otherwise specified on drawings. Actuators with integral damper end switch are acceptable. For VAV reheat valves, actuators shall have a material override capability to aid in system flushing, startup and balancing.

E. Air Temperature Sensors:

 1. All electronic temperature sensors shall be compatible with Johnson METASYS systems.
 2. Sensors shall be 1,000 ohm platinum, resistance temperature detectors (RTDs) with two wire connections. Duct mounted sensors shall be averaging type. Contractor may install probe type when field conditions prohibit averaging type, but must receive permission from Owner’s Representative.
 3. Coordinate thermowell manufacturer with RTD manufacturer. Thermowells that are installed by the contractor, but are to have the RTD installed by owner, must be Johnson Controls Inc. series WZ-1000.

F. Electronic Temperature Sensors and Transmitters:

 1. Chilled Water, Heating Hot Water, and Steam Temperature Sensors:

 a. General: The RTD/Temperature Transmitter/Thermowell assembly shall come as a complete assembly from a single manufacturer. The Assembly shall be suitable for use in the accurate measurement of Chilled Tower/Dual Water temperature in a mechanical room environment.

 b. Calibration: Each RTD must be match calibrated to the Transmitter via NIST traceable calibration standards. Results are to be programmed into the transmitter. Results are to be presented on report as after condition at the specified calibration points. Assembly shall not be approved for installation until Owner has received all factory calibration reports.

 c. RTD:

 1) RTD type: 2-wire or 3-wire 100 ohm platinum class A.
 2) Outside Diameter: 0.25 inch.
 3) Tolerance: +/- 0.06% Type A.
 4) Stability: +/- 0.1% over one year.
 5) TCR: 0.00385 (ohm/ohm/°C).
 6) RTD shall be tip sensitive.
 7) Resistance vs. Temperature table for the RTD must be provided to the Owner.
d. Transmitter:
1) Transmitter shall be match calibrated to the RTD and assembled as a matched pair.
2) Type: 2 wire (loop powered).
3) Input: 2 or 3 wire 100 ohm platinum class A or class B RTD.
4) Output: Output shall be a 4-20 mA signal linear to temperature.
5) Calibrated Span:
 a) Chilled Water: 30°F to 130°F.
 b) Hot Water: 100°F to 250°F
 c) Steam: 150°F to 450°F
6) Calibration Accuracy, including total of all errors, of the Transmitter & RTD matched pair over the entire space shall be within +/- 0.2% of the calibrated span or +/- 0.18°F, whichever is greater.
7) Supply Voltage: 24 VDC
8) Ambient Operating Temp: 32 to 122°F
9) Epoxy potted for moisture resistance.
10) Mounting: Transmitter shall be mounted in the RTD connection head.

e. Thermowell:
1) Thermowell shall be suitable for immersion in chilled, hot water and steam.
2) Thermowell shall be reduced tip.
3) Thermowell shall be one piece stainless steel machined from solid bar stock.
4) Thermowell shall have ½” NPT process connection to pipe thrd-o-let.
5) Thermowell Insertion depth shall be ⅛ the inside pipe diameter but not to exceed 10”.

f. Assembly:
1) Assembly configuration: Spring loaded RTD with thermowell-double ended hex-connection heat.
2) Connection head shall be cast aluminum with chain connecting cap to body, have ½” NPT process and ¾” NPT conduit connections, and a sealing gasket between cap and body.

g. RTD/Temperature Transmitter/Thermowell assembly shall be the following or approved equal:
1) Manufacturer: Pyromation, Inc.
2) Chilled Water: RAF-185L-S4C[length code]08-SL-8HN31, TT440-385U-S (30-130)°F with calibration SMC (40,60)°F.
3) Hot Water: RAF 185L-S4C[length code]08T2-SL-8HN31, TT440-385U-S (100-250)°F with calibration SMC (140,180)°F.
4) Steam: RAT185H-S4C[length code]08T2-SL-8HN31, TT440-385U-S (150-450)°F with calibration SMC (300,350)°F.

G. Occupant Override: Provide wall mounted occupant override button in locations shown on drawings.

H. Low Limit Controllers: Provide unit-mounted low limit controllers, of rod-and-tube type, with an adjustable set point and a manual reset. Capillary shall be of adequate length to horizontally traverse face of cooling coil every 12”. Multiple low limit controllers may be required for large coils. Controller shall have an extra set of contactors for connection to control panel for alarm status. Locate the thermostat case and bellows where the ambient temperature is always warmer that the set point.

1. Freeze Stats: Johnson Controls model A70HA-1 or approved equal.

I. Humidistats: Humidistats must be contamination resistant, capable of ± 2% RH accuracy, have field adjustable calibration and provide a linear proportional signal.
1. HD20K-T91 or equivalent.

J. Humidity High Limit:

1. Multi-function device that can function as a high limit or proportional override humidity controller, as stand-alone proportional controller, or a stand-alone two-position controller.
 a. Johnson Controls TRUERH HL-67N5-8N00P or approved equal.

K. Carbon Dioxide Sensor:

1. Wall Mount: ACI Model ESENSE-R.
2. Duct Mount: ACI Model ESENSE-D.

L. Fan/Pump Status: Status points for fan or pump motors with a VFD must be connected to the terminal strip of the VFD for status indication. Current switches: Current switches are required for fan and pump statuses that are not connected to a VFD. The switches must have an adjustable trip setpoint with LED indication and be capable of detecting broken belts or couplings. Units shall be powered by monitored line, UL listed and CE certified, and have a five year warranty.

 1. Kele, Hawkeye or approved equal.

M. Relays Used for Fan and Pump Start/Stop: Must have LED indication and be mounted externally or starter enclosure or VFD.

 1. Kele, RIBU1C or approved equal.

N. Power Supply Used to Provide Power to Contractor-Provided Control Devices: Shall have adjustable DC output, screw terminals, overload protection and 24 VDC and 24 VDC output.

 1. Kele, DCPA-1.2 or approved equal.

O. Pressure Differential Switch:

1. Fans: NECC model DP222 or approved equal.

P. Differential Pressure Transmitter: Provide units with linear analog, 4-20 mA output proportional to differential pressure, compatible with the Johnson METASYS Systems.

 1. Water: Units shall be wet/wet differential pressure capable of a bi-directional pressure range of +/- 50 psid. Accuracy shall be +/- 0.25% full scale with a compensated temperature range of 30 to 150 deg F and a maximum working pressure of 250 psig. Install transmitter in a pre-manufactured bypass valve assembly with shut-off valves, vent valves and a bypass valve, all enclosed in a NEMA 1 enclosure.
 a. Setra model 230 with Kele model BVA-5 bypass valve assembly, or approved equal.

 2. Air: Units shall be capable of measuring a differential pressure of 0 to 5 in. WC. Accuracy shall be +/- 1.0% full scale with a compensated temperature range of 40 to 149 deg F and a maximum working pressure of 250 psig.
 a. Setra model 267, or approved equal.
 b. Shall be installed in control panel and piped 2/3 down the duct unless shown otherwise or approved by Owner’s Representative.

Q. Building Static Pressure: Transducer shall utilize a ceramic capacitive sensing element to provide a stable linear output over the specified range of building static pressure. Transducer shall be housed in a wall-mounted enclosure with LCD display. Transducer shall have the following capabilities:
1. Input Power: 24 VAC
2. Output: 0-10 VDC
3. Pressure Range: -0.25 to +0.25 inches w.g.
4. Display: 3-1/2 digit LCD, displaying pressure in inches w.g.
5. Accuracy: +/- 1.0% combined linearity and hysteresis.
6. Temperature Effect: 0.05% / deg C.
7. Zero Drift (1 year): 2.0% max.
9. Operating Environment: 0 to 140 deg F, 90% RH (non-condensing).
10. Fittings: Brass barbs, 1/8” O.D.
12. Outdoor Sensing Tube Enclosure: UV stabilized thermoplastic or aluminum “can” enclosure to shield outdoor pressure sensing tube from wind effects.
13. Transducer shall be Veris Industries Model PXPLX01S, equivalent from Setra, or approved equal.

R. High Static Pressure Limit Switch: Provide pressure high limit switch to open contact in fan circuit to shut down the supply fan when the inlet static pressure rises above the set point. Provide with an adjustable set point, a manual reset button, 2 SPST (normally closed) contacts, and ¼” compression fittings.

1. Kele model AFS-460-DDS, or approved equal.

S. Airflow/Temperature Measurement Devices:

1. Provide airflow/temperature measurement devices where indicated on the plans. Fan inlet measurement devices shall not be substituted for duct or plenum measurement devices indicated on the plans.
2. The measurement device shall consist of one or more sensor probe assemblies and a single, remotely mounted, microprocessor-based transmitter. Each sensor probe assembly shall contain one or more independently wired sensor housings. The airflow and temperature readings calculated for each sensor housing shall be equally weighted and averaged by the transmitter prior to output. Pitot tubes and arrays are not acceptable. Vortex shedding flow meters are not acceptable.
3. All Sensor Probe Assemblies:
 a. Each sensor housing shall be manufactured of a U.L. listed engineered thermoplastic.
 b. Each sensor housing shall utilize two hermetically sealed, bead-in-glass thermistor probes to determine airflow rate and ambient temperature. Devices that use “chip” or diode case type thermistors are unacceptable. Device that do not have two (2) thermistors in each sensor housing are not acceptable.
 c. Each sensor housing shall be calibrated at a minimum of 16 airflow rates and have an accuracy of +/- 2% of reading over the entire operating airflow range. Each sensor housing shall be calibrated to standards that are traceable to the National Institute of Standards and Technology (NIST).
 1) Devices whose accuracy is the combined accuracy of the transmitter and sensor probes must demonstrate that the total accuracy meets the performance requirements of this specification throughout the measurement range.
 d. The operating temperature range for the sensor probe assembly shall be -20°F to 160°F. The operating humidity range for the sensor probe assembly shall be 0-99% RH (non-condensing).
 e. Each temperature sensor shall be calibrated at a minimum of three temperatures and have an accuracy of +/- 0.15°F over the entire operating temperature range. Each temperature sensor shall be calibrated to standards that are traceable to the National Institute of Standards and Technology (NIST).
 f. Each sensor probe assembly shall have an integral, U.L. listed, plenum rated cable and terminal plug for connection to the remotely mounted transmitter. All terminal plug interconnecting pins shall be gold plated.
 g. Each sensor assembly shall not require matching to the transmitter in the field.
h. A single manufacturer shall provide both the airflow/temperature measuring probe(s) and transmitter at a given measurement location.

4. Duct and Plenum Sensor Probe Assemblies:
 a. Sensor housings shall be mounted in an extruded, gold anodized, 6063 aluminum tube probe assembly. Thermistor probes shall be mounted in sensor housings using a waterproof marine grade epoxy resin. All wires within the aluminum tube shall be Kynar coated.
 b. The number of sensor housings provided for each location shall be as follows:

<table>
<thead>
<tr>
<th>Area (sq. ft.)</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td><2</td>
<td>4</td>
</tr>
<tr>
<td>2 to <4</td>
<td>6</td>
</tr>
<tr>
<td>4 to <8</td>
<td>8</td>
</tr>
<tr>
<td>8 to <16</td>
<td>12</td>
</tr>
<tr>
<td>>=16</td>
<td>16</td>
</tr>
</tbody>
</table>

 c. Probe assembly mounting brackets shall be constructed of 304 stainless steel. Probe assemblies shall be mounted using one of the following options:
 1) Insertion mounted through the side or top of the duct.
 2) Internally mounted inside the duct or plenum.
 3) Standoff mounted inside the plenum.

 d. The operating airflow range shall be 0 to 5,000 FPM unless otherwise indicated on the plans.

5. Fan Inlet Sensor Probe Assemblies:
 a. Sensor housings shall be mounted on 304 stainless steel blocks.
 b. Mounting rods shall be field adjustable to fit the fan inlet and constructed of nickel plated steel.
 c. Mounting feet shall be constructed of 304 stainless steel.
 d. The operating airflow range shall be 0 to 10,000 FPM unless otherwise indicated on the plans.

6. Transmitters:
 a. The transmitter shall have a 16 character alpha-numeric display capable of displaying airflow, temperature, system status, configuration settings and diagnostics. Configuration settings and diagnostics shall be accessed through a pushbutton interface on the main circuit board. Airflow shall be field configurable to be displayed as a velocity or a volumetric rate.
 b. The transmitter shall be capable of independently monitoring and averaging up to 16 individual airflow and temperature readings. The transmitter shall be capable of displaying the airflow and temperature readings of individual sensors on the LCD display.
 c. The transmitter shall have a power switch and operation on 24 VDC (isolation not required). The transmitter shall use a switching power supply fused and protected from transients and power surges.
 d. All interconnecting pins, headers and connections on the main circuit board, option cards and cable receptacles shall be gold plated.
 e. The operating temperature range for the transmitter shall be -20°F to 120°F. The transmitter shall be protected from weather and water.
 f. The transmitter shall be capable of communicating with the host controls using one of the following interface options:
 1) Linear Analog Output Signal: Field selectable, fuse protected and isolated, 0-10 VDC and 4-20 mA (4-wire).
2) RS-485: Field selectable BACnet-MS/TP, ModBus-RTU and Johnson Controls N2 Bus.
3) 10 Base-T Ethernet: Field selectable BACnet Ethernet, BACnet-IP, ModBus-TCP and TCP/IP.
4) LonWorks Free Topology.

g. The transmitter shall have an infra-red interface capable of downloading individual sensor airflow and temperature data or uploading transmitter configuration data to a handheld PDA (Palm or Microsoft Pocket PC operating systems).

7. The measuring device shall be UL listed as an entire assembly.
8. The manufacturer’s authorized representative shall review and approve placement and operating airflow rates for each measurement location indicated on the plans. A written report shall be submitted to the consulting mechanical engineer if any measurement locations do not meet the manufacturer’s placement requirements.
9. Manufacturer:
 a. Primary, flow elements, sensors, meters and transducers shall be EBTRON, Inc. Model GTX116-P and GTX116-F or approved equal.
 b. The naming of any manufacturer does not automatically constitute acceptance of this standard product nor waive their responsibility to comply totally with all requirements of the proceeding specification.

T. Electrical Requirements: Provide electric-pneumatic switches, electrical devices, and relays that are UL-listed and of type which meet current and voltage characteristics of the project. All devices shall be of industrial commercial grade or better. Residential types will be rejected.

2. Relays: Relays shall have a LED status indicator, voltage transient suppression. Closed-Open-Auto switch, plastic enclosure, and color coded wires. Kele model RIBU1C or approved equal.

U. Magnetic Flowmeter for Chilled Water, Heating Hot Water and Make Up Water:

1. The Magnetic Flowmeter flow tube and computer/transducer shall come as a complete system assembled by a single manufacturer. The flowmeter shall be suitable for use in the accurate measurement of chilled water flow, Cooling Tower Water flow, or Make Up water flow for process control and/or utility metering, in a mechanical room environment, with a Johnson Controls EMCS system.
2. The flowmeter shall consist of a pulsed DC electromagnetic coil incorporating Faraday’s Law utilizing the flowing water as the conductor. The flowmeter shall provide proper grounding for use in Schedule 40 steel pipe, Schedule 10S stainless steel pipe, or copper pipe as application requires.
3. The flowmeter element should be sized to maintain maximum accuracy over the flow range of the application while keeping flow tube velocity below 15 fps at max flow. The flowmeter element shall be the flow tube, spool piece type with a non-conductive lining and no intrusions into the flow path. The flowmeter flow tube shall be suitable for direct mounting to standard ANSI flanges.
4. The flowmeter shall have a local LCD display that indicates flow in GPM and/or total gallons from the totalizer. The flowmeter shall be programmable/configurable via local push buttons. The flowmeter computer/transducer shall be remote mounted. The flow tube shall have a direct mounted junction box for wiring connections.
5. The flowmeter shall have the capability to be calibrated in situ to verify proper operation and accuracies.
6. The flowmeter shall also meet the following specifications:
 a. Measure bi-directional flow.
 b. Zero-point stability.
 c. Flow tube can withstand a full vacuum on an intermittent basis.
 d. Normal obstructions, partially opened valves, 90° or 45° elbows, and pump discharges shall require no more than 5 pipe diameters upstream and 3 pipe diameters downstream of straight run for specified performance.
e. Auto re-start after electrodes have lost wetness.
f. Computer/transducers shall be interchangeable to multiple flow tubes without affecting the published accuracies of the meter.
g. Computer/transducer internal electronic components, including power supply and output boards, shall be field interchangeable/exchangeable.
h. Calibration: NIST Traceable, certificate provided with each meter.
i. Electrode Pressure Rating: Equivalent to flow tube flange rating.
j. Minimum Conductivity: 5 S/cm for fluid to be measured.
k. Transmitter Ambient Temp.: 122°F.
l. Flow Tube Process Temp.: 32°F to 140°F for chilled water applications.
m. Flow Tube Process Temp.: 32°F to 140°F for make up water applications.
n. Flow Tube Process Temp.: 32°F to 311°F for hot or dual water applications.
o. Flow Range: +/- 0 to 30 fps.
p. Accuracy (velocity <= 1.0 fps): +/- 0.5% of reading or +/- 0.005 fps.
q. Accuracy (velocity > 1.0 fps): +/- 0.5% of reading.
r. Analog Output: 4-20 mA, linear to flow in GPM.
s. Analog Output Accuracy: +/- 0.05% of span.
t. Repeatability: +/- 0.1%.
u. Stability: +/- 0.1%.
v. Ambient Temperature Effect: <1% per 100°F.
w. Vibration Effect: 0.1% (remote mounted transducer).
x. Low Flow Cutoff: Settable to 0.04 fps or lower.
y. Low Flow Cutoff Analog Output: Analog output shall be 4.0 mA at flows below the low cutoff.
z. Humidity Limits: 5-90% RH.
aa. Power Supply: 115 VAC.
e. Flanges: Carbon steel, ANSI Class 150#.
ff. Electrodes: Corrosion resistant Alloy C.
 gg. Cable Length: As required per plans.
hh. Cable shall be capable of empty pipe detection.
ii. All cable shall be provided by the meter manufacturer.

7. The flowmeter shall be Siemens Magflo Mag 6000 with Mag 5100W or approved equal.
8. Bids/Submittals: All bids and/or submittals must include published specifications, specific model number configurations, and operation and maintenance manuals.
9. Warranty: All parts and components as needed for the specified operation and performance shall be covered under warranty for a period of not less than two years.

V. Steam Swirl Flow Meter:

1. The University of Missouri Columbia has standardized on FSS Swirl Flowmeters as manufactured by ABB Inc., Warminster, PA and Supertrol II flow computers as manufactured by KEP Inc., Eaton Town, NJ. Substitutes will not be accepted.
2. As these meters will be used to measure building steam usage for utility billing purposes, the meter shall be carefully sized considering the design of the building envelope, HVAC and process equipment, projected building utilization and diversification. Consultant is to provide Project Manager with GSF of facility and a steam usage estimate. All capacities and selections must be verified with ABB and approved by the Project Manager before completing final selection.
3. Steam Meter:
 a. Meter shall be Swirl Flowmeter Model FSS430Y0R1F0(____)R0A1A1B1H5L2SPOR5TC1M5. No substitutions accepted.
4. Flow Computer:
 a. KEP Flow computer model ES7490O1(3-MOD-IP)P with enclosure model MS811NEMASTAX1HT. No substitutions accepted.
5. Pressure Transmitter:
 a. ABB Model 261GSDKBNS1 pressure transmitter or approved equal. Pressure range 0-145 psig. Process temperature range of -58 to 248 °F. ½" NPT process connection. Pressure transmitter shall have ½" pigtail siphon and ½" forged steel gate valves before and after installed pigtail siphon.

6. RTD:
 a. ABB Model V10186-LT2T (___) 3S3A10 or approved equal. RTD assembly shall include a spring loaded, three-wire platinum 100 ohm RTD. Aluminum connection head, 316 stainless steel union and nipple inserted into a 316 stainless steel thermowell. Process connection shall be ¾" NPT.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONTROL SYSTEMS

A. General: Install systems and materials in accordance with manufacturer’s instructions, roughing-in drawings and details shown on drawings.

B. Raceway: Raceway is to be installed in accordance with the National Electric Code. Use of flexible metal conduit or liquidtight flexible conduit is limited to 36" to connect from EMT to devices subject to movement. Flexible raceway is not to be used to compensate for misalignment of raceway during installation.

C. Control Wiring: Install control wiring in raceway, without splices between terminal points, color-coded. Install in a neat workmanlike manner, securely fastened. Install in accordance with National Electrical Code.

1. Install circuits over 25-voltage with color-coded No. 12 stranded wire.
2. Install electronic circuits and circuits under 25-volts with color-coded No. 18 stranded twisted shielded pair type conductor.
3. N2 communications bus wire shall be 18 AWG, plenum rated, stranded twisted shielded, 3 conductor, with blue outer casing, described as 18-03 OAS STR PLNM NEON BLU JK distributed by Windy City Wire, constructed by Cable-Tek, or approved equivalent.
 a. Metastat wiring shall be minimum 20 AWG, plenum rated, stranded, 8 conductor stranded wire.
4. FC communications bus wire shall be 22 AWG, plenum rated, stranded twisted shielded, 3 conductor, with blue outer casing, described as 22-03 OAS STR PLNM NEON BLU JK distributed by Windy City Wire, constructed by Cable-Tek, or approved equivalent.
 a. Network sensor wiring (SA Bus) shall be 22 gauge plenum rated stranded twisted wire, 4 conductor.
5. All control wiring at control panel shall be tagged and labeled during installation to assist owner in making termination connections at control panel. Label all control wires per bid documents.

D. All low voltages electrical wiring shall be run as follows:

1. Route electrical wiring on concealed spaces and mechanical rooms whenever possible.
2. Provide EMT conduit and fittings in mechanical rooms and where indicated on drawings.
3. Low voltage electrical wiring routed above acoustical ceiling is not required to be in conduit, but wire must be plenum rated, but wire must be plenum rated and properly supported to building structure.
4. Provide surface raceway, fittings and boxes in finished areas where wiring cannot be run in concealed spaces. Route on ceiling or along walls as close to ceiling as possible. Run raceway parallel to walls. Diagonal runs are not permitted. Paint raceway and fittings to match existing conditions. Patch/repair/paint any exposed wall penetrations to match existing conditions.

E. All devices shall be mounted appropriately for the intended service and location.
 1. Adjustable thermostats shall be provided with base and covers in occupied areas and mounted 48” above finished floor to the top of the device. Tubing and/or wiring shall be concealed within the wall up to the ceiling where ever possible. Surface raceway may only be used with approval of Owners Representative. Wall mounted sensors such as CO₂, RH, and non-adjustable temperature sensors shall be mounted 54” above finished floor. Duct mounted sensors shall be provided with mounting brackets to accommodate insulation. Mounting clips for capillary tubes for averaging sensors are required.
 2. All control devices shall be tagged and labeled for future identification and servicing of control system.
 3. Preheat and mixed air discharge sensors must be of adequate length and installed with capillary tube horizontally traversing face of coil, covering entire coil every 24 inches bottom to top.
 4. All field devices must be accessible or access panels must be installed.

F. Install magnehelic pressure gage across each air handling unit filter bank. If the air handling unit has a prefilter and a final filter, two magnehelic pressure gages are required.

G. Steam Swirl Flow Meter:
 1. Installation of steam meter and associated wiring, pressure transmitter and RTD assembly, shall be in strict accordance with manufacturer’s printed instructions and recommendations, applicable BOCA requirements, and s detailed on drawings.
 2. Swirl meters shall be installed in a horizontal position with a minimum of five straight pipe diameters upstream and five straight pipe diameters downstream. Meter head shall be installed in the horizontal place or facing down as detailed in instructions for high temperature applications.
 3. Swirl meter shall be installed prior to all steam pressure reducing valves and modulating control valves.
 4. Swirl meter transmitter shall be located in an accessible location to permit ease of reading and service of transmitter.
 5. Low-voltage wiring to the steam meter and flow computer shall be made in coordination with Owner’s Representative as shown in 336333 ABB Swirl Meter Wiring Diagram drawing.

3.2 ADJUSTING AND START-UP

A. Start-Up: Temporary control of air handling units shall be allowed only if approved by the owner’s representative to protect finishes, etc., AHUs may be run using caution with temporary controls installed by contractor early in the startup process. All safeties including a smoke detector for shut down must be operational. Come means of discharge air control shall be utilized and provided by the contractor such as a temporary sensor and controller located and installed by the Contractor.

B. The start-up, testing, and adjusting of pneumatic and digital control systems will be conducted by Owner. Once all items are completed by the Contractor for each system, Contractor shall allow time in the construction schedule for Owner to complete commissioning of controls before project substantial completion. This task should be included in the original schedule and updated to include the allotted time necessary to complete it. As a minimum, the following items are required to be completed by the Contractor for Owner to begin controls.

1. Process Control Network:
 a. The control boards and enclosures need to be installed in the mechanical rooms.
 b. The fiber optic conduit and box for the process control network needs to be installed. Once in place, Owner needs to be contacted so the length of the Owner-provided fiber cable can be determined and ordered, if required. Coordinate with Owner to schedule the pull in and
termination of the fiber cable. Power should be in place at that time. (Fiber for the process control network is required to allow metering of utilities prior to turn on).

2. Heating System:
 a. Pumps, heat exchangers, steam pressure reducing station, piping, control valves, steam and/or hot water meter, feeder conduit and wire, VFDs, control panels and control wiring installed in the mechanical room. The housekeeping pads must be poured before pump operation. All must be in place in working order (pumps aligned, VFDs set up by vendor, motors checked for rotation, steam regulators set to required pressure, condensate pumps operational, heating system ready to circulate (all piping pressure tested, flushed, and insulated) with differential pressure sensors in place.

3. Cooling System:
 a. Pumps, heat exchangers, piping, control valves, chilled water meter, feeder conduit and wire, VFDs, control panels and control wiring installed in the mechanical room. The housekeeping pads must be poured before pump operation. All must be in place in working order (pumps aligned, VFDs set up by vendor, motors checked for rotation, cooling system ready to circulate (all piping pressure tested, flushed, and insulated) with differential pressure sensors in place.

4. Steam Swirl Flow Meter:
 a. The final wiring connections to the swirl meter, pressure transmitter and RTD will be made by Owner.
 b. Steam will not be turned on by Owner until the steam meter is fully installed and operating satisfactorily and the downstream steam piping is successfully leak tested and secure.
 c. Only Owner personnel will be authorized to turn steam service on or off.

5. Exhaust and Energy Recovery Systems:
 a. Exhaust fans need to be operational and under control before labs can be commissioned.

6. Some balance work can be done alongside the control work as long as areas are mostly complete and all diffusers are in place.

3.3 CLOSEOUT PROCEDURES

A. Contractor shall provide complete diagrams of the control system including flow diagrams with each control device labeled, a diagram showing the termination connections, and an explanation of the control sequence. The diagram and sequences shall be framed and protected by glass and mounted next to controller.

B. Contractor shall provide as-built diagram of network bus routing listing all devices on bus, once wiring is complete prior to scope completion.

END OF SECTION 230900
SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

 A. This Section includes piping systems for hot water heating and chilled water cooling systems; makeup water for these systems; blow-down drain lines; and condensate drain piping. Piping materials and equipment specified in this Section include the following:

 1. Pipes, fittings, and specialties.
 2. Special-duty valves.
 3. Hydronic specialties.

 B. Related Sections: The following Sections contain requirements that relate to this Section:

 1. General Sections "Firestopping" for materials and methods for sealing pipe penetrations through fire and smoke barriers.
 2. General Section "Joint Sealants" for materials and methods for sealing pipe penetrations through exterior walls.
 3. Division 23 Section "Basic Mechanical Materials and Methods" for general piping materials and installation methods.
 4. Division 23 Section "Valves" for gate, globe, ball, butterfly, and check valves.
 5. Division 23 Section "Meters and Gages" for thermometers, flow meters, and pressure gages.
 6. Division 23 Section "Hangers and Supports" for pipe supports.
 7. Division 23 Section "Mechanical Identification" for labeling and identifying hydronic systems.
 8. Division 23 Section "HVAC Pumps" for pumps, motors, and accessories for hydronic systems.
 10. Division 23 Section "Testing, Adjusting, and Balancing" for hydronic system adjusting and balancing.

1.3 SYSTEM DESCRIPTION

 A. Hydronic systems are chilled water and hot water heating, forced, recirculating systems.

1.4 SUBMITTALS

 A. General: Submit each item in this Article according to the Conditions of the Contract and Division 1 Specification Sections.

 B. Product Data including rated capacities of selected models, weights (shipping, installed, and operating), furnished specialties, accessories, and installation instructions for each hydronic specialty and special-duty valve specified.

 1. Submit flow and pressure drop curves for balancing valves, based on manufacturer's testing.
C. Shop Drawings detailing pipe anchors, special pipe support assemblies, alignment guides, and expansion joints and loops.

D. Field test reports indicating and interpreting test results for compliance with performance requirements specified in Part 3 of this Section.

E. Maintenance data for hydronic specialties and special-duty valves to include in the operation and maintenance manual specified in Division 1.

1.5 QUALITY ASSURANCE

A. ASME Compliance: Comply with the following provisions:
 1. ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label.
 2. Fabricate and stamp air separators and compression tanks to comply with ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.
 3. Welding Standards: Qualify welding processes and operators according to ASME Boiler and Pressure Vessel Code, Section IX, "Welding and Brazing Qualifications."

1.6 COORDINATION

A. Coordinate layout and installation of piping with equipment and with other installations.

B. Coordinate pipe sleeve installation for foundation wall penetrations.

C. Coordinate pipe fitting pressure classes with products specified in related Sections.

D. Coordinate size and location of concrete housekeeping pads. Cast anchor-bolt inserts into pad. Concrete, reinforcement, and formwork requirements are specified in Division 3 Sections.

E. Coordinate installation of pipe sleeves for penetrations in exterior walls and floor assemblies. Coordinate with requirements for firestopping specified in Division 7 Section “Firestopping” for fire and smoke wall and floor assemblies.

1.7 EXTRA MATERIALS

A. Maintenance Stock: Furnish a sufficient quantity of chemicals for initial system startup and for preventive maintenance for one year from Substantial Completion.

PART 2 - PRODUCT

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Balancing Valves:
 a. Armstrong Pumps, Inc.
 b. Bell & Gossett.
 c. Nibco
 d. Tour & Anderson.
2. Pressure-Reducing Valves (Make-up water for hot and chilled water systems):
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. Grinnell Supply Sales Co.
 d. ITT Hoffman; ITT Fluid Handling Div.
 e. Bell & Gossett.

3. Safety Relief Valves:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. Conbraco Industries, Inc.
 d. ITT Fluid Technology Corp.; ITT McDonnell & Miller.
 e. Bell & Gossett.

4. Compression Tanks:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. ITT Fluid Technology Corp.; ITT Bell & Gossett.
 d. Taco, Inc.
 e. Bell & Gossett.

5. Air/Dirt Separators:
 a. Spirotherm.

6. Air Purgers:
 a. Amtrol.
 b. Bell & Gossett.
 c. Taco.

7. Suction Diffusers:
 a. Bell & Gossett.
 b. Armstrong.

2.2 PIPE AND TUBING MATERIALS

A. General: Refer to Part 3 "Pipe Applications" Article for identifying where the following materials are used.

B. Steel Pipe, 2-1/2-Inch NPS (DN50) and Smaller: All steel pipe shall be ASTM A53, Grade B, Type E. Welded fittings shall be the same material as the pipe.

C. Steel Pipe, 3- to 12-Inch NPS (DN65 to DN300): All steel pipe shall be ASTM A53, Grade B, Type E. Welded fittings shall be the same material as the pipe.

1. Steel Pipe Nipples: ASTM A 106 or ASTM A 53, Schedule 40, carbon steel, seamless for 2-inch NPS (DN50) and smaller and electric-resistance welded for 2-1/2-inch NPS (DN65) and larger.

D. Steel pipe, 14- to 18-inch NPS (DN 350 to DN 450): All steel pipe shall be ASTM A53, Grade B, Type E. Welded fittings shall be the same material as the pipe.

E. Contractor may, at his option, use Drawn-Temper Copper Tubing: ASTM B 88, Type L (ASTM B 88M, Type B) for chilled and hot water heating piping 2-1/2" and below.
2.3 FITTINGS

A. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125.

B. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300.

C. Cast-Iron Threaded Flanges: ASME B16.1, Classes 125 and 250; raised ground face, bolt holes spot faced.

D. Wrought-Steel Fittings: ASTM A 234 (ASTM A 234M), Standard Weight.

E. Wrought-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 2. End Connections: Butt welding.
 3. Facings: Cast iron with flat faced flanges, 125 lb. valves.

F. Wrought-Copper Fittings: ASME B16.22.

G. Wrought-Copper Unions: ASME B16.22.

2.4 JOINING MATERIALS

A. Solder Filler Metals: ASTM B 32, 95-5 tin antimony.

B. Brazing Filler Metals: AWS A5.8, Classification Bag 1 (silver).

C. Welding Materials: Comply with Section II, Part C of ASME Boiler and Pressure Vessel Code for welding materials appropriate for wall thickness and for chemical analysis of pipe being welded.

D. Gasket Material: Heating Water – Flexitallic – Style CG

2.5 VALVES

A. Gate, globe, check, ball, and butterfly valves are specified in Division 15 Section "Valves."

B. Refer to Part 3 "Valve Applications" Article for specific uses and applications for each valve specified.

C.Balancing Valves (2" and Under): 200-psig (860-kPa) working pressure, 250 deg F (121 deg C) maximum operating temperature, bronze body, balancing valve with combination shutoff capability. Balancing valves shall have memory stop and pressure/temperature metering taps, with wheel handle and indicator. Furnish with portable test kit. Quarter turn valves will not be acceptable.

D. Pressure-Reducing Valves: Diaphragm-operated, cast-iron or brass body valve, with low inlet pressure check valve, inlet strainer removable without system shutdown, and noncorrosive valve seat and stem. Select valve size, capacity, and operating pressure to suit system. Valve shall be factory set at operating pressure and have capability for field adjustment.

E. Safety Relief Valves: Brass or bronze body with brass and rubber, wetted, internal working parts; according to ASME Boiler and Pressure Vessel Code, Section IV. See schedule on drawings for sizes.
2.6 HYDRONIC SPECIALTIES

A. Manual Air Vent: Bronze body and nonferrous internal parts; 150-psig (1035-kPa) working pressure, 225 deg F (107 deg C) operating temperature; ½ ball valve.

B. Pre-pressurized Expansion Tanks: Welded carbon steel for 125-psig (860-kPa) working pressure, 240 deg F (191 deg C) maximum operating temperature. Provide taps tank for tank and drain fitting; tanks shall be vertical or horizontal as indicated on drawings. Tanks shall be furnished with heavy duty butyl diaphragm and charging valve. Factory test tank with taps fabricated and labeled according to ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.

C. Air & Dirt Separator: Furnish and install coalescing type air eliminator and dirt separator on the heating and chilled water systems. Pipe size is not a factor and all units shall be selected at the point of peak efficiency per the manufacturer's recommendations. All combination units shall be fabricated steel, rated for 150 psig working pressure with entering velocities not to exceed 4 feet per second at specified GPM. Units specifically designed for high velocity systems may have an entering velocity of up to 10 feet per second. Units shall include an internal bundle filling the entire vessel to suppress turbulence and provide high efficiency. The bundle must consist of a copper core tube with continuous wound copper medium permanently affixed to the core. A separate copper medium is to be wound completely around and permanently affixed to the internal element. Each eliminator shall have a separate venting chamber to prevent system contaminant from harming the float and venting valve operation. At the top of the venting chamber shall be an integral full port float actuated brass venting mechanism. Units shall include a valve side top to flush floating dirt and liquid and for quick bleeding of large amounts of air during system fill or refill. Separator shall have the vessel extended below the pipe connection an equal distance for dirt separation. Air eliminators shall be capable of removing 100% of the free air, 100% of the entrained air and up to 99.6% of the dissolved air in the system fluid. Dirt separator shall remove at least 80% of all particle 30 micron and larger within 100 passes. Separator shall be furnished with removable bottom. Equipment shall be Spirotherm type “VDC”, Bell & Gossett type “CRS”, or approved equal.

D. Balancing Valves (2-1/2” and Larger): 175 psi working pressure, 250 deg F maximum operating temperature, heavy-duty, cast iron flanged, valves 2-1/2-3” size shall have brass ball with glass and carbon filled TFE seat rings. Valves 4” to 8” shall be fitted with bronze seat, replaceable bronze disc with EPDM seal insert and stainless steel stem. Valve shall have pre-set capability and P/T test ports with brass caps.

E. Y-Pattern Strainers: 125-psig (860-kPa) working pressure; cast-iron body (ASTM A 126, Class B), flanged ends for 2-1/2-inch NPS (DN65) and larger, threaded connections for 2-inch NPS (DN50) and smaller, bolted cover, perforated Type 304 stainless-steel basket, and bottom drain connection.

F. Basket Strainers: 125-psig (860-kPa) working pressure; high-tensile cast-iron body (ASTM A 126, Class B), flanged end connections, bolted cover, perforated Type 304 stainless-steel basket, and bottom drain connection.

G. Automatic and Quick-fill Station: Furnish and install for hot water system, 1/2” Bell & Gossett or Taco relief valve on hot water system, set for 100 p.s.i. Extend line from each relief valve to nearest floor drain and turn down. Provide 1/2” Bell & Gossett or Taco pressure regulating valve with strainer for each system set to maintain not less than 10 p.s.i. at high point in each piping system. Mount each valve and strainer assembly approximately 36” above floor in accessible location. Provide 4-1/2” pressure gauge with globe valve on low pressure side of each regulating valve.

H. Suction Diffuser: Angle pattern 175-psig (1204-kPa) pressure rating, cast-iron body and end cap, pump inlet fitting; with bronze startup and stainless-steel permanent strainers; stainless-steel straightening vanes; drain plug; and factory-fabricated support.
PART 3 - EXECUTION

3.1 PIPE APPLICATIONS

A. Hot Water and Chilled Water: 2-1/2"-Inch NPS (DN50) and Smaller: Steel pipe with threaded joints.

B. Hot Water and Chilled Water: 3-Inch NPS (DN65) and Larger: Steel pipe with welded and flanged joints.

C. Drain Lines: Type L drawn-temper copper tubing with soldered joints.

3.2 VALVE APPLICATIONS

A. General-Duty Valve Applications: Unless otherwise indicated, use the following valve types:

1. Shutoff Duty: Use ball (up to 2-1/2") and butterfly valves (3" and larger).

B. Install shutoff-duty valves at each branch connection to supply mains, at supply connections to each piece of equipment, and elsewhere as indicated.

C. Install drain valves at low points in mains, risers, branch lines, and elsewhere as required for system drainage.

D. Install center-guided check valves on each pump discharge and elsewhere as required to control flow direction.

E. Install safety relief valves on hot water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Pipe discharge to floor without valves. Comply with ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, for installation requirements.

F. Install pressure-reducing valves set in quick and automatic fill system on hot water generators and elsewhere as required to regulate system pressure.

3.3 PIPING INSTALLATIONS

A. Install piping according to Division 23 Section "Common Work Results for HVAC."

B. Locate groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

C. Install drains at low points in mains, risers, branch lines consisting of a tee fitting, 3/4-inch NPS ball valve, and short 3/4-inch NPS threaded nipple and cap. Install manual air vents at all high points.

D. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

E. Install branch connections to mains using tee fittings in main with takeoff out bottom of main, except for up-feed risers with takeoff out top of main line.

F. Install unions in pipes 2-inch NPS and smaller, adjacent to each valve, at final connections of each piece of equipment, and elsewhere as indicated. Unions are not required at flanged connections.

G. Install flanges on valves, apparatus, and equipment having 2-1/2-inch NPS and larger connections.

H. Install strainers on supply side of each control valve, pressure-reducing valve, pressure-regulating valve, solenoid valve, and elsewhere as indicated. Install 3/4-inch NPS nipple and ball valve in blow-down connection of strainers 2-inch NPS and larger.
I. Provide temporary caps and covers over piping to prevent collection of dirt and debris during construction.

J. Anchor piping as required to ensure proper direction of expansion and contraction.

3.4 HANGERS AND SUPPORTS

A. General: Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports." Conform to requirements below for maximum spacing of supports.

B. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet (6 m) in length.
2. Adjustable roller hangers and spring hangers for individual horizontal runs 20 feet (6 m) or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal runs 20 feet (6 m) or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.

C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4: Maximum span, 7 feet; minimum rod size, 1/4 inch.
2. NPS 1: Maximum span, 7 feet; minimum rod size, 1/4 inch.
3. NPS 1-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
4. NPS 2: Maximum span, 10 feet; minimum rod size, 3/8 inch.
5. NPS 2-1/2: Maximum span, 11 feet; minimum rod size, 3/8 inch.
6. NPS 3: Maximum span, 12 feet; minimum rod size, 3/8 inch.
7. NPS 4: Maximum span, 12 feet; minimum rod size, 1/2 inch.
8. NPS 6: Maximum span, 12 feet; minimum rod size, 1/2 inch.
9. NPS 8: Maximum span, 12 feet; minimum rod size, 5/8 inch.
10. NPS 10: Maximum span, 12 feet; minimum rod size, 3/4 inch.

D. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
3. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
4. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
5. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
6. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.

E. Vertical piping: Maximum 10ft spacing.

3.5 PIPE JOINT CONSTRUCTION

A. Refer to Division 23 Section "Common Work Results for HVAC" for joint construction requirements for soldered and brazed joints in copper tubing; threaded, welded, and flanged joints in steel piping; and solvent-welded joints for PVC and CPVC piping.

3.6 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in system, at heat-transfer coils, and elsewhere as required for system air venting.

B. Install combination air/dirt separator in hot water pump suction lines. Run piping to compression tank with a 2 percent upward slope toward tank. Install blow-down piping with ball valve; extend to nearest drain.
C. Install shot-type chemical feeder in hot water system where indicated; in upright position with top of funnel not more than 48 inches (1200 mm) above floor. Install feeder with connections on each side of the hot water pump discharge valve. Pipe drain, with ball valve, to nearest equipment drain.

3.7 FIELD QUALITY CONTROL

A. Testing Preparation: Prepare hydronic piping according to ASME B31.9 and as follows:

1. Leave joints, including welds, uninsulated and exposed for examination during test.
2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush system with clean water. Clean strainers.
4. Isolate equipment that is not subjected to test pressure from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Flanged joints where blinds are inserted to isolate equipment need not be tested.
5. Install relief valve set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Testing: Test hydronic piping as follows:

1. Acceptance Testing: Perform hydrostatic tests on the hydronic piping in accordance with ANSI B31.9 and as follows:
2. Notify Owner’s Representative 24 hours before required testing. All tests shall be conducted in the presence of the Owner’s Representative.
3. Flush system with clean water. Clean strainers.
4. Minimum test pressure shall be 100 PSIG.
5. Pressure gauge shall be min. 4” dia. Face, 0-160 PSIG, and shall be calibrated within 1 year of test date.
6. Test pressure shall be held for 1 hour.
7. Prepare reports for all tests and required corrective action.
8. Clean and flush hydronic piping systems. Remove, clean, and replace strainer screens. After cleaning and flushing hydronic piping system, but before balancing, remove disposable fine mesh strainers in pump suction diffusers.
9. System shall be operated for a minimum of 24 hours to demonstrate to the Owner’s Representative that system is complete and operational.

3.8 ADJUSTING AND CLEANING

A. After completing system installation, including outlet fittings and devices, inspect finish. Remove burrs, dirt, and construction debris, and repair damaged finishes including chips, scratches, and abrasions.

B. Flush hydronic piping systems with clean water. Remove, clean, and replace strainer screens. After cleaning and flushing hydronic piping system, but before balancing, remove disposable fine-mesh strainers in pump suction diffusers.

C. Mark calibrated nameplates of pump discharge valves after hydronic system balancing has been completed, to permanently indicate final balanced position.

3.9 COMMISSIONING

A. Commissioning requirements are to be performed by installing contractor. Refer to section “230800 - Mechanical Commissioning Requirements” for additional information.

B. Fill system and perform initial chemical treatment.

C. Check expansion tanks to determine that they are not air bound and that system is completely full of water.
D. Perform these steps before operating the system:

1. Open valves to fully open position. Close coil bypass valves.
2. Check pump for proper direction of rotation.
3. Set automatic fill valves for required system pressure.
4. Check air vents at high points of systems and determine if all are installed and operating freely (automatic type) or bleed air completely (manual type).
5. Set temperature controls so all coils are calling for full flow.
6. Check operation of automatic bypass valves.
7. Lubricate motors and bearings.

END OF SECTION 232113
SECTION 232123 - HYDRONIC PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following categories of HVAC pumps for hydronic systems:
 1. Vertical In-line pumps.

B. Related Sections: The following Sections contain requirements that relate to this Section:
 1. Division 23 Section "Meters and Gages for HVAC Piping" for thermometers and pressure gages, connector plugs, and devices.
 2. Division 23 Section "Common Motor Requirements for HVAC Equipment" for pump motors.
 3. Division 23 Section "Vibration Control" for inertia bases, isolation pads, spring supports, spring hangers, and flexible pipe connectors.
 4. Division 23 Section "Instrumentation and Controls for HVAC" for interlock wiring between pumps, and between pumps and field-installed control devices.
 5. Division 26 Sections for power-supply wiring, field-installed disconnects, required electrical devices, and motor controllers.

1.3 PERFORMANCE REQUIREMENTS

A. Pump Pressure Ratings: At least equal to system's maximum operating pressure at point where installed, but not less than specified.

1.4 SUBMITTALS

A. General: Submit each item in this Article according to the Conditions of the Contract and Division 1 Specification Sections.

B. Product data including certified performance curves and rated capacities of selected models, weights (shipping, installed, and operating), furnished specialties, and accessories. Indicate pump's operating point on curves.

C. Shop drawings showing pump layout and connections. Include setting drawings with templates, directions for installation of foundation and anchor bolts, and other anchorages.

D. Wiring diagrams detailing wiring for power, signal, and control systems and differentiating between manufacturer-installed wiring and field-installed wiring.

E. Product certificates signed by manufacturers of pumps, certifying accuracies under specified operating conditions and compliance with specified requirements.
F. Maintenance data for pumps to include in the operation and maintenance manual specified in Division 1. Include startup instructions.

1.5 QUALITY ASSURANCE

A. Regulatory Requirements: Comply with provisions of the following:

1. ASME B31.9 “Building Services Piping” for piping materials and installation.
2. Hydraulic Institute’s “Standards for Centrifugal, Rotary & Reciprocating Pumps” for pump design, manufacture, testing, and installation.
3. UL 778 “Standard for Motor Operated Water Pumps” for construction requirements. Include UL listing and labeling.
4. NEMA MG 1 “Standard for Motors and Generators” for electric motors. Include NEMA listing and labeling.
5. NFPA 70 “National Electrical Code” for electrical components and installation.

B. Single-Source Responsibility: Obtain each category of pumps from 1 source and by a single manufacturer.

C. Product Options: Drawings indicate sizes, profiles, connections, and dimensional requirements of pumps and are based on the specific types and models indicated. Other manufacturers’ pumps with equal performance characteristics may be considered. Refer to Division 1 Section “Product Substitutions.”

1.6 DELIVERY, STORAGE, AND HANDLING

A. Store pumps in dry location.

B. Retain shipping flange protective covers and protective coatings during storage.

C. Protect bearings and couplings against damage from sand, grit, and other foreign matter.

D. Extended Storage Longer than 5 Days: Dry internal parts with hot air or vacuum-producing device. Coat internal parts with light oil, kerosene, or antifreeze after drying. Dismantle bearings and couplings; dry; coat with acid-free, heavy oil; tag; and store in dry location.

E. Comply with pump manufacturer’s rigging instructions.

PART 2 - PRODUCT

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Separately Coupled, Vertical, In-Line Centrifugal Pumps:
 b. ITT Fluid Technology Corp.; Bell & Gossett Div.
 c. Peerless.

2.2 PUMPS, GENERAL

A. General: Factory assembled and tested.
B. **Types, Sizes, Capacities, and Characteristics:** As indicated.

C. **Factory Finish:** Manufacturer's standard paint applied to factory-assembled and -tested units before shipping.

D. **Manufacturer's Preparation for Shipping:** Clean flanges and exposed machined metal surfaces and treat with anticorrosion compound after assembly and testing. Protect flanges, pipe openings, and nozzles with wooden flange covers or with screwed-in plugs.

2.3 **SEPARATELY COUPLED, VERTICAL, IN-LINE CENTRIFUGAL PUMPS**

A. **Description:**
 1. Single stage, single suction type, vertical inline design pump with integrated controls.
 a. **Seals:** Split-coupled serviceable without disturbing motor or piping connections.
 b. Include casing drain plug and ¼ inch suction and discharge ports.

B. **Design Criteria:**
 1. Design pump for variable volume applications and selected for hydraulic design conditions and minimum pressure.
 2. Meet or exceed requirements of ASHRAE 90.1

C. **Pump Construction:**
 1. **Casing:** Cast iron to ASTM A48, Class 301.
 a. Test casing to 150% maximum working pressure.
 b. Ensure casing is radially split to allow for removal of rotating element without disturbing pipe connections.
 c. Drill and tap casing for gauge ports on both suction and discharge connections.
 d. Drill and tap casing on bottom for drain port.
 2. **Impeller:** To ASTM B584, bronze, fully enclosed and dynamically balanced to ANSI G6.3 and fitted to shaft with key.
 a. Use two-plane balancing when installed impeller diameter is less than 6 times impeller width.
 3. **Pump Shafts:**
 a. **Split Coupled:** Stainless steel to ASTM A582/A582M, Grade 416.
 b. **Shaft Sleeves:** Stainless steel to ASTM A582/A582M, Grade 416.
 4. **Coupling:** Rigid spacer type, high tensile aluminum.
 a. Design coupling for easy removal on site to reveal space between pump and motor shaft.
 1) Ensure revealed space is sufficient for removal of mechanical seal components without disturbing pump or motor.
 b. Include coupling guard.
 c. Include lower seal chamber throttle bushing to ensure seals maintain positive cooling and lubrication.
 5. **Flanges:** To ANSI/ASME B16.5, Class 125.
8. Mechanical Seal: Shall be stainless steel multi-spring outside balanced type with Vitron secondary seal, carbon rotating face and silicon carbide stationary seat. Provide a 316 stainless steel gland plate. Provide factory installed flush line with manual vent to purge air prior to pump start-up. Inside seal is not acceptable.

D. Motor: Single speed, with ball bearings, unless otherwise indicated; rigidly mounted to pump casing with lifting eye and supporting lugs in motor enclosure. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment".

E. Capacities and Characteristics as scheduled on drawings:

2.4 PUMP SPECIALTY FITTINGS

A. Suction Diffuser: Angle pattern, 175-psig pressure rating, cast-iron body and end cap, pump-inlet fitting; with bronze startup and 50% min. open area, 5/32" perforations, stainless steel permanent strainers; bronze or stainless steel straightening vanes; drain plug and factory-fabricated support.

2.5 GENERAL-DUTY VALVES

A. Refer to Division 23 Section "Valves" for general-duty gate, ball, butterfly, globe, and check valves.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, equipment foundations, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting performance of pumps.

B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.

C. Examine foundations and inertia bases for suitable conditions where pumps are to be installed.

D. Do not proceed until unsatisfactory conditions have been corrected.

3.2 CONCRETE

A. Install concrete inertia bases and concrete pads for pumps. Refer to Division 3 Section "Cast-in-Place Concrete" and Division 23 Section "Basic Mechanical Materials and Methods."

3.3 INSTALLATION

A. Install pumps according to manufacturer's written installation and alignment instructions.

B. Install pumps in locations indicated and arranged to provide access for periodic maintenance, including removal of motors, impellers, couplings, and accessories.

C. Support pumps and piping separately so that piping is not supported by pumps.
3.4 ALIGNMENT

A. Align pump and motor shafts and piping connections after setting them on foundations, after grout has been set and foundation bolts have been tightened, and after piping connections have been made.

B. Comply with pump and coupling manufacturers' written instructions.

C. Adjust alignment of pump and motor shafts for angular and parallel alignment by 1 of 2 methods specified in the H.I.'s Standards for Centrifugal, Rotary & Reciprocating Pumps, "Instructions for Installation, Operation and Maintenance."

D. Alignment Tolerances: According to manufacturer's recommendations.

3.5 CONNECTIONS

A. General: Install shutoff valve and strainer (suction diffuser) on pump suction and cushion check valve and cutoff valve on pump discharge, except where other arrangement is indicated.

B. Connect piping to pumps as indicated. Install valves that are the same size as piping connecting to pumps.

C. Install suction and discharge pipe sizes equal to or greater than the diameter of pump nozzles, sizes as noted on drawings.

D. Install thermometers where indicated.

E. Install pressure gages on pump suction and discharge. Install at integral pressure gage tappings.

F. Install temperature and pressure gage connector plugs in suction and discharge piping around each pump.

G. Install electrical connections for power, controls, and devices.

H. Electrical power and control wiring and connections are specified in Division 26 Sections.

3.6 FIELD QUALITY CONTROL

A. Check suction piping connections for tightness to avoid drawing air into pumps.

B. Clean strainers.

C. Set pump controls.

3.7 COMMISSIONING

A. Commissioning requirements are to be performed by installing contractor. Refer to section "230800 - Mechanical Commissioning Requirements" for additional information.

B. Final Checks Before Startup: Perform the following preventive maintenance operations and checks before startup:

1. Lubricate bearings.
2. Disconnect coupling and check motor for proper rotation that matches direction marked on pump casing.
3. Check that pumps are free to rotate by hand. Pumps for handling hot liquids shall be free to rotate with pump hot and cold. Do not operate pump if it is bound or even drags slightly until cause of trouble is determined and corrected.

4. Check that pump controls are correct for required application.

C. Starting procedure for pumps with shutoff power not exceeding safe motor power:

1. Prime pumps, opening suction valve, closing drains, and preparing pumps for operation.
2. Open cooling water supply valves in cooling water supply to bearings, where applicable.
3. Open warm-up valves of pumps handling hot liquids if pumps are not normally kept at operating temperature.
4. Open circulating line valves if pumps should not be operated against dead shutoff.
5. Start motors.
6. Open discharge valves slowly.
7. Check general mechanical operation of pumps and motors.
8. Close circulating line valves once there is sufficient flow through pumps to prevent overheating.

B. When pumps are to be started against closed check valves with discharge shutoff valves open, steps are the same, except that discharge valves are opened sometime before motors are started.

C. Refer to Division 23 Section "Testing, Adjusting, and Balancing" for detailed requirements for testing, adjusting, and balancing hydronic systems.

END OF SECTION 232123
SECTION 232300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and
 Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes refrigerant piping used for air-conditioning applications.

1.3 PERFORMANCE REQUIREMENTS
 A. Line Test Pressure for Refrigerant R-410A:

1.4 SUBMITTALS
 A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop,
 based on manufacturer’s test data, for the following:
 1. Thermostatic expansion valves.
 2. Solenoid valves.
 3. Hot-gas bypass valves.
 4. Filter dryers.
 5. Strainers.
 6. Pressure-regulating valves.
 B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes,
 flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall
 and floor penetrations, and equipment connection details. Show interface and spatial relationships
 between piping and equipment.
 1. Shop Drawing Scale: 1/4 inch equals 1 foot.
 2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping
 layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a
 minimum, equipment provided, elevation difference between compressor and evaporator, and
 length of piping to ensure proper operation and compliance with warranties of connected
 equipment.
 C. Welding certificates.
 D. Field quality-control test reports.
 E. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance
 manuals.
1.5 QUALITY ASSURANCE
 A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications".
 C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components".

1.6 PRODUCT STORAGE AND HANDLING
 A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.7 COORDINATION
 A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories".

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS
 A. Copper Tube: ASTM B 280, Type ACR.
 B. Wrought-Copper Fittings: ASME B16.22.
 C. Wrought-Copper Unions: ASME B16.22.
 D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
 E. Brazing Filler Metals: AWS A5.8.
 F. Flexible Connectors:
 2. End Connections: Socket ends.
 3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
 5. Maximum Operating Temperature: 250 deg F.

2.2 VALVES AND SPECIALTIES
 A. Diaphragm Packless Valves:
 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
 3. Operator: Rising stem and hand wheel.
 5. End Connections: Socket, union, or flanged.
7. Maximum Operating Temperature: 275 deg F.

B. Packed-Angle Valves:
1. Body and Bonnet: Forged brass or cast bronze.
2. Packing: Molded stem, back seating, and replaceable under pressure.
3. Operator: Rising stem.
5. Seal Cap: Forged-brass or valox hex cap.
6. End Connections: Socket, union, threaded, or flanged.
8. Maximum Operating Temperature: 275 deg F.

C. Check Valves:
1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
6. End Connections: Socket, union, threaded, or flanged.
7. Maximum Opening Pressure: 0.50 psig.
9. Maximum Operating Temperature: 275 deg F.

D. Service Valves:
1. Body: Forged brass with brass cap including key end to remove core.
2. Core: Removable ball-type check valve with stainless-steel spring.
4. End Connections: Copper spring.

E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.
4. End Connections: Threaded.
5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24-V ac coil.
7. Maximum Operating Temperature: 240 deg F.

F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
4. End Connections: Threaded.

G. Thermostatic Expansion Valves: Comply with ARI 750.
1. Body, Bonnet, and Seal Cap: Forged brass or steel.
4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
5. Suction Temperature: 40 deg F.
7. Reverse-flow option (for heat-pump applications).
8. End Connections: Socket, flare, or threaded union.

H. Hot-Gas Bypass Valves: Comply with UL 429; listed and labeled by an NRTL.
1. Body, Bonnet, and Seal Cap: Ductile iron or steel.
5. Seat: Polytetrafluoroethylene.
6. Equalizer: Internal or External.
7. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 115-V ac coil.
9. Set Pressure: As required by system.
10. Throttling Range: Maximum 5 psig.
12. Maximum Operating Temperature: 240 deg F.

I. Straight-Type Strainers:
2. Screen: 100-mesh stainless steel.
3. End Connections: Socket or flare.
5. Maximum Operating Temperature: 275 deg F.

J. Angle-Type Strainers:
1. Body: Forged brass or cast bronze.
2. Drain Plug: Brass hex plug.
3. Screen: 100-mesh monel.
4. End Connections: Socket or flare.
6. Maximum Operating Temperature: 275 deg F.

K. Moisture/Liquid Indicators:
2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
3. Indicator: Color coded to show moisture content in ppm.
5. End Connections: Socket or flare.
7. Maximum Operating Temperature: 240 deg F.

L. Replaceable-Core Filter Dryers: Comply with ARI 730.
1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
3. Desiccant Media: Activated alumina or charcoal.
4. Designed for reverse flow (for heat-pump applications).
5. End Connections: Socket.
9. Maximum Operating Temperature: 240 deg F.

M. Permanent Filter Dryers: Comply with ARI 730.
2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
3. Desiccant Media: Activated alumina or charcoal.
4. Designed for reverse flow (for heat-pump applications).
5. End Connections: Socket.
9. Maximum Operating Temperature: 240 deg F.

N. Mufflers:
2. End Connections: Socket or flare.
4. Maximum Operating Temperature: 275 deg F.

O. Receivers: Comply with ARI 495.
1. Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
2. Comply with UL 207; listed and labeled by an NRTL.
4. Tappings: Inlet, outlet, liquid level indicator, and safety relief valve.
5. End Connections: Socket or threaded.
7. Maximum Operating Temperature: 275 deg F.

P. Liquid Accumulators: Comply with ARI 495.
2. End Connections: Socket or threaded.
4. Maximum Operating Temperature: 275 deg F.

2.3 REFRIGERANTS

A. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR ALL REFRIGERANTS

A. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.

B. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.
3.2 VALVE AND SPECIALTY APPLICATIONS

A. Install diaphragm packless or packed-angle valves in suction and discharge lines of compressor.

B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.

C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.

D. Except as otherwise indicated, install diaphragm packless or packed-angle valves on inlet and outlet side of filter dryers.

E. Install a full-sized, three-valve bypass around filter dryers.

F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.

G. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 1. Install valve so diaphragm case is warmer than bulb.
 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

H. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 1. Solenoid valves.
 2. Thermostatic expansion valves.
 3. Hot-gas bypass valves.
 4. Compressor.

K. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.

L. Install receivers sized to accommodate pump-down charge.

M. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.
C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Refer to Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operation" for solenoid valve controllers, control wiring, and sequence of operation.

K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

M. Install refrigerant piping in protective conduit where installed belowground.

N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

O. Slope refrigerant piping as follows:
 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps and double risers to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

Q. Before installation of steel refrigerant piping, clean pipe and fittings using the following procedures:
 1. Shot blast the interior of piping.
 2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape.
 3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
 4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
 5. Finally, draw a clean, dry, lintless cloth through the tube or pipe.
 6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.

R. Install pipe sleeves at penetrations in exterior walls and floor assemblies.

S. Seal penetrations through fire and smoke barriers according to Division 07 Section "Penetration Firestopping".
T. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

U. Install sleeves through floors, walls, or ceilings, sized to permit installation of full-thickness insulation.

V. Seal pipe penetrations through exterior walls according to Division 07 Section "Joint Sealants" for materials and methods.

W. Identify refrigerant piping and valves according to Division 23 Section "Identification for HVAC Piping and Equipment".

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.

D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 1. Use Type BCuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

F. Threaded Joints: Thread steel pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry-seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Steel pipe can be threaded, but threaded joints must be seal brazed or seal welded.

H. Welded Joints: Construct joints according to AWS D10.12/D10.12M.

I. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.5 HANGERS AND SUPPORTS

A. Hanger, support, and anchor products are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

B. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:

1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.
5. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
6. NPS 2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
7. NPS 2-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
8. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.
9. NPS 4: Maximum span, 12 feet; minimum rod size, 1/2 inch.

D. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:

1. Comply with ASME B31.5, Chapter VI.
2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 SYSTEM CHARGING

A. Charge system using the following procedures:

1. Install core in filter dryers after leak test but before evacuation.
2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.

B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.

D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
1. Open shutoff valves in condenser water circuit.
2. Verify that compressor oil level is correct.
3. Open compressor suction and discharge valves.
4. Open refrigerant valves except bypass valves that are used for other purposes.
5. Check open compressor-motor alignment and verify lubrication for motors and bearings.

E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300
SECTION 233113 – METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Single-wall round and flat-oval ducts and fittings.
 4. Sealants and gaskets.
 5. Hangers and supports.
B. Related Sections:
 1. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS
A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".
C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

1.4 SUBMITTALS
A. Product Data: For each type of the following products:
 1. Sealants and gaskets.
B. Shop Drawings:
 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 2. Factory- and shop-fabricated ducts and fittings.
 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 4. Elevation of top of ducts.
 5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment and vibration isolation.

C. Coordination Drawings: CAD generated plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

7. Refer to Section "Common Work Results for HVAC".

D. Field quality-control reports.

1.5 QUALITY ASSURANCE

B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-5, "Longitudinal Seams - Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).

C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Transverse Joints - Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Seams - Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653.

2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Carbon-Steel Sheets: Comply with ASTM A 1008, with oiled, matte finish for exposed ducts.

D. Stainless-Steel Sheets: Comply with ASTM A 480, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

E. Aluminum Sheets: Comply with ASTM B 209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
F. Reinforcement Shapes and Plates: ASTM A 36, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 SEALANT AND GASKETS
A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
B. Two-Part Tape Sealing System:
 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 2. Tape Width: 3 inches.
 5. Mold and mildew resistant.
 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 7. Service: Indoor and outdoor.
 8. Service Temperature: Minus 40 to plus 200 deg F.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 10. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
C. Water-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Solids Content: Minimum 65 percent.
 5. Mold and mildew resistant.
 6. VOC: Maximum 75 g/L (less water).
 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 8. Service: Indoor or outdoor.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
D. Solvent-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Base: Synthetic rubber resin.
 4. Solids Content: Minimum 60 percent.
 5. Shore A Hardness: Minimum 60.
 7. Mold and mildew resistant.
 8. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 9. VOC: Maximum 395 g/L.
 10. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
 11. Service: Indoor or outdoor.
 12. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
E. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
 3. Grade: NS.
 5. Use: O.
 6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

G. Round Duct Joint O-Ring Seals:
 1. Seal shall be rated for 10-inch wg static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.5 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round and flat-oval ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL KITCHEN HOOD EXHAUST DUCT

A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold grease and sloped a minimum of 2 percent to drain grease back to the hood.

B. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 20 feet in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings. Locate access panel on top or sides of duct a minimum of 1-1/2 inches from bottom of duct.
C. Do not penetrate fire-rated assemblies except as allowed by applicable building codes and authorities having jurisdiction.

3.4 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts before external insulation is applied. Provide adequate sealing as required to meet duct leakage requirements.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Hangers and Supports."

B. Building Attachments: Concrete inserts or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 PAINTING

A. Paint interior of metal ducts, for 24 inches length, that are visible through return and exhaust registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.
B. Leakage Tests:

2. Maximum Allowable Leakage: Duct system leakages shall not exceed 5% of design air flows. When systems are leak tested in section, the total cumulative leakage of the system shall not exceed 5%.
3. Test the following systems:
 a. All supply air ducts and sections from air handling unit to terminal units.
 b. All return air ducts and sections from grilles/registers to return/relief air fan.
 c. 10% of supply air ductwork downstream of boxes, but not less than two systems.
 d. Two exhaust air duct systems.
4. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
5. Test for leaks before applying external insulation.
6. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
7. Give seven days’ advance notice for testing.

C. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.
2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to “Vacuum Test” in NADCA ACR, “Assessment, Cleaning and Restoration of HVAC Systems.”
 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.9 DUCT CLEANING

A. Clean new and existing duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.

1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 23 Section "Air Duct Accessories" for access panels and doors.
2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:

1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:

1. Air outlets and inlets (registers, grilles, and diffusers).
2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:

1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.10 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.11 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel.

B. Supply Ducts:

1. Downstream of Air Handling Units and Up to Terminal Units:
 a. Pressure Class: Positive 6-inch wg.

2. From Terminal Units to Outlets:
 a. Pressure Class: Positive 1-inch wg.

3. Ducts Located within Mechanical Equipment Rooms:
 a. Pressure Class: Positive 4-inch wg.

C. Return Ducts:

1. All Ducts:
 a. Pressure Class: Negative 4-inch wg.
D. Exhaust Ducts:

1. General Exhaust System Ducts:
 a. Pressure Class: Negative 4-inch wg.

 a. Exposed to View: Type 304, stainless-steel sheet, No. 4 finish.
 b. Concealed: Type 304, stainless-steel sheet, No. 2D finish or Carbon-steel sheet.
 c. Welded seams and joints.
 d. Pressure Class: Positive or negative 2-inch wg.

3. Ducts Connected to Dishwasher Hoods:
 a. Type 304, stainless-steel sheet.
 b. Exposed to View: No. 4 finish.
 c. Concealed: No. 2D finish.
 d. Welded seams and flanged joints with watertight EPDM gaskets.
 e. Pressure Class: Positive or negative 2-inch wg.

E. Outdoor-Air Ducts:

1. All Ducts:
 a. Pressure Class: Positive or negative 1-inch wg.

F. Intermediate Reinforcement:

1. Galvanized-Steel Ducts: Galvanized steel or carbon steel coated with zinc-chromate primer.

G. Elbow Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 c. Velocity 1500 fpm or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-3, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 4) Radius-to Diameter Ratio: 1.5.
 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam or Welded.

H. Branch Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-6, "Branch Connections."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: 45-degree square to round.

 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Combination Boot Tee.
 b. 45-degree lateral.

END OF SECTION 233113
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 2. Fire dampers.
 3. Combination fire and smoke dampers.
 4. Flange connectors.
 5. Turning vanes.
 6. Duct-mounted access doors.
 7. Flexible connectors.
 8. Duct accessory hardware.

B. Related Sections:
 1. Division 28 Section "Fire Detection and Alarm" for duct-mounted fire and smoke detectors.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 a. Special fittings.
 c. Control damper installations.
 d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 e. Wiring Diagrams: For power, signal, and control wiring.

C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

D. Source quality-control reports.

E. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.
1.4 QUALITY ASSURANCE
 B. Comply with AMCA 500-D testing for damper rating.

1.5 EXTRA MATERIALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed, but not less than two.

PART 2 - PRODUCTS

2.1 MATERIALS
 A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
 B. Galvanized Sheet Steel: Comply with ASTM A 653.
 2. Exposed-Surface Finish: Mill phosphatized.
 C. Stainless-Steel Sheets: Comply with ASTM A 480, Type 304, and having a No. 2 finish for concealed ducts and D4 finish for exposed ducts.
 D. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
 E. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.
 F. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
 G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 MANUAL VOLUME DAMPERS
 A. Standard, Manual Volume Dampers:
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. McGill AirFlow LLC.
 d. METAIRE, Inc.
 e. Nailor Industries Inc.
 f. Ruskin Company.
g. Vent Products Company, Inc.

2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames:
 a. Hat-shaped, galvanized-steel channels, 0.064-inch minimum thickness, or 0.10 inch aluminum sheet channels.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.

5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick, or roll-formed aluminum 0.10 inch thick.

7. Bearings:
 a. Molded synthetic or Stainless-steel sleeve.
 b. Dampers shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Galvanized steel/Aluminum.

2.3 FIRE DAMPERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. Arrow United Industries; a division of Mestek, Inc.
3. Cesco Products; a division of Mestek, Inc.
5. McGill AirFlow LLC.
6. METALAIRE, Inc.
7. Nailor Industries Inc.
8. Ruskin Company.

B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.

D. Fire Rating: 1-1/2 hours.

E. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.

1. Minimum Thickness: 0.052 inch thick and of length to suit application.
2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, 0.034-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

2.4 COMBINATION FIRE AND SMOKE DAMPERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. Cesco Products; a division of Mestek, Inc.
4. Nailor Industries Inc.
5. Ruskin Company.

B. Type: Static and dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.

D. Fire Rating: 1-1/2 hours.

E. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

G. Smoke Detector: Integral, factory wired for single-point connection.

H. Blades: Roll-formed, horizontal, interlocking, 0.034-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.

I. Leakage: Class I.

J. Rated pressure and velocity to exceed design airflow conditions.

K. Mounting Sleeve: Factory-installed, 0.052-inch-thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.

L. Damper Motors: Modulating or two-position action.

M. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 23 Section "Instrumentation and Control for HVAC."
3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
4. **Spring-Return Motors:** Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.

5. **Outdoor Motors and Motors in Outdoor-Air Intakes:** Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.

6. **Nonspring-Return Motors:** For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.

7. **Electrical Connection:** 24V, single phase, 60 Hz.

N. Accessories:

1. Remote mounted momentary test switch. Provide with pushbutton and lights (red for closed damper, green for open damper).

2.5 FLANGE CONNECTORS

A. **Description:** Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

B. **Material:** Galvanized steel.

C. **Gage and Shape:** Match connecting ductwork.

2.6 TURNING VANES

A. **Acceptable Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. METALAIRE, Inc.
4. SEMCO Incorporated.

B. **Manufactured Turning Vanes for Metal Ducts:** Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. **General Requirements:** Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 2-3, "Vanes and Vane Runners," and 2-4, "Vane Support in Elbows."

D. **Vane Construction:** Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.7 DUCT-MOUNTED ACCESS DOORS

A. **Acceptable Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

1. American Warming and Ventilating; a division of Mestek, Inc.
2. Cesco Products; a division of Mestek, Inc.
3. Ductmate Industries, Inc.
5. Greenheck Fan Corporation.
6. McGill AirFlow LLC.
7. Nailor Industries Inc.
8. Ventfabs, Inc.

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.

2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Four hinges and two compression latches with outside and inside handles.

C. Pressure Relief Access Door:

1. Door and Frame Material: Galvanized sheet steel.
2. Door: Double wall with insulation fill with metal thickness applicable for duct pressure class.
3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
4. Doors close when pressures are within set-point range.
5. Hinge: Continuous piano.
7. Seal: Neoprene or foam rubber.
8. Insulation Fill: 1-inch-thick, fibrous-glass or polystyrene-foam board.

2.8 FLEXIBLE CONNECTORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. Ventfabrics, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.

1. Minimum Weight: 26 oz./sq. yd.
2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
3. Service Temperature: Minus 40 to plus 200 deg F.

 1. Minimum Weight: 14 oz./sq. yd. (474 g/sq. m).
 2. Tensile Strength: 450 lbf/inch (79 N/mm) in the warp and 340 lbf/inch (60 N/mm) in the filling.
 3. Service Temperature: Minus 67 to plus 500 deg F (Minus 55 to plus 260 deg C).

G. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.9 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 1. Install steel volume dampers in steel ducts.
 2. Install aluminum volume dampers in aluminum ducts.

D. Set dampers to fully open position before testing, adjusting, and balancing.

E. Install test holes at fan inlets and outlets and elsewhere as indicated.

F. Install fire and smoke dampers according to UL listing.
G. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

1. On both sides of duct coils.
2. Upstream and downstream from duct filters.
3. At outdoor-air intakes and mixed-air plenums.
4. At drain pans and seals.
5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links.
7. At each change in direction and at maximum 50-foot spacing.
8. Upstream and downstream from turning vanes.
9. Upstream or downstream from duct silencers.
10. Control devices requiring inspection.
11. Elsewhere as indicated.

H. Install access doors with swing against duct static pressure.

I. Access Door Sizes:

1. One-Hand or Inspection Access: 8 by 5 inches.
2. Two-Hand Access: 12 by 6 inches.

J. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

K. Install flexible connectors to connect ducts to equipment.

L. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

M. Connect flexible ducts to metal ducts with draw bands and adhesive plus sheet metal screws. Do not use flexible ducts through walls, partitions.

N. Install duct test holes where required for testing and balancing purposes.

O. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.
5. Operate remote damper operators to verify full range of movement of operator and damper.
SECTION 233423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Centrifugal roof ventilators.
 2. Ceiling-mounting ventilators.
 3. In-line centrifugal fans.
 4. Utility sets

1.3 PERFORMANCE REQUIREMENTS

A. Project Altitude: Base fan-performance ratings on actual Project site elevations.
B. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS

A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:
 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 4. Material thickness and finishes, including color charts.
 5. Dampers, including housings, linkages, and operators.
 6. Roof curbs.
 7. Fan speed controllers.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 3. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.

C. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 1. Roof framing and support members relative to duct penetrations.
 2. Ceiling suspension assembly members.
 3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal.

C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.

D. UL Standard: Power ventilators shall comply with UL 705.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver fans as factory-assembled unit, to the extent allowable by shipping limitations, with protective crating and covering.

B. Disassemble and reassemble units, as required for moving to final location, according to manufacturer's written instructions.

C. Lift and support units with manufacturer's designated lifting or supporting points.

1.7 COORDINATION

A. Coordinate size and location of structural-steel support members.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

1.8 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Belts: One set(s) for each belt-driven unit.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Aerovent; a Twin City Fan Company.
2. Bayley Fans; a division of Lau Industries, Inc.
3. Greenheck Fan Corp.
4. JencoFan; Div. of Breidert Air Products.
5. Loren Cook Company.
6. Penn Ventilation.
7. Labconco

2.2 CENTRIFUGAL ROOF VENTILATORS

A. Description: Belt-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor and disconnect switch, drive assembly, curb base, and accessories.

B. Housing: Removable, spun-aluminum, dome top and outlet baffle; square, one-piece, aluminum base with venturi inlet cone.
 1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains and grease collector.
 2. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.

C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

D. Belt-Driven Drive Assembly: Resiliently mounted to housing, with the following features:
 1. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 4. Fan and motor isolated from exhaust airstream.

E. Accessories:
 1. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted outside fan housing, factory wired through an internal aluminum conduit.
 2. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
 3. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.

F. Roof Curbs: Aluminum or galvanized steel; mitered and welded corners; 1-1/2-inch-thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.
 1. Configuration: Self-flashing without a cant strip, with mounting flange.
 2. Overall Height: 18 inches.
 5. Metal Liner: Aluminum or galvanized steel.
 6. Mounting Pedestal: Galvanized steel with removable access panel.

G. Capacities and Characteristics as indicated on drawings.

2.3 IN-LINE CENTRIFUGAL FANS

A. Description: In-line, belt-driven centrifugal fans consisting of housing, wheel, outlet guide vanes, fan shaft, bearings, motor and disconnect switch, drive assembly, mounting brackets, and accessories.

B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.
C. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.

D. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.

E. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 2. Companion Flanges: For inlet and outlet duct connections.
 3. Fan Guards: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
 4. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.

F. Capacities and Characteristics as indicated on drawings.

2.4 CEILING-MOUNTING VENTILATORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Breidert Air Products.
 5. JencoFan; Div. of Breidert Air Products.
 7. NuTone Inc.
 8. Penn Ventilation.

B. Description: Centrifugal fans designed for installing in ceiling or wall or for concealed in-line applications.

C. Housing: Steel, lined with acoustical insulation.

D. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.

E. Grille: Plastic or Aluminum, louvered grille with flange on intake and thumbscrew attachment to fan housing.

F. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.

G. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 3. Time-Delay Switch: Assembly with single-pole rocker switch, timer, and cover plate.
 4. Motion Sensor: Motion detector with adjustable shutoff timer.
 5. Filter: Washable aluminum to fit between fan and grille.
 7. Manufacturer's standard roof jack or wall cap, and transition fittings.

H. Capacities and Characteristics as indicated on drawings:
2.5 UTILITY SET FANS

A. Description: Belt-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor and disconnect switch, drive assembly, and accessories.

B. Housing: Fabricated of galvanized steel with side sheets fastened with a deep lock seam or welded to scroll sheets.
 1. Housing Discharge Arrangement: Adjustable to eight standard positions.

C. Fan Wheels: Single-width, single inlet; welded to cast-iron or cast-steel hub and spun-steel inlet cone, with hub keyed to shaft.
 1. Blade Materials: Steel or Aluminum.
 2. Blade Type: As scheduled.

D. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.

E. Shaft Bearings: Prelubricated and sealed, self-aligning, pillow-block-type ball bearings with ABMA 9, \(L_{50} \) of 200,000 hours.

F. Belt Drives: Factory mounted, with final alignment and belt adjustment made after installation.
 1. Service Factor Based on Fan Motor Size: 1.5.
 2. Motor Pulleys: Adjustable pitch for use with motors through 5 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.
 3. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives.

G. Accessories:
 1. Inlet and Outlet: Flanged.
 2. Companion Flanges: Rolled flanges for duct connections of same material as housing.
 4. Access Door: Gasketed door in scroll with latch-type handles.
 5. Scroll Dampers: Single-blade damper installed at fan scroll top with adjustable linkage.
 6. Inlet Screens: Removable wire mesh.

H. Coatings: Epoxy/Phenolic/Powder-baked enamel as indicated.

I. Capacities and Characteristics as indicated on drawings.

2.6 MOTORS

A. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."

B. Enclosure Type: Totally enclosed, fan cooled.
2.7 SOURCE QUALITY CONTROL

A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210, "Laboratory Methods of Testing Fans for Rating."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install power ventilators level and plumb.

B. Support units using vibration control devices. Vibration- and seismic-control devices are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

C. Secure roof-mounting fans to roof curbs with cadmium-plated hardware. Roof curbs shall be installed as required to maintain roof warranty.

D. Ceiling Units: Suspend units from structure; use steel wire or metal straps.

E. Support suspended units from structure using threaded steel rods. Vibration-control devices are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

F. Install units with clearances for service and maintenance.

G. Label units according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
3. Verify that cleaning and adjusting are complete.
4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
5. Adjust belt tension.
6. Adjust damper linkages for proper damper operation.
7. Verify lubrication for bearings and other moving parts.
8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
10. Shut unit down and reconnect automatic temperature-control operators.
11. Remove and replace malfunctioning units and retest as specified above.

B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Refer to Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

END OF SECTION 233423
SECTION 233713 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Round ceiling diffusers.
 2. Rectangular and square ceiling diffusers.
 3. Louver face diffusers.
 4. Linear bar diffusers.
 5. Linear slot diffusers.
 6. Linear floor diffuser plenums.
 7. Adjustable bar registers and grilles.
 8. Fixed face registers and grilles.

B. Related Sections:
 1. Division 08 Section "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
 2. Division 23 Section "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 5. Duct access panels.

C. Source quality-control reports.
PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Anemostat Products; a Mestek company.
2. Carnes.
4. METALAIRE, Inc.
5. Price Industries.
6. Titus.
7. Tuttle & Bailey.
8. Nailor

B. Round Ceiling Diffuser:

1. Devices shall be specifically designed for variable-air-volume flows.
2. Material: Steel or Aluminum.
3. Finish: Baked enamel, white unless noted otherwise.
4. Face Style: Minimum three cone.
5. Mounting: To match ceiling type.

C. Rectangular and Square Ceiling Diffusers:

1. Devices shall be specifically designed for variable-air-volume flows.
2. Material: Steel or Aluminum.
3. Finish: Baked enamel, white unless noted otherwise.
4. Face Size: 24 by 24 inches or 12 by 12 inches.
5. Face Style: Minimum three cone.
6. Mounting: To match ceiling type.

D. Louver Face Diffuser:

1. Devices shall be specifically designed for variable-air-volume flows.
2. Material: Steel or Aluminum.
3. Finish: Baked enamel, white unless noted otherwise.
4. Face Size: As indicated on drawings.
5. Mounting: To match ceiling type.
7. Accessories:
 a. Adjustable pattern vanes.
 b. Operating rod extension.

2.2 CEILING LINEAR SLOT OUTLETS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Anemostat Products; a Mestek company.
2. Carnes.
4. METALAIRE, Inc.
5. Price Industries.
6. Titus.
7. Tuttle & Bailey.

B. Linear Bar Diffuser:

1. Devices shall be specifically designed for variable-air-volume flows.
2. Material: Aluminum or Stainless steel.
3. Finish: Baked enamel, white or natural aluminum or polished stainless steel.
4. Core Spacing Arrangement: As indicated on drawings.
5. Deflection Vanes: Extruded construction fixed louvers with removable core.
7. Mounting: Countersunk screw.
8. Accessories: Blank-off strips where shown on drawings.

C. Linear Slot Diffuser:

1. Devices shall be specifically designed for variable-air-volume flows.
4. Finish - Face and Shell: Baked enamel, black.
5. Finish - Pattern Controller: Baked enamel, black.
7. Slot Width/Number of Slots/Length: As indicated on drawings.

2.3 UNDERFLOOR AIR DISTRIBUTION DIFFUSERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Anemostat Products; a Mestek company.
2. Carnes.
4. METALAIRE, Inc.
5. Price Industries.
6. Titus.

B. Round Induction Diffusers:

2. Material: Plastic, high impact, and resistant to cart and foot traffic.
3. Color: Gray or Black.
4. Components:
 a. Diffuser core.
 b. Flow regulator.
 c. Dirt and liquid catch pan.
 d. Spacer flange.
 e. Gasketed, underfloor compression ring.

C. Linear Floor Diffuser Plenums:

1. Material: Steel.
3. Components:
 a. Aluminum diffuser core.
 b. Diffuser frame.
2.4 REGISTERS AND GRILLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Anemostat Products; a Mestek company.
2. Carnes.
4. METALAIRE, Inc.
5. Price Industries.
6. Titus.
7. Tuttle & Bailey.

B. Adjustable Bar Register and Grille:

1. Material: Steel or Aluminum.
2. Finish: Baked enamel, white unless noted otherwise.
3. Face Blade Arrangement: Horizontal adjustable.
6. Frame: 1 inch wide.
7. Mounting: Countersunk screw.
8. Damper Type: Adjustable opposed blade for register only.
9. Accessories:
 a. Front-blade gang operator.

C. Fixed Face Register:

1. Material: Steel or Aluminum.
2. Finish: Baked enamel, white unless noted otherwise.
5. Frame: 1 inch wide.
7. Damper Type: Adjustable opposed blade for register only.

2.5 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, “Method of Testing for Rating the Performance of Air Outlets and Inlets.”

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713
SECTION 233723 - HVAC GRAVITY VENTILATORS, LOUVERS AND VENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following types of roof-mounting intake and relief ventilators:

1. Louvered penthouses.
2. Roof hoods.

B. Related Sections include the following:

1. Division 23 Section "HVAC Power Ventilators".

1.3 DEFINITIONS

A. Louver Terminology: Definitions of terms for metal louvers contained in AMCA 501 apply to this Section unless otherwise defined in this Section or in referenced standards.

B. Horizontal Louver: Louver with horizontal blades; i.e., the axes of the blades are horizontal.

C. Drainable-Blade Louver: Louver with blades having gutters that collect water and drain it to channels in jambs and mullions, which carry it to bottom of unit and away from opening.

D. Storm-Resistant Louver: Louver that provided specified wind-driven rain performance, as determined by testing according to AMCA 500-L.

1.4 PERFORMANCE REQUIREMENTS

A. Structural Performance: Intake and relief ventilators shall be capable of withstanding the effects of gravity loads, wind loads, seismic loads, and thermal movements without permanent deformation of components, noise or metal fatigue, or permanent damage to fasteners and anchors.

C. Structural Performance: Louvers shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation of louver components, noise or metal fatigue caused by louver blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures shall be considered to act normal to the face of the building.

1. Wind Loads: Determine loads based on a uniform pressure of 20 lbf/sq. ft., acting inward or outward.

D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes, without buckling, opening of joints, overstressing of components, failure of connections, or other detrimental effects.
1. Temperature Change (Range): 120 deg F ambient; 180 deg F material surfaces.

E. Louver Performance Ratings: Provide louvers complying with requirements specified, as demonstrated by testing manufacturer's stock units identical to those provided, except for length and width according to AMCA 500-L.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated. For louvers specified to bear AMCA seal, include printed catalog pages showing specified models with appropriate AMCA Certified Ratings Seals.

B. Shop Drawings: For intake and relief ventilators. Include plans, elevations, sections, details, and ventilator attachments to curbs and curb attachments to roof structure.

C. Coordination Drawings: Roof framing plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 1. Structural members to which roof curbs and ventilators will be attached.
 2. Sizes and locations of roof openings.

D. Product Test Reports: Based on evaluation of comprehensive tests performed according to AMCA 500-L by a qualified testing agency or by manufacturer and witnessed by a qualified testing agency, for each type of louver and showing compliance with performance requirements specified.

1.6 QUALITY ASSURANCE

A. Source Limitations: Obtain ventilators, louvers and vents through one source from a single manufacturer where indicated to be of same type, design, or factory-applied color finish.

B. Product Options: Information on Drawings and in Specifications establishes requirements for system's aesthetic effects and performance characteristics. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction. Performance characteristics are indicated by criteria subject to verification by one or more methods including preconstruction testing, field testing, and in-service performance.

C. Product Options: Drawings indicate size, profiles, and dimensional requirements of intake and relief ventilators, louvers, vents and are based on the specific equipment indicated. Refer to Division 01 Section "Product Requirements."
 1. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If modifications are proposed, submit comprehensive explanatory data to Architect for review.

1.7 COORDINATION

A. Coordinate installation of roof curbs and roof penetrations. These items are specified in Division 07 Section "Roof Accessories".
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 MATERIALS

A. Aluminum Extrusions: ASTM B 221, Alloy 6063-T5 or T-52.

B. Aluminum Sheet: ASTM B 209, Alloy 3003 or 5005 with temper as required for forming or as otherwise recommended by metal producer for required finish.

C. Galvanized-Steel Sheet: ASTM A 653, G90 zinc coating, mill phosphatized.

D. Fasteners: Same basic metal and alloy as fastened metal or 300 Series stainless steel, unless otherwise indicated. Do not use metals that are incompatible with joined materials.

 1. Use types and sizes to suit unit installation conditions.
 2. Use Phillips flat-head screws for exposed fasteners, unless otherwise indicated.
 3. For fastening galvanized steel, use hot-dip-galvanized steel or 300 series stainless-steel fasteners.
 4. For color-finished louvers, use fasteners with heads that match color of louvers.

E. Post-Installed Fasteners for Concrete and Masonry: Torque-controlled expansion anchors, made from stainless-steel components, with capability to sustain, without failure, a load equal to 4 times the loads imposed, for concrete, or 6 times the load imposed, for masonry, as determined by testing per ASTM E 488, conducted by a qualified independent testing agency.

F. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.

2.3 FABRICATION, GENERAL

A. Factory or shop fabricate intake and relief ventilators to minimize field splicing and assembly. Disassemble units to the minimum extent as necessary for shipping and handling. Clearly mark units for reassembly and coordinated installation.

B. Fabricate frames, including integral bases and sills, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.

C. Fabricate units with closely fitted joints and exposed connections accurately located and secured.

D. Fabricate supports, anchorages, and accessories required for complete assembly.

2.4 ROOF HOODS

A. Acceptable Manufacturers:

 2. Aerovent; a Twin City Fan company.
 3. Carnes.
5. Loren Cook Company.
6. Penn Ventilation.

B. Factory or shop fabricate according to SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figures 5-6 and 5-7.

C. Materials: Aluminum sheet, minimum 0.063-inch-thick base and 0.050-inch-thick hood; suitably reinforced.

D. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2-inch-thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to fit roof opening and ventilator base.

1. Configuration: Self-flashing without a cant strip, with mounting flange.
2. Overall Height: 18 inches.

E. Insect Screening: Galvanized 1/2” steel mesh.

2.5 FINISHES, GENERAL

A. Comply with NAAMM’s “Metal Finishes Manual for Architectural and Metal Products” for recommendations for applying and designating finishes.

B. Finish louvers after assembly.

2.6 ALUMINUM FINISHES

A. Finish designations prefixed by AA comply with system established by the Aluminum Association for designation aluminum finishes.

B. High-Performance Organic Coating Finish: AA-C12C42R1x (Chemical Finish: cleaned with inhibited chemicals; Chemical Finish: acid-chromate-fluoride-phosphate conversion coating; Organic Coating: as specified below). Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers’ written instructions.

1. Fluoropolymer Two-Coat Coating System: Manufacturer’s standard two-coat, thermocured system consisting of specially formulated inhibitive primer and fluoropolymer color topcoat containing not less than 70 percent polyvinylidene fluoride resin by weight, complying with AAMA 605.2.

 a. Color and Gloss: As selected by Architect from manufacturer’s full range of colors and glosses.

C. Finish shall match color of architectural metal attic panels.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and openings, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Coordinate setting drawings, diagrams, templates, instructions, and directions for installation of anchorages that are to be embedded in concrete or masonry construction. Coordinate delivery of such items to Project site.

3.3 INSTALLATION

A. Install intake and relief ventilators, louvers, vents level, plumb, and at indicated alignment with adjacent work.

B. Secure intake and relief ventilators to roof curbs with cadmium-plated hardware. Use concealed anchorages where possible. Refer to Division 07 Section "Roof Accessories" for installation of roof curbs.

C. Install louvers plumb and at indicated alignment with adjacent work.

D. Install perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.

E. Install concealed gaskets, flashings, joint fillers, and insulation as installation progresses. Comply with Division 07 Section "Joint Sealants" for sealants applied during installation.

F. Label intake and relief ventilators according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

G. Protect galvanized and nonferrous-metal surfaces from corrosion or galvanic action by applying a heavy coating of bituminous paint on surfaces that will be in contact with concrete, masonry, or dissimilar metals.

H. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.

I. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.

J. Form closely fitted joints with exposed connections accurately located and secured.

K. Install concealed gaskets, flashings, joint fillers, and insulation as louver installation progresses, where weathertight louver joints are required. Comply with Division 07 Section "Joint Sealants" for sealants applied during louver installation.

3.4 CONNECTIONS

A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories.

3.5 ADJUSTING AND CLEANING

A. Adjust damper linkages for proper damper operation.

B. Clean exposed surfaces of louvers that are not protected by temporary covering, to remove fingerprints and soil during construction period. Do not let soil accumulate until final cleaning.

C. Before final inspection, clean exposed surfaces with water and a mild soap or detergent not harmful to finishes. Thoroughly rinse surfaces and dry.
D. Restore ventilators damaged during installation and construction so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Architect, remove damaged units and replace with new units.

1. Touch up minor abrasions in finishes with air-dried coating that matches color and gloss of, and is compatible with factory-applied finish coating.

END OF SECTION 233723
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes factory-fabricated air-filter devices and media used to remove particulate matter from air for HVAC applications.

1.3 DEFINITIONS
A. DOP: Dioctyl phthalate or bis-(2-ethylhexyl) phthalate.
B. HEPA: High-efficiency particulate air.
C. ULPA: Ultra low penetration air.

1.4 SUBMITTALS
A. Product Data: Include dimensions; operating characteristics; required clearances and access; rated flow capacity, including initial and final pressure drop at rated airflow; efficiency and test method; fire classification; furnished specialties; and accessories for each model indicated.
B. Shop Drawings: Include plans, elevations, sections, and details to illustrate component assemblies and attachments.
 1. Show filter rack assembly, dimensions, materials, and methods of assembly of components.
 2. Include setting drawings, templates, and requirements for installing anchor bolts and anchorages.
C. Operation and Maintenance Data: For each type of filter and rack to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE
A. Product Options: Drawings indicate size, profiles, and dimensional requirements of air filters and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
C. Comply with ARI 850.
D. Comply with ASHRAE 52.1 and ASHRAE 52.2 for method of testing and rating air-filter units.
E. Comply with NFPA 70 for installing electrical components.

F. Comply with NFPA 90A and NFPA 90B.

1.6 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Provide one complete set of filters for each filter bank. If system includes prefilters, provide only prefilters.

2. Provide one container of red oil for inclined manometer filter gage.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Air Filters and Filter-Holding Systems:
 a. Purafil, Inc.
 b. AAF International.
 c. Filtration Group.
 d. Farr Co.
 e. Flanders Filters, Inc.

2. Filter Gages:
 a. Airguard Industries, Inc.
 b. Dwyer Instruments, Inc.

2.2 EXTENDED-SURFACE, DISPOSABLE PANEL FILTERS

A. Description: Factory-fabricated MERV 8, dry, extended-surface filters with holding frames.

B. Media: Fibrous material formed into deep-V-shaped pleats with anti-microbial agent and held by self-supporting wire grid.

C. Media and Media-Grid Frame: Nonflammable cardboard or Galvanized steel.

D. Duct-Mounting Frames: Welded, galvanized steel with gaskets and fasteners, and suitable for bolting together into built-up filter banks.
2.3 ACTIVATED-CARBON FILTERS

A. Description: Factory-fabricated unit with activated-carbon trays in deep-V arrangement with disposable panel prefilter.

1. Activated-Carbon Capacity: 12 lb of activated carbon per 500 cfm of airflow.

C. Housing: 0.064-inch-thick, galvanized steel, for side servicing through gasketed access doors on both sides. Equip housings with metal slide channel tracks to hold activated-carbon trays.

2.4 HIGH-EFFICIENCY FILTERS

A. Description: Factory-fabricated 12” deep, MERV 15 rated filters with holding casing.

B. Media: UL 586, fibrous glass, constructed of continuous sheets with closely spaced pleats with aluminum separators.

C. Frame Material: 3/4-inch Galvanized steel or Aluminized steel.

D. Media to Frame Side Bond: Polyurethane foam/Neoprene adhesive.

E. Face Gasket: Neoprene expanded rubber.

F. Duct-Mounting Frames: Construct downstream corners of holding device with cushion pads to protect media. Provide bolted filter-sealing mechanism to mount and continuously seal each individual filter.

2.5 FRONT- AND REAR-ACCESS FILTER FRAMES

A. Framing System: Aluminum framing members with access for either upstream (front) or downstream (rear) filter servicing, cut to size and prepunched for assembly into modules. Vertically support filters prevent deflection of horizontal members without interfering with either filter installation or operation.

B. Prefilters: Incorporate a separate track, removable from front or back.

C. Sealing: Factory-installed, positive-sealing device for each row of filters to ensure seal between gasketed filter elements to prevent bypass of unfiltered air.

2.6 FILTER GAGES

A. Description: Diaphragm type with dial and pointer in metal case, vent valves, black figures on white background, and front recalibration adjustment.

1. Diameter: 4-1/2 inches.

2. Range: 0- to 1.0-inch wg or 0- to 2.0-inch wg based on filter type.

B. Manometer-Type Filter Gage: Molded plastic with epoxy-coated aluminum scale, logarithmic-curve tube gage with integral leveling gage, graduated to read from 0- to 3.0-inch wg, and accurate within 3 percent of full scale range.

C. Accessories: Static-pressure tips, tubing, gage connections, and mounting bracket.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install filter frames according to manufacturer’s written instructions.

B. Position each filter unit with clearance for normal service and maintenance. Anchor filter holding frames to substrate.

C. Install filters in position to prevent passage of unfiltered air.

D. Install filter gage for each filter bank.

E. Install filter gage static-pressure tips upstream and downstream from filters to measure pressure drop through filter. Mount filter gages on outside of filter housing or filter plenum in an accessible position. Adjust and level inclined gages.

F. Coordinate filter installations with duct and air-handling unit installations.

G. Electrical wiring and connections are specified in Division 26 Sections.

H. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

3.2 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components, filter and filter-frame installation, and electrical wiring, and to assist in field testing. Report results in writing.

B. HEPA Filters: Pressurize housing to a minimum of 3.0-inch wg or to designed operating pressure, whichever is higher; and test housing joints, door seals, and sealing edges of filter with soapy water to check for air leaks.

3.3 CLEANING

A. After completing system installation and testing, adjusting, and balancing air-handling and air-distribution systems, clean filter housings and install new filter media.

END OF SECTION 234100
SECTION 235100 - BREECHINGS, CHIMNEYS, AND STACKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Listed single/double-wall vents and chimneys.

1.3 SUBMITTALS

A. Product Data: For the following:
 1. Building-heating-appliance chimneys.
 2. Guy wires and connectors.

B. Shop Drawings: For vents, breechings, chimneys, and stacks. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, methods of field assembly, components, hangers and seismic restraints, and location and size of each field connection.
 2. For installed products indicated to comply with design loads, include calculations required for selecting seismic restraints and structural analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

C. Welding certificates.

D. Warranty: Special warranty specified in this Section.

1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain listed system components through one source from a single manufacturer.

C. Certified Sizing Calculations: Manufacturer shall certify venting system sizing calculations.

1.5 COORDINATION

A. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessory."
1.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of venting system that fail in materials or workmanship within specified warranty period. Failures include, but are not limited to, structural failures caused by expansion and contraction.

1. Warranty Period: 10 years from date of final acceptance by Owner.

PART 2 - PRODUCTS

2.1 LISTED BUILDING-HEATING-APPLIANCE CHIMNEYS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Metal Products; MASCO Corporation.
2. Cleaver-Brooks; Div. of Aqua-Chem Inc.
3. Heat-Fab, Inc.
4. Industrial Chimney Company.
5. Metal-Fab, Inc.
6. Selkirk Inc.; Selkirk Metalbestos and Air Mate.
7. Simpson Dura-Vent Co., Inc.; Subsidiary of Simpson Manufacturing Co.
8. Tru-Flex Metal Hose Corp.

B. Description: Double-wall metal vents tested according to UL 103 and rated for 1000 deg F continuously, or 1700 deg F for 10 minutes; with neutral or negative flue pressure complying with NFPA 211.

C. Construction: Inner shell and outer jacket separated by at least a 1/2-inch annular space filled with high-temperature, ceramic-fiber insulation.

D. Inner Shell: ASTM A 666, Type 304 stainless steel.

E. Outer Jacket: Galvanized or Aluminized steel.

F. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.

1. Termination: Round chimney top designed to exclude minimum 98 percent of rainfall.

2.2 GUYING AND BRACING MATERIALS

A. Cable: Three or Four galvanized, stranded wires of the following thickness:

1. Minimum Size: 1/4 inch in diameter.
2. For ID Sizes 4 to 15 Inches: 5/16 inch.
3. For ID Sizes 18 to 24 Inches: 3/8 inch.

C. Angle Iron: Galvanized steel, 2 by 2 by 0.25 inch.
3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of work.

 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATION

A. Listed Building-Heating-Appliance Chimneys: Gas-fired desiccant de-humidification air handling unit gas burner outlet vent.

3.3 INSTALLATION OF LISTED VENTS AND CHIMNEYS

A. Locate to comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211, whichever is most stringent.

B. Seal between sections of positive-pressure vents and grease exhaust ducts according to manufacturer's written installation instructions, using sealants recommended by manufacturer.

C. Support vents at intervals recommended by manufacturer to support weight of vents and all accessories, without exceeding appliance loading.

D. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.

E. Lap joints in direction of flow.

F. Connect base section to foundation using anchor lugs of size and number recommended by manufacturer.

G. Join sections with acid-resistant joint cement to provide continuous joint and smooth interior finish.

H. Erect stacks plumb to finished tolerance of no more than 1 inch out of plumb from top to bottom.

3.4 CLEANING

A. After completing system installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finishes.

B. Clean breechings internally, during and after installation, to remove dust and debris. Clean external surfaces to remove welding slag and mill film. Grind welds smooth and apply touchup finish to match factory or shop finish.

C. Provide temporary closures at ends of breechings, chimneys, and stacks that are not completed or connected to equipment.

END OF SECTION 235100
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 235216 – FIRE-TUBE CONDENSING BOILERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes packaged, factory-fabricated and -assembled, gas-fired, fire-tube condensing boilers, trim, and accessories for hot water.

1.3 SUBMITTALS

A. Product Data: Include performance data, operating characteristics, furnished specialties, and accessories.

B. Shop Drawings: For boilers, boiler trim, and accessories.

1. Include plans, elevations, sections, details, and attachments to other work.

2. Wiring Diagrams: Power, signal, and control wiring.

C. Source quality-control test reports: Indicate and interpret test results for compliance with performance requirements before shipping.

D. Field quality-control test reports: Indicate and interpret test results for compliance with performance requirements.

E. Warranty: Standard warranty specified in this Section.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance: Data: for boilers to include in emergency, operations and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. ASME Compliance: Fabricate and label boilers to comply with ASME Boiler and Pressure Vessel Code.

C. ASHRAE/IESNA 90.1 Compliance: Boilers shall have minimum efficiency according to "Gas and Oil Fired Boilers - Minimum Efficiency Requirements."

D. AHRI Compliance: Boilers shall be AHRI listed and must meet the minimum efficiency specified under AHRI BTS-2000 as defined by Department of Energy in 10 CFR Part 431.

1.6 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.7 WARRANTY

A. Standard Warranty: Boilers shall include manufacturer’s standard form in which manufacturer agrees to repair or replace components of boilers that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Fire-Tube Condensing Boilers:

a. Heat Exchanger, Pressure Vessel and Condensation Collection Basin shall carry a 10 year limited warranty against defects in materials or workmanship and failure due to thermal shock.

b. All other components shall carry a one year warranty from date of boiler start up.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Lochinvar.
2. Ray-Pak.
3. Patterson Kelley.
4. Aerco.

2.2 CONSTRUCTION

A. Description: Boiler shall be natural gas fired, fully condensing, and fire-tube design. The boiler shall be factory-fabricated, factory-assembled, and factory tested, fire-tube condensing boiler with heat exchanger sealed pressure tight, built on a steel base; including insulated jacket, flue-gas vent; combustion-air intake connections; water supply, return, and condensate drain connections; and controls.

B. Heat Exchanger: The heat exchanger shall bear the ASME “H” stamp for 160 psi working pressure and shall be National Board listed. The heat exchanger shall be construction of a fully welded 316L stainless steel and of fire-tube design. The heat exchanger shall be designed for a single-pass water flow to limit the water side pressure drop. There shall be no banding material, bolts, gaskets or “O” rings in the heat exchanger design. Cast iron, aluminum or condensing copper tube boilers will not be accepted.

D. Intake filter and Dirty Filter Switch: Boiler shall include an intake air filter with a factory installed air pressure switch. The pressure switch will alert the end user on the screen of the boiler that the intake filter is dirty and needs to be changed.

E. Pressure Vessel: The pressure vessel shall be in accordance with ASME Section IV pressure vessel code. The pressure vessel shall be designed for a single-pass water flow to limit the water side pressure drop. Pressure drop shall be no greater than 1.5 psi at design water flow. Burner:
F. Natural gas or propane forced draft single burner premix design with an upper and lower chamber supplied by individual combustion systems. The burner shall be high temperature stainless steel with a woven Fecralloy outer covering to provide modulating firing rates. The burner shall be capable of the stated gas train turndown without loss of combustion efficiency. The burner shall have an independent laboratory rating for Oxides of Nitrogen (NOx) to meet requirements of South Coast Air Quality Management District (SCAQMD).

G. Blower: Boiler shall be equipped with a pulse width modulating blower system to precisely control the fuel/air mixture to provide modulating boiler firing rates for maximum efficiency. The burner firing sequence of operation shall include pre-purge, firing, modulation, and post-purge operation.

1. Motors: Comply with requirements specified in division 23 Section "Common Motor Requirements for HVAC Equipment".

H. Natural Gas Train: Combination gas valve with manual shutoff and pressure regulator.

I. Ignition: Spark ignition with 100 percent main-valve shutoff with electronic flame supervision.

J. Casing:

2. Control Compartment Enclosures: NEMA 250, Type 1A.
3. Insulation: Minimum ½ inch thick, mineral fiber insulation surrounding the heat exchanger.

K. Characteristics and Capacities:

2. Design Water Pressure Rating: 160 psi working pressure.
3. Safety Relief Valve Setting: 50 psig

2.3 TRIM

A. Safety Relief Valve:

2. Description: Fully enclosed steel spring with adjustable pressure range and positive shutoff; factory set and sealed.

B. Pressure Gage: Minimum 3-1/2 inch diameter. Gage shall have normal operating pressure about 50 percent of full range.

C. Drain Valves: Minimum NPS 3/4 or nozzle size with hose-end connection.

D. Condensate Neutralization Kit: Factory supplied condensate trap with condensate trip sensor, high capacity condensate receiver prefilled with appropriate medium.

2.4 CONTROLS

A. Refer to Division 23 Section "Instrumentation and Control for HVAC."

B. Boiler controls shall feature a standard, factory installed 8" LCD screen display with the following standard features:
1. **Password Security:** Boiler shall have a different password security code for the User and the Installer to access adjustable parameters.

2. **Outdoor air reset:** Boiler shall calculate the set point using a field installed, factory supplied outdoor sensor and an adjustable reset curve.

3. **Pump exercise:** Boiler shall energize any pump it controls for an adjustable time if the associated pump has been off for a time period of 24 hours.

4. **Ramp delay:** Boiler may be programmed to limit the firing rate based on six limits steps and six time intervals.

5. **Boost function:** Boiler may be programmed to automatically increase the set point a fixed number of degrees (adjustable by installer) if the setpoint has been continuously active for a set period of time (time adjustable by installer). This process will continue until the space heating demand ends.

6. **PC port connection:** Boiler shall have a PC port allowing the connection of PC boiler software.

7. **Time clock:** Boiler shall have an internal time clock with the ability to time and date stamp lock-out codes and maintain records of runtime.

8. **Service reminder:** Boiler shall have the ability to display a yellow colored service notification screen based upon months of installation, hours of operation, and number of boiler cycles. All notifications are adjustable by the installer.

9. **Anti-cycling control:** Boiler shall have the ability to set a time delay after a heating demand is satisfied allowing the boiler to block a new call for heat. The boiler will display an anti-cycling blocking on the screen until the time has elapsed or the water temperature drops below the anti-cycling differential parameter. The anti-cycling control parameter is adjustable by the installer.

10. **Night setback:** Boiler may be programmed to reduce the space heating temperature set point during a certain time of the day.

11. **Boilers will have a BACnet IP BMS communication gateway**

12. **Data logging:** Boiler shall have non-volatile data logging memory including last 10 lockouts, hours running and ignition attempts and should be able to view on boiler screen.

C. The boilers shall have a built in Cascade controller to sequence and rotate lead boiler to ensure equal runtime while maintaining modulation of boilers without utilization of an external controller. The factory installed, internal cascade controller shall include:

1. **Lead lag:**
2. **Efficiency optimization:** The Control module shall allow multiple boilers to fire at minimum firing rate in lieu of Lead/Lag.
3. **Front end loading:**
4. **Rotation of lead boiler:** The Control module shall change the lead boiler every hour for the first 24 hours after initializing the Cascade. Following that, the leader will be changed once every 24 hours.

D. Boiler operating controls shall include the following devices and features:

1. **Set-Point Adjust:** Set points shall be adjustable.
2. **Operating Pressure Control:** Factory wired and mounted to cycle burner.
3. **Sequence of Operation:** Factory installed controller to modulate burner firing rate to maintain system water temperature in response to call for heat.
4. **Sequence of Operation:** Electric, factory-fabricated and factory-installed panel to control burner firing rate to reset supply-water temperature inversely with outside-air temperature. At 10 deg F outside-air temperature, set supply-water temperature at 160 deg F; at 65 deg F outside-air temperature, set supply-water temperature at 100 deg F.

E. Burner Operating Controls: To maintain safe operating conditions, burner safety controls limit burner operation.

1. **High Temperature Limit:** Automatic and manual reset stops burner if operating conditions rise above maximum boiler design temperature. Limit switch to be manually reset on the control interface.
2. **Low-Water Cutoff Switch:** Electronic probe shall prevent burner operation on low water. Cutoff switch shall be manually reset on the control interface.
3. **Blocked Inlet Safety Switch:** Manual-reset pressure switch field mounted on boiler combustion-air inlet.
4. High and Low Gas Pressure Switches: Pressure switches shall prevent burner operation on low or high gas pressure. Pressure switches to be manually reset on the control interface.
5. Blocked Drain Switch: Blocked drain switch shall prevent burner operation when tripped. Switch to be manually reset on the control interface.
6. Low air pressure switch: Pressure switches shall prevent burner operation on low air pressure. Switch to be manually reset on the control interface.
7. Audible Alarm: Factory mounted on control panel with silence switch; shall sound alarm for any lockout conditions.

F. Building Automation System Interface: Factory installed BACnetIP gateway interface to enable building automation system to monitor, control, and display boiler status and alarms.

2.5 ELECTRICAL POWER

A. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26 Sections.
B. Single-Point Field Power Connection: Factory-installed and factory-wired switches, motor controllers, transformers, and other electrical devices necessary shall provide a single-point field power connection to boiler.
C. Electrical Characteristics:
 1. See Drawings.
 2. Voltage:
 a. 120V / 1PH
 3. Frequency: 60 Hz

2.6 VENTING

A. Exhaust flue must be Category IV UL1738 listed stainless steel sealed vent material. All joints, adjustable and variable lengths must have this listing. Flue pipe shall be single wall. Boilers exhaust vent length must be able to extend to 100 equivalent feet.
B. Intake piping for all models must be G90 galvanized iron sheet metal. Boilers intake pipe length must be able to extend to 100 equivalent feet.
C. Boiler venting and intake piping configuration shall be as indicated on the contract documents.
D. Boiler shall come standard with a flue sensor to monitor and display flue gas temperature on factory provided LCD display.
E. Refer to manufacturer’s Installation and Operations manual for detailed venting instructions.

2.7 SOURCE QUALITY CONTROL

A. Burner and Hydrostatic Test: Factory adjust burner to eliminate excess oxygen, carbon dioxide, oxides of nitrogen emissions, and carbon monoxide in flue gas and to achieve combustion efficiency; perform hydrostatic test.
B. Test and inspect factory-assembled boilers, before shipping, according to ASME Boiler and Pressure Vessel Code.
C. Allow Owner access to source quality-control testing of boilers. Notify Architect 14 days in advance of testing.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Before boiler installation, examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, and piping and electrical connections to verify actual locations, sizes, and other conditions affecting boiler performance, maintenance, and operations.

 1. Final boiler locations indicated on Drawings are approximate. Determine exact locations before roughing-in of piping and electrical connections.

B. Examine mechanical spaces for suitable conditions where boilers will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 BOILER INSTALLATION

A. Install equipment on 4" concrete housekeeping pad.

B. Install gas-fired boilers according to NFPA 54.

C. Assemble and install boiler trim.

D. Install electrical devices furnished with boiler but not specified to be factory mounted.

E. Install control wiring to field-mounted electrical devices.

3.3 CONNECTIONS

A. Install boilers level on concrete bases. Concrete base is specified in Division 23 Section "Common Work Results for HVAC," and concrete materials and installation requirements are specified in Division 03.

B. Install piping adjacent to boiler to allow service and maintenance.

C. Install piping from equipment drain connection to nearest floor drain. Piping shall be at least full size of connection. Provide an isolation valve if required.

D. Connect gas piping to boiler gas-train inlet with union. Piping shall be at least full size of equipment connection. Provide a reducer if required.

E. Connect hot-water piping to supply and return boiler tappings with shutoff valve and union or flange at each connection.

F. Install piping from safety relief valves to nearest floor drain.

G. Boiler Venting:

 1. Install flue venting and combustion-air intake.
 2. Connect full size to boiler connections. Comply with requirements in Division 23 Section "Breechings, Chimneys, and Stacks."
H. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

I. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Perform installation and startup checks according to manufacturer's written instructions. Complete startup form included with Boiler and return to Manufacturer as described in the instructions.
2. Leak Test: Hydrostatic test. Repair leaks and retest until no leaks exist.
3. Operational Test: Start units to confirm proper motor rotation and unit operation. Adjust air-fuel ratio and combustion.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 a. Check and adjust initial operating set points and high- and low-limit safety set points of fuel supply, water level and water temperature.
 b. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other than normal occupancy hours for this purpose.

D. Performance Tests:

1. Engage a factory-authorized service representative to inspect component assemblies and equipment installations, including connections, and to conduct performance testing.
2. Boilers shall comply with performance requirements indicated, as determined by field performance tests. Adjust, modify, or replace equipment to comply.
3. Perform field performance tests to determine capacity and efficiency of boilers.
4. Repeat tests until results comply with requirements indicated.
5. Provide analysis equipment required to determine performance.
6. Provide temporary equipment and system modifications necessary to dissipate the heat produced during tests if building systems are not adequate.
8. Perform a combustion analysis after installation and adjust gas valve per the Installation and Operations manual and note in startup report.

3.5 DEMONSTRATION

A. Engage a factory representative or a factory-authorized service representative for boiler startup and to train Owner's maintenance personnel to adjust, operate, and maintain boilers. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 235216
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes air-cooled condensing units. The air-cooled condensing unit for this project shall be furnished with the desiccant de-humidification air handling unit by the air handling unit manufacturer.

1.3 SUBMITTALS
A. Product Data: For each condensing unit, include rated capacities, operating characteristics, furnished specialties, and accessories. Include equipment dimensions, weights and structural loads, required clearances, method of field assembly, components, and location and size of each field connection.

B. Shop Drawings:
1. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
2. Wiring Diagrams: Power, signal, and control wiring.

C. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
1. Structural members to which condensing units will be attached.
2. Liquid and vapor pipe sizes.
3. Refrigerant specialties.
4. Piping including connections, oil traps, and double risers.
5. Evaporators.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For condensing units to include in emergency, operation, and maintenance manuals.

F. Warranty: Special warranty specified in this Section.

1.4 QUALITY ASSURANCE
A. Product Options: Drawings indicate size, profiles, and dimensional requirements of condensing units and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Fabricate and label refrigeration system according to ASHRAE 15, "Safety Code for Mechanical Refrigeration."
D. ASHRAE/IESNA 90.1-2016 Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2016, Section 6 - "Heating, Ventilating, and Air-Conditioning."

E. ASME Compliance: Fabricate and label water-cooled condensing units to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

1.5 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

C. Coordinate location of piping and electrical rough-ins.

1.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of condensing units that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Compressor failure.
 b. Condenser coil leak.

2. Warranty Period (Compressor Only): 10 years from date of final acceptance by Owner (substantial completion).

3. Warranty Period (Condenser Coil Only): Five years from date of final acceptance by Owner (substantial completion).

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Trane Co. (The); Worldwide Applied Systems Group.
2. Engineered Air
3. Aaon
4. York International Corp.
5. Climate Cool

2.2 CONDENSING UNITS, AIR COOLED, 6 TO 120 TONS

A. Description: Factory assembled and tested, air cooled; consisting of casing, compressors, condenser coils, condenser fans and motors, and unit controls.

B. Compressor: Hermetic or semihermetic compressor designed for service with crankcase sight glass, crankcase heater, and backseating service access valves on suction and discharge ports.
1. Capacity Control: Minimum dual head unloading for each compressor and Hot-gas bypass on each refrigerant circuit.
2. Refrigerant: R-410A or R404A.

C. Condenser Coil: Seamless copper-tube, aluminum-fin coil, including subcooling circuit and backseating liquid-line service access valve. Factory pressure test coils, then dehydrate by drawing a vacuum and fill with a holding charge of nitrogen or refrigerant.

D. Operating Conditions: Roof mounted condensing shall be capable of operating within specified capacities at 110 deg. F (36 deg. F SST/ 130 SCT). Capacities shall be as specified on drawings. Maximum operating sound level rated for 78 decibels at a distance of 5 feet from the condensing unit. The unit shall not radiate sound louder than 50 decibels when measured at grade and at a distance of 40 feet south of the south exterior wall of the new Library Storage Module wall (this is the radiated sound of the existing condensing unit currently installed at the facility).

E. Condenser Fans: Propeller-type vertical discharge; either directly or belt driven. Include the following:
 1. Permanently lubricated ball-bearing motors.
 2. Separate motor for each fan.
 3. Dynamically and statically balanced fan assemblies.

F. Operating and safety controls include the following:
 1. Manual-reset, high-pressure cutout switches.
 2. Automatic-reset, low-pressure cutout switches.
 3. Low oil pressure cutout switch.
 4. Compressor-winding thermostat cutout switch.
 5. Three-leg, compressor-overload protection.
 6. Control transformer.
 7. Magnetic contactors for compressor and condenser fan motors.
 8. Timer to prevent excessive compressor cycling.

G. Accessories:
 1. Refrigerant circuits: Independent refrigerant circuits for each compressor with hot gas bypass circuits required for each circuit.
 2. Low Ambient Controller: Cycles condenser fan to permit operation down to 0 deg F with time-delay relay to bypass low-pressure switch.
 4. Hot-gas bypass kit on each circuit.
 5. Compressor oil separator and check valve (factory mounted and installed)
 6. Compressor suction accumulator package (factory mounted and installed)
 7. Serviceable filter housing and core (factory mounted and installed)
 8. Liquid line solenoid valve for evaporator, each circuit.
 9. Sight glass/indicator each circuit

H. Unit Casings: Designed for outdoor installation with weather protection for components and controls and with removable panels for required access to compressors, controls, condenser fans, motors, and drives. Additional features include the following:
 1. Steel, galvanized or zinc coated, for exposed casing surfaces; treated and finished with manufacturer's standard paint coating.
 2. Perimeter base rail with forklift slots and lifting holes to facilitate rigging.
 3. Gasketed control panel door.
 4. Nonfused disconnect switch, factory mounted and wired, for single external electrical power connection.
 5. Condenser coil hail guard to protect coil from physical damage.
I. Roof curb support: Furnish air-cooled condensing unit with rail type roof mounted support sized to support the weight of the unit furnished. Roof curb shall be minimum 18” high.

2.3 MOTORS

A. General requirements for motors are specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26 Sections.

2.4 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate condensing units according to ARI 210/240, ARI 340/360, or ARI 365.

B. Test and inspect shell and tube condensers according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

C. Testing Requirements: Factory test sound-power-level ratings according to ARI 270.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of condensing units.

B. Examine roughing-in for refrigerant piping systems to verify actual locations of piping connections before equipment installation.

C. Examine walls, floors, and roofs for suitable conditions where condensing units will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install units level and plumb, firmly anchored in locations indicated; maintain manufacturer's recommended clearances.

B. Install roof-mounting units on equipment supports furnished with unit. Coordinate roofing installation with roofing Contractor.

C. Maintain manufacturer's recommended clearances for service and maintenance.

D. Loose Components: Install electrical components, devices, and accessories that are not factory mounted.
3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to machine to allow service and maintenance.

C. Connect refrigerant piping to air-cooled condensing units; maintain required access to unit. Install furnished field-mounted accessories. Refrigerant piping and specialties are specified in Division 23 Section "Refrigerant Piping."

D. Interlock wiring from condensing unit to de-humidification unit to shut down solenoid valve when system de-energizes and put refrigerant system into pump down for off-cycle.

3.4 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. Perform electrical test and visual and mechanical inspection.
2. Leak Test: After installation, charge systems with refrigerant and oil and test for leaks. Repair leaks, replace lost refrigerant and oil, and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation, product capability, and compliance with requirements.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
5. Verify proper airflow over coils.

B. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.

C. Remove and replace malfunctioning condensing units and retest as specified above.

3.5 STARTUP SERVICE

A. Complete installation and startup checks according to manufacturer's written instructions and perform the following:

1. Inspect for physical damage to unit casing.
2. Verify that access doors move freely and are weathertight.
3. Clean units and inspect for construction debris.
4. Verify that all bolts and screws are tight.
5. Adjust vibration isolation and flexible connections.
6. Verify that controls are connected and operational.

B. Lubricate bearings on fans.

C. Verify that fan wheel is rotating in the correct direction and is not vibrating or binding.

D. Adjust fan belts to proper alignment and tension.

E. Start unit according to manufacturer's written instructions and complete manufacturer's startup checklist.

F. Measure and record airflow over coils.

G. Verify proper operation of condenser capacity control device.

H. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.
I. After startup and performance test, lubricate bearings and adjust belt tension.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain condensing units.

END OF SECTION 236200
SECTION 237000 – DESICCANT DEHUMIDIFICATION AIR HANDLING UNIT

PART 1 - GENERAL

1.1 WARRANTY / GUARANTEE

A. The desiccant system and any auxiliary components provided by the manufacturer shall be warranted free from defects in workmanship or material for a period of 18 months from the date of final Owner acceptance (substantial completion). The warranty is parts only.

B. The silica gel wheel shall be free from defects in workmanship and material for a period of five years commencing from the date of final acceptance by the Owner (substantial completion).

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Engineered Air
B. Munters
C. Bry Air

2.2 HOUSING

A. Unit Base

1. Unit base shall be fully welded structural channel, 12 gauge galvanized steel around the outside perimeter and reinforced with galvanized steel cross members bolted on centers not exceeding 31 inches. Base shall have a minimum of four lifting brackets bolted in place.

B. Unit Casing

1. The unit casing shall be constructed using a double wall panel and frame system (as described below) for torsional rigidity. This includes walls, floors and ceilings. This system shall not contain any through metal. The unit casing shall also meet the following criteria based on ASTM E84-90 (Standard Test Method for Surface Burning of Building Materials), flame spread = 25, smoke index = 50.

2. The frame system components shall be constructed of fiberglass reinforced plastic (FRP) pultruded members. Horizontal frame members shall be supported along their length by intermediate supports and internal partitions. Through metal systems shall not be allowed. To avoid either condensation, heat loss or loss of cooling capacity, each panel shall be 2 inches thick and constructed such that there are no through metal connections between the exterior surface and the interior surface. The exterior casing shall be 22-gauge corrosion resistant galvalume or 18-gauge painted galvanized. Painted coating must be corrosion resistant exceeding ANSI 2000 hour salt spray standards. Interior casing shall be 22-gauge galvanized steel. Panels shall be foam injected into individual panels with a density of 2-1/2 lb/ft³. The heat transfer rate through casing walls shall be less than 0.0625 Btu/sq. ft./°F equivalent to an R-value of 16. There shall be a gasket system which seals the panels to the structure. Fixed panels shall be provided with flat closed cell neoprene and be sealed in place with silicon. Doors and plug panels shall be provided with polyvinyl chloride seals.
C. Access Doors and Plug Panels

1. Access doors or plug panel doors will be provided as indicated on the drawings and for each section of the unit. Doors shall be rigid double wall construction and shall use heavy-duty hinges on each door. Doors shall be a minimum of 30.5" in width. Doors shall be of the same construction as panels. Hinges shall be installed by locating hinges no more than 36 inches on center from hinge to hinge. Door latches shall be capable of being fully tightened against gasket surfaces. All major components such as coils, filters, blowers, etc., within the air handling structure shall be easily removable through access panels without dismantling plenums or distributing ductwork. Panels without gaskets shall not be acceptable.

2. Service Light: Vaporproof fixture with switched junction box located on exterior of unit.
 a. Locations: Each section accessed with door.
 b. All lights shall be wired and controlled by one light switch mounted adjacent to supply air fan access door. All wiring shall utilize EMT.

2.3 DESICCANT WHEEL

A. Desiccant wheel manufacturers must provide the desiccant dehumidification capacity without exceeding a gas usage specified. Acceptable manufacturers shall provide a spare stock for each unit size. The proposed equipment shall meet the following minimum requirements:

1. Efficiency.
 a. The desiccant wheel shall have the following efficiencies or as shown on the schedule: Gas burner input to reactivate the desiccant wheel shall not exceed 2500 btu per pound of water removed. Sensible heat gain due to the desiccant process shall not exceed 1900 btu per pound of water removed.

2. Wheel Face Seals.
 a. The dehumidifier shall have full-face seals on both the process air entering and the process air leaving sides of the wheel. These shall seal the entire perimeter of both air streams as they enter and leave the wheel. Partial seals shall not be acceptable. The seals shall be the silicone rubber bulb-type, with a protective strip of low-friction, abrasive-resistant surface to extend seal life and reduce the force needed to turn the desiccant wheel. Neither wiper-type seals nor brush-type nor any non-contact-type seal shall be acceptable. The seals shall be documented to have a minimum working life of 25,000 hours of normal operation.

 a. The glass fibers which form the support matrix shall be made from uniform continuous strands larger than five microns in diameter which are non-respirable and are not considered a possible health risk by the International Agency for Research on Cancer (IARC).

4. Flame spread and smoke generation.
 a. The wheel shall be tested according to ASTM E84-90 (Standard Test Method for Surface Burning of Building Materials) and shall achieve the following results:

 1) Flame spread index = 0
 2) Smoke developed index = 10

5. Desiccant impregnation.
The desiccant shall be evenly impregnated throughout the structure for predictable, consistent performance and for maximum wheel life. Coatings applied on top of the contact medium shall not be acceptable unless the manufacturer can provide independent life tests demonstrating less than a 5% decline in desiccant capacity over a five year period of normal operation.

6. Desiccant type.
 a. The desiccant impregnated into the contact medium shall be:
 1) Titanium-reinforced silica gel.
 a) The desiccant wheel shall be a fabricated extended surface contact media with a multitude of small passages parallel to the airflow. The rotary structure shall be a monolithic composite consisting of inert silicates with microscopic pores designed to remove water in a vapor phase. The desiccant shall be hydrothermally-stabilized silica gel reinforced with titanium for maximum strength and stability over time. The fabricated structure shall be smooth and continuous having a depth of 400 or 200 millimeters, as specified in unit schedule, in the direction of airflow without interruptions or sandwich layers which restrict airflow or create a leakage path at joining surfaces. Nominal face velocity shall not exceed 800 fpm. The wheel shall be manufactured in the United States. The manufacturer shall provide documentation to establish that:
 b) The desiccant retains more than 90% of its original capacity after ten years of continuous operation in clean air, with inlet air conditions up to an including 100% relative humidity.
 c) The wheel as impregnated with silica gel is capable of withstanding five complete water immersion cleaning cycles while retaining more than 95% of its original adsorption capacity.

2.4 DESICCANT WHEEL SUPPORT AND DRIVE ASSEMBLY
A. The wheel shall be a single piece for fast removal and simple handling. In addition, the wheel drive assembly shall provide:
 1. Rotation speed.
 a. To avoid excessive heat carryover from reactivation to the process air, the wheel rotation speed shall not exceed 16 rph while achieving the required moisture removal rate at the specified conditions.
 2. Drive belt.
 a. The drive belt shall be the flat, toothed type, with aramid fiber reinforcement.
 3. Drive motor.
 a. The drive motor shall be fractional horsepower and rated for continuous duty for a period of 20,000 hours under the load conditions imposed by the drive assembly.
 4. Rotation detection.
 a. The drive assembly shall be equipped with a rotation detection circuit which shuts down the dehumidifier and signals the operator through an indicating light on the control cabinet if the wheel is not rotating.
2.5 DIRECT FIRED REACTIVATION

A. Direct fire gas reactivation shall be used to reactivate the desiccant. The direct fire burner will be capable of an output capacity and will be fully modulated over a range of 18,000 to 450,000 BTU input at a constant airflow. The burner shall produce no measurable carbon monoxide in the airstream. The system shall be designed to meet ANSI requirements. The control system shall provide fully automated control of furnace. The control shall modulate the heat to conserve energy at reduced humidity loads.

2.6 FILTERS

A. Reactivation Filter.
 1. The unit shall include a disposable pleated filter with 25% to 30% minimum efficiency with 90% to 92% arrestance minimum as rated by ASHRAE Test Standard 52-76.

B. High Efficiency Filters and Carbon Filters.
 1. Furnish and install high efficiency and gas phase sodium permanganate (pre and final) carbon filters as specified in Section 234100. Provide each filter bank with a pre-filter section.

2.7 FANS

A. General Requirements.
 1. Blowers are of the non-overloading, backward inclined, air foil blade type for air volumes greater than 2000 scfm. Blowers are direct or belt drive provided fan speed does not exceed 80% of the fan shaft critical speed. All fans shall be rated in accordance with AMCA Standard 210.

B. Balancing.
 1. Fans shall be balanced after assembly and after coating at the speed the unit is scheduled to operate. Fans are balanced such that the maximum displacement in any plane does not exceed 1.5 mils for fans operating at or below 2000 rpm or 1.0 mils for fans operating above 2000 rpm.

C. Belt Drive Fans.
 1. For fan motors of 10 hp and smaller, the belt-drive shall be selected for 120% of rated capacity. For fans driven by motors larger than 10 hp, the drive shall be selected for 150% of rated capacity. All belt-driven fans shall be equipped with:
 a. Motors mounted on slide rails or bases and belt tension is adjustable without repositioning of belt guard.
 b. Fan assemblies mounted on a rigid structural steel base supported at not less than 4 points by rubber-in-shear or spring type vibration isolators. Overall isolation efficiency is not less than 95% at the design fan speed.
 c. Fan and base assembly shall be equipped with not less than 3 tie down bolts for stability during shipment to prevent damage.

D. Direct Drive Fans.
 1. Direct drive blowers are nominally 1725 or 3450 rpm. Direct drive blowers are mounted on vibration pads or rubber-in-shear type vibration isolators. Overall isolation efficiency is not less than 95% at the design blower speed.

E. Fan Motors.
1. Fan motors shall be the totally-enclosed fan-cooled (TEFC), high-efficiency type with Class B insulation and shall be selected for a service factor of 1.15. Condenser fans for packaged DX condenser option may have service factor of 1.0.

2.8 HOT WATER COILS

A. Coils shall be sized to provide the full capacity scheduled. Coils shall be arranged to condition the full volume of process air with bypass or balancing dampers as required. Tube water velocities are 7 fps or less and air face velocities are 750 fpm or less. Coil shall be designed for 250 PSI working pressure and factory tested under water at 300 PSI.

B. Coils are fin and tube type, constructed of seamless copper tubes of 5/8-inch diameter with 0.016 inch wall thickness and aluminum plate type fins of .006 inch thickness, mechanically bonded to tubes. Casing and tube support sheets are 16 gauge galvanized steel formed to provide mounting flanges and structural support for the finned-tube assembly. Supply and return headers are heavy wall copper pipe with vent and drain connections. Supply and return connections are brazed in place with sweat connections for piping.

2.9 DIRECT EXPANSION (DX) COOLING COILS

A. Coils shall be sized to provide the full capacity scheduled. Coils shall be arranged to condition the full volume of process air with bypass or balancing dampers as required. Refrigerant pressure drop to be between 1.0 psi and 5 psi, and air face velocities are 500 fpm or less. Coil shall be designed for 250 PSI working pressure and factory tested under water at 300 PSI.

B. Direct expansion cooling coils are fin and tube type constructed of seamless copper tubes and .006 inch thickness aluminum fins mechanically bonded to tubes. Casing and tube support sheets are 16 gauge galvanized steel formed to provide mounting flanges and structural support for the finned-tube assembly. Supply header consists of a distributor to feed liquid refrigerant through seamless copper tubing to all circuits in the coil equally. Direct expansion coils are compatible with all other components of the same refrigeration circuit. DX coil shall have interlaced circuited arrangement with independent refrigerant circuits for each circuit (Two circuits minimum).

2.10 DRAIN PANS

A. The drain pan is to be constructed of welded 304 SS and bolted in place. The drain pan shall extend the entire length of the coil and extend a minimum of 4 inches beyond the air leaving side of the coil. The drain pan shall be a minimum of 2 inches deep and have a minimum pitch of 1/8 inch per foot. The drain pan shall be double sloped to ensure zero standing water. Drain connections shall extend through unit base.

2.11 ELECTRICAL CONTROL CABINET

A. The electrical control cabinet shall include:

1. Wiring to comply with the current National Electrical Code with further fuse and wiring sizing to meet or exceed UL 508A Industrial Control Panel.
2. Wires shall be color-coded or numbered at both ends and all terminal block connection points shall be numbered. These markings shall correspond with the electrical diagram provided in the operating and maintenance manual.
3. Components shall be UL or CSA approved.
4. Control System: The control system panel shall incorporate components that are compatible and can communicate with Johnson Controls Metasys DDC controls without a communication interface. The unit sequence of operations shall include separate indication for:
 a. Power on.
b. Unit running.
c. Desiccant wheel rotation fault.
d. Burner fault.
e. High Condensing pressure.
f. Motor overload.

5. Operating and maintenance manual. The control cabinet shall include a copy of the O & M manual, mounted in a separate compartment or pocket to allow access to critical information by maintenance personnel after installation.

6. Disconnecting Means. Unit shall have a built in non-fused means of disconnecting from the power supply.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine casing insulation materials and filter media before desiccant de-humidification equipment installation. Reject insulation materials and desiccant media that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for electrical services to verify actual locations of connections before installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install floor-mounted units on 4 inch high housekeeping pad extending 3" beyond the unit on all sides.

B. Unit Support: Install unit level on pad. Coordinate wall penetrations and flashing with wall construction. Secure de-humidification equipment to structural support with anchor bolts.

C. Install units with clearances for service and maintenance.

D. Install new filters at completion of equipment installation and before testing, adjusting, and balancing.

E. Pipe drains from units and drain pans to nearest floor drain; use ASTM B 88, Type L, drawn-temper copper water tubing with soldered joints, same size as condensate drain connection.

3.3 CONNECTIONS

A. Comply with requirements for piping specified in Division 23 Section "Hydronic Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Comply with requirements for ductwork specified in Division 23 Section "Metal Ducts."

C. Install piping adjacent to machine to allow service and maintenance.
3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
 2. Provide full on-site checkout and start-up of the factory mounted temperature controls. Field verify final temperature control interface and communication with Johnson Controls Metasys control system. De-humidification manufacturer shall verify on-site full communication and operation with Johnson Controls temperature control system before the de-humidification system will be accepted by the Owner.

C. Tests and Inspections:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 2. Adjust seals and purge.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 4. Set initial temperature and humidity set points.
 5. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
 6. Completely test the operation of the gas-fired burner and verify gas burner efficiency.
 7. Verify gas venting arrangement and confirm proper installation for burner configuration.

D. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain desiccant de-humidification units.

END OF SECTION 237000
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 237313 - MODULAR INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Variable-air-volume, single-zone air-handling units.

1.3 PERFORMANCE REQUIREMENTS

A. Structural Performance: Casing panels shall be self-supporting and capable of withstanding 133 percent of internal static pressures indicated, without panel joints exceeding a deflection of L/200 where "L" is the unsupported span length within completed casings.

1.4 SUBMITTALS

A. Product Data: For each air-handling unit indicated.
 1. Unit dimensions and weight.
 2. Cabinet material, metal thickness, finishes, insulation, and accessories.
 3. Fans:
 a. Certified fan-performance curves with system operating conditions indicated.
 b. Certified fan-sound power ratings.
 c. Fan construction and accessories.
 d. Motor ratings, electrical characteristics, and motor accessories.
 4. Certified coil-performance ratings with system operating conditions indicated.
 5. Dampers, including housings, linkages, and operators.
 6. Filters with performance characteristics.

B. Coordination Drawings: Floor plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Mechanical-room layout and relationships between components and adjacent structural and mechanical elements.
 2. Support location, type, and weight.
 3. Field measurements.

C. Source quality-control reports.

D. Field quality-control reports.

E. Operation and Maintenance Data: For air-handling units to include in emergency, operation, and maintenance manuals.
1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.

C. ARI Certification: Air-handling units and their components shall be factory tested according to ARI 430, "Central-Station Air-Handling Units", and shall be listed and labeled by ARI.

D. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2010, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup".

E. ASHRAE/IESNA 90.1-2016 Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2016, Section 6 - "Heating, Ventilating, and Air-Conditioning".

F. Comply with NFPA 70.

1.6 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate sizes and locations of structural-steel support members, if any, with actual equipment provided.

1.7 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Filters: One set(s) for each air-handling unit.
2. Gaskets: One set(s) for each access door.
3. Fan Belts: One set(s) for each air-handling unit fan.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Air Enterprises, Inc.
2. Carrier Corporation; a member of the United Technologies Corporation Family.
3. Aaon, Inc.
4. Engineered Air.
5. Mammoth Inc.
6. McQuay International
7. Trane; American Standard Inc.
8. YORK International Corporation.

2.2 UNIT CASINGS

A. General Fabrication Requirements for Casings:
1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
2. Casing Joints: Sheet metal screws or pop rivets.
3. Sealing: Seal all joints with water-resistant sealant.
4. Factory Finish for Steel and Galvanized-Steel Casings: Immediately after cleaning and pretreating, apply manufacturer's standard two-coat, baked-on enamel finish, consisting of prime coat and thermosetting topcoat.
6. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2010.

B. Casing Insulation and Adhesive:

1. Materials: ASTM C 1071, Type I.
2. Location and Application: Factory applied with adhesive and mechanical fasteners to the internal surface of section panels downstream from, and including, the cooling-coil section.
 a. Liner Adhesive: Comply with ASTM C 916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service-air velocity.
3. Location and Application: Encased between outside and inside casing.

C. Inspection and Access Panels and Access Doors:

1. Panel and Door Fabrication: Formed and reinforced, double-wall and insulated panels of same materials and thicknesses as casing.
2. Inspection and Access Panels:
 a. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Size: Large enough to allow inspection and maintenance of air-handling unit’s internal components.
3. Access Doors:
 a. Hinges: A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Fabricate windows in fan section doors of double-glazed, wire-reinforced safety glass with an air space between panes and sealed with interior and exterior rubber seals.
 d. Size: At least 18 inches wide by full height of unit casing up to a maximum height of 72 inches.
4. Locations and Applications:
 a. Fan Section: Doors.
 b. Access Section: Doors.
 c. Coil Section: Inspection and access panel.
 d. Damper Section: Doors.
 e. Filter Section: Doors large enough to allow periodic removal and installation of filters.
 f. Mixing Section: Doors.

D. Condensate Drain Pans:
1. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and from humidifiers and to direct water toward drain connection.
 a. Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1-2010.
 b. Depth: A minimum of 2 inches deep.

2. Formed sections.
3. Double-wall, stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
4. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.

5. Pan-Top Surface Coating: Asphaltic waterproofing compound.
6. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

E. Air-Handling-Unit Mounting Frame: Formed galvanized-steel channel or structural channel supports, designed for low deflection, welded with integral lifting lugs.

2.3 FAN, DRIVE, AND MOTOR SECTION

A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.
 1. Shafts: Designed for continuous operation at maximum-rated fan speed and motor horsepower, and with field-adjustable alignment.
 a. Turned, ground, and polished hot-rolled steel with keyway. Ship with a protective coating of lubricating oil.
 b. Designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.

B. Centrifugal Fan Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.
 1. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 2. Horizontal-Flanged, Split Housing: Bolted construction.
 3. Housing for Supply Fan: Attach housing to fan-section casing with metal-edged flexible duct connector.
 4. Flexible Connector: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized-steel sheet or 0.032-inch-thick aluminum sheets; select metal compatible with casing.
 1) Fabric Minimum Weight: 26 oz./sq. yd.
 2) Fabric Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3) Fabric Service Temperature: Minus 40 to plus 200 deg F.

C. Plenum Fan Housings: Steel frame and panel; fabricated without fan scroll and volute housing.
D. Backward-Inclined, Centrifugal Fan Wheels: Single-width-single-inlet and double-width-double-inlet construction with curved inlet flange, backplate, backward-inclined blades welded or riveted to flange and backplate; cast-iron or cast-steel hub riveted to backplate and fastened to shaft with set screws.

E. Airfoil, Centrifugal Fan Wheels: Smooth-curved inlet flange, backplate, and hollow die-formed airfoil-shaped blades continuously welded at tip flange and backplate; cast-iron or cast-steel hub riveted to backplate and fastened to shaft with set screws.

F. Fan Shaft Bearings:
 1. Prelubricated and Sealed, Ball Bearings: Self-aligning, pillow-block type with a rated life of 50,000 hours according to ABMA 9.
 2. Grease-Lubricated, Tapered-Roller Bearings: Self-aligning, pillow-block type with double-locking collars and 2-piece, cast-iron housing and a rated life of 50,000 hours according to ABMA 11.

G. Belt Drives: Factory mounted, with adjustable alignment and belt tensioning, and with 1.5 service factor based on fan motor.
 1. Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.
 2. Motor Pulleys: Adjustable pitch for use with 5hp motors and smaller; fixed pitch for use with motors larger than 5hp. Select pulley size so pitch adjustment is at the middle of adjustment range at fan design conditions.
 3. Belts: Oil resistant, nonsparking, and nonstatic; in matched sets for multiple-belt drives.
 4. Belt Guards: Comply with requirements specified by OSHA and fabricate according to SMACNA's "HVAC Duct Construction Standards"; 0.1046-inch-thick, 3/4-inch diamond-mesh wire screen, welded to steel angle frame; prime coated.

H. Internal Vibration Isolation: Fans shall be factory mounted with manufacturer's standard vibration isolation mounting devices having a minimum static deflection of 1 inch.

I. Motor: Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment".
 1. Enclosure Type: Totally enclosed, fan cooled.
 2. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 3. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 4. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
 5. Mount unit-mounted disconnect switches on exterior of unit.

2.4 COIL SECTION

A. General Requirements for Coil Section:
 1. Comply with ARI 410.
 2. Fabricate coil section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
 3. Coils shall not act as structural component of unit.

B. Water Coils:
 1. Performance Ratings: Tested and rated according to ARI 410 and ASHRAE 33.
 2. Minimum Working-Pressure/Temperature Ratings: 200 psig, 325 deg F.
 4. Tubes: ASTM B 743 copper, minimum ½" diameter, minimum 0.020 inch thick.
 5. Fins: Aluminum, minimum 0.006 inch thick.
6. **Headers:** Cast iron with cleaning plugs, and drain and air vent tappings.
7. **Frames:** Galvanized-steel channel frame, minimum 0.052 inch thick for flanged mounting.

C. Refrigerant Coils:

1. **Performance Ratings:** Tested and rated according to ARI 410 and ASHRAE 33.
2. **Minimum Working Pressure/Temperature Ratings:** 300 psig.
3. **Source Quality Control:** Factory tested to 450 psig.
4. **Tubes:** ASTM B 743 copper, minimum ½" diameter, minimum 0.020 inch thick.
5. **Fins:** Aluminum, minimum 0.006 inch thick.
6. **Suction and Distributor Piping:** ASTM B 88, Type L copper tube with brazed joints.
7. **Frames:** Galvanized-steel channel frame, minimum 0.052 inch thick for flanged mounting.

2.5 AIR FILTRATION SECTION

A. General Requirements for Air Filtration Section:

1. **Comply with NFPA 90A.**
2. **Provide minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.**
3. **Provide filter holding frames arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.**

B. Extended-Surface, Disposable Panel Filters:

1. **Factory-fabricated, dry, extended-surface type.**
2. **Thickness:** 2 inches.
3. **Merv (ASHRAE 52.2):** 8.
4. **Media:** Fibrous material formed into deep-V-shaped pleats with antimicrobial agent and held by self-supporting wire grid.
5. **Media-Grid Frame:** Nonflammable cardboard or Galvanized steel.
6. **Mounting Frames:** Welded, galvanized steel, with gaskets and fasteners, suitable for bolting together into built-up filter banks.

C. Filter Gage:

1. **3-1/2-inch-diameter, diaphragm-actuated dial in metal case.**
2. **Vent valves.**
3. **Black figures on white background.**
4. **Front recalibration adjustment.**
5. **2 percent of full-scale accuracy.**
6. **Range:** As required.
7. **Accessories:** Static-pressure tips with integral compression fittings, 1/4-inch plastic tubing, and 2- or 3-way vent valves.

2.6 DAMPERS

A. General Requirements for Dampers: Leakage rate, according to AMCA 500, "Laboratory Methods for Testing Dampers for Rating," shall not exceed 2 percent of air quantity at 2000-fpm face velocity through damper and 4-inch wg pressure differential.

B. Damper Operators: Comply with requirements in Division 23 Section "Instrumentation and Control for HVAC."

C. Outdoor- and Return-Air Mixing Dampers: Parallel-blade, extruded-aluminum dampers mechanically fastened to steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously.
D. Outdoor- and Return-Air Dampers: Low-leakage, double-skin, airfoil-blade, extruded-aluminum dampers with compressible jamb seals and extruded-vinyl blade edge seals in parallel-blade arrangement with steel operating rods rotating in sintered bronze or nylon bearings mounted in a single extruded-aluminum frame, and with operating rods connected with a common linkage. Leakage rate shall not exceed 5 cfm/sq. ft. at 1-inch wg and 9 cfm/sq. ft. at 4-inch wg.

E. Combination Filter and Mixing Section:
 1. Cabinet support members shall hold 2-inch-thick, pleated, flat, permanent or throwaway filters.
 2. Multiple-blade, air-mixer assembly shall mix air to prevent stratification, located immediately downstream of mixing box.

2.7 CASING CONSTRUCTION AND CAPACITIES

A. Casing:
 1. Outside Casing: Galvanized steel, minimum 0.052 inch thick.
 2. Inside Casing: Galvanized steel, solid or perforated, minimum 0.052 inch thick.
 3. Floor Plate: Galvanized steel, minimum 0.052 inch thick.
 4. Insulation Thickness: 2 inches.
 5. Static-Pressure Classifications for Unit Sections before Fans: 3-inch wg negative.
 6. Static-Pressure Classifications for Unit Sections after Fans: 3-inch wg negative.

B. Capacities of unit as indicated on drawings.

2.8 SOURCE QUALITY CONTROL

A. Fan Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data". Test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans". Fans shall bear AMCA-certified sound ratings seal.

B. Fan Performance Rating: Factory test fan performance for airflow, pressure, power, air density, rotation speed, and efficiency. Rate performance according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating".

C. Water Coils: Factory tested to 300 psig according to ARI 410 and ASHRAE 33.

D. Refrigerant Coils: Factory tested to 450 psig according to ARI 410 and ASHRAE 33.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine casing insulation materials and filter media before air-handling unit installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for steam, hydronic, and condensate drainage piping systems and electrical services to verify actual locations of connections before installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Equipment Mounting: Install air-handling units on concrete bases. Secure units to anchor bolts installed in concrete bases. Comply with requirements for concrete bases specified in Division 03 Section "Cast-in-Place Concrete." Comply with requirements for vibration isolation devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment".

1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
2. Install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to supported equipment.

B. Equipment Mounting: Install air-handling unit with vibration isolation devices. Comply with requirements for vibration isolation devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment".

C. Arrange installation of units to provide access space around air-handling units for service and maintenance.

D. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.

E. Install filter-gage, static-pressure taps upstream and downstream of filters. Mount filter gages on outside of filter housing or filter plenum in accessible position. Provide filter gages on filter banks, installed with separate static-pressure taps upstream and downstream of filters.

3.3 CONNECTIONS

A. Comply with requirements for piping specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to air-handling unit to allow service and maintenance.

C. Connect piping to air-handling units mounted on vibration isolators with flexible connectors.

D. Connect condensate drain pans using NPS 1-1/4, ASTM B 88, Type M copper tubing. Extend to nearest equipment or floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.

E. Hot- and Chilled-Water Piping: Comply with applicable requirements in Division 23 Section "Hydronic Piping". Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.

F. Refrigerant Piping: Comply with applicable requirements in Division 23 Section "Refrigerant Piping". Install shutoff valve and union or flange at each supply and return connection.

G. Connect duct to air-handling units with flexible connections. Comply with requirements in Division 23 Section "Air Duct Accessories".

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
 1. Leak Test: After installation, fill water and steam coils with water, and test coils and connections for leaks.
 2. Charge refrigerant coils with refrigerant and test for leaks.
 3. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. HEPA-Filter Operational Test: Pressurize housing to a minimum of 3-inch wg or to designed operating pressure, whichever is higher; test housing joints, door seals, and sealing edges of filter with soapy water to check for air leaks.
 5. HEPA-Filter Operational Test: Pressurize housing to a minimum of 3-inch wg or to designed operating pressure, whichever is higher; test housing joints, door seals, and sealing edges of filter for air leaks according to ASME N510, pressure-decay method.
 6. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Air-handling unit or components will be considered defective if unit or components do not pass tests and inspections.

E. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Verify that shipping, blocking, and bracing are removed.
 3. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.
 4. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations. Reconnect fan drive system, align belts, and install belt guards.
 5. Verify that bearings, pulleys, belts, and other moving parts are lubricated with factory-recommended lubricants.
 6. Verify that outdoor- and return-air mixing dampers open and close, and maintain minimum outdoor-air setting.
 7. Comb coil fins for parallel orientation.
 8. Install new, clean filters.
 9. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.

B. Starting procedures for air-handling units include the following:
 1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm. Replace fan and motor pulleys as required to achieve design conditions.
 2. Measure and record motor electrical values for voltage and amperage.
 3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.6 ADJUSTING

A. Adjust damper linkages for proper damper operation.
3.7 CLEANING

A. After completing system installation and testing, adjusting, and balancing air-handling unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-handling units.

END OF SECTION 237313
SECTION 238233 - RADIATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

B. This section specifies a system or part of a system being commissioned as defined in section 019113 Commissioning. Refer to section 019113 for additional requirements.

1.2 SUMMARY

A. This Section includes the following:

1.3 SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each type of product indicated.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1. Plans, elevations, sections, and details.
2. Details of custom-fabricated enclosures indicating dimensions.
3. Location and size of each field connection.
4. Location and arrangement of piping valves and specialties.
5. Location and arrangement of integral controls.
6. Enclosure joints, corner pieces, access doors, and other accessories.

C. Coordination Drawings: Floor plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

1. Structural members, including wall construction, to which convection units will be attached.
2. Method of attaching convection units to building structure.
3. Penetrations of fire-rated wall and floor assemblies.

D. Color Samples for Initial Selection: For units with factory-applied color finishes.

E. Color Samples for Verification: For each type of exposed finish required.

F. Field quality-control test reports.

G. Operation and Maintenance Data: For convection heating units to include in emergency, operation, and maintenance manuals.
PART 2 - PRODUCTS

2.1 HOT-WATER FINNED-TUBE RADIATORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Sigma.
2. Rittling, a div. of Hydro-Air Components.
3. Slant/Fin.
4. Sterling Hydronics; A Mestek Company.
5. Runtal
6. Vulcan

B. Performance Ratings: Rate finned-tube radiators according to Hydronics Institute's "I=B=R Testing and Rating Standard for Finned-Tube (Commercial) Radiation."

C. Heating Elements: Copper tubing mechanically expanded into flanged collars of evenly spaced aluminum fins resting on element supports. One tube end shall be belled.

1. Tube Diameter: Minimum NPS 1 or as scheduled on drawings.
2. Fin Size: Minimum 4 by 4 inches or as scheduled on drawings.

D. Element Supports: Ball-bearing cradle type to permit longitudinal movement on enclosure brackets.

E. Rust-Resistant Front Panel: Minimum 0.052-inch-thick, ASTM A 653, G60 galvanized steel.

F. Floor-Mounting Pedestals: Conceal insulated piping at maximum 36-inch spacing. Pedestal-mounting back panel shall be solid panel matching front panel. Provide stainless-steel escutcheon for floor openings at pedestals.

G. Support Brackets: Locate at maximum 36-inch spacing to support front panel and element.

H. Finish: Baked-enamel finish in manufacturer's standard color as selected by Architect.

I. Access Doors: Factory made, permanently hinged with tamper-resistant fastener, minimum size 6 by 7 inches, integral with enclosure.

J. Enclosure Style: Flat top.

1. Top Outlet Grille: Extruded-aluminum linear bar grille; pencil-proof bar spacing.
 a. Anodized finish, color as selected by Architect from manufacturer's standard colors.

K. Accessories: Filler sections, corners, relay sections, and splice plates all matching the enclosure and grille finishes.

L. See schedule where indicated without enclosures.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to receive convection heating units for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in for connections to verify actual locations before convection heating unit installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FINNED-TUBE RADIATOR INSTALLATION

A. Install units level and plumb.

B. Install enclosure continuously around corners, using outside and inside corner fittings.

C. Join sections with splice plates and filler pieces to provide continuous enclosure.

D. Install access doors for access to valves.

E. Install enclosure continuously from wall to wall or as noted on drawings.

F. Terminate enclosures with manufacturer's end caps, except where enclosures are indicated to extend to adjoining walls.

G. Install valves within reach of access door provided in enclosure.

H. Install air-seal gasket between wall and recessing flanges or front cover of fully recessed unit.

I. Install piping within pedestals for freestanding units.

3.3 CONNECTIONS

A. Piping installation requirements are specified in Division 23 Section "Hydronic Piping". Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect hot-water units and components to piping according to Division 23 Section "Hydronic Piping".

 1. Install shutoff valves on inlet and outlet, and balancing valve on outlet.

C. Install control valves as required by Division 23 Section "Instrumentation and Control for HVAC".

D. Install piping adjacent to convection heating units to allow service and maintenance.

3.4 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper convection heating unit operation.
3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Remove and replace convection heating units that do not pass tests and inspections and retest as specified above.

END OF SECTION 238233
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Cabinet unit heaters with centrifugal fans and hot-water heating coils.
 2. Propeller unit heaters with hot-water or steam coils.

1.3 DEFINITIONS

A. BAS: Building automation system.
B. CWP: Cold working pressure.
C. PTFE: Polytetrafluoroethylene plastic.
D. TFE: Tetrafluoroethylene plastic.

1.4 SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each product indicated.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 1. Plans, elevations, sections, and details.
 2. Location and size of each field connection.
 3. Details of anchorages and attachments to structure and to supported equipment.
 4. Equipment schedules to include rated capacities, operating characteristics, furnished specialties, and accessories.
 5. Location and arrangement of piping valves and specialties.
 6. Location and arrangement of integral controls.

C. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 1. Suspended ceiling components.
 2. Structural members to which unit heaters will be attached.
 3. Method of attaching hangers to building structure.
 4. Size and location of initial access modules for acoustical tile.
 5. Items penetrating finished ceiling, including the following:
a. Lighting fixtures.
b. Air outlets and inlets.
c. Speakers.
d. Sprinklers.
e. Access panels.

6. Perimeter moldings for exposed or partially exposed cabinets.

D. Samples for Initial Selection: Finish colors for units with factory-applied color finishes.

E. Field quality-control test reports.

F. Operation and Maintenance Data: For cabinet unit heaters to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

1.6 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Cabinet Unit Heater Filters: Furnish one spare filter(s) for each filter installed.

PART 2 - PRODUCTS

2.1 CABINET UNIT HEATERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Hot Water:

 a. Airtherm; a Mestek Company.
 b. Carrier Corporation.
 c. Dunham-Bush, Inc.
 d. Vulcan
 e. Engineered Air Ltd.
 g. Daikin/McQuay
 h. Trane.
 i. USA Coil & Air.

B. Description: A factory-assembled and -tested unit complying with ARI 440.

C. Coil Section Insulation: Comply with NFPA 90A or NFPA 90B. Unicellular polyethylene thermal plastic, preformed sheet insulation complying with ASTM C 534, Type II, except for density.

1. Thickness: 1/2 inch.
2. Thermal Conductivity (k-Value): 0.24 Btu x in./h x sq. ft. at 75 deg F mean temperature.
3. Fire-Hazard Classification: Maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM C 411.
4. Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

D. Cabinet: Steel with baked-enamel finish with manufacturer's standard paint, in color selected by Architect.

1. Vertical Unit, Exposed Front Panels: Minimum 0.0528-inch-thick, galvanized, sheet steel, removable panels with channel-formed edges secured with tamperproof cam fasteners.
2. Horizontal Unit, Exposed Bottom Panels: Minimum 0.0528-inch-thick, galvanized, sheet steel, removable panels secured with tamperproof cam fasteners and safety chain.
3. Recessing Flanges: Steel, finished to match cabinet.
4. Control Access Door: Key operated.
5. Base: Minimum 0.0528-inch-thick steel, finished to match cabinet, 4 inches high with leveling bolts.
7. False Back: Minimum 0.0428-inch-thick steel, finished to match cabinet.

E. Filters: Minimum arrestance according to ASHRAE 52.1 and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.

1. Glass Fiber Treated with Adhesive: 80 percent arrestance and 5 MERV.

F. Hot-Water Coil: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain.

G. Fan and Motor Board: Removable.

1. Fan: Forward curved, high static, double width, centrifugal; directly connected to motor. Thermoplastic or painted-steel wheels, and aluminum, painted-steel, or galvanized-steel fan scrolls.
2. Motor: Permanently lubricated, multispeed; resiliently mounted on motor board. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
3. Wiring Terminations: Connect motor to chassis wiring with plug connection.

H. Factory, Hot-Water Piping Package: ASTM B 88, Type L copper tube with wrought-copper fittings and brazed joints. Label piping to indicate service, inlet and outlet.

1. Two or Three-way, modulating control valve. Three-way valve packages shall include bypass line with manually adjustable balance device.
2. Two-Piece, Ball Valves: Bronze body with full-port, chrome-plated bronze ball; PTFE or TFE seats; and 600-psig minimum CWP rating and blowout-proof stem.
3. Calibrated-Orifice Balancing Valves: Bronze body, ball type, 125-psig working pressure, 250 deg F maximum operating temperature; with calibrated orifice or venture, connection for portable differential pressure meter with integral seals, threaded ends, and equipped with a memory stop to retain set position.

I. Control devices and operational sequences are specified in Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls."

J. Basic Unit Controls:
1. Wall-mounting or Unit-mounted thermostat with the following features.

K. BAS Interface Requirements:

1. Interface shall be BAC-net or LonWorks compatible for central BAS workstation and include the following functions:
 a. Cabinet unit heater start, stop, and operating status.
 b. Occupied and unoccupied schedules.

L. Electrical Connection: Factory wire motors and controls for a single field connection.

M. Capacities and Characteristics as indicated on drawings.

2.2 PROPELLER UNIT HEATERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Airtherm; a Mestek Company.
2. Dunham Bush Inc.
3. Engineered Air Ltd.
4. Vulcan
5. Sigma
7. Modine.
8. Trane.

B. Description: An assembly including casing, coil, fan, and motor in vertical and horizontal discharge configuration with adjustable discharge louvers.

C. Comply with UL 2021.

D. Comply with UL 823.

E. Cabinet: Removable panels for maintenance access to controls.

F. Cabinet Finish: Manufacturer's standard baked enamel applied to factory-assembled and -tested propeller unit heater before shipping.

G. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

H. Discharge Louver: Adjustable fin diffuser for horizontal units and conical diffuser for vertical units.

I. General Coil Requirements: Test and rate hot-water or steam propeller unit heater coils according to ASHRAE 33.

J. Hot-Water Coil: Copper tube, minimum 0.025-inch wall thickness, with mechanically bonded aluminum fins spaced no closer than 0.1 inch and rated for a minimum working pressure of 200 psig (1380 kPa) and a maximum entering-water temperature of 325 deg F, with manual air vent. Test for leaks to 350 psig underwater.

K. Fan: Propeller type with aluminum wheel directly mounted on motor shaft in the fan venturi.
L. Fan Motors: Comply with requirements in Division 23 Section “Common Motor Requirements for HVAC Equipment.”
 1. Motor Type: Permanently lubricated.

M. Control Devices:
 1. Unit-mounted or Wall-mounting thermostat.

N. Capacities and Characteristics: As indicated on drawings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to receive unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in for piping and electrical connections to verify actual locations before unit heater installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall boxes in finished wall assembly; seal and weatherproof. Joint-sealant materials and applications are specified in Division 07 Section "Joint Sealants."

B. Install cabinet unit heaters to comply with NFPA 90A.

C. Install propeller unit heaters level and plumb.

D. Suspend cabinet unit heaters from structure with elastomeric hangers. Vibration isolators are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

E. Suspend propeller unit heaters from structure with all-thread hanger rods. Hanger rods and attachments to structure are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment." Vibration hangers are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

F. Install wall-mounting thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.

G. Install new filters in each fan-coil unit within two weeks of Substantial Completion.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to machine to allow service and maintenance.
C. Connect piping to cabinet unit heater's factory, hot-water piping package. Install the piping package if shipped loose.

D. Connect supply and return ducts to cabinet unit heaters with flexible duct connectors specified in Division 23 Section "Air Duct Accessories."

E. Comply with safety requirements in UL 1995.

F. Unless otherwise indicated, install union and gate or ball valve on supply-water connection and union and calibrated balancing valve on return-water connection of unit heater. Hydronic specialties are specified in Division 23 Section "Hydronic Piping."

G. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

H. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

B. Perform the following field tests and inspections and prepare test reports:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace malfunctioning units and retest as specified above.

3.5 ADJUSTING

A. Adjust initial temperature set points.

END OF SECTION 238239
SECTION 238413 - HUMIDIFIERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following humidifiers:

1. Self-contained.

1.3 DEFINITION

A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

1.4 SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories.

B. Shop Drawings: Detail fabrication and installation of humidifiers. Include piping details, plans, elevations, sections, details of components, manifolds, and attachments to other work.

C. Coordination Drawings: Detail humidifiers and adjacent equipment. Show support locations, type of support, weight on each support, required clearances, and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

1. Structural members to which humidifiers will be attached.
2. Size and location of initial access modules for acoustical tile.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For humidifiers to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with ARI 640, "Commercial and Industrial Humidifiers."
1.6 COORDINATION

A. Coordinate location and installation of humidifiers with manifolds in ducts and air-handling units or occupied space. Revise locations and elevations to suit field conditions and to ensure proper humidifier operation.

PART 2 - PRODUCTS

2.1 SELF-CONTAINED HUMIDIFIERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Nortec Industries Inc.
3. PURE Humidifier

C. Manifold: ASTM A 666, Type 304 stainless-steel tube extending across entire width of duct or plenum and equipped with mounting brackets on ends.

D. Cabinet: Sheet metal enclosure for housing heater cylinder, electrical wiring, components, controls, and control panel. Enclosure shall include baked-enamel finish, hinged or removable access door, and threaded outlet in bottom of cabinet for drain piping.

E. Control Panel:

1. Factory-wired disconnect switch.
2. Liquid-crystal display.
3. Programmable keyboard.
4. Set-point adjustment.
5. Warning signal indicating end of replaceable cylinder or ionic bed insert life.
7. Diagnostic, maintenance, alarm, and status features.
8. High-water sensor to prevent overfilling.

F. Controls:

1. Microprocessor-based control system for modulating or cycling control, and start/stop and status monitoring for interface to central HVAC instrumentation and controls.
2. Solenoid-fill and automatic drain valves to maintain water level and temper hot drain water.
3. Field-adjustable timer to control drain cycle for flush duration and interval.
4. Controls shall drain tanks if no demand for humidification for more than 72 hours.
5. Conductivity-type level controls.

G. Accessories:

1. Humidistat: Duct-mounting, solid-state, electronic-sensor controller capable of full modulation or cycling control.
2. Duct-mounting, high-limit humidistat.
3. Airflow switch for preventing humidifier operation without airflow.

H. Capacities and Characteristics as indicated on drawings.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine ducts, air-handling units, and conditions for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in for piping systems to verify actual locations of piping connections before humidifier installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install humidifiers with required clearance for service and maintenance. Maintain path, downstream from humidifiers, clear of obstructions as required by ASHRAE 62.1-2010.

B. Seal humidifier manifold duct or plenum penetrations with flange.

C. Install humidifier manifolds in metal ducts and casings constructed according to SMACNA's "HVAC Duct Construction Standards, Metal and Flexible."

D. Install stainless-steel drain pan under each manifold mounted in duct.
 1. Construct drain pans with connection for drain; insulated and complying with ASHRAE 62.1-2010.
 2. Connect to condensate trap and drainage piping.
 3. Extend drain pan upstream and downstream from manifold a minimum distance recommended by manufacturer but not less than required by ASHRAE 62.1-2010.

E. Install manifold supply piping pitched to drain condensate back to humidifier.

F. Install drip leg upstream from steam trap a minimum of 6 inches tall for proper operation of trap.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
 1. Install piping adjacent to humidifiers to allow service and maintenance.
 2. Install shutoff valve, strainer, backflow preventer, and union in humidifier makeup line.

B. Install electrical devices and piping specialties furnished by manufacturer but not factory mounted.

C. Install piping from safety relief valves to nearest floor drain.

D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
B. Perform tests and inspections and prepare test reports.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Remove and replace malfunctioning units and retest as specified above.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain humidifiers. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 238413
SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Electrical equipment coordination and installation.
2. Common electrical installation requirements.

1.3 COORDINATION
A. Coordinate arrangement, mounting, and support of electrical equipment:
1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
3. To allow right of way for piping and conduit installed at required slope.
4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."
D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION
A. Comply with NECA 1.
B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL RACEWAY AND CABLING PENETRATIONS
A. Install sleeves as specified in Division 26 Section “Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.3 SLEEVE-SEAL INSTALLATION
A. Install sleeve-seals as specified in Division 26 Section “Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.4 FIRESTOPPING
A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical raceway and cabling installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

3.5 DEMONSTRATION
A. At substantial completion, contractor shall walk owner and facility maintenance personnel through the building to point out major electrical equipment locations including but not limited to:
1. Panelboards
2. Switchboards
3. Disconnects
4. Driver Locations
5. Inverter Locations
6. Lighting Control equipment
7. Fire alarm equipment consisting of fire alarm control panel, annunciator, power supplies, etc.
8. Meters
9. Access panels

END OF SECTION 260500
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Copper building wire rated 600 V or less.
2. Metal-clad cable, Type MC, rated 600 V or less.
3. Connectors, splices, and terminations rated 600 V and less.

1.3 DEFINITIONS
A. EPDM: Ethylene-propylene-diene terpolymer rubber
B. NBR: Acrylonitrile-butadiene rubber
C. RoHS: Restriction of Hazardous Substances.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Product Schedule: Indicate type, use, location, and termination locations.

1.5 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

1.6 QUALITY ASSURANCE
A. Testing Agency Qualifications: Member company of NETA.
B. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.
C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE
A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.
B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Alcan Products Corporation; Alcan Cable Division.
 3. General Cable Corporation.
 4. Senator Wire & Cable Company.
 5. Southwire Company.
C. Standards:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 2. RoHS compliant.
 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
D. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.
E. Conductor Insulation:
 1. Type THHN and Type THWN-2: Comply with UL 83. (Minimum insulation rating shall be 90 deg C)

2.2 METAL-CLAD CABLE, TYPE MC
A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath.
B. MC Cable only to be used for dedicated light fixture whips up to 6'-0" long or where specifically permitted on drawings.
C. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Alcan Products Corporation; Alcan Cable Division.
3. General Cable Corporation.
4. Senator Wire & Cable Company.
5. Southwire Company.

D. Standards:
1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
2. Comply with UL 1569.
3. RoHS compliant.
4. Conductor and Cable Marking: Comply with wire and cable marking according to UL’s “Wire and Cable Marking and Application Guide.”

E. Circuits:

F. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors

G. Ground Conductor: Insulated.

H. Conductor Insulation:
1. Type THHN/THWN-2: Comply with UL 83.

I. Armor: Steel, interlocked.

J. Jacket: PVC applied over armor.

2.3 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. AFC Cable Systems, Inc.
3. O-Z/Gedney; EGS Electrical Group LLC.
4. 3M; Electrical Products Division.
5. Tyco Electronics Corp.

C. Use of 3M ScotchLok connectors or push-in wire connectors (similar to WAGO push-in connectors) are not permitted. All wiring to be done with wire nut type connectors.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
B. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THHN/THWN-2, single conductors in raceway.
B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.
C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawls: Type THHN/THWN-2, single conductors in raceway.
D. Exposed Branch Circuits, Including in Crawls: Type THHN/THWN-2, single conductors in raceway.
E. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.
1. Metal-clad cable, Type MC cable is only allowed for lighting fixture whips up to 6’-0” long. They must be dedicated whips.
2. Refer to drawings for other specific locations where MC cable is permitted. (for difficult to reach spaces with a maximum length of 6ft. Longer lengths to be pre-approved by owner)
F. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.
G. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.
H. Class 1 Control Circuits: Type THHN/THWN-2, in raceway.
I. Class 2 Control Circuits: Type THHN/THWN-2, in raceway.
3.3 INSTALLATION OF CONDUCTORS AND CABLES
A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sideway pressure values.
D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS
A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches of slack.

3.5 IDENTIFICATION
A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING
A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL
A. Perform tests and inspections.
 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors over 200 amps for compliance with requirements.
 2. Perform each of the following visual and electrical tests:
 a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 b. Test bolted connections for high resistance using one of the following:
 1) A low-resistance ohmmeter.
 2) Calibrated torque wrench.
 3) Thermographic survey.
 c. Inspect compression-applied connectors for correct cable match and indentation.
 d. Inspect for correct identification.
 e. Inspect cable jacket and condition.
 f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
 g. Continuity test on each conductor and cable.
 h. Uniform resistance of parallel conductors.
 3. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
4. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.

B. Cables will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION 260519
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes: Grounding systems and equipment.
B. Section includes grounding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Ground bonding common with lightning protection system.
 3. Foundation steel electrodes.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Test wells.
 2. Ground rods.
 3. Grounding arrangements and connections for separately derived systems.
C. Field quality-control reports.
D. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. Instructions for periodic testing and inspection of grounding features at test wells, ground rings, grounding connections for separately derived systems based on NETA MTS.
 a. Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 b. Include recommended testing intervals.

1.4 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS
A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
B. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches (28 mm) apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V. Lexan or PVC, impulse tested at 5000 V.

2.2 CONNECTORS
A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 1. Pipe Connectors: Clamp type, sized for pipe.
C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

D. Bus-bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

E. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.

F. Cable-to-Cable Connectors: Compression type, copper or copper alloy.

G. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.

H. Conduit Hubs: Mechanical type, terminal with threaded hub.

I. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.

J. Lay-in Lug Connector: Mechanical type, copper rated for direct burial terminal with set screw.

K. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.

L. Signal Reference Grid Clamp: Mechanical type, stamped-steel terminal with hex head screw.

M. Straps: Solid copper, copper lugs. Rated for 600 A.

N. Tower Ground Clamps: Mechanical type, copper or copper alloy, terminal two-piece clamp.

O. Water Pipe Clamps:
 1. Mechanical type, two pieces with stainless-steel bolts.
 b. Listed for direct burial.
 2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel, sectional type; 3/4 inch by 10 feet in diameter.

B. Ground Plates: 1/4 inch thick, hot dip galvanized.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down to specified height above floor; connect to horizontal bus.

C. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

D. Signal and Communication Equipment: In addition to grounding and bonding required by NFPA 70, provide a separate grounding system complying with requirements in TIA/ATIS J-STD-607-A.
 1. For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
 2. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a 1/4-by-4-by-12-inch grounding bus.
 3. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

E. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

GROUNDS AND BONDING FOR ELECTRICAL SYSTEMS 260526 - 2/4
3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Division 26 Section "Raceways and Boxes for Electrical Systems," and shall be at least 12 inches deep, with cover.
 1. Test Wells: Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.

E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

F. Grounding and Bonding for Piping:
 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

G. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.

H. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.

I. Ufer Ground (Concrete-Encased Grounding Electrode): Fabricate according to NFPA 70; use a minimum of 20 feet of bare copper conductor not smaller than No. 4 AWG.
 1. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.
 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.

3.4 LABELING

A. Comply with requirements in Division 26 Section "Identification for Electrical Systems" Article for instruction signs. The label or its text shall be green.

B. Install labels at the telecommunications bonding conductor and at the grounding electrode conductor where exposed.
 1. Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.

2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.

4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

C. Grounding system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

E. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 1 ohm(s).

F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Steel slotted support systems.
 2. Conduit and cable support devices.
 3. Support for conductors in vertical conduit.
 4. Structural steel for fabricated supports and restraints.
 5. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
 6. Fabricated metal equipment support assemblies.
B. Related Requirements:
 1. Section 260548.16 "Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 a. Slotted support systems, hardware, and accessories.
 b. Hangers and supports for electrical equipment and systems.
 2. Include rated capacities and furnished specialties and accessories.
B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.
 2. Slotted support systems.
 3. Equipment supports.
 4. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
C. Delegated-Design Submittal: For hangers and supports for electrical systems.
 1. Include design calculations and details of hangers.
 2. Include design calculations for seismic restraints.

1.4 INFORMATIONAL SUBMITTALS
A. Seismic Qualification Data: Certificates, for hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
B. Welding certificates.

1.5 QUALITY ASSURANCE
A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.
B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified."

2. Component Importance Factor: 1.0

3. Component Amplification Factor: Per Table 13.6-1 of the ASCE 7-10.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Prefomed steel channels and angles with minimum 13/32-inch- diameter holes at a maximum of 8 inches o.c. in at least one surface.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.

2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.

4. Channel Width: Selected for applicable load criteria.

5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

6. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.

7. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated stainless steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

2. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.

3. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.

4. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

5. Toggle Bolts: All-steel springhead type.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:

1. NECA 1.
2. NECA 101
3. NECA 105.

B. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.
C. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 1. Secure raceways and cables to these supports with two-bolt conduit clamps.

3.2 SUPPORT INSTALLATION
A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 1. To Wood: Fasten with lag screws or through bolts.
 2. To New Concrete: Bolt to concrete inserts.
 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 4. To Existing Concrete: Expansion anchor fasteners.
 5. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
 6. To Light Steel: Sheet metal screws.
 7. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.
D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 CONCRETE BASES
A. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
C. Anchor equipment to concrete base as follows:
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.4 PAINTING
A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
B. Touchup: Comply with requirements in Division 09 Painting Sections for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Metal conduits, tubing, and fittings.
2. Nonmetal conduits, tubing, and fittings.
3. Metal wireways and auxiliary gutters.
4. Surface raceways.
5. Boxes, enclosures, and cabinets.
6. Handholes and boxes for exterior underground cabling.

1.3 DEFINITIONS
A. GRC: Galvanized rigid steel conduit.
B. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS
A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS
A. Seismic Qualification Certificates: For enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.
B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS
A. Available Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. AFC Cable Systems, Inc.
2. Alflex Inc.
3. Allied Tube & Conduit; a Tyco International Ltd. Co.
4. Anamet Electrical, Inc.; Anaconda Metal Hose.
5. Electri-Flex Co.
7. Maverick Tube Corporation.
B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. GRC: Comply with ANSI C80.1 and UL 6.
D. IMC: Comply with ANSI C80.6 and UL 1242.
E. PVC-Coated Steel Conduit: PVC-coated [rigid steel conduit] [IMC].
 1. Comply with NEMA RN 1.
 2. Coating Thickness: 0.040 inch, minimum.
F. EMT: Comply with ANSI C80.3 and UL 797.
2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

A. Available Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AFC Cable Systems, Inc.
 2. Anamet Electrical, Inc.; Anaconda Metal Hose.
 3. Araco Corporation.
 4. CANTEX Inc.
 7. ElecSYS, Inc.
 8. Electri-Flex Co.
 9. Lamson & Sessions; Carlon Electrical Products.
 10. Manhattan/CDT/Cole-Flex.
 11. RACO; a Hubbell Company.
 12. Thomas & Betts Corporation.

B. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. ENT: Comply with NEMA TC 13 and UL 1653.

D. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

E. LFNC: Comply with UL 1660.

F. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

G. Fittings for LFNC: Comply with UL 514B.

H. Solvents and Adhesives: As recommended by conduit manufacturer.
 1. Solvent cements and adhesive primers shall have a VOC content of 510 and 550g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Available Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper B-Line, Inc.
 2. Hoffman.
 3. Square D; Schneider Electric.

B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.
 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Screw-cover type unless otherwise indicated.

E. Finish: Manufacturer's standard enamel finish.

2.4 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.
C. Surface metal raceway is not to be used unless there is specific owner approval for each instance. Contractor shall provide routing for approval prior to rough-in.

D. Available Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Thomas & Betts Corporation.
3. Wiremold Company (The); Electrical Sales Division.

2.5 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
2. EGS/Appleton Electric.
7. RACO; a Hubbell Company.
10. Spring City Electrical Manufacturing Company.

B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.

E. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.

F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.

H. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

I. Device Box Dimensions: 4 inches square by 2-1/8 inches deep or 4 inches by 2-1/8 inches by 2-1/8 inches deep depending on device configuration or as noted on drawings.

J. Gangable boxes are allowed.

K. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.

1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.

L. Cabinets:

1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
2. Hinged door in front cover with flush latch and concealed hinge.
3. Key latch to match panelboards.
4. Metal barriers to separate wiring of different systems and voltage.
5. Accessory feet where required for freestanding equipment.
6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.6 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

A. General Requirements for Handholes and Boxes:

1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with frame and covers of polymer concrete.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Armorcast Products Company.
b. Carson Industries LLC.
c. CDR Systems Corporation.
d. NewBasis.
e. Hubbell Quazite (Basis of Design)

2. Standard: Comply with SCTE 77.
3. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
4. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
5. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
6. Cover Legend: Molded lettering, "ELECTRIC."

2.7 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
1. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
2. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
1. Exposed Conduit: GRC.
2. Concealed Conduit, Aboveground: GRC.
3. Underground Conduit: RNC, Type EPC-40-PVC, direct buried or concrete encased as noted on drawings.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:
1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed, Not Subject to Severe Physical Damage: EMT.
3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: GRC.
7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

F. Install surface raceways only where indicated on Drawings.

G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.
3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 5. Change from ENT to GRC or IMC before rising above floor.

J. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

L. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

N. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

O. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

P. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

Q. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

R. Surface Raceways:
 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

S. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

T. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where an underground service raceway enters a building or structure.
 3. Where otherwise required by NFPA 70.

U. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
V. Expansion-Joint Fittings:
1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

W. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for [recessed and semirecessed luminaires], equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
1. Use LFMC in damp or wet locations subject to severe physical damage.
2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

X. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

Y. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

Z. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

AA. Locate boxes so that cover or plate will not span different building finishes.

BB. Support boxes of three gangs or more from one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

CC. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

DD. Set metal floor boxes level and flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:
1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches in nominal diameter.
2. Install backfill as specified in Section 312000 "Earth Moving."
3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."
4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
 b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
5. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits but a minimum of 6 inches below grade. Align planks along centerline of conduit.
6. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."
3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES
 A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
 B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.
 C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.
 D. Install handholes with bottom below frost line, 36” below grade.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
 A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING
 A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 PROTECTION
 A. Protect coatings, finishes, and cabinets from damage and deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
B. Related Requirements:
 1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES
A. Wall Sleeves:
 2. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
 3. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

2.2 SLEEVE-SEAL SYSTEMS
A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. CALPICO, Inc.
 c. Metraflex Company (The)
 d. Pipeline Seal and Insulator, Inc.
 e. Proco Products, Inc.
 f. Link-Seal
 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 GROUT
A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
 C. Design Mix: 5000-psi, 28-day compressive strength.
 D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS
A. Comply with NECA 1.
B. Comply with NEMA VE 2 for cable tray and cable penetrations.
C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION
A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

END OF SECTION 260544
SECTION 260548 - VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Restraint channel bracings.
 2. Restraint cables.
 4. Mechanical anchor bolts.
 5. Adhesive anchor bolts.
B. Related Requirements:
 1. Section 260529 "Hangers and Supports for Electrical Systems" for commonly used electrical supports and installation requirements.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES.
 b. Annotate to indicate application of each product submitted and compliance with requirements.
B. Delegated-Design Submittal: For each seismic-restraint device.
 1. Include design calculations and details for selecting seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 2. Design Calculations: Calculate static and dynamic loading caused by equipment weight, operation, and seismic forces required to select seismic restraints and for designing vibration isolation bases.
 a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 3. Seismic-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 d. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints.
B. Qualification Data: For professional engineer and testing agency.
C. Welding certificates.
D. Field quality-control reports.

1.5 QUALITY ASSURANCE
A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.
B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis. They shall bear anchorage preapproval from OSHPD in addition to preapproval, showing maximum seismic-restraint ratings, by ICC-ES or another agency acceptable to authorities having jurisdiction. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) that support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

E. Comply with NFPA 70.

1.6 PERFORMANCE REQUIREMENTS

A. Seismic-Restraint Loading:
 1. Seismic Design Category as Defined in the IBC: C.
 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: II.
 a. Component Importance Factor: Refer to ASCE7-10 Section 13.1.3.
 b. Component Response Modification Factor: Refer to ASCE7-10 Section 13.6-1.
 c. Component Amplification Factor: Refer to ASCE7-10 Section 13.1.3.
 3. Design Spectral Response Acceleration at Short Periods (0.2 Second): Sds = 13.6%.
 4. Design Spectral Response Acceleration at 1.0-Second Period: Sd1 = 10.7%.

PART 2 - PRODUCTS

2.1 SEISMIC-RESTRAINT DEVICES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Amber/Booth Company, Inc.
 2. California Dynamics Corporation.
 3. Cooper B-Line, Inc.; a division of Cooper Industries.
 4. Hilti Inc.
 5. Loos & Co.; Seismic Earthquake Division.
 7. TOLCO Incorporated; a brand of NIBCO INC.
 8. Unistrut; Tyco International, Ltd.

B. General Requirements for Restraint Components: Rated strengths, features, and application requirements shall be as defined in reports by an evaluation service member of ICC-ES.
 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.

D. Restraint Cables: ASTM A 603 galvanized-steel cables with end connections made of steel assemblies with thimbles, brackets, swivels, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement.

E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod. Do not weld stiffeners to rods.

F. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.

G. Bushings for Floor-Mounted Equipment Anchor: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchors and studs.

H. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices.

I. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

J. Mechanical Anchor: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchors with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.
K. Adhesive Anchor: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.2 FACTORY FINISHES
A. Finish: Manufacturer’s standard paint applied to factory-assembled and -tested equipment before shipping.
1. Powder coating on springs and housings.
2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
3. Baked enamel or powder coat for metal components on isolators for interior use.
4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine areas and equipment to receive seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS
A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an evaluation service member of ICC-ES.
B. Hanger Rod Stiffeners: Install hanger rod stiffeners where required to prevent buckling of hanger rods due to seismic forces.
C. Strength of Support and Seismic-RestRAINT Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION
A. Equipment and Hanger Restraints:
1. Install restrained isolators on electrical equipment.
2. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
3. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES providing required submittals for component.
B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
D. Drilled-in Anchors:
1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
5. Set anchors to manufacturer’s recommended torque, using a torque wrench.
6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION
A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements,
and where they terminate with connection to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Perform tests and inspections.

C. Tests and Inspections:
 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days’ advance notice.
 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 5. Test to 90 percent of rated proof load of device.
 7. Measure isolator deflection.
 8. Verify snubber minimum clearances.
 9. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 260548
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Color and legend requirements for raceways, conductors, and warning labels and signs.
 2. Labels.
 4. Tapes and stencils.
 5. Tags.
 7. Cable ties.
 9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.
B. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.
C. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Comply with ASME A13.1.
B. Comply with NFPA 70.
D. Comply with ANSI Z535.4 for safety signs and labels.
E. Comply with NFPA 70E and Section 260574 "Overcurrent Protective Device Arc-Flash Study" requirements for arc-flash warning labels.
F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
G. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS
A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.
B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder and branch-circuit conductors.
 1. Color shall be factory applied.
 2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
 d. Neutral: White
 3. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
 c. Phase C: Yellow.
 d. Neutral: Gray
5. Colors for Isolated Grounds: Green with white stripe.

C. Raceways and Cables Carrying Circuits at More Than 600 V:
 1. Black letters on an orange field.
 2. Legend: "DANGER - CONCEALED HIGH VOLTAGE WIRING."

D. Warning Label Colors:
 1. Identify system voltage with black letters on an orange background.

E. Warning labels and signs shall include, but are not limited to, the following legends:
 1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
 2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.3 LABELS
 A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
 B. Snap-around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters and that stay in place by gripping action.
 1. Self-Lamination: Clear, UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized such that the clear shield overlaps the entire printed legend.
 2. Marker for Labels: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.
 D. Self-Adhesive Labels: Vinyl, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
 1. Minimum Nominal Size:
 a. 1-1/2 by 6 inches for raceway and conductors.
 b. 3-1/2 by 5 inches for equipment.
 c. As required by authorities having jurisdiction.

2.4 BANDS AND TUBES
 A. Snap-around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters and that stay in place by gripping action.

2.5 TAPES AND STENCILS
 A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
 B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.
 C. Floor Marking Tape: 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.
 D. Underground-Line Warning Tape:
 1. Tape:
 a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 2. Color and Printing:
 b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
 c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE"
 3. Tape shall be Multi-layer laminate, consisting of high density polyethylene scrim coated with printed pigmented polyolefin film, bright-colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
 a. Width: 6" width.
 b. Overall Thickness: 7 mils.
 c. Weight: 36.1 lb/1000 sq. ft.
 d. 3-Inch Tensile According to ASTM D 882: 400 lbf, and 11,500 psi.

2.6 TAGS
 A. Write-on Tags:
1. Polyester Tags: 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment.
2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.7 SIGNS
A. Metal-Backed Butyrate Signs:
 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch galvanized-steel backing, punched and drilled for fasteners, and with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal Size: 10 by 14 inches.
B. Laminated Acrylic or Melamine Plastic Signs:
 1. Engraved legend.
 2. Thickness:
 a. For signs up to 20 sq. in, minimum 1/16 inch.
 b. For signs larger than 20 sq. in., 1/8 inch thick.
 c. Engraved legend with black letters on white face.
 d. Punched or drilled for mechanical fasteners with 1/4-inch grommets in corners for mounting.
 e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 CABLE TIES
A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.
B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.
C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 7000 psi.
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F.
 5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS
A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION
3.1 PREPARATION
A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION
A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
B. Install identifying devices before installing acoustical ceilings and similar concealment.
C. Verify identity of each item before installing identification products.
D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
E. Apply identification devices to surfaces that require finish after completing finish work.
F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.

G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 1. Secure tight to surface of conductor, cable, or raceway.

H. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.
 1. Secure tight to surface of conductor, cable, or raceway.

J. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.

K. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.

L. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:
 1. "POWER/VOLTAGE."
 2. "EMERGENCY POWER."
 3. "FIRE ALARM SYSTEM POWER."

M. Vinyl Wraparound Labels:
 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

N. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.

O. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.

P. Self-Adhesive Labels:
 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.

Q. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.

R. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.

S. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.

T. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.

U. Underground Line Warning Tape:
 1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.
 2. Install underground-line warning tape for direct-buried cables and cables in ductbanks.

V. Write-on Tags:
 1. Place in a location with high visibility and accessibility.
 2. Secure using cable ties appropriate for location.

W. Metal-Backed Butyrate Signs:
 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.

X. Laminated Acrylic or Melamine Plastic Signs:
 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.

Y. Cable Ties: General purpose, for attaching tags, except as listed below:
 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.
C. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive vinyl tape applied in bands.
 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

D. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:
 1. "EMERGENCY POWER."
 2. "POWER"
 3. "FIRE ALARM SYSTEM"

E. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use self-adhesive wraparound labels to identify the phase.
 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

F. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.

G. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive labels with the conductor or cable designation, origin, and destination.

H. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive labels with the conductor designation.

I. Conductors to Be Extended in the Future: Attach marker tape to conductors and list source.

J. Auxiliary Electrical Systems Conductor Identification: Marker tape that is uniform and consistent with system used by manufacturer for factory-installed connections.
1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.

K. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.

L. Workspace Indication: Apply floor marking tape to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

M. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.

N. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Metal-backed, butyrate warning signs.
1. Apply to exterior of door, cover, or other access.
2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

P. Operating Instruction Signs: Laminated acrylic or melamine plastic signs.

Q. Emergency Operating Instruction Signs: Laminated acrylic or melamine plastic signs with white legend on a red background with minimum 3/8-inch- high letters for emergency instructions at equipment used for power transfer.

R. Equipment Identification Labels:
1. Indoor Equipment: Laminated acrylic or melamine plastic sign.
2. Outdoor Equipment: Laminated acrylic or melamine sign.
3. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of an engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchgear.
 e. Switchboards.
 f. Transformers: Label that includes tag designation indicated on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 g. Emergency system boxes and enclosures.
 h. Enclosed switches.
 i. Enclosed circuit breakers.
j. Enclosed controllers.
k. Variable-speed controllers.
l. Push-button stations.
m. Power-transfer equipment.
n. Contactors.
o. Remote-controlled switches, dimmer modules, and control devices.
p. Battery-inverter units.
q. Battery racks.
r. Power-generating units.
s. Monitoring and control equipment.

END OF SECTION 260553
SECTION 260572 - OVERCURRENT PROTECTIVE DEVICE SHORT-CIRCUIT STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.

1.3 DEFINITIONS
A. One-Line Diagram: A diagram which shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
B. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.
C. SCCR: Short-circuit current rating.
D. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS
A. Product Data: For computer software program to be used for studies.
B. Other Action Submittals: Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
 1. Short-circuit study input data, including completed computer program input data sheets.
 2. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.
 a. Submit study report for action prior to receiving final approval of the distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that the selection of devices and associated characteristics is satisfactory.
 b. Single-line diagram, reflecting field investigation results and results of short-circuit study.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Short-Circuit Study Specialist.
B. Product Certificates: For short-circuit study software, certifying compliance with IEEE 399.

1.6 QUALITY ASSURANCE
A. Studies shall use SKM Power Tools Electrical Engineering Software computer program (PTW32). Manual calculations or studies utilizing other software programs are not acceptable.
B. Short-Circuit Study Specialist Qualifications: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE
B. Comply with IEEE 399 and IEEE 551.
C. Analytical features of fault-current-study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
D. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS
A. Executive summary.
B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of the computer printout.
C. One-line diagram, showing the following:
 1. Protective device designations and ampere ratings.
 2. Cable size and lengths.
3. Transformer kilovolt ampere (kVA) and voltage ratings.
4. Motor and generator designations and kVA ratings.
5. Switchgear, switchboard, motor-control center, and panelboard designations.
6. Calculated X/R ratios and equipment interrupting rating (1/2 cycle) fault currents.

D. Comments and recommendations for system improvements, where needed.

E. Protective Device Evaluation:
 1. Evaluate equipment and protective devices and compare to short-circuit ratings.
 2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.
 3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.
 5. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

G. Short-Circuit Study Output:
 1. Short Circuit Study Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated fault-current magnitude and angle.
 c. Show calculated X/R ratio and equipment interrupting rating (1/2 cycle fault currents on electrical distribution system diagram.

 2. Equipment Evaluation Report:
 a. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 b. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.
 c. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

3. Electronic models of all studies performed shall be turned over to the owner in digital format and shall include the complete SKM data files for the project.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Obtain all data necessary for the conduct of the study.
 1. Verify completeness of data supplied on the Riser diagram. Call any discrepancies to the attention of Engineer.
 2. For equipment provided that is Work of this Project, use characteristics submitted under the provisions of action submittals and information submittals for this Project.
 3. For equipment and which is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. The qualifications of technicians and engineers shall be qualified as defined by NFPA 70E.

B. Gather and tabulate the following input data to support the short-circuit study. Comply with recommendations in IEEE 551 as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT Level III certification or NICET Electrical Power Testing Level III certification.
 1. Product Data for Project's overcurrent protective devices involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 2. Obtain electrical power utility impedance at the service.
3. Power sources and ties.
4. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
5. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
6. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip, SCCR, current rating, and breaker settings.
7. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
8. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
9. Motor horsepower and NEMA MG 1 code letter designation.
10. Cable sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).

3.2 SHORT-CIRCUIT STUDY
A. Perform study following the general study procedures contained in IEEE 399.
B. Calculate short-circuit currents according to IEEE 551.
C. Base study on the device characteristics supplied by device manufacturer.
D. Begin short-circuit current analysis at the service, extending down to the system overcurrent protective devices as follows:
 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 2. Exclude equipment rated 240-V ac or less when supplied by a single transformer rated less than 125 kVA.

E. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.
F. The calculations shall include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and shall apply to low- and medium-voltage, three-phase ac systems. The calculations shall also account for the fault-current dc decrement, to address the asymmetrical requirements of the interrupting equipment.
 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.
G. Calculate the maximum available short-circuit current in amperes rms symmetrical at circuit-breaker positions of the electrical power distribution system. The calculation shall be for a current immediately after initiation and for a three-phase bolted short circuit at each of the following:
 1. Switchgear and switchboard bus.
 2. Medium-voltage controller.
 3. Motor-control center.
 4. Distribution panelboard.
 5. Branch circuit panelboard.
 6. Three phase branch circuits with overcurrent protective devices installed with a rating equal to or greater than 30 amps.
 7. Motor circuit overcurrent protective devices for motors with a rating equal to or greater than 10 horsepower.

3.3 ADJUSTING
A. Make minor modifications to equipment as required to accomplish compliance with short-circuit study.

3.4 DEMONSTRATION
A. Train Owner's operating and maintenance personnel in the use of study results.

END OF SECTION 260572
SECTION 260573 - OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes computer-based, overcurrent protective device coordination studies to determine overcurrent protective devices and to determine overcurrent protective device settings for selective tripping.

1.3 DEFINITIONS
A. One-Line Diagram: A diagram which shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
B. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.
C. SCCR: Short-circuit current rating.
D. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS
A. Product Data: For computer software program to be used for studies.
B. Other Action Submittals: Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
1. Coordination-study input data, including completed computer program input data sheets.
2. Study and equipment evaluation reports.
3. Overcurrent protective device coordination study report; signed, dated, and sealed by a qualified professional engineer.
a. Submit study report for action prior to receiving final approval of the distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that the selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Coordination Study Specialist.
B. Product Certificates: For overcurrent protective device coordination study software, certifying compliance with IEEE 399.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For the overcurrent protective devices to include in emergency, operation, and maintenance manuals.
1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. The following parts from the Protective Device Coordination Study Report:
 1) One-line diagram.
 2) Protective device coordination study.
 3) Time-current coordination curves.
b. Power system data.

1.7 QUALITY ASSURANCE
A. Studies shall use SKM Power Tools Electrical Engineering Software computer program (PTW32). Manual calculations or studies utilizing other software programs are not acceptable.
B. Coordination Study Specialist Qualifications: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE
B. Comply with IEEE 242 and IEEE 399.
C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
D. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.

2.2 PROTECTIVE DEVICE COORDINATION STUDY REPORT CONTENTS
A. Executive summary.
B. Study descriptions, purpose, basis and scope. Include case descriptions, definition of terms and guide for interpretation of the computer printout.
C. One-line diagram, showing the following:
 1. Protective device designations and ampere ratings.
 2. Cable size and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center, and panelboard designations.
D. Study Input Data: As described in "Power System Data" Article.
E. Short-Circuit Study Output: As specified in "Short-Circuit Study Output" Paragraph in "Short-Circuit Study Report Contents" Article in Section 260572 "Overcurrent Protective Device Short-Circuit Study."
F. Protective Device Coordination Study:
 1. Report recommended settings of protective devices, ready to be applied in the field. Use manufacturer's data sheets for recording the recommended setting of overcurrent protective devices when available.
 a. Phase and Ground Relays:
 1) Device tag.
 2) Relay current transformer ratio and tap, time dial, and instantaneous pickup value.
 3) Recommendations on improved relaying systems, if applicable.
 b. Circuit Breakers:
 1) Adjustable pickups and time delays (long time, short time, ground).
 2) Adjustable time-current characteristic.
 3) Adjustable instantaneous pickup.
 4) Recommendations on improved trip systems, if applicable.
 c. Fuses: Show current rating, voltage, and class.
G. Time-Current Coordination Curves: Determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:
 1. Device tag and title, one-line diagram with legend identifying the portion of the system covered.
 2. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.
 3. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.
 4. Plot the following listed characteristic curves, as applicable:
 a. Power utility's overcurrent protective device.
 b. Medium-voltage equipment overcurrent relays.
 c. Medium- and low-voltage fuses including manufacturer's minimum melt, total clearing, tolerance, and damage bands.
 d. Low-voltage equipment circuit-breaker trip devices, including manufacturer's tolerance bands.
 e. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves.
 f. Cables and conductors damage curves.
 g. Ground-fault protective devices.
 h. Motor-starting characteristics and motor damage points.
 i. Generator short-circuit decrement curve and generator damage point.
 j. The largest feeder circuit breaker in each motor-control center and panelboard.
 5. Provide adequate time margins between device characteristics such that selective operation is achieved.
 6. Comments and recommendations for system improvements.
H. Coordination Study shall include the stamp or seal and signature of the preparing engineer, and shall be reviewed and approved by the Engineer of Record.

I. Electronic models of all studies performed shall be turned over to the owner.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance. Devices to be coordinated are indicated on Drawings.

1. Submit preliminary coordination study analysis with equipment submittals.
 a. The coordination analysis shall included but not be limited to:
 1) Service entrance equipment
 a) All overcurrent protective devices installed in service entrance panels.
 2) Feeder Circuits
 a) All three (3) phase Feeder circuit overcurrent protective devices installed with a rating equal to or greater than 30 amps.
 3) Branch Circuits.
 a) All three (3) phase branch circuit overcurrent protective devices installed with a rating equal to or greater than 30 amps.
 b) All motor circuit overcurrent protective devices for motors with a rating equal to or greater than 10 horsepower.

2. Revise coordination study analysis after relevant equipment submittals have been approved. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study. Provide in both hardcopy and electronic disk format. The computer disk shall include the complete coordination file including all device curves (Use the SKM “Project-Backup” command).

3. Prior to project completion, the coordination study and arc flash hazard analysis shall be provided in both hard copy and on USB drive. The hard copy shall include time current curves (for phase and ground fault settings) for each panel and the corresponding TCC report clearly showing each device set point. The digital format shall include the complete coordination file including all device curves (Use the SKM “Project-Backup” command). The digital format shall include the complete SKM data files for the project.

3.2 PROTECTIVE DEVICE COORDINATION STUDY

A. Comply with IEEE 242 for calculating short-circuit currents and determining coordination time intervals.

B. Comply with IEEE 399 for general study procedures.

C. The study shall be based on the device characteristics supplied by device manufacturer.

D. Begin analysis at the service, extending down to the system overcurrent protective devices as follows:

1. To normal system low-voltage load buses where fault current is 10 kA or less.
2. Exclude equipment rated 240-V ac or less when supplied by a single transformer rated less than 125 kVA.

E. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.

F. Transformer Primary Overcurrent Protective Devices:

1. Device shall not operate in response to the following:
 a. Inrush current when first energized.
 b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.

2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

G. Motor Protection:

1. Select protection for low-voltage motors according to IEEE 242 and NFPA 70.
2. Select protection for motors served at voltages more than 600 V according to IEEE 620.

H. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and protection recommendations in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.
I. Generator Protection: Select protection according to manufacturer's written recommendations and to IEEE 242.

J. The calculations shall include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and shall apply to low- and medium-voltage, three-phase ac systems. The calculations shall also account for the fault-current dc decrement, to address the asymmetrical requirements of the interrupting equipment.
 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

K. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and single line-to-ground fault at each of the following:
 1. Electric utility's supply termination point.
 2. Switchgear.
 3. Unit substation primary and secondary terminals.
 4. Low-voltage switchgear.
 5. Motor-control centers.

L. Protective Device Evaluation:
 1. Evaluate equipment and protective devices and compare to short-circuit ratings.
 2. Adequacy of switchgear, motor-control centers, and panelboard bus bars to withstand short-circuit stresses.

3.3 POWER SYSTEM DATA

A. Obtain all data necessary for the conduct of the overcurrent protective device study.
 1. Verify completeness of data supplied in the riser diagram on Drawings. Call discrepancies to the attention of Architect.
 2. For new equipment, use characteristics submitted under the provisions of action submittals and information submittals for this Project.
 3. For existing equipment, whether or not relocated obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. The qualifications of technicians and engineers shall be qualified as defined by NFPA 70E.

B. Gather and tabulate the following input data to support coordination study. The list below is a guide. Comply with recommendations in IEEE 551 for the amount of detail required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT Level III certification or NICET Electrical Power Testing Level III certification.
 1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 2. Electrical power utility impedance at the service.
 3. Power sources and ties.
 4. Short-circuit current at each system bus, three phase and line-to-ground.
 5. Full-load current of all loads.
 6. Voltage level at each bus.
 7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
 8. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
 9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
 10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
 11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
 12. Maximum demands from service meters.
 13. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
 14. Motor horsepower and NEMA MG 1 code letter designation.
 15. Low-voltage cable sizes, lengths, number, conductor material, and conduit material (magnetic or nonmagnetic).
 16. Medium-voltage cable sizes, lengths, conductor material, and cable construction and metallic shield performance parameters.
17. Data sheets to supplement electrical distribution system diagram, cross-referenced with tag numbers on diagram, showing the following:
 a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
 c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
 d. Generator thermal-damage curve.
 e. Ratings, types, and settings of utility company's overcurrent protective devices.
 f. Special overcurrent protective device settings or types stipulated by utility company.
 g. Time-current-characteristic curves of devices indicated to be coordinated.
 h. Manufacturer, frame size, interrupting rating in amperes rms symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
 i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
 j. Panelboards, switchboards, motor-control center ampacity, and SCCR in amperes rms symmetrical.

3.4 FIELD ADJUSTING
 A. Make minor modifications to equipment as required to accomplish compliance with short-circuit and protective device coordination studies.

END OF SECTION 260573
SECTION 260574 - OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.3 DEFINITIONS
A. One-Line Diagram: A diagram which shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
B. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.
C. SCCR: Short-circuit current rating.
D. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS
A. Product Data: For computer software program to be used for studies.
B. Study Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals shall be in digital form.
 1. Arc-flash study input data, including completed computer program input data sheets.
 2. Arc-flash study report; signed, dated, and sealed by a qualified professional engineer.
 a. Submit initial study report for action prior to receiving final approval of the distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that the selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Arc-Flash Study Specialist.
B. Product Certificates: For arc-flash hazard analysis software, certifying compliance with IEEE 1584 and NFPA 70E.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data:
 1. Maintenance procedures according to requirements in NFPA 70E shall be provided in the equipment manuals.
 2. Operation and Maintenance Procedures: In addition to items specified in Section 017823 "Operation and Maintenance Data," provide maintenance procedures for use by Owner's personnel that comply with requirements in NFPA 70E.

1.7 QUALITY ASSURANCE
A. Studies shall use SKM Power Tools Electrical Engineering Software computer program (PTW 32). Manual calculations or studies utilizing other software programs are not acceptable.
B. Arc-Flash Study Specialist Qualifications: Professional engineer in charge of performing the study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE
 1. Do not use the "Use Equipment Specific Arc Flash Equation in Protective Device Library" method for arc flash calculations in the SKM software.
B. Comply with IEEE 1584 and NFPA 70E.
C. Analytical features of device coordination study computer software program shall have the capability to
calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

2.2 ARC-FLASH STUDY REPORT CONTENT
A. Executive summary.
B. Study descriptions, purpose, basis and scope.
C. One-line diagram, showing the following:
 1. Protective device designations and ampere ratings.
 2. Cable size and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center and panelboard designations.
D. Study Input Data: As described in "Power System Data" Article.
E. Short-Circuit Study Output: As specified in "Short Circuit Study Output" Paragraph in "Short-Circuit Study
 Report Contents" Article in Section 260572 "Overcurrent Protective Device Short-Circuit Study."
F. Protective Device Coordination Study Report Contents: As specified in "Protective Device Coordination
 Study Report Contents" Article in Section 260573 "Overcurrent Protective Device Coordination Study."
G. Arc-Flash Study Output:
 1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for
each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.
H. Incident Energy and Flash Protection Boundary Calculations:
 1. Arcing fault magnitude.
 2. Protective device clearing time.
 3. Duration of arc.
 5. Working distance.
 6. Incident energy.
I. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and
guide for interpretation of the computer printout.

2.3 ARC-FLASH WARNING LABELS
A. Comply with requirements in Section 260553 "Identification for Electrical Systems" for self-adhesive
 equipment labels. Produce a waterproof, 3.5-by-5-inch self-adhesive, machine printed, equipment label for
each work location included in the analysis.
B. The label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall
 include the following information taken directly from the arc-flash hazard analysis:
 1. Location designation.
 2. Nominal voltage.
 3. Flash protection boundary.
 5. Incident energy.
 7. Proper level of PPE (Personal Protective Equipment)
 8. Engineering report number, revision number, and issue date.
C. Labels shall be machine printed, with no field-applied markings. Submit sample of label for Owner
 Approval prior to installation.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system
 coordination requirements and other conditions affecting performance.
 1. Submit preliminary arc flash hazard analysis with equipment submittals.
a. The coordination and arc flash hazard analysis shall included but not be limited to:
 1) Service entrance equipment
 a) All overcurrent protective devices installed in service entrance panels.
 2) Feeder Circuits
 a) All three (3) phase Feeder circuit overcurrent protective devices installed with a rating equal to or greater than 30 amps.
 3) Branch Circuits.
 a) All three (3) phase branch circuit overcurrent protective devices installed with a rating equal to or greater than 30 amps.
 b) All motor circuit overcurrent protective devices for motors with a rating equal to or greater than 10 horsepower.

2. **Revise** arc flash hazard analysis after relevant equipment submittals have been approved and as installed feeder lengths verified. Overcurrent protective devices that have not been submitted and approved prior to study may not be used in study. Provide in both hardcopy and electronic disk format. The computer disk shall include the complete coordination file including all device curves (Use the SKM "Project-Backup" command).

3. Prior to project completion, the coordination study and arc flash hazard analysis shall be provided in both hard copy and on USB drive. The hard copy shall include time current curves (for phase and ground fault settings) for each panel and the corresponding TCC report clearly showing each device set point. The digital format shall include the complete coordination file including all device curves (Use the SKM "Project-Backup" command). The digital format shall include the complete SKM data files for the project.

3.2 ARC-FLASH HAZARD ANALYSIS

A. Comply with NFPA 70E and its Annex D for hazard analysis study.

B. Preparatory Studies:
 1. Short-Circuit Study Output: As specified in Section 260572 "Overcurrent Protective Device Short-Circuit Study."
 2. Protective Device Coordination Study Report Contents: As specified in Section 260573 "Overcurrent Protective Device Coordination Study."

C. Calculate maximum and minimum contributions of fault-current size.
 1. The minimum calculation shall assume that the utility contribution is at a minimum and shall assume no motor load.
 2. The maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.

D. Calculate the arc-flash protection boundary and incident energy at locations in the electrical distribution system where personnel could perform work on energized parts.
 1. **Identify any location other than the Service Entrance Main with a HCR>2 and provide recommendations for improvement.**

E. Include medium- and low-voltage equipment locations, except equipment rated 240-V ac or less fed from transformers less than 125 kVA.
 1. Switchgear and switchboard bus.
 a. All overcurrent protective devices installed in service entrance panels.
 2. Motor-control center.
 a. All motor circuit overcurrent protective devices for motors with a rating equal to or greater than 10 horsepower.
 3. Distribution panelboard.
 5. Three phase branch circuits with overcurrent protective devices installed with a rating equal to or greater than 30 amps.
 6. Motor circuit overcurrent protective devices for motors with a rating equal to or greater than 10 horsepower

F. Safe working distances shall be specified for calculated fault locations based on the calculated arc-flash boundary, considering incident energy of 1.2 cal/sq.cm.

G. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators shall be decremented as follows:
 1. Fault contribution from induction motors should not be considered beyond three to five cycles.
 2. Fault contribution from synchronous motors and generators should be decayed to match the actual decrement of each as closely as possible (e.g., contributions from permanent magnet generators will typically decay from 10 per unit to three per unit after 10 cycles).
H. Arc-flash computation shall include both line and load side of a circuit breaker as follows:
 1. When the circuit breaker is in a separate enclosure.
 2. When the line terminals of the circuit breaker are separate from the work location.
I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing
time at two seconds based on IEEE 1584, Section B.1.2.
J. Arc flash hazard analysis shall include the stamp or seal and signature of the preparing engineer,
and shall be reviewed and approved by the Engineer of Record.
K. Electronic models of all studies performed shall be turned over to the owner.

3.3 POWER SYSTEM DATA
A. Obtain all data necessary for the conduct of the arc-flash hazard analysis.
 1. Verify completeness of data supplied on the riser diagram on Drawings. Call discrepancies to the
 attention of Architect.
 2. For new equipment, use characteristics submitted under the provisions of action submittals and
 information submittals for this Project.
 3. For existing equipment, whether or not relocated, obtain required electrical distribution system data
 by field investigation and surveys, conducted by qualified technicians and engineers.
B. Electrical Survey Data: Gather and tabulate the following input data to support study. Comply with
 recommendations in IEEE 1584 and NFPA 70E as to the amount of detail that is required to be acquired in
 the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of
 performing the study, and shall be by the engineer or its representative who holds NETA ETT Level III
 certification or NICET Electrical Power Testing Level III certification.
 1. Product Data for overcurrent protective devices specified in other Sections and involved in
 overcurrent protective device coordination studies. Use equipment designation tags that are
 consistent with electrical distribution system diagrams, overcurrent protective device submittals,
 input and output data, and recommended device settings.
 2. Obtain electrical power utility impedance at the service.
 3. Power sources and ties.
 4. Short-circuit current at each system bus, three phase and line-to-ground.
 5. Full-load current of all loads.
 6. Voltage level at each bus.
 7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R
 ratio, taps measured in per cent, and phase shift.
 8. For reactors, provide manufacturer and model designation, voltage rating and impedance.
 9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker,
 type of trip and available range of settings, SCCR, current rating, and breaker settings.
 10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated
 voltage, and X/R ratio.
 11. For relays, provide manufacturer and model designation, current transformer ratios, potential
 transformer ratios, and relay settings.
 12. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor
 material.
 13. Motor horsepower and NEMA MG 1 code letter designation.
 14. Low-voltage cable sizes, lengths, number, conductor material and conduit material (magnetic or
 nonmagnetic).
 15. Medium-voltage cable sizes, lengths, conductor material, and cable construction and metallic shield
 performance parameters.

3.4 LABELING
A. Apply one owner approved arc-flash label for 600-V ac, 480-V ac, and applicable 208-V ac panelboards,
 disconnects and transformers.
 1. Labels shall provide the following information:
 a. Incident Enery
 b. Arc Flash Boundary
 c. Working Distance
 d. Shock Hazard Exposure (When covers removed)
 e. Limited Approach Boundary
 f. Restricted Approach Boundary
 g. Equipment Name
 h. Protective Device. (Where fed from)
 i. PPE
 j. Author of Label
END OF SECTION 260574
SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Photoelectric switches.
2. Indoor occupancy and vacancy sensors.
4. Digital timer light switches.
5. Outdoor motion sensors.
B. Related Requirements:
1. Section 262726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings:
1. Show installation details for the following:
 a. Occupancy sensors.
 b. Vacancy sensors.
2. Interconnection diagrams showing field-installed wiring.
3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.
B. Sample Warranty: For manufacturer's warranties.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.

1.6 WARRANTY
A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Faulty operation of lighting control devices.
2. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 DIGITAL TIME SWITCHES
A. Basis of Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following Manufacturers:
1. Cooper Industries, Inc.
2. Intermatic, Inc.
3. Lightlolier Controls; a Genlyte Company
5. Watt Stopper (The).
6. Hubbell
B. Digital time switch
1. The digital time switch shall be programmable to turn lights off after a preset time.
2. Time switch shall be a completely self-contained control system that replaces the standard toggle switch. It shall have a ground wire and ground strap for safety. Switching mechanism shall be a latching air gap relay.
3. Zero Crossing Circuitry shall be used to increase the relay life, protect from the effects of inrush current, and increase the switch’s longevity.
4. Time switch shall be compatible with all LED, electronic ballasts, ELV, MLV and motor loads. Triac and other harmonic generating devices shall not be allowed.

5. Time switch shall operate at universal voltages of 100-300 VAC; 50/60 Hz.

6. Time switch shall have no minimum load requirement and shall be capable of controlling 0 to 800 watt incandescent, fluorescent @ 100/120 VAC, 50/60 Hz.

7. Time scroll feature shall allow manual overriding of the preset time-out period. Selecting time scroll UP shall allow time-out period to scroll up throughout the timer possibilities to the maximum. Time scroll DN (down) shall allow time-out period to scroll down to minimum.

8. Time switch shall have the option for a one second light flash warning at five minutes before the timer runs out and twice when the countdown reaches one minute (when used to control lighting loads).

9. Time switch shall have the option for a beep warning that shall sound every five seconds once the time switch countdown reaches one minute.

10. Time switch shall have manual feature for timer reset where pressing the ON/OFF switch for more than 2 seconds resets the timer to the programmed time-out period.

11. Time switch shall have an electroluminescent backlit Liquid Crystal Display that shows the timer's countdown.

12. Time switch shall fit behind a decorator style faceplate. The calibration switch for setting time-out, time scroll, one second light flash, and beep warning shall be concealed to prevent tampering of adjustments and hardware.

13. Time-out period shall be adjustable in increments of 5 minutes from 5 minutes to 1 hour, and in increments of 15 minutes from 1 hour to 12 hours.

14. Time switch shall be capable of operating as an ON/OFF switch.

15. For ease of installation and cleaner wiring, the switch shall utilize terminal style wiring.

16. The time switch shall not protrude more than 1/8" from the wall and should blend in aesthetically.

17. For safety, the time switch shall have a 100% OFF override switch with no leakage current to the load.

18. For safety, in the event there is an open circuit in the AC line such as a ballast or lamp failure, the time switch shall automatically switch to OFF mode.

19. To ensure quality and reliability, time switch shall be manufactured by an ISO 9002 certified manufacturing facility and shall have a defect rate of less than 1/3 of 1%.

20. Time switch shall have 5 year warranty and shall be UL and CUL listed.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Cooper Industries, Inc.
 2. Intermatic, Inc.
 3. NSI Industries LLC; TORK Products.
 4. Tyco Electronics; ALR Brand.
 5. Lithonia Lighting; Acuity Lighting Group, Inc.
 7. Square D; Schneider Electric
 8. TORK
 9. Watt Stopper (The).

B. Description: Solid state, with SPST dry contacts rated for 1800-VA tungsten or 1000-VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Light-Level Monitoring Range: 1.5 to 10 fc (16.14 to 108 lux), with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of the photocell to prevent fixed light sources from causing turn-off.
 3. Time Delay: Fifteen second minimum, to prevent false operation.
 5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swell mounting accessories as required to direct sensor to the north sky exposure.

2.3 DIGITAL OCCUPANCY CONTROL SYSTEM

A. Basis of design product: Subject to compliance with requirements, provide Wattstopper Digital Lighting Management (DLM) system as indicated on Drawings:
 1. Contractor may submit prior to bid comparable products for pre-approval. Substitutions will not be entertained after submittal of bid.

B. Digital Ceiling mounted occupancy sensor system.
1. Ceiling mounted passive infrared (PIR), ultrasonic or dual technology digital (passive infrared and ultrasonic) occupancy sensor. Furnish the Company’s system which accommodates the square-foot coverage requirements for each area controlled, utilizing room controllers, digital occupancy sensors and accessories which suit the lighting and electrical system parameters.

2. Digital Occupancy Sensors shall provide graphic LCD display for digital calibration and electronic documentation. Features include the following:
 a. Digital calibration and pushbutton programming for the following variables:
 1) Sensitivity – 0-100% in 10% increments
 2) Time delay – 1-30 minutes in 1 minute increments
 3) Test mode – Five second time delay
 4) Detection technology – PIR, Ultrasonic or Dual Technology activation and/or re-activation.
 5) Walk-through mode
 6) Load parameters including Auto/Manual-ON, blink warning, and daylight enable/disable when photosensors are included in the DLM local network.
 b. One or two RJ-45 port(s) for connection to DLM local network.
 c. Two-way infrared (IR) transceiver to allow remote programming through handheld commissioning tool and control by remote personal controls.
 d. Device Status LEDs including:
 1) PIR Detection
 2) Ultrasonic detection
 3) Configuration mode
 4) Load binding
 e. Assignment of occupancy sensor to a specific load within the room without wiring or special tools.

3. Units shall not have any dip switches or potentiometers for field settings.

4. Multiple occupancy sensors may be installed in a room by simply connecting them to the free topology DLM local network. No additional configuration will be required.

5. WattStopper product numbers: LMPX, LMDX, LMPC, LMUC, LMDC

C. DIGITAL WALL SWITCHES

1. Low voltage momentary pushbutton switches in 1, 2, 3, 4, 5 and 8 button configuration; available in white, light almond, ivory, grey and black; compatible with wall plates with decorator opening. Wall switches shall include the following features:
 a. Two-way infrared (IR) transceiver for use with personal and configuration remote controls.
 b. Removable buttons for field replacement with engraved buttons and/or alternate color buttons. Button replacement may be completed without removing the switch from the wall.
 c. Red configuration LED on each switch that blinks to indicate data transmission.
 d. Blue Load/Scene Status LED on each switch button with the following characteristics:
 1) Bi-level LED
 2) Dim locator level indicates power to switch
 3) Bright status level indicates that load or scene is active
 e. Dimming switches shall include seven bi-level LEDs to indicate load levels using 14 steps.

2. Two RJ-45 ports for connection to DLM local network.

3. Multiple digital wall switches may be installed in a room by simply connecting them to the free topology DLM local network. No additional configuration will be required to achieve multi-way switching.

4. The following switch attributes may be changed or selected using a wireless configuration tool:
 a. Load and Scene button function may be reconfigured for individual buttons (from Load to Scene, and vice versa).
 b. Individual button function may be configured to Toggle, On only or Off only.
 c. Individual scenes may be locked to prevent unauthorized change.
 d. Fade Up and Fade Down times for individual scenes may be adjusted from 0 seconds to 18 hours.
 e. Ramp rate may be adjusted for each dimmer switch.
 f. Switch buttons may be bound to any load on a room controller and are not load type dependant; each button may be bound to multiple loads.

D. ROOM CONTROLLERS
1. Room Controllers automatically bind the room loads to the connected devices in the space without commissioning or the use of any tools. Room Controllers shall be provided to match the room lighting load and control requirements. The controllers will be simple to install and will not have, dip switches, potentiometers or require special configuration. The control units will include the following features:
 a. Automatic room configuration to the most energy-efficient sequence of operation based upon the devices in the room.
 b. Simple replacement – Using the default automatic configuration capabilities, a room controller may be replaced with an off-the-shelf unit without requiring any configuration or setup.
 c. Device Status LEDs to indicate:
 1) Data transmission
 2) Device has power
 3) Status for each load
 4) Configuration status
 d. Quick installation features including:
 1) Standard junction box mounting
 2) Quick low voltage connections using standard RJ-45 patch cable
 e. Plenum rated
 f. Manual override and LED indication for each load
 g. Dual voltage (120/277 VAC, 60 Hz)
 h. Zero cross circuitry for each load.

2. On/Off Room Controllers shall include:
 a. One or two relay configuration
 b. Efficient 150 mA switching power supply
 c. Three RJ-45 DLM local network ports
 d. Discrete model listed for connection to receptacles, for occupancy-based control of plug loads within the space.
 e. One relay configuration only
 1) Automatic-ON/OFF configuration
 f. WattStopper product numbers: LMRC-101, LMRC-102, LMPL-101

3. On/Off/Dimming enhanced Room Controllers shall include:
 a. Real time current monitoring
 b. One, two or three relay configuration
 c. Efficient 250 mA switching power supply
 d. Four RJ-45 DLM local network ports.
 e. One 0-10 volt analog output per relay for control of compatible ballasts and LED drivers.
 f. The following dimming attributes may be changed or selected using a wireless configuration tool:
 1) Establish preset level for each load from 0-100%
 2) Set high and low trim for each load
 3) Set lamp burn in time for each load up to 100 hours
 g. Discrete model listed for connection to receptacles, for occupancy-based control of plug loads within the space.
 1) One relay configuration only
 2) Automatic-ON/OFF configuration
 h. WattStopper product numbers: LMRC-211, LRMC-212, LRMC-213, LMPL-201, LMRC-311, LMRC-312, LMRC-313.

E. ISOLATED RELAY INTERFACE
1. Output interface for integration of third party systems
2. Single pole double throw isolated relay
3. Status LED for isolated relay
4. Over current protection
5. Two RJ45 ports with hinged dust cover
6. UL 2043 plenum rated
7. Watt Stopper product number: LMRL-100

F. DIGITAL INTERFACE
1. Operating voltage 24VDC from DLM network
2. Maximum current consumption 15Ma
3. DLM local network connection: 2 RJ45 ports
4. Terminal block for connection to third party system. RS-232 Data Wiring.
5. Baud rate configurable to 9600, 19200, 38400, 57600 or 115200
6. Wattstopper product number: LMDI-100

G. ROOM NETWORK (DLM Local Network)
1. The DLM local network is a free topology lighting control physical connection and communication protocol designed to control a small area of a building. Digital room devices connect to the network using CAT 5e cables with RJ-45 connectors which provide both data and power to room devices. Features of the DLM local network include:
 a. Plug n’ Go automatic configuration and binding of occupancy sensors, switches and lighting loads to the most energy-efficient sequence of operation based upon the device attached.
 b. Simple replacement of any device in the network with a standard off the shelf unit without requiring commissioning, configuration or setup.
 c. Push n’ Learn configuration to change the automatic configuration, including binding and load parameters without tools, using only the buttons on the digital devices in the local network.
 d. Two-way infrared communications for control by handheld remotes, and configuration by a handheld tool including adjusting load parameters, sensor configuration and binding, within a line of sight of up to 30 feet from a sensor, wall switch or IR receiver.

H. CONFIGURATIONS TOOLS
1. A configuration tool facilitates optional customization of DLM local networks, and is used to set up open loop daylighting sensors. A wireless configuration tool features infrared communications, while PC software connects to each local network via a USB interface.
2. Features and functionality of the wireless configuration tool shall include:
 a. Two-way infrared (IR) communication with DLM IR-enabled devices within a range of approximately 30 feet.
 b. High visibility organic LED (OLED) display, pushbutton user interface and menu-driven operation.
 c. Read, modify and send parameters for occupancy sensors, room controllers and buttons on digital wall switches.
 d. Save up to nine occupancy sensor setting profiles, and apply profiles to selected sensors.
 e. Temporarily adjust light level of any load(s) on the local network, and incorporate those levels in scene setting.

3. WattStopper Product Numbers: LMCT-100, LMCI-100/LMCS-100

2.4 SWITCHBOX-MOUNTED OCCUPANCY SENSORS
A. Basis of Design Product: Subject to compliance with requirements provide product as indicated on Drawings or pre-approved comparable product by one of the following:
1. Bryant Electric; a Hubbell company.
2. Cooper Industries, Inc.
3. Hubbell Building Automation, Inc.
5. Lightolier Controls.
6. Lithonia Lighting; Acuity Lighting Group, Inc.
7. Lutron Electronics Co., Inc.
8. Sensor Switch, Inc.
9. Square D; a brand of Schneider Electric.
10. Watt Stopper.

B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor, suitable for mounting in a single gang switchbox.
1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
3. Switch Rating: Not less than 800-VA fluorescent at 120 V, 1200-VA fluorescent at 277 V, and 800-W incandescent.

C. Wall-Switch Sensor Tag ‘MS’:
1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft.
2. Sensing Technology: Dual technology - PIR and ultrasonic.
3. Switch Type: SP.
4. Voltage: Dual voltage, 120 and 277 V; dual-technology type.
5. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
6. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
2.5 OUTDOOR MOTION SENSORS
A. Basis of Design Product: Subject to compliance with requirements provide product as indicated on Drawings or pre-approved comparable product by one of the following:
1. Bryant Electric; a Hubbell company.
2. Cooper Industries, Inc.
3. Hubbell Building Automation, Inc.
5. Lightolier Controls.
6. Lithonia Lighting; Acuity Lighting Group, Inc.
7. Lutron Electronics Co., Inc.
8. Sensor Switch, Inc.
9. Square D; a brand of Schneider Electric.
10. Watt Stopper.
1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. PIR type, weatherproof. Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm). Comply with UL 773A.
3. Switch Rating:
 a. Luminaire-Mounted Sensor: 500-VA fluorescent/LED.
 b. Separately Mounted Sensor: Dry contacts rated for 20-A LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
4. Switch Type: SP, field-selectable automatic "on," or manual "on," automatic "off." With bypass switch to override the "on" function in case of sensor failure.
5. Voltage: Match the circuit voltage Dual voltage, 120- and 277-V type.
6. Detector Coverage:
 a. Standard Range: 210-degree field of view, with a minimum coverage area of 900 sq. ft.
 b. Long Range: 180-degree field of view and 110-foot detection range.
7. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
8. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
10. Operating Ambient Conditions: Suitable for operation in ambient temperatures ranging from minus 40 to plus 130 deg F, rated as "raintight" according to UL 773A.

2.6 LIGHTING CONTACTORS
A. Manufacturers: Subject to compliance with requirements, provide products by the following:
2. ASCO Power Technologies, LP; a division of Emerson Electric Co.
4. General Electric Company; GE Consumer & Industrial - Electrical Distribution; Total Lighting Control.
5. Square D; a brand of Schneider Electric.
6. TORK
7. Watt Stopper (The)
B. Description: Electrically operated and electrically held, combination-type lighting contactors, complying with NEMA ICS 2 and UL 508.
1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
3. Enclosure: Comply with NEMA 250.
4. Provide with control and pilot devices as indicated on Drawings, matching the NEMA type specified for the enclosure.

2.7 CONDUCTORS AND CABLES
A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

D. Color coding of DLM System conductors shall be WHITE. Obtain pre-approval of color from owner prior to ordering.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.
B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SENSOR INSTALLATION
A. Comply with NECA 1.
B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.
C. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.3 CONTACTOR INSTALLATION
A. Comply with NECA 1.
B. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structure-borne vibration unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.4 WIRING INSTALLATION
A. Comply with NECA 1.
C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.
F. Provide white colored cable for all lengths when making DLM System connections with CAT5e with RJ45 connectors. Contractor shall submit cable color and obtain confirmation from owner prior to ordering.

3.5 IDENTIFICATION
A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
 1. Identify controlled circuits in lighting contactors.
 2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.
B. Label time switches and contactors with a unique designation.

3.6 PROGRAMMING
A. On a room by room basis, after approved programming is completed and verified, the lighting control system lock-out features on switches, sensors, etc. shall be enabled to prevent accidental re-programming and to maintain programmed scenes and sequences.
B. System switches shall be configured for auto-on (and auto-off) control of associated lighting unless otherwise noted.

3.7 FIELD QUALITY CONTROL
A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
B. Lighting control devices will be considered defective if they do not pass tests and inspections.
C. Prepare test and inspection reports.

3.8 ADJUSTING
A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
 2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.

3.9 FACTORY COMMISSIONING
A. Upon completion of the installation, the system shall be commissioned by the manufacturer's factory authorized representative who will verify a complete fully functional system.
B. The electrical contractor shall provide both the manufacturer and the electrical engineer with ten working days written notice of the system startup and adjustment date.
C. After commissioning and after switches have been programmed, system lockout features shall be activated such that programming function is locked out to avoid unintentional re-setting of switches.

3.10 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923
SECTION 262200 - LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes: Distribution, dry-type transformers rated 600 V and less, with capacities up to 1500 kVA.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.
B. Shop Drawings:
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Seismic Qualification Certificates: For transformers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
B. Qualification Data: For testing agency.
C. Source quality-control reports.
D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE
A. Testing Agency Qualifications: Accredited by NETA.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
C. Comply with IEEE C57.12.91, "Test Code for Dry-Type Distribution and Power Transformers."

1.7 DELIVERY, STORAGE, AND HANDLING
A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. General Electric Company.
 3. Square D; Schneider Electric.
B. Source Limitations: Obtain each transformer type from single source from single manufacturer.

2.2 GENERAL TRANSFORMER REQUIREMENTS
A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Transformers Rated 15 kVA and Larger: Comply with NEMA TP 1 energy-efficiency levels as verified by testing according to NEMA TP 2.

D. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.

E. Coils: Continuous windings without splices except for taps.
 1. Internal Coil Connections: Brazed or pressure type.
 2. Coil Material: Aluminum.

F. Encapsulation: Transformers smaller than 30 kVA shall have cores and coils completely resin encapsulated.

G. Shipping Restraints: Paint or otherwise color code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.3 DISTRIBUTION TRANSFORMERS

A. Comply with NFPA 70, and list and label as complying with UL 1561.

B. Provide transformers that are constructed to withstand seismic forces specified in Section 260548.16 "Seismic Controls for Electrical Systems."

C. Cores: One leg per phase.

D. Enclosure: Ventilated.
 1. NEMA 250, Type 2: Core and coil shall be encapsulated within resin compound to seal out moisture and air.
 2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.

E. Transformer Enclosure Finish: Comply with NEMA 250.
 1. Finish Color: Gray.

F. Taps for Transformers 3 kVA and Smaller: One 5 percent tap above normal full capacity.

G. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.

H. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and four 2.5 percent taps below normal full capacity.

I. Insulation Class, Smaller than 30 kVA: 185 deg C, UL-component-recognized insulation system with a maximum of 115-deg C rise above 40-deg C ambient temperature.

J. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 115-deg C rise above 40-deg C ambient temperature.

K. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor.
 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
 2. Indicate value of K-factor on transformer nameplate.
 3. Unit shall meet requirements of NEMA TP 1 when tested according to NEMA TP 2 with a K-factor equal to one.

L. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 2. Include special terminal for grounding the shield.

M. Wall Brackets: Wall brackets fabricated from design drawings signed and sealed by a licensed structural engineer.

N. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:
 1. 9 kVA and Less: 40 dBA.
 2. 30 to 50 kVA: 45 dBA.
 3. 51 to 150 kVA: 50 dBA.
 4. 151 to 300 kVA: 55 dBA.
 5. 301 to 500 kVA: 60 dBA.

2.4 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 260553 "Identification for Electrical Systems."
2.5 SOURCE QUALITY CONTROL
A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.
 1. Resistance measurements of all windings at the rated voltage connections and at all tap connections.
 2. Ratio tests at the rated voltage connections and at all tap connections.
 3. Phase relation and polarity tests at the rated voltage connections.
 4. No load losses, and excitation current and rated voltage at the rated voltage connections.
 5. Impedance and load losses at rated current and rated frequency at the rated voltage connections.
 6. Applied and induced tensile tests.
 7. Regulation and efficiency at rated load and voltage.
 8. Insulation Resistance Tests:
 a. High-voltage to ground.
 b. Low-voltage to ground.
 c. High-voltage to low-voltage.
 9. Temperature tests.
B. Factory Sound-Level Tests: Conduct prototype sound-level tests on production-line products.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.
E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.
F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Install wall-mounted transformers level and plumb with wall brackets fabricated from design drawings signed and sealed by a licensed structural engineer.
 1. Coordinate installation of wall-mounted and structure-hanging supports with actual transformer provided.
 2. Brace wall-mounted transformers as specified in Section 260548.16 "Seismic Controls for Electrical Systems."
B. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.
 1. Use flexible conduit at connections between transformers and rigid conduit.
C. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions, seismic codes applicable to Project, and requirements in Section 260529 "Hangers and Supports for Electrical Systems."
 1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
D. Secure transformer to concrete base according to manufacturer's written instructions.
E. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.
F. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS
A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.
3.4 FIELD QUALITY CONTROL
 A. Perform tests and inspections.
 B. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS for dry-type, air-cooled, low-voltage transformers. Certify compliance with test parameters.
 C. Remove and replace units that do not pass tests or inspections and retest as specified above.
 D. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.
 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
 3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.
 E. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING
 A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.
 B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.

3.6 CLEANING
 A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Distribution panelboards.
2. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS
A. ATS: Acceptance testing specification.
B. GFCI: Ground-fault circuit interrupter.
C. GFEP: Ground-fault equipment protection.
D. MCCB: Molded-case circuit breaker.
E. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of panelboard.
1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
B. Shop Drawings: For each panelboard and related equipment.
1. Include dimensioned plans, elevations, sections, and details.
2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
4. Detail bus configuration, current, and voltage ratings.
5. Short-circuit current rating of panelboards and overcurrent protective devices.
6. Include evidence of NRTL listing for SPD as installed in panelboard.
7. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
8. Include wiring diagrams for power, signal, and control wiring.
9. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing agency.
B. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Keys: Two spares for each type of panelboard cabinet lock.

1.8 QUALITY ASSURANCE
A. Manufacturer Qualifications: ISO 9001 or 9002 certified.
1.9 DELIVERY, STORAGE, AND HANDLING
 A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
 B. Handle and prepare panelboards for installation according to NECA 407.

1.10 FIELD CONDITIONS
 A. Environmental Limitations:
 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding \(-22^\circ F\) to plus \(104^\circ F\).
 b. Altitude: Not exceeding 6600 feet.
 B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet.
 C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Owner no fewer than two days in advance of proposed interruption of electric service.
 2. Do not proceed with interruption of electric service without Owner's written permission.
 3. Comply with NFPA 70E.

1.11 WARRANTY
 A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 1. Panelboard Warranty Period: 24 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS
 A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 2605.48.16 “Seismic Controls for Electrical Systems.”
 B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
 C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 D. Comply with NEMA PB 1.
 E. Comply with NFPA 70.
 F. Enclosures: Surface-mounted, dead-front cabinets.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4, Stainless Steel.
 d. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
 2. Height: 84 inches maximum.
 3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
 4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
 5. Finishes:
 a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 G. Incoming Mains:
 1. Location: Convertible between top and bottom.
2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

H. Phase, Neutral, and Ground Buses:
1. Material: **Hard-drawn copper, 98 percent conductivity.**
 a. Plating shall run entire length of bus.
 b. Bus shall be fully rated the entire length.
2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.

I. Conductor Connectors: Suitable for use with conductor material and sizes.
1. Material: **Hard-drawn copper, 98 percent conductivity.**
2. Terminations shall allow use of 75 deg C rated conductors without derating.
3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
4. Main and Neutral Lugs: **Compression** type, with a lug on the neutral bar for each pole in the panelboard.
5. Ground Lugs and Bus-Configured Terminators: Two bolt **Compression** type, with a lug on the bar for each pole in the panelboard.
6. Feed-Through Lugs: **Compression** type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
7. Subfeed (Double) Lugs: **Compression** type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
8. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.

J. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

K. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

L. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.3 POWER PANELBOARDS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 3. Square D: a brand of Schneider Electric.
B. Panelboards: NEMA PB 1, distribution type.
C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than 36 inches high, provide two latches, keyed alike.
D. Mains: **Circuit breaker** or **Lugs only** as indicated on drawings.
E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: **Bolt-on** circuit breakers.
F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: **Bolt-on** circuit breakers.
G. Branch Overcurrent Protective Devices (MCCB) frame sizes 200A and larger shall be electronic trip and shall have adjustable trip settings as indicated in Section 2.6 below to allow for coordination and limiting arch flash hazard.
2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 3. Square D; a brand of Schneider Electric.
 B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
 C. Mains: Circuit breaker or lugs only as indicated in panelboard schedules.
 D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
 E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.
 F. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 3. Square D; a brand of Schneider Electric.
 B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
 1. Adjustable trip setting for circuit-breaker frame sizes 200 A and larger.
 a. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replaceable electronic trip; and the following field-adjustable settings:
 1) Instantaneous trip.
 2) Long- and short-time pickup levels.
 3) Long- and short-time time adjustments.
 4) Ground-fault pickup level, time delay, and I^2t response.
 2. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
 3. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
 5. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 f. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 g. Multipole units enclosed in a single housing or factory assembled to operate as a single unit.
 h. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
 i. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.
 j. Any device that can trip the breakers shall have a visible indication on the front of the panel.

2.6 IDENTIFICATION
 A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
 B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.
2.7 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.

B. Receive, inspect, handle, and store panelboards according to NECA 407.

C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.

D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Comply with NECA 1.

C. Install panelboards and accessories according to NECA 407.

D. Equipment Mounting:
 1. Attach panelboard to the vertical finished or structural surface behind the panelboard.
 2. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

F. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

G. Mount top of trim 90 inches above finished floor unless otherwise indicated.

H. Mount panelboard cabinet plumb and rigid without distortion of box.

I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

J. Mount surface-mounted panelboards to steel slotted supports 5/8 inch in depth. Orient steel slotted supports vertically.

K. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.
 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.

L. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

M. Install filler plates in unused spaces.

N. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

O. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL
A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
B. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.
C. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA ATS, Paragraph 7.6 Circuit Breakers. Do not perform optional tests. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
D. Panelboards will be considered defective if they do not pass tests and inspections.
E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING
A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573 "Overcurrent Protective Device Coordination Study."
C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.
 1. Measure loads during period of normal facility operations.
 2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
 4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION
A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Divison 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Straight-blade convenience receptacles.
2. GFCI receptacles.
3. Twist-locking receptacles.
4. Pendant cord-connector devices.
5. Cord and plug sets.
6. Toggle switches.
7. Decorator-style convenience.
8. Wall plates.

1.3 DEFINITIONS
A. Abbreviations of Manufacturers’ Names:
1. Cooper: Cooper Wiring Devices; Division of Cooper Industries, Inc.
B. GFCI: Ground-fault circuit interrupter.
C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

1.5 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For wiring devices to include in all manufacturers’ packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS
A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with NFPA 70.
C. Devices that are manufactured for use with modular plug-in connectors are to be used:
1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
2. Devices shall comply with the requirements in this Section.
3. Connector shall be at right angle. Twist type shall not be permitted.
D. Devices for Owner-Furnished Equipment:
1. Receptacles: Match plug configurations.
2. Cord and Plug Sets: Match equipment requirements.
E. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STRAIGHT-BLADE RECEPTACLES
A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
1. All convenience receptacles to be of the quick connect type to have a right angle connector feature with pre-stripped leads. Connector contacts are to be crimped and welded.
2. Products: Basis of design: Pass & Seymour, PT5362 (duplex)
a. Subject to compliance with requirements, provide one of the following:
2.3 GFCI RECEPTACLES
A. General Description:
1. 125 V, 20 A, straight blade, non-feed-through type.
2. Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 943 Class A, and FS W-C-596.
3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.
4. When ground fault protection is lost, power to the receptacle is disconnected.
B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
1. All convenience receptacles to be of the quick connect type to have a right angle connector feature with pre-stripped leads. Connector contacts are to be crimped and welded.
2. Products: Basis of design: Pass & Seymour, PT2095LA (duplex)
 a. Subject to compliance with requirements, provide one of the following:
 1) Cooper. (Arrowlink Series)
 2) Hubbell. (Snapconnect Series)

2.4 TWIST-LOCKING RECEPTACLES
A. Twist-Lock, Single Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; L520R.
 b. Hubbell; HBL2310.
 c. Leviton; 2310.
 d. Pass & Seymour; L520-R.

2.5 PENDANT CORD-CONNECTOR DEVICES
A. Description:
1. Matching, locking-type plug and receptacle body connector.
2. NEMA WD 6 Configurations L5-20P and L5-20R, heavy-duty grade, and FS W-C-596.

2.6 CORD AND PLUG SETS
A. Description:
1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.

2.7 TOGGLE SWITCHES
A. Comply with NEMA WD 1, UL 20, and FS W-S-896.
1. Switches not associated with the DLM Lighting system: All Snap switches to be of the quick connect type to have a right angle connector feature with pre-stripped leads. Connector contacts are to be crimped and welded.
B. Switches, 120/277 V, 20 A:
1. Products: Basis of design: Pass & Seymour, PT20AC1 (single pole), PT20AC2 (two pole), PT20AC3 (three way), PT20AC4 (four way).
 a. Subject to compliance with requirements, provide one of the following:
 1) Cooper. (Arrowlink Series)
 2) Hubbell. (Snapconnect Series)

2.8 WALL PLATES
A. Single and combination types shall match corresponding wiring devices.
1. Plate-Securing Screws: Metal with head color to match plate finish.
2. Material for Finished Spaces: Where white devices are installed, use Smooth, high-impact thermoplastic faceplates. Where Gray devices are used, provide 0.035-inch- thick, satin-finished, Type 302 stainless steel faceplates.
3. Material for Unfinished Spaces: Galvanized steel
4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.
B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

2.9 FINISHES
A. Device Color:
1. Wiring Devices Connected to Normal Power System: Ivory throughout or as noted by Architect unless otherwise indicated or required by NFPA 70 or device listing.
B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION
3.1 INSTALLATION
A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
B. Coordination with Other Trades:
1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
4. Install wiring devices after all wall preparation, including painting, is complete.
C. Conductors:
1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
D. Device Installation:
1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
E. Receptacle Orientation:
1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.
F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
G. Dimmers:
1. Install dimmers within terms of their listing.
2. Verify that dimmers used for fan-speed control are listed for that application.
3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES
A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION
A. Comply with Section 260553 "Identification for Electrical Systems."
B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with **black**-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL

A. Test Instruments: Use instruments that comply with UL 1436.

B. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

C. Perform the following tests:
 1. Test Instruments: Use instruments that comply with UL 1436.
 2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

D. Tests for Convenience Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

E. Test straight-blade for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz.

F. Wiring device will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

END OF SECTION 262726
SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Cartridge fuses rated 600 V ac and less for use in enclosed switches.
 2. Spare-fuse cabinets.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:
 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.
 2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit in electronic format suitable for use in SKM coordination software.
 5. Coordination charts and tables and related data.
 6. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Ambient temperature adjustment information.
 2. Current-limitation curves for fuses with current-limiting characteristics.
 3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project. Submit in electronic format suitable for use in SKM coordination software.
 4. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.6 FIELD CONDITIONS
 A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Bussman, Inc.
 2. Edison Fuse, Inc.
 3. Ferraz Shawmut, Inc.
 4. Littelfuse, Inc.
B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES
A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
1. Type RK-1: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
2. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, fast acting.
3. Type J: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
4. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, time delay.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. Comply with NEMA FU 1 for cartridge fuses.
D. Comply with NFPA 70.
E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

2.3 SPARE-FUSE CABINET
A. Characteristics: Wall-mounted steel unit with full-length, recessed piano-hinged door and key-coded cam lock and pull.
1. Size: Adequate for storage of spare fuses specified with 15 percent spare capacity minimum.
2. Finish: Gray, baked enamel.
3. Identification: "SPARE FUSES" in 1-1/2-inch- high letters on exterior of door.
4. Fuse Pullers: For each size of fuse, where applicable and available, from fuse manufacturer.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS
A. Cartridge Fuses:
1. Service Entrance: Class RK1, time delay.
2. Feeders: Class RK1, time delay.
3. Motor Branch Circuits: Class RK1, time delay.
4. Large Motor Branch (601-4000 A): Class L, time delay.
5. Power Electronics Circuits: Class J, high speed.
6. Other Branch Circuits: Class RK1, time delay.
7. Control Transformer Circuits: Class CC, time delay, control transformer duty.
8. Provide open-fuse indicator fuses or fuse covers with open fuse indication.

3.3 INSTALLATION
A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.
B. Install spare-fuse cabinet(s) in location shown on the Drawings or as indicated in the field by Owner.

3.4 IDENTIFICATION
A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Fusible switches.
2. Non-fusible switches.
3. Enclosures.

1.3 DEFINITIONS
A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
1. Enclosure types and details for types other than NEMA 250, Type 1.
2. Current and voltage ratings.
3. Short-circuit current ratings (interrupting and withstand, as appropriate).
4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
5. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in electronic format compatible with SKM Software.
B. Shop Drawings: For enclosed switches and circuit breakers.
1. Include plans, elevations, sections, details, and attachments to other work.
2. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified testing agency.
B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.
1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 b. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF and electronic format compatible with SKM Software.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.8 QUALITY ASSURANCE
A. Testing Agency Qualifications: Accredited by NETA.
1. Testing Agency’s Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.9 FIELD CONDITIONS
A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
2. Altitude: Not exceeding 6600 feet.

1.10 WARRANTY
A. Manufacturer’s Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.
1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS
2.1 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.2 GENERAL REQUIREMENTS
A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.
B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
D. Comply with NFPA 70.

2.3 FUSIBLE SWITCHES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
3. Square D; a brand of Schneider Electric.
B. Type HD, Heavy Duty:
2. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses.
3. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
C. Accessories:
1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - 120-V ac.
6. Hookstick Handle: Allows use of a hookstick to operate the handle.
7. Lugs: Compression type, suitable for number, size, and conductor material.
8. Service-Rated Switches: Labeled for use as service equipment.

2.4 NONFUSIBLE SWITCHES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
3. Square D: a brand of Schneider Electric.

B. Type HD, Heavy Duty, Three Pole, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 1. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - 120-V ac.
 2. Hookstick Handle: Allows use of a hookstick to operate the handle.
 3. Lugs: Compression type, suitable for number, size, and conductor material.
 4. Service-Rated Switches: Labeled for use as service equipment.

2.5 ENCLOSURES
A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

B. Enclosure Finish: The enclosure shall be finished with gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1).

C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.

D. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.

E. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
 1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 PREPARATION
A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Owner's written permission.
 4. Comply with NFPA 70E.

3.3 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS
A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.
 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 2. Outdoor Locations: NEMA 250, Type 3R.
 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

3.4 INSTALLATION
A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

C. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

D. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in fusible devices.

F. Comply with NFPA 70 and NECA 1.

3.5 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.

2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections for Switches:

1. Visual and Mechanical Inspection:

 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, grounding, and clearances.
 c. Verify that the unit is clean.
 d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 e. Verify that fuse sizes and types match the Specifications and Drawings.
 f. Verify that each fuse has adequate mechanical support and contact integrity.
 g. Inspect bolted electrical connections for high resistance using one of the two following methods:

 1) Use a low-resistance ohmmeter.

 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.

 a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

 h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
 i. Verify correct phase barrier installation.
 j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.

2. Electrical Tests:

 a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

 b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

 c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

 d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.

 e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."

C. Enclosed switches will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports:

1. Test procedures used.

2. Include identification of each enclosed switch and circuit breaker tested and describe test results.
3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.7 ADJUSTING
 A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 262816
SECTION 262913 - ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes the following enclosed controllers rated 600 V and less:
 1. Full-voltage manual.
 2. Full-voltage magnetic.
 B. Related Section:
 1. Division 26 Section "Variable-Frequency Motor Controllers" for general-purpose, ac, adjustable-frequency, pulse-width-modulated controllers for use on variable torque loads in ranges up to 200 hp.

1.3 DEFINITIONS
 A. CPT: Control power transformer.
 B. MCCB: Molded-case circuit breaker.
 C. MCP: Motor circuit protector.
 D. N.C.: Normally closed.
 E. N.O.: Normally open.
 F. OCPD: Overcurrent protective device.
 G. SCR: Silicon-controlled rectifier.

1.4 PERFORMANCE REQUIREMENTS

1.5 SUBMITTALS
 A. Product Data: For each type of enclosed controller. Include manufacturer's technical data on features, performance, electrical characteristics, ratings, and enclosure types and finishes.
 B. Shop Drawings: For each enclosed controller. Include dimensioned plans, elevations, sections, details, and required clearances and service spaces around controller enclosures.
 1. Show tabulations of the following:
 a. Each installed unit's type and details.
 b. Factory-installed devices.
 c. Nameplate legends.
 d. Short-circuit current rating of integrated unit.
 e. Features, characteristics, ratings, and factory settings of individual OCPDs in combination controllers.
 2. Wiring Diagrams: For power, signal, and control wiring.
 C. Qualification Data: For qualified testing agency.
 D. Seismic Qualification Certificates: For enclosed controllers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 E. Field quality-control reports.
 F. Operation and Maintenance Data: For enclosed controllers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. Routine maintenance requirements for enclosed controllers and installed components.
 2. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.
 3. Manufacturer's written instructions for setting field-adjustable overload relays.
 G. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor running overload protection suit actual motors to be protected.
1.6 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with NFPA 70.
C. IEEE Compliance: Fabricate and test enclosed controllers according to IEEE 344 to withstand seismic forces defined in Division 26 Section “Vibration and Seismic Controls for Electrical Systems.”

1.7 DELIVERY, STORAGE, AND HANDLING
A. Store enclosed controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.
B. If stored in areas subject to weather, cover enclosed controllers to protect them from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers; install temporary electric heating, with at least 250 W per controller.

1.8 PROJECT CONDITIONS
A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.

1.9 COORDINATION
A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
B. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

PART 2 - PRODUCTS

2.1 FULL-VOLTAGE CONTROLLERS
A. General Requirements for Full-Voltage Controllers: Comply with NEMA ICS 2, general purpose, Class A.
B. Motor-Starting Switches: “Quick-make, quick-break” toggle or push-button action; marked to show whether unit is off or on.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Square D; a brand of Schneider Electric.
 c. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 d. Rockwell Automation, Inc.; Allen-Bradley brand.
 2. Configuration: Nonreversing.
 3. Surface mounting.
C. Fractional Horsepower Manual Controllers: “Quick-make, quick-break” toggle or push-button action; marked to show whether unit is off, on, or tripped.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Square D; a brand of Schneider Electric.
 c. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 d. Rockwell Automation, Inc.; Allen-Bradley brand.
 2. Configuration: Nonreversing.
 3. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 20 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button; melting alloy type.
 4. Surface mounting.
 5. Green pilot light.
D. Integral Horsepower Manual Controllers: “Quick-make, quick-break” toggle or push-button action; marked to show whether unit is off, on, or tripped.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Square D; a brand of Schneider Electric.
c. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
d. Rockwell Automation, Inc.; Allen-Bradley brand.

2. Configuration: **Nonreversing**.

3. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, **Class 10** tripping characteristics; heaters and sensors in each phase, matched to nameplate full-load current of actual protected motor and having appropriate adjustment for duty cycle; external reset push button; **melting alloy type**.

4. **Surface** mounting.

5. **Green** pilot light.

E. Magnetic Controllers: Full voltage, across the line, electrically held.

1. Manufacturers: Subject to compliance with requirements, **provide products by one of the following**:
 a. Square D; a brand of Schneider Electric.
 c. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 d. Rockwell Automation, Inc.; Allen-Bradley brand.

2. Configuration: **Nonreversing**.

 a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer’s standard matching control power or line voltage.

4. Power Contacts: Totally enclosed, double-break, silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.

5. Control Circuits: **24-V ac**; obtained from **integral CPT, with primary and secondary fuses**, with sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 a. CPT Spare Capacity: **50 VA**.

6. Solid-State Overload Relay:
 a. Switch or dial selectable for motor running overload protection.
 b. Sensors in each phase.
 c. **Class 20** tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 d. Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
 e. Analog communication module.

7. **N.O., isolated overload alarm contact**.

8. External overload reset push button.

F. Combination Magnetic Controller: Factory-assembled combination of magnetic controller, OCPD, and disconnecting means.

1. Manufacturers: Subject to compliance with requirements, **provide products by one of the following**:
 a. Square D; a brand of Schneider Electric.
 c. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 d. Rockwell Automation, Inc.; Allen-Bradley brand.

2. Fusible Disconnecting Means:
 a. NEMA KS 1, heavy-duty, horsepower-rated, fusible switch with clips or bolt pads to accommodate **Class R** fuses.
 b. **Lockable Handle**: Accepts three padlocks and interlocks with cover in closed position.

3. Nonfusible Disconnecting Means:
 a. NEMA KS 1, heavy-duty, horsepower-rated, nonfusible switch.
 b. **Lockable Handle**: Accepts three padlocks and interlocks with cover in closed position.
 c. **Auxiliary Contacts**: N.O./N.C., arranged to activate before switch blades open.

2.2 **ENCLOSURES**

A. Enclosed Controllers: NEMA ICS 6, to comply with environmental conditions at installed location.

1. Dry and Clean Indoor Locations: **Type 1**.

2. Outdoor Locations: **Type 3R**.

3. Other Wet or Damp Indoor Locations: **Type 4**.

4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: **Type 12**.

2.3 **ACCESSORIES**

A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.
 a. Push Buttons: Unguarded types; momentary as indicated.
 b. Pilot Lights: LED types; colors as indicated; push to test.
 c. Selector Switches: Rotary type.

B. Reversible N.C./N.O. auxiliary contact(s).
C. Control Relays: Auxiliary and adjustable solid-state time-delay relays.
D. Cover gaskets for Type 1 enclosures.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and surfaces to receive enclosed controllers, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
B. Examine enclosed controllers before installation. Reject enclosed controllers that are wet, moisture damaged, or mold damaged.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Wall-Mounted Controllers: Install enclosed controllers on walls with tops at uniform height unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Division 26 Section "Hangers and Supports for Electrical Systems."
B. Seismic Bracing: Comply with requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
D. Install fuses in each fusible-switch enclosed controller.
E. Install fuses in control circuits if not factory installed. Comply with requirements in Division 26 Section "Fuses."
F. Install heaters in thermal overload relays. Select heaters based on actual nameplate full-load amperes after motors have been installed.
G. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.
H. Comply with NECA 1.

3.3 IDENTIFICATION
A. Identify enclosed controllers, components, and control wiring. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved nameplate.
 3. Label each enclosure-mounted control and pilot device.

3.4 CONTROL WIRING INSTALLATION
A. Install wiring between enclosed controllers and remote devices and facility's central control system. Comply with requirements in Division 26 Section "Control-Voltage Electrical Power Cables."
B. Bundle, train, and support wiring in enclosures.
C. Connect selector switches and other automatic-control selection devices where applicable.
 1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switch is in manual-control position.
 2. Connect selector switches with enclosed-controller circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.5 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.
C. Tests and Inspections:
 1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
 2. Test insulation resistance for each enclosed-controller element, component, connecting motor supply, feeder, and control circuits.
3. Test continuity of each circuit.
4. Verify that voltages at controller locations are within plus or minus 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Owner before starting the motor(s).
5. Test each motor for proper phase rotation.
7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
8. Perform the following infrared (thermographic) scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each multi-pole enclosed controller. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each multi-pole enclosed controller 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
D. Enclosed controllers will be considered defective if they do not pass tests and inspections.
E. Prepare test and inspection reports including a certified report that identifies enclosed controllers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING
A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

3.7 PROTECTION
A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until enclosed controllers are ready to be energized and placed into service.
B. Replace controllers whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.8 DEMONSTRATION
A. Train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers.

END OF SECTION 262913
SECTION 262923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes AC motor Variable Frequency Drives rated 600 V and below.

1.3 PERFORMANCE REQUIREMENTS
A. Seismic Performance: VFDs shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.4 REFERENCE STANDARDS
C. NEMA 250 – Enclosures for Electrical Equipment (1000 Volts Maximum); National Electrical Manufacturers Association.

1.5 SUBMITTALS
A. See Section 01 3000– Administrative Requirements for submittal procedures.
B. Product Data: Provide catalog sheets showing voltage, controller size, ratings and size of switching and overcurrent protective devices, short circuit ratings, dimensions, and enclosure details.
C. Shop Drawings: Indicate front and side views of enclosures with overall dimensions and weights shown; conduit entrance locations and requirements; and nameplate legends. Test Reports: Indicate field test and inspection procedures and test results.
D. Manufacturer’s Instructions: Indicate application conditions and limitations of use stipulated by testing agency. Include instructions for storage, handling, protection, examination, preparation, and installation of product.
E. Manufacturer’s Field Reports: Indicate startup inspection findings.
F. Operation Data: NEMA ICS 7.1. Include instructions for starting and operating controllers, and describe operating limits that may result in hazardous or unsafe conditions.
G. Maintenance Data: NEMA ICS 7.1. Include routine preventative maintenance schedule.
H. Seismic Qualification Certificates: For VFDs, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based, and their installation requirements.
I. Product Certificates: For each VFD, from manufacturer.

1.6 QUALITY ASSURANCE
A. Conform to requirements of NFPA 70.
B. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum five years documented experience and with service facilities within 200 miles of Project.
C. Products: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Store in a clean, dry space. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from dirt, water, construction debris, and traffic.
B. Handle in accordance with manufacturer's written instructions. Lift only with lugs provided for the purpose. Handle carefully to avoid damage to components, enclosure, and finish.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation, capable of driving full load without derating, under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than 14 deg F (minus 10 deg C) and not exceeding 104 deg F (40 deg C).
 2. Ambient Storage Temperature: Not less than minus 4 deg F (minus 20 deg C) and not exceeding 140 deg F (60 deg C).
 3. Humidity: Less than 95 percent (noncondensing).
 4. Altitude: Not exceeding 3300 feet (1005 m).

B. Interruption of Existing Electrical Systems: Do not interrupt electrical systems in facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 1. Notify Owner per requirements in the front end documents.
 2. Do not proceed with interruption of electrical systems without Owner's written permission.
 3. Comply with NFPA 70E.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFDs, including clearances between VFDs, and adjacent surfaces and other items.

1.9 COORDINATION

A. Coordinate features of motors, load characteristics, installed units, and accessory devices to be compatible with the following:
 1. Torque, speed, and horsepower requirements of the load.
 2. Ratings and characteristics of supply circuit and required control sequence.
 3. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Toshiba; Model Q9 or Model AS3: www.toshiba.com
 2. ABB; Model ACH550: www.abb.com
 3. Yaskawa; Model Z1000 www.yaskawa.com

B. Manufacturers other than the above are not allowed

2.2 DESCRIPTION

A. Variable Frequency Controllers: Enclosed controllers suitable for operating the indicated loads, in conformance with requirements of NEMA ICS 7. Select unspecified features and options in accordance with NEMA ICS 3.1.
 1. Employ microprocessor-based inverter logic isolated from power circuits.
 2. Employ pulse-width-modulated inverter system.
 3. Include a DC link reactor for reduction of harmonic distortion.
 4. The controller, and all associated components, shall be supplied by a single vendor.
 5. The controller will be operating a variable volume fan motor, or water pump motor for HVAC application.
 6. System voltage shall be indicated on front of ASD, using minimum of 1-inch high letters.

B. Enclosures: NEMA 250, Type 1, suitable for equipment application in places regularly open to the public. No disconnects in VFD cabinet. Disconnect must be in separate enclosure.

2.3 OPERATING REQUIREMENTS

A. Rated Input Voltage for motors rated below 40 HP: 200 volts, three phase, 60 Hertz, with a voltage tolerance of +/- 10% and a frequency tolerance of +/- 2 Hz.

B. Rated Output: Output frequency shall vary between 0.1 Hz and 400 Hz. Frequency resolution shall be 0.01 Hz digital and 0.03 Hz analog with an accuracy of +/-0.2% of maximum frequency at 25 degrees Celsius. Maximum voltage frequency shall be adjustable from 25 Hz to 400 Hz. Voltage boost shall be adjustable from 0% to 30% with starting frequency adjustable from 0 Hz to 10 Hz. The output current shall be 100% continuous and 110% for 60 seconds, based on NEC table 430-250 (Full-Load Current, Three-Phase Alternating Current Motors) for 200 volts or 460 volts.

C. The controller shall contain three critical frequency jump points with individual bandwidth. Upper and lower frequency limits shall be capable of being varied.
D. The PWM carrier frequency shall be adjustable from 5000 Hz to 15000 Hz.
E. The drive shall contain two separate acceleration/deceleration times (0.1 to 6000 seconds) with a choice of linear, S, or C curves. The drive shall have a standard dynamic electric braking for motors rated 30 HP or below. The drive shall restart into a rotating motor by sensing the coasting motor speed and matching that frequency. The drive shall have adjustable soft stall (10%-150%) and adjustable electronic overload protection (10%-100%).
F. The drive shall have external fault input, be capable of re-setting faults remotely and locally.
G. Input Signal:
 1. 0 to 10 v DC
 2. 0 to 5 v DC
 3. 4 to 20 mA DC
H. Manual bypass is not required on VFD unless indicated on bid documents.

2.4 COMPONENTS
A. Display: Provide integral digital display to indicate output voltage, output frequency, and output current, output power (kw), and motor RPM.

2.5 ENCLOSURES
A. VFD Enclosures: NEMA 250, to comply with environmental conditions at installed location.
 1. Dry and Clean Indoor Locations: Type 1.
 2. Outdoor Locations: Type 3R.
 3. Other Wet or Damp Indoor Locations: Type 4.
 4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12.
B. Disconnects associated with VFD’s shall be in separate enclosure from VFD. Disconnect to be installed on the line side of the VFD.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine areas, surfaces, and substrates to receive VFDs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance.
B. Examine VFD before installation. Reject VFDs that are wet, moisture damaged, or mold damaged.
C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFD installation.
D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Install in accordance with NEMA ICS 7.1, manufacturer's instructions, and per drawings.
 1. Coordinate layout and installation of VFDs with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
B. Wall-Mounting Controllers: Install VFDs on walls with tops at uniform height and with disconnect operating handles not higher than 79 inches (2000 mm) above finished floor unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Division 26 Section "Hangers and Supports for Electrical Systems."
C. Seismic Bracing: Comply with requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
D. Tighten accessible connections and mechanical fasteners after placing controller.
E. The service disconnect switch must be installed on the line side of the VFD. The disconnect must be in a separate enclosure from the VFD. If conditions do not allow this disconnect to be located near the motor within NEC requirements, then a second remote disconnect may be required at the motor. Consult the project manager or University Engineer if this condition arises. All remote disconnects must be provided with auxiliary contacts hardwired to VFD safety circuit to shut down VFD when disconnect is opened. This may affect warranty on the drive so every attempt should be taken to install it per these design guidelines.
F. If a single VFD is controlling multiple fans in an air handling unit then overload protection on each fan must be provided. No more than 4 fans shall be connected to a single VFD.
G. The ground wire should be of the same size as the power conductors from the motor to the VFD and from the VFD to the source.
H. Do not install VFD’s on AHU’s. Refer to mounting detail on drawings.
I. For motors larger than 60hp, the installation shall comply with IEEE 519 with the point of common coupling being the VFD feeder supply terminals of the installation. If a harmonic filter is needed for compliance then it shall be installed.

3.3 IDENTIFICATION
A. Identify VFDs, components, and control wiring. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each VFD with engraved plastic nameplate.
 3. Label each enclosure-mounted control and pilot device.
 4. System voltage to be indicated on front of VFD, using minimum 1" high letters.
 5. Neatly type label inside each motor controller door identifying motor served, nameplate horsepower, full load amperes, code letter, service factor, and voltage/phase rating. Place in clear plastic holder.

B. Operating Instructions: Frame printed operating instructions for VFDs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFD units.

3.4 CONTROL WIRING INSTALLATION
A. Install wiring between VFDs and remote device. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
B. Bundle, train, and support wiring in enclosures.

3.5 CONNECTIONS
A. Tighten connectors, terminals, bus joints, and mountings. Tighten field connected connectors and terminals, including screws and bolts, in accordance with equipment manufacturer's published torque tightening values. Where manufacturer's torquing requirements are not indicated, comply with tightening torques specified in UL 486A.

3.6 CLEANING
A. Remove paint splatters and other spots, dirt, and debris. Touch up scratches and mars of finish to match original finish. Clean devices internally using methods and materials as recommended by manufacturer.

3.7 FIELD QUALITY CONTROL
A. Prior to initial energizing, provide the service of the manufacturer's field representative to prepare and start controllers.
B. Perform tests and inspections. Owner shall be provided the opportunity to witness all testing.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
C. Acceptance Testing Preparation:
 1. Pre-testing: On completing installation of the system, perform the following preparations for tests, under the supervision of the factory authorized service representative.
 a. Clean devices using manufacturer's approved methods and materials.
 b. Inspect for defects and physical damage, and nameplate compliance with current project drawings.
 c. Check tightness of electrical connections of devices with calibrated torque wrench. Use manufacturer's recommended torque values.
 d. Verify proper fuse types and ratings in fusible devices.
 e. Make insulation resistance tests of conducting parts of motor control components; and of connecting supply, feeder, and control circuits. For devices containing solid-state components, use test equipment and methods recommended by the manufacturer.
 f. Make continuity tests of circuits.
 g. Exercise and perform operational tests of mechanical components and other operable devices in accordance with manufacturer's instructions.
 1) Visual and mechanical inspection: Include the following inspections and related work.
 h. Motor-Control Device Ratings and Settings: Verify that ratings and settings as installed are appropriate for final loads and final system arrangement and parameters as recommended by Division 15. Recommend final protective-device ratings and settings where differences are found. Use accepted revised ratings or settings to make the final system adjustments. Prepare and submit the load current and overload relay heater list.
D. Electrical Tests: Perform the following in accordance with manufacturer's instructions:
 1. Insulation resistance test of motor control devices conducting parts to the extent permitted by the
 manufacturer's instructions. Insulation resistance less than recommended by the manufacturer are
 unacceptable.
 a. Make adjustments for final settings of adjustable-trip devices.
 b. Test auxiliary protective features such as loss of phase, lockout, phase unbalance and
 undervoltage to verify operation.
 c. Check for improper voltages at terminals in Drives that have external control wiring when
 controller disconnect is opened. Any voltage over 30 V is unacceptable.
 E. Correct deficiencies and retest motor control devices. Verify by the system tests that specified
 requirements are met.
 F. Labeling: On satisfactory completion of tests and related effort, apply a label to tested components
 indicating test results, date, and responsible organization and person.

3.8 MAINTENANCE
 A. Furnish two extra of each air filter.
 B. Provide service and maintenance of controllers for one year from date of Substantial Completion.
 C. General Requirements: Provide, at no additional cost to the Owner, all services, materials and equipment
 necessary for the successful operation of the entire system for a period of one year from Date of
 Substantial completion. Provide necessary material required for the work. Minimize impacts on facility
 operations when performing scheduled adjustments and non-scheduled work.
 D. Description of Work: The adjustment and repair of the system includes all computer equipment, software
 updates, electronic and electrical components, equipment and all sensors and control devices. Provide
 the manufacturer's required adjustments and all other work necessary.
 E. Personnel: Provide qualified personnel to accomplish all work promptly and satisfactorily. Owner shall be
 advised in writing of the name of the designated service representative, and of any changes in personnel.
 F. Emergency Service: Owner will initiate service calls when a Variable Frequency Drive is not functioning
 properly. Qualified personnel shall be available to provide service of the complete system, including
 external controls. Furnish owner with a telephone number where service representative can be reached at
 all times. Service personnel shall be at the site within 24 hours after receiving a request for service. Restore
 the Variable Frequency Drive system to proper operating condition within 3 days.
 G. Operating: Performance of scheduled adjustments and repair shall verify operation of the system as
 demonstrated by the initial performance test.
 H. Systems Modifications: Provide all recommendations for system modification in writing to Owner. Do not
 make any system modifications, including operating parameters and control settings, without prior
 approval of Owner. All modifications made to the system shall be incorporated into the operations and
 maintenance manuals, and other documentation affected.

3.9 DEMONSTRATION
 A. Train Owner's maintenance personnel to adjust, operate, reprogram, and maintain VFDs.

END OF SECTION 262923
SECTION 263600 - TRANSFER SWITCHES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes transfer switches rated 600 V and less, including the following:
1. Nonautomatic transfer switches.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, weights, operating characteristics, furnished specialties, and accessories.
B. Shop Drawings: Dimensioned plans, elevations, sections, and details showing minimum clearances, conductor entry provisions, gutter space, installed features and devices, and material lists for each switch specified.
C. Manufacturer Seismic Qualification Certification: Submit certification that transfer switches accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
D. Qualification Data: For manufacturer.
E. Field quality-control test reports.
F. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
1. Features and operating sequences, both automatic and manual.
2. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable.

1.4 QUALITY ASSURANCE
A. Manufacturer Qualifications: Maintain a service center capable of providing training, parts, and emergency maintenance repairs within a response period of less than eight hours from time of notification.
B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.
C. Source Limitations: Obtain nonautomatic transfer switches through one source from a single manufacturer.
D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
E. Comply with NEMA ICS 1.
F. Comply with NFPA 70.
G. Comply with NFPA 110.
H. Comply with UL 1008 unless requirements of these Specifications are stricter.

1.5 PROJECT CONDITIONS
A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service:
1. Notify Owner no fewer than five days in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without Owner's written permission.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Contactor Transfer Switches:
 a. AC Data Systems, Inc.
 b. Caterpillar; Engine Div.
 c. Emerson; ASCO Power Technologies, LP.
 d. Generac Power Systems, Inc.
 e. GE Zenith Controls.
 f. Kohler Power Systems; Generator Division.
 g. Onan/Cummins Power Generation; Industrial Business Group.
 h. Spectrum Detroit Diesel.

2.2 NON-AUTOMATIC MANUAL TRANSFER-SWITCH PRODUCT REQUIREMENTS

A. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer.
B. Tested Fault-Current Closing and Withstand Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.
C. Solid-State Controls: Repetitive accuracy of all settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.
D. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.41. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.
E. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.
 1. Switch Action: Manually operated and mechanically held. The switch shall be mechanically interlocked to ensure only one of three possible positions, Source 1, Source 2, or Center Off. Fused disconnect type switches shall not be acceptable.
 2. The switch shall be positively locked and unaffected by momentary outages so that contact pressure is maintained at a constant value and temperature rise at the contacts is minimized for maximum reliability and operating life.
 3. All main contact shall be silver composition. Conventional automatic transfer-switch units, rated 225 A and higher, shall have separate arcing contacts.
 4. Inspection of all contacts shall be possible from the front of the switch without disassembly of operating linkages and without disconnection of power conductors.
F. Neutral Switching. Where four-pole switches are indicated, provide fully rated neutral pole switched simultaneously with phase poles.
G. Factory Wiring: Train and bundle factory wiring and label, consistent with Shop Drawings, either by color-code or by numbered or lettered wire and cable tape markers at terminations. Color-coding and wire and cable tape markers are specified in Division 26 Section "Identification for Electrical Systems."
 1. Designated Terminals: Pressure type, suitable for types and sizes of field wiring indicated.
 2. Power-Terminal Arrangement and Field-Wiring Space: Suitable for top, side, or bottom entrance of feeder conductors as indicated.
 3. Control Wiring: Equipped with lugs suitable for connection to terminal strips.
H. Enclosures: General-purpose NEMA 250, Type 1, complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

2.3 MANUAL OPERATIONS PROVISIONS

A. The transfer switch shall be arranged for manually actuated manual operation.
B. The manual transfer shall be actuated via a mechanical operating mechanism.
C. The manual operating handle shall be capable of external operation without opening the enclosure door.
D. It shall have the same contact to contact speed as automatic operation.
E. There shall be three positions for manual operation:
 1. Connected to Source 1 (preferred)
 2. Connected to Source 2 (alternate)
 3. Connected to center off (disconnected position)
F. Switch position when connected to Source 1 or Source 2 shall be pad – lockable.
G. Surge Suppression – A TVSS with a surge current rating of 65kA shall be provided with individually matched fused metal oxide varistors (MOV) s. It shall include LED Status indication of normal operation, under
voltage, power loss, phase loss or component failure. Shall include form C dry contacts for external alarm of monitoring. Shall comply with UL 1449 3rd edition.

H. Nonautomatic Transfer-Switch Accessories:

1. Pilot Lights: Indicate source to which load is connected.
 a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."
3. Unassigned Auxiliary Contacts: One set of normally closed contacts for each switch position, rated 10 A at 240-V ac.

2.4 SOURCE QUALITY CONTROL

A. Factory test and inspect components, assembled switches, and associated equipment. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Design each fastener and support to carry load indicated by seismic requirements and according to seismic-restraint details. See Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
B. Identify components according to Division 26 Section "Identification for Electrical Systems."
C. Set field-adjustable intervals and delays, relays, and engine exerciser clock.

3.2 CONNECTIONS

A. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
B. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
B. Perform tests and inspections and prepare test reports.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installation, including connections, and to assist in testing.
 2. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements.
 a. Check for electrical continuity of circuits and for short circuits.
 b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 c. Verify that manual transfer warnings are properly placed.
 d. Perform manual transfer operation.
 5. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times.
 a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.
 b. Verify time-delay settings.
 c. Verify pickup and dropout voltages by data readout or inspection of control settings.
 d. Test bypass/isolation unit functional modes and related automatic transfer-switch operations.
C. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.
D. Remove and replace malfunctioning units and retest as specified above.
E. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switch. Remove all access panels so joints and connections are accessible to portable scanner.
1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.

2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

3. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment as specified below. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 263600
SECTION 264113 - LIGHTNING PROTECTION FOR STRUCTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes lightning protection system for ordinary structures.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 B. Shop Drawings:
 1. Include layouts of the lightning protection system, with details of the components to be used in the installation.
 2. Include raceway locations needed for the installation of conductors.
 3. Details of air terminals, ground rods, ground rings, conductor supports, splices, and terminations, including concealment requirements.
 4. Include roof attachment details, coordinated with roof installation.
 5. Calculations required by NFPA 780 for bonding of metal bodies.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer.
 B. Product Certificates: For each type of roof adhesive for attaching the roof-mounted air terminal assemblies, approved by the roofing-material manufacturer.
 C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance Data: For lightning protection system to include in maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Dimensioned site plan showing dimensioned route of the ground loop conductor and the ground rod locations. Comply with requirements of Section 017839 "Project Record Documents."
 b. A system testing and inspection record, listing the results of inspections and ground resistance tests, as recommended by NFPA 780, Annex D.
 B. Completion Certificate:
 1. UL Master Label Certificate.

1.6 QUALITY ASSURANCE
A. Installer Qualifications: UL-listed installer, category OWAY.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. East Coast Lightning Equipment Inc.
 b. ERICO International Corporation.
 c. Harger.
 d. Heary Bros. Lightning Protection Co. Inc.
 e. Independent Protection Co.
 f. Preferred Lightning Protection.
 g. Robbins Lightning, Inc.
 h. Thompson Lightning Protection, Inc.
 i. National Lighting Protection Corporation

2.2 PERFORMANCE REQUIREMENTS
A. NFPA Lightning Protection Standard: Comply with NFPA 780 requirements for Class I buildings.
B. Lightning Protection Components, Devices, and Accessories: Listed and labeled by a qualified testing agency as complying with UL 96, and marked for intended location and application.
2.3 MATERIALS

A. Air Terminals:
 1. **Solid Copper** tube unless otherwise indicated.
 2. 3/8-inch diameter by 15 inches long minimum. (or length as required to maintain 10" above roof)
 3. Rounded tip.
 4. Threaded base support.

B. Class 1 Main Conductors:
 1. **Stranded Copper**: 57,400 circular mils in diameter.

C. Secondary Conductors:
 1. **Stranded Copper**: 26,240 circular mils in diameter.

D. Ground Rods:
 1. Material: Copper-clad steel.
 3. Rods shall be not less than 120 inches long.
 4. **Sectional type, with integral threads**.

E. Conductor Splices and Connectors: Compression fittings that are installed with hydraulically operated tools, or exothermic welds, approved for use with the class type.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install lightning protection components and systems according to **NFPA 780**.

B. Install conductors with direct paths from air terminals to ground connections. Avoid bends less than 90 degrees and 8 inches in radius and narrow loops.

C. Conceal conductors within normal view from exterior locations at grade within 200 feet of building. Comply with requirements for concealed systems in **NFPA 780**.
 1. Roof penetrations required for down conductors and connections to structural-steel framework shall be made using listed through-roof fitting and connector assemblies with solid rods and appropriate roof flashings. Use materials approved by the roofing manufacturer for the purpose. Conform to the methods and materials required at roofing penetrations of the lightning protection components to ensure compatibility with the roofing specifications and warranty.
 2. Install conduit where necessary to comply with conductor concealment requirements.
 3. Air Terminals on Single-Ply Membrane Roofing: Comply with adhesive manufacturer’s written instructions.

3.2 CONNECTIONS

A. Aboveground concealed connections, and connections in earth or concrete, shall be done by exothermic welds or by high-compression fittings listed for the purpose.

B. Aboveground exposed connections shall be done using the following types of connectors, listed and labeled for the purpose: bolted connectors, exothermic weld or high compression or crimp.

C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.

3.3 CORROSION PROTECTION

A. Do not combine materials that can form an electrolytic couple that will accelerate corrosion in the presence of moisture unless moisture is permanently excluded from junction of such materials.

B. Use conductors with protective coatings where conditions would cause deterioration or corrosion of conductors.

3.4 FIELD QUALITY CONTROL

A. Special Inspections: Engage a qualified special inspector to perform the following special inspections:
 1. Perform inspections as required to obtain a UL Master Label for system.

B. Prepare test and inspection reports and certificates.

END OF SECTION 264113
SECTION 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes LED luminaires:
B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS
A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Fixture: See "Luminaire."
D. IP: International Protection or Ingress Protection Rating.
E. LED: Light-emitting diode.
F. Lumen: Measured output of lamp and luminaire, or both.
G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 6. Photometric data and adjustment factors based on laboratory tests, complying with IES Lighting Measurements Testing and Calculation Guides, of each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project. IES LM-79 and IES LM-80.
 a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.
C. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing laboratory providing photometric data for luminaires.
B. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
C. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
D. Product Certificates: For each type of luminaire.
E. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.
F. Sample warranty.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers’ codes.
1.7 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 2. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE
 A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
 B. Provide luminaires from a single manufacturer for each luminaire type.
 C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

1.9 DELIVERY, STORAGE, AND HANDLING
 A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY
 A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE 7.
 B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified."

2.2 LUMINAIRE REQUIREMENTS
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. Standards:
 1. UL Listing: Listed for damp location.
 2. Recessed luminaires shall comply with NEMA LE 4.
 3. User Replaceable Lamps:
 a. Bulb shape complying with ANSI C78.79.
 b. Lamp base complying with ANSI C81.61 or IEC 60061-1.
 C. CRI of minimum 90. CCT of 3500 K unless noted otherwise.
 D. Rated lamp life of 50,000 hours to L70.
 E. Lamps dimmable from 100 percent to 0 percent of maximum light output.
 F. Internal driver.
 1. Provide remote driver for fixtures in Large RR, Traditional Performance Space, Isolation Rooms and Live Room/Jazz Combo Rehearsal as noted on the drawings.
 G. Nominal Operating Voltage: 277 V ac or as noted on the drawings.
 H. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. powder-coat painted finish or as noted in Luminaire Schedule.

2.3 LUMINAIRE TYPES
 A. Refer to Luminaire Schedule on the Drawings for each Luminaire Type.
 1. Contractor may submit substitution request for equal products to those listed in the Luminaire schedule prior to bid for evaluation. If approved, formal approval will be issued.
 No substitutions will be entertained and/or permitted after bid date.

2.4 MATERIALS
 A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
2. Sheet metal components shall be steel unless otherwise indicated.
3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
1. prismatic acrylic
2. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.

2.5 METAL FINISHES
A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.6 LUMINAIRE SUPPORT
A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.
E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING
A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION
A. Comply with NECA 1.
B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
C. Install lamps in each luminaire.
D. Supports:
 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Provide support for luminaire without causing deflection of ceiling or wall.
 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.
E. Flush-Mounted Luminaire Support:
 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.
F. Wall-Mounted Luminaire Support:
 1. Attached to a minimum 20 gauge backing plate attached to wall structural members.
 2. Do not attach luminaires directly to gypsum board.
G. Ceiling-Mounted Luminaire Support:
 1. Ceiling mount with **two** 5/32-inch-diameter aircraft cable supports **adjustable to 120 inches in length**.

H. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and **wire support** for suspension for each unit length of luminaire chassis, including one at each end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

I. Ceiling-Grid-Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

J. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION
 A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL
 A. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

 B. Luminaire will be considered defective if it does not pass operation tests and inspections.
 C. Prepare test and inspection reports.

3.6 ADJUSTING
 A. Occupancy Adjustments: When requested within **12** months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to **two** visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.
 1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
 2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265119
SECTION 265219 - EMERGENCY AND EXIT LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Emergency lighting units.
 2. Exit signs.
 3. Luminaire supports.

1.3 DEFINITIONS
A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Emergency Lighting Unit: A lighting unit with internal or external emergency battery powered supply and the means for controlling and charging the battery and unit operation.
D. Fixture: See "Luminaire" Paragraph.
E. Lumen: Measured output of lamp and luminaire, or both.
F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of emergency lighting unit, exit sign, and emergency lighting support.
 1. Include data on features, accessories, and finishes.
 2. Include physical description of the unit and dimensions.
 3. Battery and charger for light units.
 4. Include life, output of luminaire (lumens, CCT, and CRI), and energy-efficiency data.
 5. Include photometric data and adjustment factors based on laboratory tests, complying with IES LM-45, for each luminaire type.
 a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
B. Product Schedule:
 1. For emergency lighting units. Use same designations indicated on Drawings.
 2. For exit signs. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing laboratory providing photometric data for luminaires.
B. Product Certificates: For each type of luminaire.
C. Seismic Qualification Data: For luminaires, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 4. Provide seismic qualification certificate for each piece of equipment.
D. Product Test Reports: For each luminaire for tests performed by manufacturer and witnessed by a qualified testing agency.
E. Sample Warranty: For manufacturer's special warranty.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For luminaires and lighting systems to include in emergency, operation, and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers’ codes.

1.7 QUALITY ASSURANCE
A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.
1.8 DELIVERY, STORAGE, AND HANDLING
A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.9 WARRANTY
A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
1. Warranty Period: Five year(s) from date of Substantial Completion.
B. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.
1. Warranty Period for Emergency Power Unit Batteries: Five years from date of Substantial Completion. Full warranty shall apply for **first year and prorated warranty for the remaining four years**.
2. Warranty Period for Self-Powered Exit Sign Batteries: Five years from date of Substantial Completion. Full warranty shall apply for the **entire warranty period**.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7 Luminaires and lamps shall be labeled vibration and shock resistant.
1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified."

2.2 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.
C. Comply with NFPA 70 and NFPA 101.
D. Comply with NEMA LE 4 for recessed luminaires.
E. Comply with UL 1598 for fluorescent luminaires.
F. Lamp Base: Comply with ANSI C81.61 or IEC 60061-1.
G. Bulb Shape: Complying with ANSI C79.1.

2.3 EMERGENCY LIGHTING
A. Refer to Luminaire Schedule on the Drawings for each Luminaire Type.
1. Contractor may submit substitution request for equal products to those listed in the Luminaire schedule prior to bid for evaluation. If approved, formal approval will be issued. No substitutions will be entertained and/or permitted after bid date.
B. General Requirements for Emergency Lighting Units: Self-contained units.
C. Emergency Lighting Unit:
1. Wall with universal junction box adaptor.
2. UV stable thermoplastic housing, **rated for damp locations**.
3. Two LED lamp heads.
4. **Internal** emergency power unit.
5. **Self-Diagnostics**
D. Remote Emergency Lighting Units:
1. Wall with universal junction box adaptor.
2. UV stable thermoplastic housing, **rated for damp locations**.
3. Two LED lamp heads.
4. External emergency power unit.

2.4 EXIT SIGNS
A. Refer to Luminaire Schedule on the Drawings for each Luminaire Type.
1. Contractor may submit substitution request for equal products to those listed in the Luminaire schedule prior to bid for evaluation. If approved, formal approval will be issued. No substitutions will be entertained and/or permitted after bid date.
B. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.
1. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.
2. Self-Powered Exit Signs (Battery Type): Internal emergency power unit.
3. Master/Remote Sign Configurations:
 a. Master Unit: Comply with requirements above for self-powered exit signs, and provide additional capacity in **LED power supply battery** for power connection to remote unit.
 b. Remote Unit: Comply with requirements above for self-powered exit signs, except omit power supply, battery, and test features. Arrange to receive full power requirements from master unit. Connect for testing concurrently with master unit as a unified system.

4. Self-Diagnostics

2.5 MATERIALS

A. Metal Parts:
1. Free of burrs and sharp corners and edges.
2. Sheet metal components shall be steel unless otherwise indicated.
3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access:
1. Smooth operating, free of light leakage under operating conditions.
2. Designed to permit relamping without use of tools.
3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
1. **Clear, UV-stabilized acrylic.**
2. Acrylic: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
3. **Lens Thickness:** At least 0.125 inch minimum unless otherwise indicated.

D. Conduit: **Electrical metallic tubing,** minimum 3/4 inch in diameter.

2.6 METAL FINISHES

A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.7 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Support Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, **12 gage.**

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for conditions affecting performance of luminaires.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.

C. Examine walls, floors, roofs, and ceilings for suitable conditions where emergency lighting luminaires will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:
1. Sized and rated for luminaire and emergency power unit weight.
2. Able to maintain luminaire position when testing emergency power unit.
3. Provide support for luminaire and emergency power unit without causing deflection of ceiling or wall.
4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire and emergency power unit weight and vertical force of 400 percent of luminaire weight.

E. Wall-Mounted Luminaire Support:
1. **Attached to a minimum 20-gage backing plate attached to wall structural members.**
2. Do not attach luminaires directly to gypsum board.

F. Suspended Luminaire Support:
1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.

3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.

4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

G. Ceiling Grid Mounted Luminaires:
1. Secure to any required outlet box.
2. Secure emergency power unit using approved fasteners in a minimum of four locations, spaced near corners of emergency power unit.
3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

3.3 IDENTIFICATION
A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL
A. Perform the following tests and inspections:
 1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.
C. Prepare test and inspection reports.

3.5 STARTUP SERVICE
A. Perform startup service:
 1. Charge emergency power units and batteries minimum of 24 hours and conduct one-hour discharge test.

3.6 ADJUSTING
A. Adjustments: Within 12 months of date of Substantial Completion, provide on-site visit to do the following:
 1. Inspect all luminaires. Replace lamps, emergency power units, batteries, signs, or luminaires that are defective.
 a. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 2. Conduct short-duration tests on all emergency lighting.
SECTION 265619 - LED EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Exterior solid-state luminaires that are designed for and exclusively use LED lamp technology.
 2. Luminaire supports.
 3. Luminaire-mounted photoelectric relays.
 B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS
 A. CCT: Correlated color temperature.
 B. CRI: Color rendering index.
 C. Fixture: See "Luminaire."
 D. IP: International Protection or Ingress Protection Rating.
 E. Lumen: Measured output of lamp and luminaire, or both.
 F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of luminaire.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaire.
 4. Lamps, include life, output (lumens, CCT, and CRI), and energy-efficiency data.
 5. Photometric data and adjustment factors based on laboratory tests, complying with IES Lighting Measurements Testing and Calculation Guides, of each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project. IES LM-79 and IES LM-80.
 a. Manufacturer's Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the NVLAP for Energy Efficient Lighting Products.
 6. Wiring diagrams for power, control, and signal wiring.
 7. Photoelectric relays.
 8. Means of attaching luminaires to supports and indication that the attachment is suitable for components involved.
 B. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For testing laboratory providing photometric data for luminaires.
 B. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 C. Product Certificates: For each type of the following:
 1. Luminaire.
 2. Photoelectric relay.
 D. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.
 E. Source quality-control reports.
 F. Sample warranty.
1.6 Closeout Submittals
 A. Operation and Maintenance Data: For luminaires and photoelectric relays to include in operation and
 maintenance manuals.
 1. Provide a list of all lamp types used on Project. Use ANSI and manufacturers’ codes.
 2. Provide a list of all photoelectric relay types used on Project; use manufacturers’ codes.

1.7 Quality Assurance
 A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturers’ laboratory that is
 accredited under the NVLAP for Energy Efficient Lighting Products.
 B. Provide luminaires from a single manufacturer for each luminaire type.
 C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency
 among luminaires.
 D. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

1.8 Delivery, Storage, and Handling
 A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering prior to
 shipping.

1.9 Field Conditions
 A. Verify existing and proposed utility structures prior to the start of work associated with luminaire
 installation.
 B. Mark locations of exterior luminaires for approval by Architect prior to the start of luminaire installation.

1.10 Warranty
 A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in
 materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures, including luminaire support components.
 b. Faulty operation of luminaires and accessories.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 2. Warranty Period: 5 year(s) from date of Substantial Completion.

2.1 Performance Requirements
 A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according
 to ASCE/SEI 7.
 B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 1. The term "withstand" means "the luminaire will remain in place without separation of any parts
 when subjected to the seismic forces specified."

2.2 Luminaire Requirements
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a
 qualified testing agency, and marked for intended location and application.
 B. NRTL Compliance: Luminaires shall be listed and labeled for indicated class and division of hazard by an
 NRTL.
 C. UL Compliance: Comply with UL 1598 and listed for wet location.
 D. Lamp base complying with ANSI C81.61 or IEC 60061-1.
 E. Bulb shape complying with ANSI C79.1.
 F. CRI of 70. CCT of 4000 K.
 G. L70 lamp life of 50,000 hours.
 H. Lamps dimmable from 100 percent to 0 percent of maximum light output.
 I. Internal driver.
 J. Nominal Operating Voltage: 277 V ac or as noted on drawings.
 K. In-line Fusing: Separate in-line fuse for each luminaire.
 L. Lamp Rating: Lamp marked for outdoor use.
 M. Source Limitations: For luminaires, obtain each color, grade, finish, type, and variety of luminaire from
 single source with resources to provide products of consistent quality in appearance and physical
 properties.

2.3 Luminaire Types
 A. Refer to Luminaire Schedule on the Drawings for each Luminaire Type.
1. Contractor may submit substitution request for equal products to those listed in the Luminaire schedule prior to bid for evaluation. If approved, formal approval will be issued. No substitutions will be entertained and/or permitted after bid date.

2.4 MATERIALS
 A. Metal Parts: Free of burrs and sharp corners and edges.
 B. Sheet Metal Components: Corrosion-resistant aluminum. Form and support to prevent warping and sagging.
 C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses.
 D. Diffusers and Globes:
 1. Acrylic Diffusers: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
 E. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
 F. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 1. White Surfaces: 85 percent.
 2. Specular Surfaces: 83 percent.
 3. Diffusing Specular Surfaces: 75 percent.
 G. Housings:
 1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.
 2. Provide filter/breather for enclosed luminaires.
 H. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage and coating.
 c. CCT and CRI for all luminaires.

2.5 FINISHES
 A. Variations in Finishes: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
 B. Luminaire Finish: Manufacturer’s standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.

2.6 LUMINAIRE SUPPORT COMPONENTS
 A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 B. Examine roughing-in for luminaire electrical conduit to verify actual locations of conduit connections before luminaire installation.
 C. Examine walls, roofs, and canopy ceilings and overhang ceilings for suitable conditions where luminaires will be installed.
 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 GENERAL INSTALLATION REQUIREMENTS
 A. Comply with NECA 1.
 B. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.
 C. Install lamps in each luminaire.
 D. Fasten luminaire to structural support.
 E. Supports:
1. Sized and rated for luminaire weight.
2. Able to maintain luminaire position after cleaning and relamping.
3. Support luminaires without causing deflection of finished surface.
4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.

F. Wall-Mounted Luminaire Support:
1. **Attached to structural members in walls.**

H. **Install luminaires level, plumb, and square with finished grade unless otherwise indicated. Install luminaires at height and aiming angle as indicated on Drawings.**

I. Coordinate layout and installation of luminaires with other construction.

J. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.

K. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" and 260533 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.3 **CORROSION PREVENTION**

A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.

B. Steel Conduits: Comply with Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch- thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.4 **IDENTIFICATION**

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 **FIELD QUALITY CONTROL**

A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.

B. Perform the following tests and inspections:
 1. **Operational Test:** After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 2. **Verify operation of photoelectric controls.**

C. **Illumination Tests:**
 1. **Operational Test:** After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.

D. Luminaire will be considered defective if it does not pass tests and inspections.

E. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.6 **DEMONSTRATION**

A. **Train** Owner's maintenance personnel to adjust, operate, and maintain luminaires and photocell relays.

3.7 **ADJUSTING**

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to **two** visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.
 1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
 2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265619
SECTION 270500 - COMMON WORK RESULTS FOR COMMUNICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Communications equipment coordination and installation.
 2. Common communications installation requirements.

1.3 COORDINATION
A. Coordinate arrangement, mounting, and support of communications equipment:
 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 3. To allow right of way for piping and conduit installed at required slope.
 4. So connecting pathways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
C. Coordinate location of access panels and doors for communications items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."
D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."
E. Coordinate sleeve selection and application and installation as specified in Division 27 Section "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR COMMUNICATIONS INSTALLATION
A. Comply with NECA 1.
B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both communications equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR COMMUNICATIONS PENETRATIONS
A. Install sleeves as specified in Division 27 Section "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

3.3 SLEEVE-SEAL INSTALLATION
A. Install sleeve-seals as specified in Division 27 Section "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

3.4 FIRESTOPPING
A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for communications installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION 270500
SECTION 270544 - SLEEVES AND SLEEVE SEALS FOR COMMUNICATIONS PATHWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Sleeves for pathway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
B. Related Requirements:
 1. Division 07 Section "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. LEED Submittals:
 1. Product Data for Credit EQ 4.1: For sealants, documentation including printed statement of VOC content.

PART 2 - PRODUCTS

2.1 SLEEVES
A. Wall Sleeves:
 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
 1. Use EZ-PATH Smoke and Acoustical Pathways as noted on drawings (or pre-approved equal)
C. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
D. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS
A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and pathway or cable.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Advance Products & Systems, Inc.
 b. CALPICO, Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.
 e. Proco Products, Inc.
 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 3. Pressure Plates: Carbon steel.
 4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.
2.3 **SLEEVE-SEAL FITTINGS**

A. **Description:** Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

1. **Manufacturers:** Subject to compliance with requirements, **provide products by the following:**
 a. Presealed Systems.

2.4 **GROUT**

A. **Description:** Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

B. **Standard:** ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.

C. **Design Mix:** 5000-psi, 28-day compressive strength.

D. **Packaging:** Premixed and factory packaged.

PART 3 - EXECUTION

3.1 **SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS**

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. **Interior Penetrations of Non-Fire-Rated Walls and Floors:**
 a. Seal annular space between sleeve and pathway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and pathway or cable unless sleeve seal is to be installed.

4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

5. Install sleeves for floor penetrations. Extend sleeves installed in floors **2 inches** above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:

1. Where noted on drawings, use the EZ-Path smoke and acoustical pathways. (Or pre-approved equal)

2. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.

3. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. **Roof-Penetration Sleeves:** Seal penetration of individual pathways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. **Aboveground, Exterior-Wall Penetrations:** Seal penetrations using **steel** pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. **Underground, Exterior-Wall and Floor Penetrations:** Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between pathway or cable and sleeve for installing sleeve-seal system.

3.2 **SLEEVE-SEAL-SYSTEM INSTALLATION**

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at pathway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for pathway or cable material and size. Position pathway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pathway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 **SLEEVE-SEAL-FITTING INSTALLATION**

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.
D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 270544
SECTION 283111 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and
Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Fire-alarm control unit.
3. System smoke detectors.
5. Remote annunciator.
6. Addressable interface device.

1.3 DEFINITIONS
A. EMT: Electrical Metallic Tubing.
B. FACP: Fire Alarm Control Panel.
C. NICET: National Institute for Certification in Engineering Technologies.
D. PC: Personal computer.
E. ASD: Air Sampling Detection.
F. VESDA: Very Early Smoke-Detection Apparatus.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product, including furnished options and accessories.
 1. Include construction details, material descriptions, dimensions, profiles, and finishes.
 2. Include rated capacities, operating characteristics, and electrical characteristics.
B. Shop Drawings: For fire-alarm system.
 1. Comply with recommendations and requirements in the "Documentation" section of the
 "Fundamentals" chapter in NFPA 72.
 2. Provide design calculation showing current draw on each notification circuit with allowance for
 minimum of 20% expansion.
 3. Include plans, elevations, sections, details, and attachments to other work.
 4. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances,
 method of field assembly, components, and locations. Indicate conductor sizes, indicate
 termination locations and requirements, and distinguish between factory and field wiring.
 5. Detail assembly and support requirements.
 6. Include voltage drop calculations for notification-appliance circuits.
 7. Include battery-size calculations and show that they are sized a minimum of 125% of calculated
 requirement.
 a. Show supervisory power requirements for all equipment
 b. Show alarm power requirements for all equipment
 c. Show power supply rating justification showing power requirements for each of the system
 power supplies. Power supplies shall be sized to furnish the total connected load in a worst
 case scenario.
 8. Include input/output matrix.
 9. Include statement from manufacturer that all equipment and components have been tested as a
 system and meet all requirements in this Specification and in NFPA 72.
 10. Include performance parameters and installation details for each detector.
 11. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity
 possible when air-handling system is operating.
 12. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to
 scale; coordinate location of duct smoke detectors and access to them.
 a. Show critical dimensions that relate to placement and support of sampling tubes, detector
 housing, and remote status and alarm indicators.
 b. Show field wiring required for HVAC unit shutdown on alarm.
 c. Locate detectors according to manufacturer's written recommendations.
 13. Include floor plans to indicate final outlet locations showing address of each addressable device.
 Show size and route of cable and conduits and point-to-point wiring diagrams.
C. General Submittal Requirements:
 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
 2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified, fire-alarm technician; **Level III** minimum.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer.
 1. Installer shall have successfully passed advanced certification training and be listed by the ASD system manufacturer as an accredited VESDA Pro contractor, trained and certified to model, design, install, program, test and maintain the ASD system and shall be able to produce a certificate stating such upon request.
 2. System Testing technicians or others conducting system programming, certification, power up, and system commissioning shall have advanced certification training, be listed by ASD system Manufacturer as an accredited VESDA Pro contractor, trained and certified to model, design, install, program, test and maintain the ASD system and shall be able to produce a certificate stating such upon request.

B. Seismic Qualification Certificates: For fire-alarm control unit, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.
D. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 c. Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
 d. Riser diagram.
 e. Device addresses.
 f. Record copy of site-specific software.
 g. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:
 1) Equipment tested.
 2) Frequency of testing of installed components.
 3) Frequency of inspection of installed components.
 4) Requirements and recommendations related to results of maintenance.
 5) Manufacturer's user training manuals.
 h. Manufacturer's required maintenance related to system warranty requirements.
 i. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.

B. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.
1.7 QUALITY ASSURANCE
A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level III technician.
 1. Installer of Air Sampling Smoke detection
C. NFPA Certification: Obtain certification according to NFPA 72 by an NRTL (nationally recognized testing laboratory).

1.8 PROJECT CONDITIONS
A. Perform a full test of the existing system prior to starting work. Document any equipment or components not functioning as designed.
B. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:
 1. Notify Owner no fewer than seven days in advance of proposed interruption of fire-alarm service.
 2. Do not proceed with interruption of fire-alarm service without Owner's written permission.
C. Use of Devices during Construction: Protect devices during construction unless devices are placed in service to protect the facility during construction.

1.9 WARRANTY
A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.
 1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS
2.1 MANUFACTURERS
2.2 Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Fire Control Instruments, Inc.; a Honeywell company.
2.3 SYSTEM DESCRIPTION
A. Source Limitations for Fire-Alarm System and Components: Components shall be compatible with, and operate as an extension of, existing system. Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.
 1. The existing Fire Alarm Control panel is a FCI 7200. All new devices shall be fully compatible with the existing system.
B. Noncoded, UL-certified addressable system, with multiplexed signal transmission and horn/strobe evacuation.
C. Automatic sensitivity control of certain smoke detectors.
D. All components provided shall be listed for use with the selected system.
E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.4 SYSTEMS OPERATIONAL DESCRIPTION
A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
 2. Smoke detectors.
 3. Vesda (Very early smoke detection apparatus)
 4. Duct smoke detectors.
 5. Automatic sprinkler system water flow.
B. Fire-alarm signal shall initiate the following actions:
 1. Continuously operate alarm notification appliances.
 2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
 3. Transmit an alarm signal to the remote alarm receiving station.
 4. Unlock electric door locks in designated egress paths.
 5. Release fire and smoke doors held open by magnetic door holders.
 6. Activate voice/alarm communication system.
 7. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
 8. Record events in the system memory.
 9. Record events by the system printer.
C. Supervisory signal initiation shall be by one or more of the following devices and actions:
 1. Valve supervisory switch.
 2. User disabling of zones or individual devices.
 3. Loss of communication with any panel on the network.

D. System trouble signal initiation shall be by one or more of the following devices and actions:
 1. Open circuits, shorts, and grounds in designated circuits.
 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
 3. Loss of communication with any addressable sensor, input module, relay, control module, remote annunciator, printer interface, or Ethernet module.
 4. Loss of primary power at fire-alarm control unit.
 5. Ground or a single break in internal circuits of fire-alarm control unit.
 6. Abnormal ac voltage at fire-alarm control unit.
 7. Break in standby battery circuitry.
 8. Failure of battery charging.
 9. Abnormal position of any switch at fire-alarm control unit or annunciator.

E. System Trouble Actions: Annunciate at fire alarm control unit and remote annunciator. Record even on system printer.
 1. Fire alarm panel shall provide trouble and alarm outputs to building BAS system. (Energy Management Controls System)

F. System Supervisory Signal Actions:
 1. Initiate notification appliances.
 2. Identify specific device initiating the event at fire-alarm control unit and remote annunciator.
 3. Record the event on system printer.
 4. Transmit system status to building management system.

2.5 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Fire-alarm control unit and raceways shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified.

2.6 FIRE-ALARM CONTROL UNIT (IS AN EXISTING FCI 7200 – Following is for reference only)
A. General Requirements for Fire-Alarm Control Unit:
 1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
 a. System software and programs shall be held in nonvolatile flash, electrically erasable, programmable, read-only memory, retaining the information through failure of primary and secondary power supplies.
 b. Include a real-time clock for time annotation of events on the event recorder and printer.
 c. Provide communication between the FACP and remote circuit interface panels, annunciators, and displays.
 d. The FACP shall be listed for connection to a central-station signaling system service.
 e. Provide nonvolatile memory for system database, logic, and operating system and event history. The system shall require no manual input to initialize in the event of a complete power down condition. The FACP shall provide a minimum 500-event history log.
 2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.
 3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.

B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
 1. Annunciator and Display: Liquid-crystal type, 2 line(s) of 40 characters, minimum.
 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.

C. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:
 1. Pathway Class Designations: NFPA 72, Class B.
 3. Install no more than 50 addressable devices on each signaling-line circuit.
 4. Serial Interfaces:
 a. One dedicated RS 485 port for remote station operation using point ID DACT.
b. One RS 485 port for remote annunciators, Ethernet module, or multi-interface module (printer port).

c. One USB port for PC configuration.

D. Smoke-Alarm Verification:
1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
2. Activate an approved "alarm-verification" sequence at fire-alarm control unit and detector.
3. Record events by the system printer.
4. Sound general alarm if the alarm is verified.
5. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.

E. Notification-Appliance Circuit:
1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
2. Where notification appliances provide signals to sleeping areas, the alarm signal shall be a 520-Hz square wave with an intensity 15 dB above the average ambient sound level or 5 dB above the maximum sound level, or at least 75 dBA, whichever is greater, measured at the pillow.
3. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.

F. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups. Record sensitivity adjustments and sensitivity-adjustment schedule changes in system memory, and print out the final adjusted values on system printer.

G. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.

H. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.
1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

I. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.
1. Batteries: Sealed lead calcium. (Provide additional capacity as required with new calculations for added devices)
 a. Sized to 125% of the calculated requirement. Batteries must be capable of operating the panel in normal mode for 24 hours with sufficient capacity to operate the panel in alarm mode for 15 minutes at the end of that 24 hour period.

J. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.7 MANUAL FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.
1. Double-action mechanism requiring two actions to initiate an alarm, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
2. Station Reset: Key- or wrench-operated switch.

2.8 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:
1. Comply with UL 268; operating at 24-V dc, nominal.
2. Detectors shall be two-wire type.
3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
6. Integral Visual-Indicating Light: LED type, indicating detector has operated and power-on status.
7. Remote Control: Unless otherwise indicated, detectors shall be digital-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
 a. Multiple levels of detection sensitivity for each sensor.
 b. Sensitivity levels based on time of day.

B. Photoelectric Smoke Detectors:
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

C. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
 4. Each sensor shall have multiple levels of detection sensitivity.
 5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.

2.9 AIR-SAMPLING SMOKE DETECTOR
A. Design shown on drawings is basis of design as manufacturer by xtralis. Contractor may submit equal for pre-approval prior to bids. No substitutions will be entertained after bids.

B. General Description:
 1. Air-sampling smoke detector shall be laser based using a piping system and a fan to transport the particles of combustion to the detector.
 2. Provide one level of alarm from each zone covered by the detector and two supervisory levels of alarm from each detector.
 3. The air being sampled shall pass through filters to remove dust particulates greater than 20 microns before entering the detection chamber.
 4. Detectors shall have the capability via RS 485 to connect up to 100 detectors in a network.
 5. Detectors shall communicate with the fire-alarm control unit via addressable, monitored dry contact closures, RS 485, and interface modules. Provide a minimum of six relays, individually programmable remotely for any function.
 6. Pipe airflow balancing calculations shall be performed using approved calculation software.

C. Detector:
 1. Detector, Filter, Aspirator, and Relays: Housed in a mounting box and arranged in such a way that air is drawn from the detection area and a sample passed through the dual-stage filter and detector by the aspirator.
 2. Obscuration Sensitivity Range: 0.005 - 6 percent obs/ft.
 3. Three independent, field-programmable, smoke-alarm thresholds per sensor pipe and a programmable scan time delay. The threshold set points shall be programmable.
 a. The three alarm thresholds may be used as follows:
 1) Alarm Level 1 (Alert): Annunciate on Fire alarm panel and activate a supervisory condition.
 2) Alarm Level 2 (Action): Annunciate on Fire alarm panel and activate a trouble condition.
 3) Alarm Level 3 (Fire 1): Annunciate on Fire alarm panel and Activate building alarm systems and initiate call to fire response unit.
 b. Final Detection System Settings: Approved by Owner.
c. **Initial Commissioning Settings for ASSD Apparatus.**
 1) Alarm threshold settings for air sampling smoke detection apparatuses shall be configured to achieve target port sensitivities above recorded average ambient peak level of 0.50% obs/ft for Alert, 1.0% obs/ft for Action, 1.5% obs/ft for Fire 1. Data review and analysis shall consider the normal base line or ambient pollutant level recorded, as well as all deviations from the established base line as recorded by the apparatuses event log. The recorded data shall then be used in conjunction with the following formulas to calculate alarm thresholds:
 a) Fire 1 – Divide target sampling port sensitivity of 1.5% obs/ft by number of holes in overall system pipe network then add the recorded average ambient peak level to derive at the Fire 1 alarm threshold.
 b) Action – Divide target sampling port sensitivity of 1.00% obs/ft by number of holes in overall system pipe network then add the recorded average ambient peak level to derive at the Action threshold.
 c) Alert – Divide target sampling port sensitivity of 0.50% obs/ft by number of holes in overall system pipe network then add the recorded average ambient peak level to derive at the Alert threshold.

4. **Power Supply:**
 a. Regulated 24-V dc, monitored by the fire-alarm control unit, with battery backup.
 b. Battery backup shall provide 24 hours’ standby, followed by 30 minutes at maximum connected load.

5. **Detector** shall also transmit the following faults:
 a. Detector.
 b. Airflow.
 c. Filter.
 d. System.
 e. Zone.
 f. Network.
 g. Power.

6. Provide four in-line sample pipe inlets that shall contain a flow sensor for each pipe inlet. The detector shall be capable of identifying the pipe from which smoke was detected.

7. **Aspirator:** Air pump capable of allowing for multiple sampling pipe runs up to 650 feet in total, (four pipe runs per detector) with a transport time of less than 120 seconds from the farthest sample port.

8. **Air-Sampling Flow Rates Outside Manufacturer's Specified Range:** Result in a trouble alarm.

9. Provide software-programmable relays rated at 2 A at 30-V dc for alarm and fault conditions.

10. Provide built-in event and smoke logging; store smoke levels, alarm conditions, operator actions, and faults with date and time of each event. Each detector (zone) shall be capable of storing up to 18,000 events.

11. **Urgent and Minor Faults.** Minor faults shall be designated as trouble alarms. Urgent faults, which indicate the unit may not be able to detect smoke, shall be designated as supervisory alarms.

D. **Displays:**
 1. Include an integral three inch display with detector.

E. **Sampling Tubes:**
 1. Smooth bore with a nominal 1.05-inch OD and a 3/4-inch ID.
 3. Joints in the sampling pipe shall be airtight. Use solvent cement approved by the pipe manufacturer on all joints except at entry to the detector.
 4. Identify piping with labels reading: "Aspirating Smoke Detector Pipe - Do Not Paint or Disturb" along its entire length at regular intervals according to NFPA 72.
 5. Support pipes at not more than 5 FT centers.
 6. Fit end of each trunk or branch pipe with an end cap and made air-tight by using solvent cement and drilled with a hole appropriately sized to achieve the performance as specified and as calculated by the system design. Use of hole in the end cap will be dependent on the network design.

F. **Sampling Holes:**
 1. Sampling holes of 1/8 inch, or other sized holes per manufacturer’s written instructions, shall be separated by not more than the maximum distance allowable for conventional smoke detectors. Intervals may vary according to calculations.
2. Follow manufacturer's written recommendations to determine the number and spacing of sampling points and the distance from sampling points to ceiling or roof structure and to forced ventilation systems.

3. Each sampling point shall be identified by an applied decal.

2.10 NOTIFICATION APPLIANCES

A. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.
 2. System Sensor devices compatible with fire alarm system and complying with specifications are approved manufacturer.

B. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.

C. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch-high letters on the lens.
 1. Rated Light Output:
 a. 15/30/75/110 cd, selectable in the field.
 2. Mounting: Wall mounted unless otherwise indicated.
 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
 4. Flashing shall be in a temporal pattern, synchronized with other units.
 5. Strobe Leads: Factory connected to screw terminals.

D. Exit Marking Audible Notification Appliance:
 1. Exit marking audible notification appliances shall meet the audibility requirements in NFPA 72.
 2. Provide exit marking audible notification appliances at the entrance to all building exits.

2.11 ADDRESSABLE INTERFACE DEVICE

A. General:
 1. Include address-setting means on the module.
 2. Store an internal identifying code for control panel use to identify the module type.
 3. Listed for controlling HVAC fan motor controllers.

B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.

C. Integral Relay: Capable of providing a direct signal.
 1. Allow the control panel to switch the relay contacts on command.
 2. Have a minimum of two normally open and two normally closed contacts available for field wiring.

D. Control Module:
 1. Operate notification devices.
 2. Operate solenoids for use in sprinkler service.

2.12 DIGITAL ALARM COMMUNICATOR TRANSMITTER (Remote Central Station connection is existing to remain)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
 1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.

B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION

A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
 1. Devices placed in service before all other trades have completed cleanup shall be replaced.
2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer's written storage instructions.

B. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.
1. Connect new equipment to existing control panel in existing part of the building.
2. Connect new equipment to existing monitoring equipment at the supervising station.
3. Expand, modify, and supplement existing [control] [monitoring] equipment as necessary to extend existing [control] [monitoring] functions to the new points. New components shall be capable of merging with existing configuration without degrading the performance of either system.

C. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.

D. Manual Fire-Alarm Boxes:
1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.

E. Smoke- or Heat-Detector Spacing:
1. Comply with the "Smoke-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for smoke-detector spacing.
2. Comply with the "Heat-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for heat-detector spacing.
3. Smooth ceiling spacing shall not exceed 30 feet.
4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Annex A in NFPA 72.
5. HVAC: Locate detectors not closer than 36 inches from air-supply diffuser or return-air opening.
6. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture and not directly above pendant mounted or indirect lighting.

F. Install a cover on each smoke detector that is not placed in service during construction. Cover shall remain in place except during system testing. Remove cover prior to system turnover.

G. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.
1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.

H. Air-Sampling Smoke Detectors: If using multiple pipe runs, the runs shall be pneumatically balanced.

I. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.

J. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.

K. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling. Install all devices at the same height unless otherwise indicated.

L. Device Location-Indicating Lights: Locate in public space near the device they monitor.

3.3 PATHWAYS

A. Pathways above recessed ceilings and in nonaccessible locations may be routed exposed.
1. Exposed pathways located less than 96 inches above the floor shall be installed in EMT.

B. Pathways shall be installed in EMT.

C. Exposed EMT shall be painted red enamel.

3.4 CONNECTIONS

A. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
1. Supervisory connections at valve supervisory switches.
2. Data communication circuits for connection to building management system.
3. Data communication circuits for connection to mass notification system.

3.5 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
B. Install framed instructions in a location visible from fire-alarm control unit.
3.6 GROUNDING
A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.
B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.7 FIELD QUALITY CONTROL
A. Field tests shall be witnessed by authorities having jurisdiction.
B. Manufacturer’s Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
C. Perform tests and inspections.
D. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed record Drawings and system documentation that is required by the “Completion Documents, Preparation” table in the “Documentation” section of the “Fundamentals” chapter in NFPA 72.
 b. Comply with the “Visual Inspection Frequencies” table in the “Inspection” section of the “Inspection, Testing and Maintenance” chapter in NFPA 72; retain the “Initial/Reacceptance” column and list only the installed components.
 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
 4. Test visible appliances for the public operating mode according to manufacturer's written instructions.
 5. Factory-authorized service representative shall prepare the “Fire Alarm System Record of Completion” in the “Documentation” section of the “Fundamentals” chapter in NFPA 72 and the “Inspection and Testing Form” in the “Records” section of the “Inspection, Testing and Maintenance” chapter in NFPA 72.
E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.
F. Fire-alarm system will be considered defective if it does not pass tests and inspections.
G. Prepare test and inspection reports.
H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.
I. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.8 MAINTENANCE SERVICE
A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of manufacturer’s designated service organization. Include preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 1. Include visual inspections according to the "Visual Inspection Frequencies" table in the "Testing" paragraph of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

3.9 SOFTWARE SERVICE AGREEMENT
A. Comply with UL 864.
B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.
3.10 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system and VESDA system.

END OF SECTION 283111
SECTION 311000 – SITE CLEARING

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Protecting existing vegetation to remain.
 2. Removing existing vegetation.
 3. Clearing and grubbing.
 4. Stripping and stockpiling topsoil.
 5. Removing above- and below-grade site improvements.
 6. Disconnecting, capping or sealing site utilities.
 7. Temporary erosion- and sedimentation-control measures.

1.2 MATERIAL OWNERSHIP
 A. Except for stripped topsoil and other materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

1.3 PROJECT CONDITIONS
 A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.
 B. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 1. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.
 C. Salvable Improvements: Carefully remove items indicated to be salvaged and store on Owner's premises where indicated.
 D. Utility Locator Service: Notify utility locator service for area where Project is located before site clearing.
 E. Do not commence site clearing operations until temporary erosion and sedimentation control and plant protection measures are in place.
 F. The following practices are prohibited within protection zones:
 1. Storage of construction materials, debris, or excavated material.
 2. Parking vehicles or equipment.
 3. Foot traffic.
 4. Erection of sheds or structures.
 5. Impoundment of water.
 6. Excavation or other digging unless otherwise indicated.
 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.

PART 2 - PRODUCTS

2.1 MATERIALS
 A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Section 312000 “Earth Moving.”
 1. Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site.

PART 3 - EXECUTION

3.1 PREPARATION
 A. Protect and maintain benchmarks and survey control points from disturbance during construction.
 B. Locate and clearly identify trees, shrubs, and other vegetation to remain or to be relocated.
 C. Protect existing site improvements to remain from damage during construction.
 1. Restore damaged improvements to their original condition, as acceptable to Owner.

3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL
 A. Provide temporary erosion and sedimentation control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion and sedimentation control Drawings and requirements of authorities having jurisdiction.
 B. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.
 C. Inspect, maintain, and repair erosion and sedimentation control measures during construction until permanent vegetation has been established.
D. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.

3.3 TREE AND PLANT PROTECTION
 A. General: Protect trees and plants remaining on-site.
 B. Repair or replace trees, shrubs, and other vegetation indicated to remain or be relocated that are damaged by construction operations, in a manner approved by Owner.

3.4 EXISTING UTILITIES
 A. Locate, identify, disconnect, and seal or cap utilities indicated to be removed or abandoned in place.
 1. Arrange with utility companies and Owner's Representative to shut off indicated utilities.
 B. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 1. Notify Owner not less than 72 hours in advance of proposed utility interruptions.
 2. Do not proceed with utility interruptions without Owner's written permission.

3.5 CLEARING AND GRUBBING
 A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.
 1. Grind down stumps and remove roots, obstructions, and debris to a depth of 18 inches (450 mm) below exposed subgrade.
 2. Use only hand methods for grubbing within protection zones.
 B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.
 1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches (200 mm), and compact each layer to a density equal to adjacent original ground.
 C. Tree root pruning will be performed by MU Landscape Services. Contractor shall notify Owner's Representative 4 business days in advance.

3.6 SITE IMPROVEMENTS
 A. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.

3.7 DISPOSAL OF SURPLUS AND WASTE MATERIALS
 A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.
 B. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION
SECTION 312000 – EARTH MOVING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
1. Excavation for paving and grading.
2. Excavation for building foundations, slabs-on-grade, paving, and grading.
3. Excavation for Site structures.
4. Site filing and backfilling.
5. Drainage course for slabs-on-grade.
6. Consolidation and compaction.
7. Excavation for trenches for utilities and footings.
8. Consolidation and compaction of bedding under utilities.
9. Rough grading.
B. Related Sections:
2. Section 033000 – Cast-In-Place Concrete.
3. Section 311000 – Site Clearing.
4. Section 331100 – Exterior Underground Water Service Piping
5. Section 333100 – Sanitary Utility Sewerage Piping
7. Section 3346133 – Foundation Drainage

1.2 DEFINITIONS
A. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials, and bottom of over excavation areas if required by the contract document.
B. Subbase Course: Aggregate layer placed between the subgrade and hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.
C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.
D. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.
E. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill, when sufficient approved soil material is not available from excavations.
F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated, regardless of the character and density of materials, including reuse or disposal of materials removed.
 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Design Professional. Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.
 2. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Design Professional. Unauthorized excavation, as well as remedial work directed by Design Professional, shall be without additional compensation.
G. Fill: Suitable materials used to raise existing grades.
H. Finish Grade: The top surface of sod, top surface of topsoil where sod is not indicated or exposed rock surface where indicated on the drawing.
I. Trench Backfill: Soil material or controlled low-strength material used to fill an excavation.
 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
J. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
K. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

1.3 SUBMITTALS
A. Submit in accordance with Division 1 unless otherwise indicated.
B. Product Data:
 1. Manufacturer’s specifications and technical data for the following:
2. Include laboratory test reports for the following:
 a. Granular fill.
 b. Pavement base course.
C. Contract Closeout Submittals: Submit in accordance with Division 1.
 1. Project Record Documents.
 a. Accurately record location of underground utilities remaining, rerouted utilities, and new utilities by
 horizontal dimensions from above grade permanent fixtures, elevations or inverts, and slope
 gradients.

1.4 QUALITY ASSURANCE
A. Installer’s Qualifications: Firm experienced in installation of systems similar in complexity to those required
 for this Project, plus the following:
 1. Not less than 3 years experience with systems.
 2. Successfully completed not less than 5 comparable scale projects using this system.
B. Testing Agency: A qualified independent geotechnical engineering testing agency shall classify proposed
 on-Site and borrow soils to verify that soils comply with specified requirements and to perform specified
 field and laboratory testing.
C. Pre-excavation Conference:
 1. Convene pre-excavation conference under provision of Division 1, one week prior to commencing
 Work of this Section.
 2. Contractor shall be presiding officer at conference.
 3. Conference shall be attended by Contractor, Owner’s Representative, testing agency, and earthwork
 subcontractor.
 4. Purpose of conference will be to review contract requirements and discuss schedules, work
 procedures, acceptable materials specified under this Section, locations where specified materials may
 be incorporated, and quality control.

1.5 PROJECT CONDITIONS
A. Existing Conditions:
 1. Locate existing underground utilities in areas of excavation Work.
 a. Do not interrupt existing utilities serving facilities occupied by the Owner or others except when
 permitted in writing by Owner’s Representative and then only after acceptable temporary utility
 services have been provided.
 b. Provide not less than 72 hours notice to Architect and Owner’s Representative and receive written
 authorization to proceed before interrupting any utility.

1.6 MAINTENANCE
A. Where settling is measurable or observable at excavated areas during correction period required by
 General Conditions, remove surface (pavement, lawn, or other finish), add backfill material, compact as
 specified in this Section for location of material, and replace surface treatment.
 1. Restore appearance, quality, and condition of surface or finish to match adjacent materials.
 2. Eliminate evidence of restoration.

PART 2 - PRODUCTS
2.1 MATERIALS
A. General:
 1. Provide approved borrow soil materials from off-Site when sufficient approved soil materials are not
 available from excavations, at no increase in Contract Sum or extension of Contract Time.
 2. Dispose of any excess materials legally off site at no increase in contract sum or extension of contract
 time. On site disposal of suitable materials may only be permitted where shown on the drawings.
 3. Fill and backfill materials shall be subject to the approval of testing agency and the Owner’s
 Representative.
 4. For approval of fill and backfill materials, notify testing agency and Owner’s Representative at least 5
 working days in advance of intention to import material.
 a. Designate proposed borrow area and excavate test pits to permit testing agency to sample as
 necessary from borrow area for the purpose of making acceptance tests to confirm quality of
 proposed material.
B. Construction Fill and Backfill
 1. Engineered fill shall be free of frozen soil, organics, rubbish, large rocks, wood, or other deleterious
 material. Cohesive fills shall be uniformly compacted to at least 95 percent of the "Standard" maximum
 dry density with an optimum moisture content per the Geotechnical Engineer’s recommendation as
 described by ASTM D698.
a. Granular fills, containing enough fines such that a definite density and/or moisture relationship exists, shall be uniformly compacted to 95 percent of the “Standard” maximum dry density with an optimum moisture content per the Geotechnical Engineer’s recommendation.

2. Soils classified as MH, OH, OL, or PT (high plasticity soils and organic soils) by the Unified Soil Classification System (ASTM D 2487) shall not be used as engineered fill. Suitable on-site materials for engineered fill are those that classify as CL in accordance with ASTM D 2487. On-site material classified as CH may be used in non-structural areas if approved by the geotechnical engineer. Imported soils and granular fills shall be analyzed by the geotechnical engineer as soon as the borrow sources are identified to determine the suitability.

3. The fill material shall be placed in layers, not to exceed 8 inches in loose thickness, and shall be wetted or dried as required to secure specified compaction. Effective spreading equipment shall be used on each lift to obtain a uniform lift thickness prior to compaction. Each layer shall be uniformly compacted by means of suitable equipment of the type required by the materials composing the fill. Material that is too wet to permit proper compaction may be stockpiled or spread and permitted to dry assisted by disk, harrow, or pulverizing until the moisture content is reduced to a satisfactory value. The fill layers shall be placed approximately parallel to the finished grade. Rocks and stones that exceed the thickness of the 8 inch loose lift layer shall be removed and disposed of off the immediate construction site.

4. Fill and subgrade construction shall not be started on foundation soil, partially completed fill, or subgrades that contain frost or ice. Fill shall not be constructed of frozen soil. Frozen soil shall be removed prior to placing fill material.

C. Structural Fill Requirements:

1. Compacted structural fill should consist of approved materials free of organic matter and debris. Frozen material should not be used and fill should not be placed on a frozen subgrade. A sample of each material type should be submitted for evaluation prior to use.

<table>
<thead>
<tr>
<th>Structural Fill Material Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Type</td>
</tr>
<tr>
<td>Lean Clay and Clayey Sand*</td>
</tr>
<tr>
<td>Lean to Fat Clay</td>
</tr>
<tr>
<td>Fat Clay</td>
</tr>
</tbody>
</table>
| Low Volume Change Material 1 | | • Similar to MoDOT Type 1 or 5 crushed limestone aggregate, limestone screenings, or granular material such as sand, gravel or crushed stone containing at least 18% low plasticity fines.
• Low plasticity cohesive soil or granular soil having at least 18% low plasticity fines.
• Can also consist of chemically treated soil such as hydrated lime, Code-L, etc. |

*Some onsite soils meet LVC material specifications, however, these soils should be reworked and moisture conditioned if this material is to be used as LVC material.

D. Structural Fill Compaction Requirements

<table>
<thead>
<tr>
<th>Structural Fill Compaction Requirements</th>
</tr>
</thead>
</table>
| Soil Fill Lift Thickness | • 9 inches or less when using heavy self-propelled compaction equipment
• 6-inches or less when using hand guided or light self-propelled equipment |
| Compaction Requirements 1, 2 | 95% of standard Proctor dry density (ASTM D-698)
1. We recommend engineered fill be tested for moisture content and compaction during placement. Should the results of the in-place density tests indicate the specified moisture or compaction limits have not been met, the area represented by the test should be reworked and retested as required until the specified moisture and compaction requirements are achieved.
2. As stated within ASTM D698, this procedure is intended for soils with 30% or less material larger than 3/4” sieve. Accordingly, we recommend full time proof-roll observation be performed instead of moisture density testing for materials containing more than 30% aggregate retained on the 3/4” sieve. |
Compaction Moisture Content

Requirements

- Lean to Fat Clay (LL>40) and Fat Clay
- Lean Clay and Silt
- Granular

Optimum moisture content (OMC) to 4% above the standard Proctor optimum moisture content

2% below to 3% above standard Proctor OMC

Workable moisture content. Shall not pump when proofrolled

E. Bedding Materials: Type 5 aggregate per MoDOT Standard Specification for Highway Construction, Section 1007.

F. Trench Backfill Materials:
1. Pavement areas: Engineered fill as indicated in this section.
2. Other areas: General Fill Material or other materials specified under this Section at locations specified or indicated on Drawings.

G. Landscape Backfill Materials:
1. Suitable soils within 36” of finish grade shall be cohesive soils in Soil Classification Groups ML, CL, CH or combination thereof, free from rock or gravel larger than 1” in any dimension, debris, waste, frozen materials, vegetation and other deleterious debris.

H. Unsuitable material
1. Definition: That excavated material which does not meet the consistency requirements of any other defined materials in this Section, including muck, frozen material, organic material, top soil, rubbish, and rock within the limits defined for General Fill Material
2. Dispose of unsuitable material off-Site, at no increase in Contract Sum or extension of Contract Time.
 a. Submit an acceptable agreement with the property owner on whose property the unsuitable material is placed.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verification of Conditions: Examine areas and conditions under which Work is to be performed and identify conditions detrimental to proper and timely completion.
 1. Verify location and elevations of existing building foundations.
 2. Verify location and elevations of existing underground utilities.
 3. Verify erosion control systems are in place.
 4. Do not proceed until unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Protection:
 1. Protect trees, shrubs, lawns, other plant growth, and other features indicated on Drawings to remain.
 2. Protect bench marks, monuments, existing structures, existing fences, existing roads, existing sidewalks, existing paving, and existing curbs from damage caused by settlement, lateral movement, undermining, washout, and other hazards caused by Work of this Section.
 a. If damaged or displaced, notify Owner’s Representative and correct defects as directed by Owner’s Representative.
 3. Protect above and below grade utilities which are to remain.
 4. Protect adjacent and downstream properties from pollution, sedimentation, or erosion caused by the work of this Contract.

B. Preparation:
 1. Use all means necessary to control dust on and near the Work, and on and near off-Site borrow storage, and spoil areas, if such dust is caused by performance of the Work of this Section, or if resulting from the condition in which Project Site is left by Contractor.
 2. Moisten surfaces as required to prevent dust from being a nuisance to the public, neighbors, and concurrent performance of other Work on Project Site.
 3. Identify required lines, levels, contours, and datum.
 4. Identify above and below grade utilities.
 5. Provide and maintain positive surface drainage.
 6. For subgrade under proposed planting areas, Contractor shall scarify subgrade in two directions prior to installation of final planting materials.

3.3 WATER CONTROL

A. Provide berms or channels to prevent flooding of subgrades.
B. Prevent infiltration of water into excavations from whatever sources as may exist.
C. Prevent ponding of water on finish subgrades.
D. Protect subgrades and foundation soils from softening and damage by rain or water accumulation.
E. Prevent flooding of Project Site and surrounding areas.
F. Promptly remove water collection in depressions.
 1. Provide and maintain ample means and devices with which to remove and dispose of water entering excavations.
 2. Ensure dry excavations and preservation of final lines and grades of bottoms of excavations.

3.4 EXCAVATION, GENERAL
A. Use of explosives is not permitted.
B. Excavation above subgrade as defined in paragraph 1.2 of this section is unclassified and includes excavation of any material encountered regardless of its character including rock, soil materials, debris, and other obstructions and shall be included in the base bid.
C. Perform excavation to the lines and grades indicated on Drawings within a tolerance of 0.10 foot.
 1. Extend excavations a sufficient distance from structures for placing and removing concrete formwork, installing services and other construction, and for inspections.
D. Perform Excavation Work in compliance with applicable requirements of authorities having jurisdiction, including United States Department of Labor, Occupational Safety and Health Administration (OSHA) “Construction Standards for Excavations, 29 CFR Part 1926”.
E. Perform Work in a manner and sequence that will provide drainage at all times and that will prevent surface water from draining into excavations.
F. Protect subgrades and foundation soils against freezing temperatures and frost.
 1. Provide protective insulation materials as necessary.
G. Contractor shall not excavate through existing tree roots to remain. Root pruning shall be performed by MU Landscape Services. Notify Owner’s Representative 4 business days in advance.
H. Excavation cut shall not interfere with normal 45 degree bearing splay of foundations.
I. Machine slope banks to comply with local codes, ordinances, and requirements of agencies having jurisdiction.
 1. Provide materials for shoring and bracing.
 a. Maintain shoring and bracing in excavations regardless of time period excavations will be open.
 b. Extend shoring and bracing as excavation progresses
 2. Control surface drainage down slopes.
 3. Cover slopes to prevent loss of moisture content of soil and to prevent raveling.
J. When materials encountered at subgrade are determined to be unacceptable for use by testing agency, remove such material to depths and limits determined by testing agency.
 1. Backfill with material acceptable to testing agency and compact to density equal to the specified requirements for subsequent fill material.
K. Where depressions result from, or have resulted from the removal of surface or subsurface obstructions, open depressions to equipment working width, and remove debris and soft material as directed by testing agency, at no increase in Contract Sum or extension of Contract Time.
 1. Backfill with material acceptable to testing agency and compact to density equal to the specified requirements for subsequent fill material, at no increase in Contract Sum or extension of Contract Time.
L. Backfill and compact over-excavations and unauthorized as specified for the area at which it occurs, at no increase in Contract Sum or extension of Contract Time.
 1. Backfill with material acceptable to testing agency and compact to density equal to the specified requirements for subsequent fill material, at no increase in Contract Sum or extension of Contract Time.
M. Stockpile excavation material which testing agency has approved for reuse.
 1. Stockpile soil materials without intermixing soil materials with different consistencies and gradation.
 2. Place, grade, and shape stockpiles to drain surface water.
 3. Do not stockpile within drip line of trees which are to remain.
 4. Cover stockpiles to prevent wind-blown dust.
N. Remove unacceptable excavation material from Site, at no increase in Contract Sum or extension of Contract Time.
O. Hand trim excavations.
 1. Remove loose matter.
P. Excavation for Footings and Foundations:
 1. Do not disturb bottom of excavation.
 a. Excavate by hand to final grade immediately prior to placement of concrete reinforcement.
 b. Trim bottom of excavations to required lines and grades to leave solid base to receive other work.
 2. Drill probe holes at exposed bottom of excavations as directed by testing agency.

3.5 SUBGRADE PREPARATION FOR BUILDING SLABS-ON-GRADE
A. General:
1. Excavation for subgrade preparation is unclassified and includes excavation to required subgrade elevations regardless of the character of surface and subsurface conditions encountered, including rock, soil materials, debris, and other obstructions.

2. Testing agency shall be present to observe and evaluate subgrades in building areas prior to placement of fill and/or low volume change materials and shall be present during placement and compaction of fill materials in building areas. Undercut as specified herein to develop a low volume change zone below building floor slabs as specified in geotechnical report. Subgrades in building areas shall be observed and evaluated by geotechnical engineer prior to fill and/or low volume change placement. Evaluation may include probing by geotechnical engineer and opening of test pits and/or test trenches with contractors assistance to explore areas of suspected unsuitable materials. Subgrades shall also be proof-rolled with loaded tandem axle dump truck in presence of geotechnical engineer and scarified, moisture conditioned and recompacted as specified herein prior to placement of fill and/or low volume change materials.

3. Fill material shall not be placed, spread, or rolled while the material is frozen or thawing, or during unfavorable weather conditions.

4. Moisture condition or dry fill material as required to obtain specified moisture content limits.
 a. Material which is too wet to allow proper compaction, as determined by testing agency, may be spread and permitted to dry assisted by diskimg, harrowing, or pulverizing.

5. Place fill material using spreading equipment capable of obtaining uniform loose lift thickness.

6. Compact fill material using equipment appropriate to the material being compacted, as determined by testing agency.

7. When Work is interrupted by rain, do not resume Work until testing agency indicates that moisture content and density of previously placed fill area is as specified.

8. Where soil has been softened or eroded by flooding or placement during unfavorable weather conditions, remove damaged areas and recompact to required density.

9. In excavations where testing agency determines that subgrade material is unacceptable, remove unacceptable material and backfill in accordance with procedures determined by testing agency.

10. Minimize construction traffic, including foot traffic, from floor slab finished subgrades in order to prevent unnecessary disturbances of subgrade materials.
 a. If testing agency determines that finished subgrades have been disturbed, remove disturbed areas and replace and recompact to required density as directed by testing agency.
 b. If testing agency determines that rutting has occurred, excavate 6 inches, or other depth as directed by testing agency, of subgrade material and recompact as specified for affected area.
 c. Testing agency shall be present during compaction of material.

B. In cut areas below building slabs-on-grade, excavate existing materials below bottom of floor slab granular fill as directed by Testing Agency.

1. Scarify subgrade to a depth of 6 inches to result in a surface free from ruts, hummocks, and other uneven features which, in the opinion of the testing agency, would prevent uniform compaction by the equipment proposed for use.
 a. Moisture condition subgrade to achieve moisture content specified in this Section.
 b. Compact to a minimum of 97% of the material’s maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer’s recommendation in accordance with ASTM D698.
 1) Field density tests shall be taken after the compaction of each layer of fill by testing agency.
 2) When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

2. After scarifying, moisture conditioning, and recompacting, backfill fill areas using suitable soil materials placed in loose lifts not exceeding 8 inches.
 a. Compact each lift of suitable soil to a minimum of 97 percent of the material’s maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer’s recommendation in accordance with ASTM D698. Compact each lift of granular low volume change material to a minimum of 97 percent of the material’s maximum standard proctor dry density at a workable moisture content sufficient to obtain the required density.
 1) Field density tests shall be taken after the compaction of each layer of fill by testing agency.
 2) When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

3. Fill operations shall continue in compacted layers until finish subgrade elevations have been obtained.
a. Compact each lift of suitable soil to a minimum of 97 percent of the material’s maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer’s recommendation in accordance with ASTM D698. Compact each lift of granular low volume change material to a minimum of 97 percent of the material’s maximum standard proctor dry density at a workable moisture content sufficient to obtain the required density.

1) Field density tests shall be taken after the compaction of each layer of fill by testing agency.
2) When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

4. Protect excavations from excessive wetting and drying during construction.
 a. Remove water entering excavation, and remove disturbed or softened soil.

5. Maintain subgrade moisture content within specified range until building slabs-on-grade are installed.
 a. Rework non-complying area as required to achieve specified requirements as directed by testing agency.
 b. Recompact and retest until required density and moisture content is obtained.

C. In areas below building slabs-on-grade requiring fill to obtain finish subgrade elevations, scarify subgrade to a depth of 6 inches to result in surface free from ruts, hummocks, and other uneven features which, in the opinion testing agency, would prevent uniform compaction by the equipment proposed for use.

1. Moisture condition subgrade to achieve moisture content specified in this Section.
 a. Compact to a minimum of 97 percent of the material’s maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer’s recommendation in accordance with ASTM D698.

1) Field density tests shall be taken after the compaction of each layer of fill by testing agency.
2) When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

2. After scarifying, moisture conditioning, and recompacting, backfill areas using suitable materials as specified herein placed in loose lifts not exceeding 8 inches.
 a. Compact each lift of suitable clay soil or low volume change material to a minimum of 97 percent of the material’s maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer’s recommendation in accordance with ASTM D698. Compact each lift of granular low volume change material to a minimum of 97 percent of the material’s maximum Standard Proctor dry density at workable moisture content sufficient to obtain the required density.

1) Field density tests shall be taken after the compaction of each layer of fill by testing agency.
2) When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

3. Fill operations shall continue in compacted layers until finish subgrade elevations have been obtained.
 a. Compact each lift of suitable clay soil or low volume change material to a minimum of 97 percent of the material’s maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer’s recommendation in accordance with ASTM D698. Compact each lift of granular low volume change material to a minimum of 97 percent of the material’s maximum Standard Proctor dry density at workable moisture content sufficient to obtain the required density.

1) Field density tests shall be taken after the compaction of each layer of fill by testing agency.
2) When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

4. Protect excavations from excessive wetting and drying during construction.
 a. Remove water entering excavation and remove disturbed or softened soil.

5. Maintain subgrade moisture content within specified range until building slabs-on-grade are installed.
 a. Rework non-complying area as required to achieve specified requirements as directed by testing agency.
 b. Recompact and retest until required density and moisture content is obtained.

D. Tolerances:
 1. Top surface of finish subgrade under slabs-on-grade: Plus or minus ¼ inch from required elevations.

3.6 SUBGRADE PREPARATION FOR FOUNDATION FOOTING

A. General:
 1. Excavation for subgrade preparation for foundations is unclassified and includes excavation to required subgrade elevations regardless of the character of surface and subsurface conditions encountered, including rock, soil materials, debris, and other obstructions.
 2. Testing agency shall be present during placement and compaction of fill material.
 3. Fill material shall not be placed, spread, or rolled while the material is frozen or thawing, or during unfavorable weather conditions.
4. Moisture condition dry fill material as required to obtain specified moisture content limits.
 a. Material which is too wet to allow proper compaction, as determined by testing agency, may be
 spread and permitted to dry assisted by disking, harrowing, or pulverizing.
5. Place fill material using spreading equipment capable of obtaining uniform loose lift thickness.
6. Compact fill material using equipment appropriate to the material being compacted, as determined by
testing agency.
7. When Work is interrupted by rain, do not resume Work until testing agency indicates that moisture
 content and density of previously placed fill area is as specified.
8. Where soil has been softened or eroded by flooding or placement during unfavorable weather
 conditions, remove damaged areas and recompact to required density.
9. In excavations where testing agency determines that subgrade material is unacceptable, remove
 unacceptable material and backfill in accordance with procedures determined by testing agency.
10. Minimize construction traffic, including foot traffic, in order to prevent unnecessary disturbances of
 subgrade materials.
 a. If testing agency determines that finished subgrades have been disturbed, remove disturbed areas
 and replace and recompact to required density as directed by testing agency.
 b. If testing agency determines that rutting has occurred, excavate 6 inches, or other depth as
 directed by testing agency, of subgrade material and recompact as specified for affected area.
 c. Testing agency shall be present during compaction of material.

B. Excavation for footings and foundations bearing on soil material shall not occur until completion of building
slab-on-grade subgrade preparation and utility trenches backfill specified in this section is complete.

3.7 SUBGRADE PREPARATION AT PAVEMENTS

A. General:
1. Excavation for subgrade preparation is unclassified and includes excavation to required subgrade
 elevations regardless of the character of surface and subsurface conditions encountered, including
 rock, soil materials, debris, and other obstructions.
2. Testing agency shall be present to observe proof-rolling of subgrades in pavement and sidewalk areas
 prior to placement of fill and shall be present during placement and compaction of fill materials in
 pavement and sidewalk areas. Testing agency shall also be present to observe proof-rolling of
 finished subgrades prior to installation of pavement and sidewalk sections.
3. Fill material shall not be placed, spread, or rolled while the material is frozen or thawing, or during
 unfavorable weather conditions.
4. Moisture condition or dry fill material as required to obtain specified moisture content limits.
 a. Material which is too wet to allow proper compaction, as determined by testing agency, may be
 spread and permitted to dry assisted by disking, harrowing, or pulverizing.
5. Place fill material using spreading equipment capable of obtaining uniform loose lift thickness.
6. Compact fill material using equipment appropriate to the material being compacted, as determined by
testing agency.
7. When Work is interrupted by rain, do not resume Work until testing agency indicates that moisture
 content and density of previously placed fill area is as specified.
8. Where soil has been softened or eroded by flooding or placement during unfavorable weather
 conditions, remove damaged areas and recompact to required density.
9. In excavations where testing agency determines that subgrade material is unacceptable, remove
 unacceptable material and backfill in accordance with procedures determined by testing agency.
 a. Removal and replacement of unacceptable material will be paid on basis of Unit Prices included in
 the Contract Documents.
10. Minimize construction traffic, including foot traffic, from pavement finished subgrades in order to
 prevent unnecessary disturbances of subgrade materials.
 a. If testing agency determines that finished subgrades have been disturbed, remove disturbed areas
 and replace and recompact to required density as directed by testing agency.
 b. If testing agency determines that rutting has occurred, excavate 6 inches, or other depth as
 directed by testing agency, of subgrade material and recompact as specified for affected area.
 c. Testing agency shall be present during compaction of material.

B. In cut areas below pavements, excavate existing material to a depth of not less than 6 inches below
bottom of pavement subbase course.
1. Proof-roll subgrade and repair as required in paragraph 3.7.E below, then scarify to a depth of 6 inches
 to result in a surface free from ruts, hummocks, and other uneven features which, in the opinion of the
 testing agency, would prevent uniform compaction by the equipment proposed for use.
 a. Moisture condition subgrade to achieve moisture content specified in this Section.
b. Compact to a minimum of 95 percent of the material's maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer's recommendation in accordance with ASTM D698.
 1) Field density tests shall be taken after the compaction of each layer of fill by testing agency.
 2) When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

2. After scarifying, moisture conditioning, and recomparing, backfill areas using approved materials placed in loose lifts not exceeding 8 inches.
 a. Compact each lift to a minimum of 95 percent of the material's maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer's recommendation in accordance with ASTM D698.
 1) Field density tests shall be taken after the compaction of each layer of fill by testing agency.
 2) When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

3. Protect excavations from excessive wetting and drying during construction.
 a. Remove water entering excavation, and remove disturbed or softened soil.

4. Maintain subgrade moisture content within specified range until pavements are installed.
 a. Rework non-complying area as required to achieve specified requirements as directed by testing agency.
 b. Recompress and retest until required density and moisture content is obtained.

C. In areas below pavements requiring fill to obtain finish subgrade elevations, proofroll existing subgrade in presence of testing agency using a fully loaded tandem axle dump truck or similar type of pneumatic tired equipment with a minimum gross weight of 25 tons.
 1. Remove soft areas as directed by testing agency and recompact in loose 8 inch lifts to a minimum of 95 percent of the material's maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer's recommendation in accordance with ASTM D698.
 a. Field density tests shall be taken after the compaction of each layer of fill by testing agency.
 b. When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

2. After proofrolling operations are performed and observed soft areas repaired, place approved material in loose lifts not exceeding 8 inches.
 a. Compact each lift to a minimum of 95 percent of the material's maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer's recommendation in accordance with ASTM D698.
 1) Field density tests shall be taken after the compaction of each layer of fill by testing agency.
 2) When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

3. Fill operations shall continue in compacted layers until finish subgrade elevations have been obtained.
 a. Compact each lift to a minimum of 95 percent of the material's maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer's recommendation in accordance with ASTM D698.
 1) Field density tests shall be taken after the compaction of each layer of fill by testing agency.
 2) When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

4. Protect excavations from excessive wetting and drying during construction.
 a. Remove water entering excavation, and remove disturbed or softened soil.

5. Maintain subgrade moisture content within specified range until pavements are installed.
 a. Rework non-complying area as required to achieve specified requirements as directed by testing agency.
 b. Recompress and retest until required density and moisture content is obtained.

D. Tolerances
 1. Top surface of finish subgrade under paved areas: Plus or minus ¼ inch from required elevations.
E. Immediately prior to placement of pavement subbase course and pavements, proofroll subgrade in presence of testing agency using a fully loaded tandem axle dump truck or similar type of pneumatic tired equipment with a minimum gross weight of 25 tons.
1. Remove soft areas as directed by testing agency and recompact in loose 8 inch lifts to a minimum of 95 percent of the material’s maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer’s recommendation in accordance with ASTM D698.
 a. Field density tests shall be taken after the compaction of each layer of fill by testing agency.
 b. When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

3.8 GENERAL SITE FILL

A. General:
 1. Testing agency shall be present during placement and compaction of fill material.
 2. Fill material shall not be placed, spread, or rolled while the material is frozen of thawing, or during unfavorable weather conditions.
 3. Moisture condition or dry fill material as required to obtain specified moisture limits.
 4. Material which is too wet to allow proper compaction, as determined by testing agency, may be spread and permitted to dry assisted by dishing, harrowing, or pulverizing.
 5. Place fill material using spreading equipment capable of obtaining uniform loose lift thickness.
 6. Compact fill material using equipment appropriate to the material being compacted, as determined by testing agency.
 7. When Work is interrupted by rain, do not resume Work until testing agency indicates that moisture content and density of previously placed fill area is as specified.
 8. Where soil has been softened or eroded by flooding or placement during unfavorable weather conditions, remove damaged areas and recompact to required density.

B. Perform grading to the contours and elevations indicated on Drawings:
 1. Uniformly grade areas to a smooth surface, free from irregular surface changes.
 2. Provide a smooth transition between existing adjacent grades and new grades.

C. Place general fill material in systematic and uniform horizontal lifts not exceeding the following loose-depth-measurements:
 1. For fill material to be compacted with heavy compaction equipment: 8 inches.
 2. For fill material to be compacted with hand operated tampers: 4 inches.

D. Under sidewalks and ramps compact each lift of material to a minimum of 95 percent of the material’s maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer’s recommendation in accordance with ASTM D698.
 1. In other areas, compact each lift of material to a minimum of 90 percent of the material’s maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer’s recommendation in accordance with ASTM D698.
 a. Field density tests shall be taken after the compaction of each layer of fill by testing agency.
 b. When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework on-complying area as required to achieve specified requirements.

E. Bench existing slopes horizontal sections equal in width to equipment used.

F. Where embankments, regardless of height, are placed against hillsides or existing embankments having a slope of steeper than 1 vertical to 5 horizontal, bench or step existing slope in approximately 24 inch rises:
 1. Place fill in lifts not exceeding 9 inches in loose-depth-measurement
 2. Compact material bladed out, bottom area which was cut to form benches, and fill material being placed, to a minimum of 95 percent of the material’s maximum Standard Proctor dry density with a moisture content per the Geotechnical Engineer’s recommendation in accordance with ASTM D698.
 a. Field density tests shall be taken after the compaction of each layer of fill by testing agency.
 b. When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

G. Remove surplus materials from Site, at no increase in Contract Sum or extension of Contract Time.
 1. Submit an acceptable agreement with the property owner on whose property the material is placed.

H. Tolerances:
 1. Top surface of finish subgrade under paved areas: Plus or minus ¼ inch from required elevations.
 2. Top surface of finish subgrade under unpaved surfaces: Plus or minus ½ inch from required elevations.

3.9 INSTALLATION OF GRANULAR FILL

A. Immediately prior to placement floor slab granular base, testing agency will evaluate subgrade to determine whether moisture content is within specified range, and whether subgrade has been disturbed.
1. In areas where testing agency determines subgrade is not within specified moisture content range, remove non-complying areas and recompact to required density, within specified moisture content range, as directed by testing agency.
 a. Field density tests shall be taken after the compaction of each layer of fill by testing agency.
 b. When test indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

2. If testing agency determines that rutting has occurred or other detrimental conditions exist, excavate 6 inches, or other depth as directed by testing agency, of subgrade material and recompact as specified for affected area.
 a. Field density tests shall be taken after the compaction of each layer of fill by testing agency.
 b. When tests indicate that any layer of fill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

B. Place granular fill in equal continuous layers not exceeding 6 inches.
 1. Compact granular fill using heavy vibrating equipment, in 3 passes, to achieve a total compacted thickness of 4 inches in presence of Owner’s representative or testing agency.
 2. Compact granular fill in confined areas using a combination of manually operated vibratory plates and “wacker” compaction equipment.

C. Tolerances:
 1. Top surface of finish subgrade under slabs-on-grade: Plus or minus ¼ inch from required elevations.

3.10 INSTALLATION OF PAVEMENT SUBBASE COURSE

A. Place pavement subbase course in equal continuous layers not exceeding 6 inches.
 1. Compact granular fill for pavement and sidewalk subbase course to a minimum of 95 percent of the material’s maximum standard proctor dry density in accordance with ASTM D698.
 2. Compact granular fill in confined areas using a combination of manually operated vibratory plates and “wacker” compaction equipment.
 3. Qualitative tests shall be taken after the compaction of each layer of fill by testing agency.

B. Tolerances:
 1. Top surface of finish subgrade under paved areas: Plus or minus ¼ inch from required elevations.

3.11 BEDDING

A. Place and compact bedding course on trench bottoms and where indicated on Drawings.
 1. Install materials in continuous layers not exceeding 6 inches compacted depth.
 B. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
 C. Install bedding to a depth of 6 inches below bottom of pipe bell or conduit, to an elevation of 6 inches above pipe or conduit.
 D. Compact bedding materials by slicing with a shovel and compacting with vibratory plates and “wacker” compaction equipment.
 E. Support pipe and conduit during placement and compaction of bedding fill.

3.12 INSTALLATION OF BACKFILL

A. Backfill excavations promptly, but not before completion of the following:
 1. Surveying location of underground utilities for Record Documents
 2. Testing, inspecting, and approval of underground utilities
 3. Removal of concrete forms
 4. Removal of lumber, rock, paper, and other debris from areas to be backfilled
 5. Removal of temporary shoring, bracing, and sheeting

B. Backfill areas to contours and elevations indicated on Drawings, using unfrozen backfill material
 1. Do not backfill over porous, wet, frozen, thawing, or spongy surfaces
 2. Do not backfill during unfavorable weather conditions
 3. Moisture condition or dry backfill material as required to obtain specified moisture content limits
 a. Material which is too wet to allow proper compaction, as determined by testing agency
 4. Place backfill material using equipment capable of obtaining uniform loose lift thickness
 5. Compact backfill material using equipment appropriate to the material being compacted, as determined by testing agency
 6. When Work is interrupted by rain, do not resume Work until testing agency indicates that moisture content and density of previously laced backfill areas is as specified
 7. Where soil has been softened or eroded by flooding or placement during unfavorable weather conditions, remove damaged areas and recompact to required density
C. Backfilling of curbs, slabs-on-grade, and other structures whose foundation is unprotected from water shall be accomplished as soon as forms are removed, to eliminate possibility of softening of subbase below structure.

D. Backfill foundation walls with granular material, not less than 24 inches in width, to an elevation of 2 feet below finish grade.
 1. Backfill simultaneously on each side of unsupported foundation walls.
 2. Backfill upper 2 feet using General Fill Material.

E. Compaction of Backfill
 1. Maintain optimum moisture content of backfill materials to attain required compaction density.
 2. General Fill Materials used for backfill shall be placed in lifts not exceeding 9 inches in loose-depth-measure and compacted as specified for General Site Fill.
 3. Granular Fill Materials used for backfill shall be placed in lifts not exceeding 6 inches in loose-depth-measure and compacted as specified for Granular Fill.
 4. Field density tests shall be taken after the compaction of each layer of backfill by testing agency.
 a. When tests indicate that any layer of backfill or portion thereof does not meet the required compaction density or moisture content, rework non-complying area as required to achieve specified requirements.

F. Slope grade away from building not less than 12 inches in 10 foot for a distance of not less than 6 feet outside of building lines.
 1. Make grade changes gradual.
 2. Blend slopes into level areas.
 3. Remove surplus materials from Site, at no increase in Contract Sum or extension of Contract Time.
 4. Submit an acceptable agreement with the property owner on whose property the material is placed.

G. Tolerances:
 1. Top surface of finish subgrade under paved areas: Plus or minus ¼ inch from required elevations.
 2. Top surface of finish subgrade under unpaved areas: Plus or minus ½ inch from required elevations.

3.13 FIELD QUALITY CONTROL

A. Tests:
 1. Field density shall be taken by testing agency as specified in this Section in accordance with ASTM D 698.
 2. Field density tests will be taken at a rate of not less than 1 tests for every 2,000 square feet of building slab-on-grade area for each layer of fill and backfill, but in no case fewer than 3 tests for each layer of fill and backfill.
 3. Field density tests will be taken at a rate of not less than 1 test for every 50 lineal feet of footing subgrade for each layer of fill and backfill, but in no case fewer than 6 tests for each layer of fill and backfill.
 4. Field density tests will be taken at a rate of not less than 1 test for every 50 lineal feet of foundation wall backfill for each layer of backfill, but in no case fewer than 2 tests along a wall face for each layer of backfill.
 5. Field density tests will be taken at a rate of not less than 1 test for every 2,000 square feet of pavement area for each layer of fill and backfill, but in no case fewer than 3 tests for each layer of fill and backfill.
 6. Field density tests will be taken at a rate of not less than 1 test for every 4,000 square feet of general Site fill area for each layer of fill and backfill, but in no case fewer than 6 tests for each layer of fill and backfill.
 7. Moisture content tests shall be taken by testing agency as specified in this Section in accordance with ASTM D6938.
 8. Moisture content test will be taken for each field density test.
 9. Bearing capacity of undisturbed soil under footings will be evaluated by testing agency to verify an allowable bearing pressure of 3,000 pounds per square foot.
 a. Test methods will include field strength tests such as static or dynamic cone test.

B. When tests indicate that any layer of backfill or portion thereof does not meet the specified compaction density or moisture content, rework non-complying area as required to achieve specified requirements as directed by testing agency.
 1. Recompact and retest until required density and moisture content is obtained.

3.14 PROTECTION

A. Protect newly graded areas from freezing and erosion.
B. Repair and reestablish grades in settled, eroded, and rutted areas to specified tolerances.
C. Where completed compacted areas are disturbed by subsequent construction operations or adverse weather, scarify surface, reshape, and compact to required density prior to further construction.
 1. Testing agency shall be present during compaction of material.
SECTION 313116 - TERMITE CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and
 Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Soil treatment with termiticide at new construction
B. Related Sections:
 1. Division 03 Section “Cast-In-Place Concrete” for coordination with under slab vapor barrier
 requirements.

1.3 SUBMITTALS
A. Product Data: For each type of termite control product.
 1. Include the EPA-Registered Label for termiticide products.
B. Qualification Data: For qualified Installer.
C. Product Certificates: For termite control products, from manufacturer.
D. Soil Treatment Application Report: After application of termiticide is completed, submit report for Owner's
 records and include the following:
 1. Date and time of application.
 2. Moisture content of soil before application.
 3. Termiticide brand name and manufacturer.
 4. Quantity of undiluted termiticide used.
 5. Dilutions, methods, volumes used, and rates of application.
 6. Areas of application.
 7. Water source for application.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: A specialist who is licensed according to regulations of authorities having
 jurisdiction to apply termite control treatment and products in jurisdiction where Project is located, and who
 employs workers trained and approved by manufacturer to install manufacturer's products, and who is
 accredited by manufacturer.
B. Regulatory Requirements: Formulate and apply termiticides and termiticide devices according to the EPA-
 Registered Label.
C. Source Limitations: Obtain termite control products from single source.

1.5 PROJECT CONDITIONS
A. Environmental Limitations: To ensure penetration, do not treat soil that is water saturated or frozen. Do not
 treat soil while precipitation is occurring. Comply with requirements of the EPA-Registered Label and
 requirements of authorities having jurisdiction.
B. Coordinate soil treatment application with excavating, filling, grading, and concreting operations. Treat soil
 under footings, grade beams, and ground-supported slabs before construction.

1.6 WARRANTY
A. Soil Treatment Special Warranty: Manufacturer's standard form, signed by Applicator and Contractor,
 certifying that termite control work, consisting of applied soil termiticide treatment, will prevent infestation of
 subterranean termites. If subterranean termite activity or damage is discovered during warranty period, re-
 treat soil and repair or replace damage caused by termite infestation.
 1. Warranty Period: five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SOIL TREATMENT
A. Termiticide: Provide an EPA-Registered termiticide, complying with requirements of authorities having
 jurisdiction, in an aqueous solution formulated to prevent termite infestation. Provide quantity required for
 application at the label volume and rate for the maximum termiticide concentration allowed for each
 specific use, according to product's EPA-Registered Label.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. BASF Corporation, Agricultural Products; Termidor.
 b. Bayer Environmental Science; Premise 75.
c. FMC Corporation, Agricultural Products Group; Dragnet FT Talstar Prevail.
d. Syngenta; Demon TC Prelude Probuild TC.

2. Service Life of Treatment: Soil treatment termiticide that is effective for not less than five years against infestation of subterranean termites.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates, areas, and conditions, with Applicator present, for compliance with requirements for moisture content of soil per termiticide label requirements, interfaces with earthwork, slab and foundation work, landscaping, utility installation, and other conditions affecting performance of termite control.
B. Proceed with application only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. General: Comply with the most stringent requirements of authorities having jurisdiction and with manufacturer's written instructions for preparation before beginning application of termite control treatment. Remove all extraneous sources of wood cellulose and other edible materials such as wood debris, tree stumps and roots, stakes, formwork, and construction waste wood from soil within and around foundations.
B. Soil Treatment Preparation: Remove foreign matter and impermeable soil materials that could decrease treatment effectiveness on areas to be treated. Loosen, rake, and level soil to be treated except previously compacted areas under slabs and footings. Termiticides may be applied before placing compacted fill under slabs if recommended in writing by termiticide manufacturer.
 1. Fit filling hose connected to water source at the site with a backflow preventer, complying with requirements of authorities having jurisdiction.

3.3 APPLICATION, GENERAL
A. General: Comply with the most stringent requirements of authorities having jurisdiction and with manufacturer's EPA-Registered Label for products.

3.4 APPLYING SOIL TREATMENT
A. Application: Mix soil treatment termiticide solution to a uniform consistency. Provide quantity required for application at the label volume and rate for the maximum specified concentration of termiticide, according to manufacturer's EPA-Registered Label, to the following so that a continuous horizontal and vertical termiticidal barrier or treated zone is established around and under building construction. Distribute treatment evenly.
 1. Slabs-on-Grade and Basement Slabs: Underground-supported slab construction, including footings, building slabs, and attached slabs as an overall treatment. Treat soil materials before concrete footings and slabs are placed.
 2. Foundations: Adjacent soil, including soil along the entire inside perimeter of foundation walls; along both sides of interior partition walls; around plumbing pipes and electric conduit penetrating the slab; around interior column footers, piers, and chimney bases; and along the entire outside perimeter, from grade to bottom of footing. Avoid soil washout around footings.
 3. Crawlspaces: Soil under and adjacent to foundations as previously indicated. Treat adjacent areas including around entrance platform, porches, and equipment bases. Apply overall treatment only where attached concrete platform and porches are on fill or ground.
 5. Penetrations: At expansion joints, control joints, and areas where slabs will be penetrated.
B. Avoid disturbance of treated soil after application. Keep off treated areas until completely dry.
C. Protect termiticide solution, dispersed in treated soils and fills, from being diluted until ground-supported slabs are installed. Use waterproof barrier according to EPA-Registered Label instructions.
D. Post warning signs in areas of application.
E. Reapply soil treatment solution to areas disturbed by subsequent excavation, grading, landscaping, or other construction activities following application.

END OF SECTION 313116
SECTION 321313 – CONCRETE PAVING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Driveways.
 2. Roadways.
 3. Parking lots.
 4. Curbs and gutters.
 5. Walks.
B. Work in public right-of-way: All work in public right-of-way shall be performed per City Standards and Specifications.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. LEED Submittals:
 1. Product Data for Credit MR 4: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. Include statement indicating cost for each product having recycled content.
C. Samples: For each exposed product and for each color and texture specified.
D. Other Action Submittals:
 1. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
 2. Aggregates: Aggregates must be supplied from a source previously tested and certified by MoDOT as meeting “Aggregates for Concrete” requirements in Section 1005 of MoDOT Standard Specifications. Aggregate shall be sound and durable and meet ASTM C586.

1.3 QUALITY ASSURANCE
A. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
B. ACI Publications: Comply with ACI 301 (ACI 301M) unless otherwise indicated.

PART 2 - PRODUCTS

2.1 STEEL REINFORCEMENT
A. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, fabricated from as-drawn steel wire into flat sheets.
C. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420); deformed.
D. Plain-Steel Wire: ASTM A 82/A 82M, as drawn.
E. Deformed-Steel Wire: ASTM A 496/A 496M.
F. Dowel Bars: ASTM A 615/A 615M, Grade 60. Cut bars true to length with ends square and free of burrs.
G. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI’s “Manual of Standard Practice” from steel wire, plastic, or precast concrete of greater compressive strength than concrete specified.

2.2 CONCRETE MATERIALS AND MIXTURES
A. Shall comply with City of Columbia Specifications, Section 230 Portland Cement Concrete Class A Concrete.

2.3 CURING MATERIALS
A. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.

2.4 RELATED MATERIALS
A. Joint Fillers: ASTM D 1751, asphalt-saturated cellulosic fiber.

2.5 WHEEL STOPS
A. Wheel Stops:
 1. Dowels: Galvanized steel, 3/4 inch (19 mm) in diameter, 10-inch (254-mm) minimum length.
2. Adhesive: As recommended by wheel stop manufacturer for application to concrete pavement.

PART 3 - EXECUTION

3.1 EXAMINATION AND PREPARATION
A. Proof-roll prepared subbase surface below concrete paving to identify soft pockets and areas of excess yielding.
B. Remove loose material from compacted subbase surface immediately before placing concrete.
C. Prior to concrete paving, Contractor shall prepare mockup for concrete pavement and sidewalks. Mockup to include a minimum of 100 square feet of paving. Mockup may be installed “in-place” and must demonstrate the proposed joint types, reinforcement, sealant, and saw-cutting. Prepare mockup for Owner review and approval, prior to concrete paving.

3.2 EDGE FORMS AND SCREED CONSTRUCTION
A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.
B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.3 STEEL REINFORCEMENT
A. General: Comply with CRSI’s “Manual of Standard Practice” for fabricating, placing, and supporting reinforcement.

3.4 JOINTS
A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.
B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.
C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.
D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, to match jointing of existing adjacent concrete paving.
E. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a 1/4-inch (6-mm) radius. Repeat tooling of edges after applying surface finishes. Eliminate edging-tool marks on concrete surfaces.

3.5 CONCRETE PLACEMENT
A. Moisten subbase to provide a uniform dampened condition at time concrete is placed.
B. Comply with ACI 301 (ACI 301M) requirements for measuring, mixing, transporting, placing, and consolidating concrete.
C. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.
D. Screed paving surface with a straightedge and strike off.
E. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleed water appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.

3.6 FLOAT FINISHING
A. General: Do not add water to concrete surfaces during finishing operations.
B. Float Finish: Begin the second floating operation when bleed-water sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.
1. Medium-to-Fine-Textured Broom Finish: Draw a soft-bristle broom across float-finished concrete surface perpendicular to line of traffic to provide a uniform, fine-line texture.
2. Medium-to-Coarse-Textured Broom Finish: Provide a coarse finish by striating float-finished concrete surface 1/16 to 1/8 inch (1.6 to 3 mm) deep with a stiff-bristled broom, perpendicular to line of traffic.

3.7 COLD AND HOT WEATHER CONCRETE PLACEMENT
A. Cold Weather Concrete:
1. Unless authorized in writing by the Engineer, mixing and concreting operations shall be discontinued when the descending air temperature in the shade and away from artificial heat reaches thirty-five (35°) degrees F. Concrete operations may be resumed when the ascending air temperature in the shade and away from artificial heat reaches thirty five (35°) degrees F.

2. When concrete work is authorized during cold weather, the concrete may be heated in accordance with ACI specifications. The temperature of the concrete shall be not less than sixty (60°) degrees F and not more than eighty (80°) degrees F at the time of placement in the forms.

3. No concrete shall be placed on frozen subgrade. Sudden cooling of concrete shall not be permitted. Concrete exposed to frost action or freezing weather shall be removed and replaced at the Contractor's expense.

4. A sufficient supply of approved blanketing material shall be provided and placed on all concrete placed between November 1 and April 1 and at other times when the ambient air temperature is expected to drop below forty (40°) degrees F. Blanketing materials shall protect the concrete and maintain a minimum temperature of forty (40°) degrees F in the concrete as measured on the surface. Concrete shall be covered for at least four days.

B. Hot Weather Concrete:

1. The provisions of this section shall apply to all concrete work, which is done when the air temperature is above eighty (80°) degrees F at the time of placement. The temperature of the concrete, when placed, shall not be high enough to cause excessive loss of slump, flash set or cold joints. Forms, reinforcing and sub-grade surfaces against which the concrete is to be placed shall be wetted down immediately before placement. In no case shall the temperature of the concrete, when placed, exceed ninety (90°) degrees F.

2. When the air temperature exceeds ninety (90°) degrees F and as soon as practicable without causing damage to the surface finish, all exposed concrete shall be kept continuously moist by means of fog sprays, wet burlap, cotton mats, or other means acceptable to the Engineer at no expense to the Owner. This cooling with water shall be in addition to the initial sealing by membrane curing compound.

3. No concrete shall be placed when the air temperature is above ninety-five (95°) degrees F.

3.8 CONCRETE PROTECTION AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.

B. Comply with ACI 306.1 for cold-weather protection.

C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.

D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.

E. Curing Methods: Cure concrete by curing compound.

3.9 PAVING TOLERANCES

A. Comply with tolerances in ACI 117 and as follows:

1. Elevation: 3/4 inch (19 mm).
2. Thickness: Plus 3/8 inch (10 mm), minus 1/4 inch (6 mm).
3. Surface: Gap below 10-foot- (3-m-) long, unleveled straightedge not to exceed 1/2 inch (13 mm).
4. Joint Spacing: 3 inches (75 mm).
5. Contraction Joint Depth: Plus 1/4 inch (6 mm), no minus.
6. Joint Width: Plus 1/8 inch (3 mm), no minus.

3.10 WHEEL STOPS

A. Install wheel stops in bed of adhesive applied as recommended by manufacturer.

B. Securely attach wheel stops to paving with not less than two [galvanized] steel dowels located at one-quarter to one-third points. Install dowels in drilled holes in the paving and bond dowels to wheel stop. Recess head of dowel beneath top of wheel stop.

3.11 REPAIRS AND PROTECTION

A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Design Professional.

B. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.

C. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.
3.12 FIELD QUALITY CONTROL

A. Delivery Tickets: For each load delivered, submit 3 copies indicating quantity, mix identification, admixtures, design strength, aggregate size, design air content, and design slump at time of batching.

B. Tests: Owner will retain the services of an engineering inspection and testing firm. Contractor will be responsible for coordinating and scheduling inspection. Tests will include the following: strength, air entrainment, temperature, and slump tests. Test results will be specified to be sent directly to the Contractor, Engineer and Owner’s representative.

1. Testing agency shall perform sampling and testing of concrete specified in ACI 301 Sections 16.3, 16.4, and as follows:
 a. Test data from concrete cylinder breaks will be evaluated using procedures of the American Concrete Institute (latest edition of ACI 214) to determine if the compressive strength of the concrete tested is acceptable.
 b. Concrete will be tested at the minimum rate of one test for the first 25 cubic yards [CY] placed each day, and one test for each additional 50 CY placed. Concrete may be tested more often at the discretion of the Owner’s Representative.
 1) One additional set of test cylinders will be taken during cold weather, and as directed by Engineer, cured at Project Site under same conditions as concrete it represents.
 c. Slump, ASTM C143: 1 per each set of compressive cylinders.
 d. Air content, ASTM C173: 1 per every 50 cubic yards, or portion thereof.
 e. Unit weight, ASTM C138: 1 per every 50 cubic yards, or portion thereof.
 f. Concrete temperature, ASTM C1064: 1 measurement for every slump test.
 g. Casting of compressive cylinders, ASTM C39: 1 set of 4 cylinders for every 50 cubic yards, or portion thereof.
 h. Concrete delivery: Check batch ticket from every truck.
 i. Batch plant inspection: Random basis as determined by Engineer.

END OF SECTION
SECTION 321373 – CONCRETE PAVING JOINT SEALANT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Cold-applied joint sealants.
B. Related Sections:
 1. Division 32 Section "Concrete Paving" for constructing joints in concrete pavement.

1.3 ACTION SUBMITTALS
A. Product Data: For each joint-sealant product indicated.
B. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch (13-mm) wide joints formed between two 6-inch (150-mm) long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.
C. Pavement-Joint-Sealant Schedule: Include the following information:
 1. Joint-sealant application, joint location, and designation.
 2. Joint-sealant manufacturer and product name.

1.4 INFORMATIONAL SUBMITTALS
A. Product Certificates: For each type of joint sealant and accessory, from manufacturer.
B. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for joint sealants.
C. Preconstruction Compatibility and Adhesion Test Reports: From joint-sealant manufacturer, indicating the following:
 1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility with and adhesion to joint sealants.
 2. Interpretation of test results and written recommendations for primers and substrate preparation needed for adhesion.

1.5 QUALITY ASSURANCE
A. Installer Qualifications: Manufacturer’s authorized representative who is trained and approved for installation of units required for this Project.
B. Source Limitations: Obtain each type of joint sealant from single source from single manufacturer.
C. Product Testing: Test joint sealants using a qualified testing agency.
 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1021 to conduct the testing indicated.
D. Preinstallation Conference: Conduct conference at Project site.

1.6 PROJECT CONDITIONS
A. Do not proceed with installation of joint sealants under the following conditions:
 1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F (5 deg C)
 2. When joint substrates are wet.
 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

PART 2 - PRODUCTS

2.1 MATERIALS
A. Compatibility: Provide joint sealants, backing materials, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer based on testing and field experience.
B. Colors of Exposed Joint Sealants: As selected by Design Professional from manufacturer’s full range color.
2.2 COLD-APPLIED JOINT SEALANTS
 A. Multicomponent, Pourable, Traffic-Grade, Urethane Joint Sealant for Concrete: ASTM C 920, Type M, Grade P, Class 25, for Use T.
 1. Products: Subject to compliance with requirements provide the following:
 a. Pecora Corporation; Urexpam NR-200.

2.3 JOINT-SEALANT BACKER MATERIALS
 A. General: Provide joint-sealant backer materials that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by joint-sealant manufacturer based on field experience and laboratory testing.
 B. Round Backer Rods for Cold-Applied Joint Sealants: ASTM D 5249, Type 3, of diameter and density required to control joint-sealant depth and prevent bottom-side adhesion of sealant.

2.4 PRIMERS
 A. Primers: Product recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer’s written instructions.
 B. Joint Priming: Prime joint substrates where indicated or where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer’s written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

3.3 INSTALLATION OF JOINT SEALANTS
 A. General: Comply with joint-sealant manufacturer’s written installation instructions for products and applications indicated unless more stringent requirements apply.
 B. Joint-Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.
 C. Install joint-sealant backings of kind indicated to support joint sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 1. Do not leave gaps between ends of joint-sealant backings.
 2. Do not stretch, twist, puncture, or tear joint-sealant backings.
 3. Remove absorbent joint-sealant backings that have become wet before sealant application and replace them with dry materials.
 D. Install joint sealants using proven techniques that comply with the following and at the same time backings are installed:
 1. Place joint sealants so they directly contact and fully wet joint substrates.
 2. Completely fill recesses in each joint configuration.
 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
 E. Tooling of Nonsag Joint Sealants: Immediately after joint-sealant application and before skinning or curing begins, tool sealants according to the following requirements to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint:
 1. Remove excess joint sealant from surfaces adjacent to joints.
 2. Use tooling agents that are approved in writing by joint-sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 F. Provide joint configuration to comply with joint-sealant manufacturer’s written instructions unless otherwise indicated.

3.4 CLEANING
 A. Clean off excess joint sealant or sealant smears adjacent to joints as the Work progresses, by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.
3.5 PROTECTION

A. Protect joint sealants, during and after curing period, from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately and replace with joint sealant so installations in repaired areas are indistinguishable from the original work.

END OF SECTION
SECTION 32 91 00 – PLANTING SOIL

PART 1 - GENERAL

1.1 SUMMARY
 A. The scope of work includes all labor, materials, tools, supplies, equipment, facilities, transportation and services necessary for, and incidental to performing all operations in connection with furnishing, delivery, and installation of Planting Soil and/or the modification of existing site soil for use as Planting Soil, complete as shown on the drawings and as specified herein.
 B. This Section includes the following areas of Work
 1. Locate, purchase, deliver and install soil amendments.
 2. Harvest and stockpile existing site soils suitable for Planting Soil.
 3. Modify existing stockpiled site soil.
 4. Modify existing site soil in place for use as Planting Soil.
 5. Install existing or modified existing soil for use as Planting Soil.
 7. Fine grade Planting Soil.
 8. Install Compost into Planting Soil.
 9. Clean up and disposal of all excess and surplus material.

1.2 RELATED REQUIREMENTS
 A. SEEDING AND SODDING: SECTION 32 9200
 B. NATIVE GRASS SEEDING: SECTION 32 9219

1.3 REFERENCES
 A. Applicable Standards:
 1. American Society for Testing and Materials (ASTM) - Equivalent AASHTO standards may be substituted as approved.
 5. Methods of Soil Analysis, as published by the Soil Science Society of America (http://www.soils.org/).

1.4 DEFINITIONS
 A. Acceptable drainage: Drainage rate is sufficient for the plants to be grown. Not too fast and not too slow. Typical rates for installed Planting Soil are between 1 - 5 inches per hour. Turf soils are often higher, but drainage rates above 2 - 3 inches per hour will dry out very fast. In natural undisturbed soil a much lower drainage rate, as low as 1/8th inch per hour can still support good plant growth. Wetland plants can grow on top of perched water layers or even within seasonal perched water layers, but could become unstable in high wind events.
B. Amendment: material added to Topsoil to produce Planting Soil Mix. Amendments are classified as general soil amendments, fertilizers, biological, and pH amendments.

C. Biological Amendment: Amendments such as Mycorrhizal additives, compost tea or other products intended to change the soil biology.

D. Compacted soil: soil where the density of the soil is greater that the threshold for root limiting, and further defined in this specification.

E. Compost: well decomposed stable organic material as defined by the US Composting Council and further defined in this specification.

F. Drainage: The rate at which soil water moves through the soil transitioning the soil from saturated condition to field capacity. Most often expressed as saturated hydraulic conductivity (Ksat; units are inches per hour).

G. Existing Soil: Mineral soil existing at the locations of proposed planting after the majority of the construction within and around the planting site is completed and just prior to the start of work to prepare the planting area for soil modification and/or planting, and further defined in this specification.

H. Fertilizer: amendment used for the purpose of adjusting soil nutrient composition and balance.

I. Fine grading: The final grading of the soil to achieve exact contours and positive drainage, often accomplished by hand rakes or drag rakes other suitable devices, and further defined in this specification, and further defined in this specification.

J. Graded soil: Soil where the A horizon has been stripped and relocated or re-spread; cuts and fills deeper than 12 inches, and further defined in this specification.

K. Installed soil: Planting soil and existing site soil that is spread and or graded to form a planting soil, and further defined in this specification.

L. Minor disturbance: Minor grading as part of agricultural work that only adjusts the A horizon soil, minor surface compaction in the top 6 inches of the soil, applications of fertilizers, installation of utility pipes smaller than 18 inches in diameter thru the soil zone.

M. Owner's Representative: The person or entity, appointed by the Owner to represent their interest in the review and approval of the work and to serve as the contracting authority with the Contractor. The Owner's Representative may appoint other persons to review and approve any aspects of the work.

N. Ped: a clump or clod of soil held together by a combination of clay, organic matter, and fungal hyphae, retaining the original structure of the harvested soil.

O. Planting Soil: Topsoil, or Planting Soil Mixes which are imported or existing at the site, or made from components that exist at the site, or are imported to the site; and further defined in this specification.

P. Scarify: Loosening and roughening the surface of soil and sub soil prior to adding additional soil on top, and further defined in this specification.

Q. Soil Tilling: Loosening the surface of the soil to the depths specified with a rotary tine tilling machine, roto tiller, (or spade tiller), and further defined in this specification.

R. Subgrade: surface or elevation of subsoil remaining after completing excavation, or top surface of a fill or backfill, before placing Planting Soil.

S. Substantial Completion Acceptance: The date at the end of the Planting, Planting Soil, and Irrigation installation (if applicable) where the Owner's Representative accepts that all work in these sections is complete and the Warranty period has begun. This date may be different than the date of substantial completion for the other sections of the project, and further defined in this specification.
T. Topsoil: naturally produced and harvested soil from the A horizon or upper layers or the soil as further defined in this specification.

U. Undisturbed soil: Soils with the original A horizon intact that have not been graded or compacted. Soils that have been farmed, subjected to fire or logged but not graded, and natural forested land will be considered as undisturbed.

1.5 SUBMITTALS
A. General: Submit each item in this Article according to the Conditions of the Contract and DIVISION 01 Specification Sections.

B. Product data and certificates: For each type of manufactured product, submit data and certificates that the product meets the specification requirements, signed by the product manufacturer, and complying with the following:
 1. Submit manufacturers or supplier’s product data and literature certified analysis for standard products and bulk materials, complying with testing requirements and referenced standards and specific requested testing.
 a. For each Compost product submit the following analysis by a recognized laboratory:
 1. pH
 2. Salt concentration (electrical conductivity)
 3. Moisture content %, wet weight basis
 4. Particle size % passing a selected mesh size, dry weight basis
 5. Stability carbon dioxide evolution rate mg CO2-C per g OM per day
 6. Solvita maturity test
 7. Physical contaminants (inerts) %, dry weight basis
 8. US EPA Class A standard, 40CFR § 503.13, Tables 1 and 3 levels Chemical Contaminants mg/kg (ppm)
 b. For Coarse Sand product submit the following analysis by a recognized laboratory:
 1. pH
 2. Particle size distribution (percent passing the following sieve sizes): 3/8 inch (9.5 mm)
 No 4 (4.75 mm)
 No 8 (2.36 mm)
 No 16 (1.18 mm)
 No 30 (.60 mm)
 No 50 (.30 mm)
 No 100 (.15 mm)
 No 200 (.075 mm)

C. Samples: Submit samples of each product and material, where required by Part 2 of the specification, to the Owner’s Representative for approval. Label samples to indicate product, characteristics, and locations in the work. Samples will be reviewed for appearance only.
 1. Submit samples a minimum of 8 weeks prior to the anticipated date of the start of soil installation.
 2. Samples of all Topsoil, Coarse Sand, Compost and Planting Soil shall be submitted at the same time as the particle size and physical analysis of that material.

D. Soil testing for Imported and Existing Topsoil, existing site soil to be modified as Planting Soil and Planting Soil Mixes.
1. Topsoil, existing site soil and Planting Soil Mix testing: Submit soil test analysis report for each sample of Topsoil, existing site soil and Planting Soil from an approved soil testing laboratory and where indicated in Part 2 of the specification as follows: Submit Topsoil, Planting Soil, Compost, and Coarse Sand for testing at least 8 weeks before scheduled installation of Planting Soil Mixes. Submit Planting Soil Mix test no more than 2 weeks after the approval of the Topsoil, Compost and Coarse Sand. Do not submit to the testing laboratory, Planting Soil Mixes, for testing until all Topsoil, Compost and Coarse Sand have been approved.

2. If tests fail to meet the specifications, obtain other sources of material, retest and resubmit until accepted by the Owner's Representative.

3. All soil testing will be at the expense of the Contractor.

2. Provide a particle size analysis (% dry weight) and USDA soil texture analysis. Soil testing of Planting Soil Mixes shall also include USDA gradation (percentage) of gravel, coarse sand, medium sand, and fine sand in addition to silt and clay.

3. Provide the following other soil properties:
 a. pH and buffer pH.
 b. Percent organic content by oven dried weight.
 c. Nutrient levels by parts per million including: phosphorus, potassium, magnesium, manganese, iron, zinc and calcium. Nutrient test shall include the testing laboratory recommendations for supplemental additions to the soil for optimum growth of the plantings specified.
 d. Soluble salt by electrical conductivity of a 1:2 soil water sample measured in Milliohm per cm.
 e. Cation Exchange Capacity (CEC).

1.6 QUALITY ASSURANCE

A. Installer Qualifications: The installer shall be a firm having at least 5 years of experience of a scope similar to that required for the work, including the preparation, mixing and installation of soil mixes to support planting. The installer of the work in Section: Planting, shall be the same firm installing the work in this section.

1. The bidders list for work under this section shall be approved by the Owner’s Representative.

2. Installer Field Supervision: When any Planting Soil work is in progress, installer shall maintain, on site, an experienced full-time supervisor who can communicate in English with the Owner’s Representative.

3. Installer’s field supervisor shall have a minimum of five years experience as a field supervisor installing soil, shall be trained and proficient in the use of field surveying equipment to establish grades and can communicate in English with the Owner’s Representative.

4. The installer’s crew shall be experienced in the installation of Planting Soil, plantings, and irrigation (where applicable) and interpretation of planting plans, soil installation plans, and irrigation plans (where applicable).

5. Submit references of past projects and employee training certifications that support that the Contractors meet all of the above installer qualifications and applicable licensures.

B. Soil testing laboratory qualifications: an independent laboratory, with the experience and capability to conduct the testing indicated and that specializes in USDA
agricultural soil testing, Planting Soil Mixes, and the types of tests to be performed. Geotechnical engineering testing labs shall not be used.

C. All delivered and installed Planting Soil shall conform to the approved submittals sample color, texture and approved test analysis.

1. The Owner’s Representative may request samples of the delivered or installed soil be tested for analysis to confirm the Planting Soil conforms to the approved material.
2. All testing shall be performed by the same soil lab that performed the original Planting Soil testing.
3. Testing results shall be within 10% plus or minus of the values measured in the approved Planting Soil Mixes.
4. Any Planting Soil that fails to meet the above criteria, if requested by the Owner’s Representative, shall be removed and new soil installed.

1.7 DELIVERY, STORAGE AND HANDLING
A. Weather: Do not mix, deliver, place or grade soils when frozen or with moisture above field capacity.
B. Protect soil and soil stockpiles, including the stockpiles at the soil blender’s yard, from wind, rain and washing that can erode soil or separate fines and coarse material, and contamination by chemicals, dust and debris that may be detrimental to plants or soil drainage. Cover stockpiles with plastic sheeting or fabric at the end of each workday.
C. All manufactured packaged products and material shall be delivered to the site in unopened containers and stored in a dry enclosed space suitable for the material and meeting all environmental regulations. Biological additives shall be protected from extreme cold and heat. All products shall be freshly manufactured and dated for the year in which the products are to be used.
D. Deliver all chemical amendments in original, unopened containers with original labels intact and legible, which state the guaranteed chemical analysis. Store all chemicals in a weather protected enclosure.
E. Bulk material: Coordinate delivery and storage with Owner’s Representative and confine materials to neat piles in areas acceptable to Owner’s Representative.

PART 2 - PRODUCTS

2.1 COMPOST
A. Compost: Blended and ground leaf, wood and other plant-based material, composted for a minimum of 9 months and at temperatures sufficient to break down all woody fibers, seeds and leaf structures, free of toxic material at levels that are harmful to plants or humans. Source material shall be yard waste trimmings blended with other plant or manure-based material designed to produce Compost high in fungal material.

1. Compost shall be commercially prepared Compost and meet US Compost Council STA/TMECC criteria or as modified in this section for “Compost as a Landscape Backfill Mix Component”.
2. Compost shall comply with the following parameters: a. pH: 5.5 - 8.0.
 a. Soil salt (electrical conductivity): maximum 5 dS/m (mmhos/cm).
 b. Moisture content %, wet weight basis: 30 – 60.
 c. Particle size, dry weight basis: 98% pass through 3/4 inch screen or smear.
d. Stability carbon dioxide evolution rate: mg CO2-C/g OM/day < 2.

e. Solvita maturity test: > 6.

f. Physical contaminants (inerts), %, dry weight basis: <1%. Chemical contaminants, mg/kg (ppm): meet or exceed US EPA Class A standard, 40 CFR § 503.13, Tables 1 and 3 levels.

g. Biological contaminants select pathogens fecal coliform bacteria, or salmonella, meet or exceed US EPA Class A standard, 40 CFR § 503.32(a) level requirements.

2.2 COARSE SAND

A. Clean, washed, sand, free of toxic materials

1. Coarse concrete sand, ASTM C-33 Fine Aggregate, with a Fines Modulus Index of 2.8 and 3.2.

2. Coarse Sands shall be clean, sharp, natural Coarse Sands free of limestone, shale and slate particles. Manufactured Coarse Sand shall not be permitted.

3. pH shall be lower than 7.0.

4. Provide Coarse Sand with the following particle size distribution:

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Percent passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8 inch (9.5 mm)</td>
<td>100</td>
</tr>
<tr>
<td>No 4 (4.75 mm)</td>
<td>95-100</td>
</tr>
<tr>
<td>No 8 (2.36 mm)</td>
<td>80-100</td>
</tr>
<tr>
<td>No 16 (1.18 mm)</td>
<td>50-85</td>
</tr>
<tr>
<td>No 30 (.60 mm)</td>
<td>25-60</td>
</tr>
<tr>
<td>No 50 (.30 mm)</td>
<td>10-30</td>
</tr>
<tr>
<td>No 100 (.15 mm)</td>
<td>2-10</td>
</tr>
<tr>
<td>No 200 (0.75 mm)</td>
<td>2-5</td>
</tr>
</tbody>
</table>

2.3 LIME

A. ASTM C 602, agricultural limestone containing a minimum 80 percent calcium carbonate equivalent and as follows:

1. Class: Class T, with a minimum 99 percent passing through No. 8 (2.36-mm) sieve and a minimum 75 percent passing through No. 60 (0.25-mm) sieve.

2. Provide lime in form of dolomitic limestone.

B. Provide manufacturer’s literature and material certification that the product meets the requirements.

2.4 IMPORTED TOPSOIL

D. Imported Topsoil definition: Fertile, friable soil containing less than 5% total volume of the combination of subsoil, refuse, roots larger than 1 inch diameter, heavy, sticky or stiff clay, stones larger than 2 inches in diameter, noxious seeds, sticks, brush, litter, or any substances deleterious to plant growth. The percent (%) of the above objects shall be controlled by source selection not by screening the soil. Topsoil shall be suitable for the germination of seeds and the support of vegetative growth. Imported Topsoil shall not contain weed seeds in quantities that cause noticeable weed infestations in the final planting beds. Imported Topsoil shall meet the following physical and chemical criteria:

1. pH value shall be between 6.0 and 7.0.

3. Soluble salt level: Less than 2 mmho/cm.
4. Soil chemistry suitable for growing the plants specified.

E. Texture per USDA Soil Classification System

<table>
<thead>
<tr>
<th>Volume</th>
<th>Sand</th>
<th>9-30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silt</td>
<td>30-75%</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>10-27%</td>
<td></td>
</tr>
</tbody>
</table>

F. Imported Topsoil shall be a harvested soil from fields or development sites. The organic content and particle size distribution shall be the result of natural soil formation. Manufactured soils where Coarse Sand, Composted organic material or chemical additives has been added to the soil to meet the requirements of this specification section shall not be acceptable. Retained soil peds shall be the same color on the inside as is visible on the outside.

G. Imported Topsoil for Planting Soil shall NOT have been screened and shall retain soil peds or clods larger than 2 inches in diameter throughout the stockpile after harvesting.

H. Stockpiled Existing Topsoil at the site meeting the above criteria may be acceptable.

I. Provide a two gallon sample from each Imported Topsoil source with required soil testing results. The sample shall be a mixture of the random samples taken around the source stockpile or field. The soil sample shall be delivered with soil peds intact that represent the size and quantity of expected peds in the final delivered soil.

2.5 PLANTING SOIL MIXES

A. General definition: Mixes Imported Topsoil, Coarse Sand, and or Compost to make a new soil that meets the project goals for the indicated planting area. These may be mixed off site or on-site and will vary in Mix components and proportions as indicated.

B. Planting Mix - moderately slow draining soil for trees and shrub beds.

1. A Mix of Imported Topsoil, Coarse Sand and Compost. The approximate Mix ratio shall be:

 Mix component % by moist volume
 Imported Topsoil unscreened 60-80%
 Coarse Sand 10-30%
 Compost 5-10%

2. Final tested organic matter between 3 and 5% (by dry weight).

3. Mix the Coarse Sand and Compost together first and then add to the Topsoil. Mix with a loader bucket to loosely incorporate the Topsoil into the Coarse Sand/Compost Mix. DO NOT OVER MIX! Do not mix with a soil blending machine. Do not screen the soil. Clumps of Soil, Compost and Coarse Sand will be permitted in the overall Mix.

4. At the time of final grading, add fertilizer if required to the Planting Soil at rates recommended by the testing results for the plants to be grown.

2.6 PRE-EMERGNET HERBICIDES

B. Chemical herbicides are designed to prevent seeds of selective plants from germinating. Exact type of herbicide shall be based on the specific plants to be controlled and the most effective date of application.

C. Submit report of expected weed problems and the recommendation of the most effective control for approval by Owner’s Representative. Provide manufacturer’s literature and material certification that the product meets the requirements.
2.7 DRAIN PIPE

A. Drain pipe shall be 4-inch diameter, perforated, HDPE, single wall corrugated exterior pipe. ASTM F405. All fittings, elbows, unions, T's and screw caps shall be the same material and from the same manufacturer as the pipe. All joints shall be gasketed bell and spigot. Example source ADS Single Wall Pipe by Advance Drainage Systems or approved equal. Submit manufacturers product literature for approval by the Owner's Representative.

1. When pipe has perforations on all quadrants, drape a 12-inch-wide 4 mil plastic sheet over the length of the pipe to force water to the bottom of the pipe.

B. Clean out: Clean out risers shall be 4-inch diameter Schedule 40 PVC solid pipe compatible with the bottom fitting and clean out screw cap. Elbow fitting at the bottom of the clean out riser. When the cleanout is in the middle of a pipe run the fitting shall be a sanitary T fitting. Screw cap FITTING shall be PVC Schedule 40.

PART 3 - EXECUTION

3.1 Examination

A. Examine areas to receive lawns, turfgrass, and prairie restoration for compliance with requirements and for conditions affecting performance of work of this Section. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 Coordination with Project Work

A. The Contractor shall coordinate with all other work that may impact the completion of the work.

B. Prior to the start of work, prepare a detailed schedule of the work for coordination with other trades.

C. Coordinate the relocation of any irrigation lines, heads or the conduits of other utility lines that are in conflict with tree locations. Root balls shall not be altered to fit around lines. Notify the Owner’s Representative of any conflicts encountered.

3.3 Grade and Elevation Control

A. Provide grade and elevation control during installation of Planting Soil. Utilize grade stakes, surveying equipment, and other means and methods to assure that grades and contours conform to the grades indicated on the plans.

3.4 Preparation

A. Excavate to the proposed subgrade. Maintain all required angles of repose of the adjacent materials as shown on the drawings or as required by this specification. Do not over excavate compacted subgrades of adjacent pavement or structures. Maintain a supporting 1:1 side slope of compacted subgrade material along the edges of all paving and structures where the bottom of the paving or structure is above the bottom elevation of the excavated planting area.

B. Remove all construction debris and material including any construction materials from the subgrade.

C. Confirm that the subgrade is at the proper elevation and compacted as required. Subgrade elevations shall slope approximately parallel to the finished grade and/or toward the subsurface drain lines as shown on the drawings.

D. Place 6” of topsoil in areas where sodding will occur and 12” of topsoil in areas where planting will occur as indicated. Place topsoil during dry weather.
E. Do not place topsoil in areas of sewers, water mains and other utilities until backfill has settled.
F. Manually spread topsoil close to trees, plants and buildings to prevent damage.
G. In areas where Planting Soil is to be spread, confirm subgrade has been scarified.
H. Suitable Soils within 36” of finish grade in lawn and landscape areas shall be cohesive soils in Soil Classification Groups ML, CL, CH or a combination thereof, free of rock or gravel greater than 1” in any dimension, debris, waste, frozen materials, vegetation and other deleterious matter.
I. Protect adjacent walls, walks and utilities from damage or staining by the soil. Use 1/2-inch plywood and or plastic sheeting as directed to cover existing concrete, metal and masonry work and other items as directed during the progress of the work.
1. At the end of each working day, clean up any soil or dirt spilled on any paved surface.
2. Any damage to the paving or site features or work shall be repaired at the Contractor’s expense.

3.5 SOIL MOISTURE
A. Volumetric soil moisture level, in both the Planting Soil and the root balls of all plants, prior to, during and after planting shall be above permanent wilt point and below field capacity for each type of soil texture within the following ranges.

<table>
<thead>
<tr>
<th>Soil texture</th>
<th>Permanent wilting point</th>
<th>Field capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, Loamy sand, Sandy loam</td>
<td>5-8%</td>
<td>12-18%</td>
</tr>
<tr>
<td>Loam, Sandy clay, Sandy clay loam</td>
<td>14-25%</td>
<td>27-36%</td>
</tr>
<tr>
<td>Clay loam, Silt loam</td>
<td>11-22%</td>
<td>31-36%</td>
</tr>
<tr>
<td>Silty clay, Silty clay loam</td>
<td>22-27%</td>
<td>38-41%</td>
</tr>
</tbody>
</table>

B. The Contractor shall confirm the soil moisture levels with a moisture meter (Digital Soil Moisture Meter, DSMM500 by General Specialty Tools and Instruments, or approved equivalent). If moisture is found to be too low, the planting holes shall be filled with water and allowed to drain before starting any planting operations. If the moisture is too high, suspend planting operations until the soil moisture drains to below field capacity.

3.6 EXISTING SOIL MODIFICATION
A. Follow the requirements for modifying existing soil as indicated in Part 2 for the different types of soil modifications. The extent of the areas of different soil modification types are indicated on the Soils Plan or as directed by the Owner’s Representative.

3.7 PLANTING SOIL AND PLANTING SOIL MIX INSTALLATION
A. Prior to installing any Planting Soil from stockpiles or Planting Soil Mixes blended off site, the Owner’s Representative shall approve the condition of the subgrade and the previously installed subgrade preparation and the installation of subsurface drainage.
B. All equipment utilized to install, or grade Planting Soils shall be wide track or balloon
tire machines rated with a ground pressure of 4 psi or less. All grading and soil delivery equipment shall have buckets equipped with 6-inch-long teeth to scarify any soil that becomes compacted.

C. In areas of soil installation above existing subsoil, scarify the subgrade material prior to installing Planting Soil.
 1. Scarify the subsoil of the subgrade to a depth of 3 – 6 inches with the teeth of the backhoe or loader bucket, tiller or other suitable device.
 2. Immediately install the Planting Soil. Protect the loosened area from traffic. DO NOT allow the loosened subgrade to become compacted.
 3. In the event that the loosened area becomes overly compacted, loosen the area again prior to installing the Planting Soil.

D. Install the Planting Soil in 12 - 18-inch lifts to the required depths. Apply compacting forces to each lift as required to attain the required compaction. Scarify the top of each lift prior to adding more Planting Soil by dragging the teeth of a loader bucket or backhoe across the soil surface to roughen the surface.

E. Phase work such that equipment to deliver or grade soil does not have to operate over previously installed Planting Soil. Work in rows of lifts the width of the extension of the bucket on the loader. Install all lifts in one row before proceeding to the next. Work out from the furthest part of each bed from the soil delivery point to the edge of each bed area.

3.8 COMPACTION REQUIREMENTS FOR INSTALLED OR MODIFIED PLANTING SOIL

A. Compact installed Planting Soil to the compaction rates indicated and using the methods approved for the soil mockup. Compact each soil lift as the soil is installed.

B. Existing soil that is modified by tilling, ripping or fracturing shall have a density to the depth of the modification, after completion of the loosening, such that the penetrometer reads approximately 75 to 250 psi at soil moisture approximately the mid-point between wilting point and field capacity. This will be approximately between 75 and 82% of maximum dry density standard proctor.

C. Installed Planting Soil Mix and re-spread existing soil shall have a soil density through the required depth of the installed layers of soil, such that the penetrometer reads approximately 75 to 250 psi at soil moisture approximately the mid-point between wilting point and field capacity. This will be approximately between 75 and 82% of maximum dry density standard proctor.

D. Planting Soil compaction shall be tested at each lift using a penetrometer calibrated to the mockup soil and its moisture level. The same penetrometer and moisture meter used for the testing of the mockup shall be used to test installed soil throughout the work.

E. Maintain moisture conditions within the Planting Soil during installation or modification to allow for satisfactory compaction. Suspend operations if the Planting Soil becomes wet. Apply water if the soil is overly dry.

F. Provide adequate equipment to achieve consistent and uniform compaction of the Planting Soils. Use the smallest equipment that can reasonably perform the task of spreading and compaction. Use the same equipment and methods of compaction used to construct the Planting Soil mockup.

G. Do not pass motorized equipment over previously installed and compacted soil except as authorized below.
 1. Light weight equipment such as trenching machines or motorized wheelbarrows is permitted to pass over finished soil work.
2. If work after the installation and compaction of soil compacts the soil to levels greater than the above requirements, follow the requirements of the paragraph "Over Compaction Reduction" below.

3.9 OVER COMPACTION REDUCTION
A. Any soil that becomes compacted to a density greater than the specified density and/or the density in the approved mockup shall be dug up and reinstalled. This requirement includes compaction caused by other sub-contractors after the Planting Soil is installed and approved.
B. Surface roto tilling shall not be considered adequate to reduce over compaction at levels 6 inches or greater below finished grade.

3.10 FINE GRADING
A. The Owner’s Representative shall approve all rough grading prior to the installation of Compost, fine grading, planting, and mulching.
B. Grade the finish surface of all planted areas to meet the grades shown on the drawings, allowing the finished grades to remain higher (10 – 15% of depth of soil modification) than the grades on the grading plan, as defined in paragraph Planting Soil Installation, to anticipate settlement over the first year.
C. Utilize hand equipment, small garden tractors with rakes, or small garden tractors with buckets with teeth for fine grading to keep surface rough without further compaction. Do not use the flat bottom of a loader bucket to fine grade, as it will cause the finished grade to become overly smooth and or slightly compressed.
D. Provide for positive drainage from all areas toward the existing inlets, drainage structures and or the edges of planting beds. Adjust grades as directed to reflect actual constructed field conditions of paving, wall and inlet elevations. Notify the Owner’s Representative in the event that conditions make it impossible to achieve positive drainage.
E. Provide smooth, rounded transitions between slopes of different gradients and direction. Modify the grade so that the finish grade before adding mulch and after settlement is one or two inches below all paving surfaces or as directed by the drawings.
F. Fill all dips and remove any bumps in the overall plane of the slope. The tolerance for dips and bumps in shrub and ground cover planting areas shall be a 2-inch deviation from the plane in 10 feet. The tolerance for dips and bumps in lawn areas shall be a 1-inch deviation from the plane in 10 feet.

3.11 CLEAN-UP
A. During installation, keep the site free of trash, pavements reasonably clean and work area in an orderly condition at the end of each day. Remove trash and debris in containers from the site no less than once a week.
1. Immediately clean up any spilled or tracked soil, fuel, oil, trash or debris deposited by the Contractor from all surfaces within the project or on public right of ways and neighboring property.
B. Once installation is complete, wash all soil from pavements and other structures. Ensure that mulch is confined to planting beds and that all tags and flagging tape are removed from the site. The Owner’s Representative seals are to remain on the trees and removed at the end of the warranty period.
1. Make all repairs to grades, ruts, and damage to the work or other work at the site.
2. Remove and dispose of all excess Planting Soil, subsoil, mulch, plants, packaging, and other material brought to the site by the Contractor.

3.12 PLANTING SOIL AND MODIFIED EXISTING SOIL PROTECTION
A. The Contractor shall protect installed and/or modified Planting Soil from damage including contamination and over compaction due to other soil installation, planting operations, and operations by other Contractors or trespassers. Maintain protection during installation until acceptance. Utilize fencing and matting as required or directed to protect the finished soil work. Treat, repair or replace damaged Planting Soil immediately.

B. Loosen compacted Planting Soil and replace Planting Soil that has become contaminated as determined by the Owner’s Representative. Planting Soil shall be loosened or replaced at no expense to the Owner.
 1. Till and restore grades to all soil that has been driven over or compacted during the installation of plants.
 2. Where modified existing soil has become contaminated and needs to be replaced, provide imported soil that is of similar composition, depth and density as the soil that was removed.

3.13 PROTECTION DURING CONSTRUCTION
A. The Contractor shall protect planting and related work and other site work from damage due to planting operations, operations by other Contractors or trespassers.
 1. Maintain protection during installation until the date of plant acceptance (see specifications SECTION – PLANTING). Treat, repair or replace damaged work immediately.
 2. Provide temporary erosion control as needed to stop soil erosion until the site is stabilized with mulch, plantings or turf.

B. Damage done by the Contractor, or any of their sub-contractors to existing or installed plants, or any other parts of the work or existing features to remain, including large existing trees, soil, paving, utilities, lighting, irrigation, other finished work and surfaces including those on adjacent property, shall be cleaned, repaired or replaced by the Contractor at no expense to the Owner. The Owner’s Representative shall determine when such cleaning, replacement or repair is satisfactory. Damage to existing trees shall be assessed by a certified arborist.

3.14 SUBSTANTIAL COMPLETION ACCEPTANCE
A. Upon written notice from the Contractor, the Owners Representative shall review the work and decide if the work is substantially complete.

B. The date of substantial completion of the planting soil shall be the date when the Owner’s Representative accepts that all work in Planting, Planting Soil, and Irrigation installation sections is complete.

3.15 FINAL ACCEPTANCE / SOIL SETTLEMENT
A. At the end of the plant warrantee and maintenance period, (see Specification SECTION - PLANTING) the Owner’s Representative shall observe the soil installation work and establish that all provisions of the contract are complete and the work is satisfactory.
 1. Restore any soil settlement and or erosion areas to the grades shown on the drawings. When restoring soil grades remove plants and mulch and add soil
before restoring the planting. Do not add soil over the root balls of plants or on top of mulch.

B. Failure to pass acceptance: If the work fails to pass final acceptance, any subsequent observations must be rescheduled as per above. The cost to the Owner for additional observations will be charged to the Contractor at the prevailing hourly rate of the Owner's Representative.

END OF SECTION 32 91 00
SECTION 329200 - SEEDING

PART 1 - GENERAL

1.1 SECTION INCLUDES
A. This section covers the furnishing of all labor, equipment, tools, and materials necessary for the performance of seeding operations as required by the project plans and specifications.
B. The seeding work shall consist of furnishing and drilling in or sowing seed by an experienced seeding contractor having approved equipment manufactured expressly for the purpose, such as a seed drill, mulch chopper and blower for the application of hay or straw mulch, mulch puncher or straight serrated disc for punching mulch into soil and a cultipacker that may be used for final compaction. The contractor may also use a hydroteeder as an alternative seeding method.

1.2 REFERENCE STANDARDS
A. Finish Grade: Elevation of finished surface of planting soil.
B. Manufactured Soil: Soil produced off-site by homogeneously blending mineral soils or sand with stabilized organic soil amendments to produce topsoil or planting soil.
C. Planting Soil: Native or imported topsoil, manufactured topsoil, or surface soil modified to become topsoil; mixed with soil amendments.
D. Subgrade: Surface or elevation of subsoil remaining after completing excavation, or top surface of a fill or backfill immediately beneath planting soil.

1.3 ADMINISTRATIVE AND RELATED REQUIREMENTS
A. Coordination: Coordinate installation with work of other trades.
B. PLANTING SOILS; SECTION 329100

1.4 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Certification of Grass Seed: From seed vendor for each grass-seed monostand or mixture stating the botanical and common name and percentage by weight of each species and variety, and percentage of purity, germination, and weed seed. Include the year of production and date of packaging.
 1. Certification of each seed mixture for turfgrass sod identifying source, including name and telephone number of supplier.
C. Product Certificates: For soil amendments and fertilizers, signed by product manufacturer.
D. Qualification Data: For landscape Installer.
E. Material Test Reports: For existing surface soil and imported topsoil.
F. Planting Schedule: Indicating anticipated planting dates for each type of planting.
G. Maintenance Instructions: Recommended procedures to be established by Owner for maintenance of lawns during a calendar year. Submit before expiration of required maintenance periods.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: A qualified landscape installer whose work has resulted in successful lawn establishment.
 1. Sod work shall be performed by a Contractor experienced in placing sod.
 2. Installer's Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when planting is in progress.

B. Soil-Testing Laboratory Qualifications: An independent laboratory, recognized by the State Department of Agriculture, with the experience and capability to conduct the testing indicated and that specializes in types of tests to be performed.

C. Topsoil Analysis: Furnish soil analysis by a qualified soil-testing laboratory stating percentages of organic matter; gradation of sand, silt, and clay content; cation exchange capacity; sodium absorption ratio; deleterious material; pH; and mineral and plant-nutrient content of topsoil.
 1. Report suitability of topsoil for lawn growth. State recommended quantities of nitrogen, phosphorus, and potash nutrients and soil amendments to be added to produce a satisfactory topsoil.

D. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination."

1.6 DELIVERY, STORAGE, AND HANDLING

A. Seed: Deliver seed in original sealed, labeled, and undamaged containers.

1.7 SCHEDULING

A. Planting Restrictions: Plant during one of the following periods. Coordinate planting periods with maintenance periods to provide required maintenance from date of Substantial Completion.
 1. Seeding and Fertilizing
 a. Spring Planting: March 1 to June 1
 b. Fall Planting: August 15 to October 15

B. Weather Limitations: Proceed with planting only when existing and forecasted weather conditions permit.
 1. Seeding and fertilizing shall not be done during periods of such severe drought, high winds, or excessive moisture, as determined by the Landscape Architect, that satisfactory results are not likely to be obtained.

C. Any seeding to be performed during periods other than those previously designated will require a written request to extend the permissible period for performing such work. The Contractor shall explain the reason for the variance and shall include a guarantee of satisfactory results at the end of the first four (4) weeks of the following growing season as previously defined. The Contractor shall agree to perform any necessary re-seeding at that time. The request shall be initiated by the Contractor and submitted to the Landscape Architect for consideration for approval.

1.8 LAWN MAINTENANCE

A. All seeded areas shall be protected against damage by vehicle and pedestrian traffic by the use of barriers and appropriate warning signs. If at any time before completion and acceptance of the seeding work any portion of the seeded area becomes eroded or otherwise damaged, such damaged areas shall be repaired by filling with soil to original grade, re-seeding and re-mulching. All costs of repair work shall be borne by the Contractor.
B. Begin maintenance immediately after each area is planted and continue until acceptable lawn is established, but for not less than the following periods:

1. Seeded Lawns: Thirty-five (35) days from date of Substantial Completion.
 a. When full maintenance period has not elapsed before end of planting season, or if lawn is not fully established, continue maintenance during next planting season.
 b. Sprinkling of the seeded areas shall be carefully done in such manner as to avoid standing water, surface wash, scour or other erosion.

C. Maintain and establish lawn by watering, fertilizing, weeding, mowing, trimming, replanting, and other operations. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth lawn.
 1. In areas where mulch has been disturbed by wind or maintenance operations, add new mulch. Anchor as required to prevent displacement.

D. Watering: Provide and maintain temporary piping, hoses, and lawn-watering equipment to convey water from sources and to keep lawn uniformly moist to a depth of 4 inches (100 mm).
 1. Schedule watering to prevent wilting, puddling, erosion, and displacement of seed or mulch. Lay out temporary watering system to avoid walking over muddy or newly planted areas.
 2. Water lawn at a minimum rate of 1 inch (25 mm) per week.

E. Mow lawn as soon as top growth is tall enough to cut. Repeat mowing to maintain specified height without cutting more than 40 percent of grass height. Remove no more than 40 percent of grass-leaf growth in initial or subsequent mowings. Do not delay mowing until grass blades bend over and become matted. Do not mow when grass is wet. Schedule initial and subsequent mowings to maintain the following grass height:
 1. Mow grass 1-1/2 to 2 inches (38 to 50 mm) high.
 2. Mow grass 2 to 3 inches (50 to 75 mm) high.

F. Lawn Postfertilization: Apply fertilizer after initial mowing and when grass is dry.
 1. Use fertilizer that will provide actual nitrogen of at least 1 lb/1000 sq. ft. (0.45 kg/92.9 sq. m) to lawn area.

PART 2 - PRODUCTS

2.1 SEED

A. Seeds for cover crops shall be the kind and mixture of seeds specified herein. Seeds shall be free of prohibited weed seeds and shall not have more than 1 percent (1%) noxious weed seeds. Seeds shall be delivered to the site in labeled containers bearing the name of the producer. A certificate showing the percentage of the purity and germination of each kind of seed specified shall be submitted to the Landscape Architect for approval.

B. The following formula shall be used to determine the amount of commercial seed required:
 1. Pounds of Commercial Seed Required = 10,000 x Rate of Pure Live Seeds (lbs/acre) x Purity % x Germination %

C. Where seeding is required in areas of established yards, shoulders, slopes, (in street right-of-way), median islands, and any other areas where a high-quality seeding is deemed necessary, the seed mixture will be as follows:

<table>
<thead>
<tr>
<th>KIND OF SEED</th>
<th>MINIMUM PURE LIVE SEED (%)</th>
<th>RATE OF PURE LIVE SEED POUNDS/1,000 SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Wave Turf-type Tall Fescue (Grass Pad or equivalent)</td>
<td>80%</td>
<td>12 LBS</td>
</tr>
</tbody>
</table>

SEEDING 329200 - 3/7
2.2 TOPSOIL

A. Topsoil: ASTM D 5268, pH range of 5.5 to 7, a minimum of 6 percent organic material content; free of stones 1 inch (25 mm) or larger in any dimension and other extraneous materials harmful to plant growth.
 1. Topsoil Source: Reuse surface soil stockpiled on-site. Verify suitability of stockpiled surface soil to produce topsoil. Clean surface soil of roots, plants, sod, stones, clay lumps, and other extraneous materials harmful to plant growth.
 a. Supplement with imported or manufactured topsoil from off-site sources when quantities are insufficient. Obtain topsoil displaced from naturally well-drained construction or mining sites where topsoil occurs at least 4 inches (100 mm) deep; do not obtain from agricultural land, bogs or marshes.
 2. Topsoil Source: Import topsoil or manufactured topsoil from off-site sources. Obtain topsoil displaced from naturally well-drained construction or mining sites where topsoil occurs at least 4 inches (100 mm) deep; do not obtain from agricultural land, bogs or marshes.
 3. Topsoil Source: Amend existing in-place surface soil to produce topsoil. Verify suitability of surface soil to produce topsoil. Clean surface soil of roots, plants, sod, stones, clay lumps, and other extraneous materials harmful to plant growth.
 a. Surface soil may be supplemented with imported or manufactured topsoil from off-site sources. Obtain topsoil displaced from naturally well-drained construction or mining sites where topsoil occurs at least 4 inches (100 mm) deep; do not obtain from agricultural land, bogs or marshes.

2.3 INORGANIC SOIL AMENDMENTS

A. Lime: ASTM C 602, agricultural limestone containing a minimum 80 percent calcium carbonate equivalent and as follows:
 1. Class: Class T, with a minimum 99 percent passing through No. 8 (2.36-mm) sieve and a minimum 75 percent passing through No. 60 (0.25-mm) sieve.
 2. Provide lime in form of dolomitic limestone.

B. Sulfur: Granular, biodegradable, containing a minimum of 90 percent sulfur, with a minimum 99 percent passing through No. 6 (3.35-mm) sieve and a maximum 10 percent passing through No. 40 (0.425-mm) sieve.

C. Iron Sulfate: Granulated ferrous sulfate containing a minimum of 20 percent iron and 10 percent sulfur.

D. Aluminum Sulfate: Commercial grade, unadulterated.

E. Perlite: Horticultural perlite, soil amendment grade.

F. Agricultural Gypsum: Finely ground, containing a minimum of 90 percent calcium sulfate.

G. Sand: Clean, washed, natural or manufactured, free of toxic materials.

H. Diatomaceous Earth: Calcined, diatomaceous earth, 90 percent silica, with approximately 140 percent water absorption capacity by weight.

I. Zeolites: Mineral clinoptilolite with at least 60 percent water absorption by weight.

2.4 ORGANIC SOIL AMENDMENTS

A. Compost: Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1-inch (25-mm) sieve; soluble salt content of 5 to 10 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:
 1. Organic Matter Content: 50 to 60 percent of dry weight.
 2. Feedstock: Agricultural, food, or industrial residuals; biosolids; yard trimmings; or source-separated or compostable mixed solid waste.
B. Peat: Sphagnum peat moss, partially decomposed, finely divided or granular texture, with a pH range of 3.4 to 4.8.

C. Peat: Finely divided or granular texture, with a pH range of 6 to 7.5, containing partially decomposed moss peat, native peat, or reed-sedge peat and having a water-absorbing capacity of 1100 to 2000 percent.

D. Wood Derivatives: Decomposed, nitrogen-treated sawdust, ground bark, or wood waste; of uniform texture, free of chips, stones, sticks, soil, or toxic materials.
 1. In lieu of decomposed wood derivatives, mix partially decomposed wood derivatives with at least 0.15 lb (2.4 kg) of ammonium nitrate or 0.25 lb (4 kg) of ammonium sulfate per cubic foot (cubic meter) of loose sawdust or ground bark.

E. Manure: Well-rotted, unleached, stable or cattle manure containing not more than 25 percent by volume of straw, sawdust, or other bedding materials; free of toxic substances, stones, sticks, soil, weed seed, and material harmful to plant growth.

2.5 PLANTING ACCESSORIES

A. Selective Herbicides: EPA registered and approved, of type recommended by manufacturer for application.

2.6 FERTILIZER

A. Commercial fertilizer for seeded or sodded areas shall contain 12 percent (12% by weight) nitrogen, 12 percent (12% by weight) phosphoric acid, and 12 percent (12% by weight) potash. It shall be uniform in composition, free flowing, and delivered to the site in standard size bags, showing weight, analysis, and name of manufacturer. It shall be stored until use in a weatherproof storage place in such a manner that it will be kept dry and its effectiveness will not be impaired.

2.7 MULCHES

A. Preferred mulch materials for application to seedbed areas are smooth brome grass hay, Sudan grass hay or prairie hay. Prairie hay shall consist chiefly of bluestem grasses, switchgrass, Indian grass and other desirable native perennial grasses. Mulch shall be free of prohibited and noxious weed seeds. Other mulching materials may be used with the approval of the Landscape Architect.

2.8 EROSION-CONTROL MATERIALS

A. Erosion-Control Blankets: Biodegradable wood excelsior, straw, or coconut-fiber mat enclosed in a photodegradable plastic mesh. Include manufacturer's recommended steel wire staples, 6 inches (150 mm) long.

B. Erosion-Control Fiber Mesh: Biodegradable twisted jute or spun-coir mesh, a minimum of 0.92 lb/sq. yd. (0.5 kg/sq. m), with 50 to 65 percent open area. Include manufacturer's recommended steel wire staples, 6 inches (150 mm) long.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to receive lawns and grass for compliance with requirements and other conditions affecting performance. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities, trees, shrubs, and plantings from damage caused by planting operations.
 1. Protect adjacent and adjoining areas from hydroseeding overspray.

B. Provide erosion-control measures to prevent erosion or displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways.

3.3 SEEDING

A. The area to be seeded shall be thoroughly tilled to a depth of at least three inches (3") by discing, harrowing or other approved methods until the soil is well pulverized. Contractor to verify minimum of 6" of topsoil over all areas to receive seed or sod prior to discing. Subgrade to meet standards specified in Section 319100. After completion of the tilling operation, the surface shall be cleared of all stones, stumps, or other objects larger than 1 inch (1") in diameter, and of roots, wire, grade stakes, and other objects that might be a hindrance to maintenance operations. Areas tilled shall then be brought to the desired line and grade and maintained until seeding and mulching is complete to ensure a smooth area with no gullies or depressions.

B. Any objectionable undulations or irregularities in the surface resulting from tilling or other operations shall be removed before planting operations have begun. Seed bed preparation shall be performed only during periods when satisfactory results are likely to be obtained. When results are not satisfactory because of drought, excessive moisture or other causes, the work shall be stopped until such conditions have been corrected to the satisfaction of the Landscape Architect.

C. Seeding may be accomplished by means of approved mechanical seed drills followed by packer wheels, or as approved by the Landscape Architect. Seed drills shall have depth bands set to maintain a planting depth of at least one-quarter inch (1/4") but not to exceed one-half inch (1/2"). Water shall be applied when necessary.
 1. Do not use wet seed or seed that is moldy or otherwise damaged.

D. Hydraulic seeding equipment shall include a pump capable of being operated at 100 gallons per minute and at 100 pounds per square inch pressure, unless otherwise directed. The equipment shall have an acceptable gauge and a nozzle adaptable to hydraulic seeding requirements. Storage tanks shall have a means of agitation and a means of estimation of the volume used, or remaining in the tank.

E. Seed shall not be drilled or sown during windy weather or when the ground is frozen or otherwise untillable. When a seed drill is used, it shall be set to space the rows not more than 4 inches (4") apart.

F. Sow seed at the rate outlining under the ‘Products’ section of this specification.

G. Rake seed lightly into top 1/8 inch (3 mm) of topsoil, roll lightly, and water with fine spray.

H. Protect seeded areas with slopes exceeding 1:6 with erosion-control fiber mesh and 1:4 with erosion-control blankets installed and stapled according to manufacturer’s written instructions.

I. Protect seeded areas with slopes not exceeding 1:6 by spreading straw mulch. Spread uniformly at a minimum rate of 2 tons/acre (42 kg/92.9 sq. m) to form a continuous blanket 1-1/2 inches (38 mm) in loose depth over seeded areas. Spread by hand, blower, or other suitable equipment.
 1. Anchor straw mulch by crimping into topsoil with suitable mechanical equipment.
 2. Bond straw mulch by spraying with asphalt emulsion at the rate of 10 to 13 gal./1000 sq. ft. (38 to 49 L/92.9 sq. m). Take precautions to prevent damage or staining of structures or other plantings adjacent to mulched areas. Immediately clean damaged or stained areas.

J. Protect seeded areas from hot, dry weather or drying winds by applying compost mulch within 24 hours after completing seeding operations. Soak and scatter uniformly to a depth of 3/16 inch (4.8 mm) and roll to a smooth surface.

K. Limit lawn subgrade preparation to areas to be planted.
L. Restore areas if eroded or otherwise disturbed after finish grading and before planting.

3.4 MULCHING

A. Hay mulch shall be applied uniformly to seeded areas at the rate of not less than two (2) tons per acre. Baled hay shall be broken up and loosened sufficiently before being fed into the blower hopper to avoid the placing of matted or unbroken clumps. The use of wet hay is prohibited.

B. Mulching shall be performed within twenty-four (24) hours after seeding, but not be done during windy or rainy weather or when such weather is imminent. Mulching shall be started at the windward side of relatively flat areas, or at the upper part of steep slopes and shall continue uniformly until each area is covered.

C. The mulching material shall be disc'd or punched into the soil so that it is partially covered. Several passes may be required, if a straight disc is used, in order to mix the mulching material with the topsoil sufficiently to ensure protection from erosion by either wind or water. The mulch tilling operation shall be performed parallel to the ground contours.

3.5 FERTILIZING

A. Once the seed has been installed, the contractor shall apply fertilizer at ½ lb. to 1 lb. of nitrogen per 1000 square feet of area. Do not incorporate fertilizer into the prepared seed bed.

3.6 SATISFACTORY LAWNS

A. Satisfactory Seeded Lawn: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 70 percent over any 10-sq. ft. (0.92 sq. m) and bare spots not exceeding 5 by 5 inches (125 by 125 mm).

B. Reestablish lawns that do not comply with requirements and continue maintenance until lawns are satisfactory.

3.7 CLEANUP AND PROTECTION

A. Promptly remove soil and debris created by lawn work from paved areas. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.

B. Erect barricades and warning signs as required to protect newly planted areas from traffic. Maintain barricades throughout maintenance period and remove after lawn is established.

C. Remove erosion-control measures after grass establishment period.

3.8 GUARANTEE.

A. Seeded areas will not be accepted until there is a minimum of 70% coverage of healthy grass.

3.9 RECORD KEEPING

A. The Contractor shall maintain a log of his watering operations and rain events to show compliance with the watering requirements for seeding. The Contractor shall submit the records to the Landscape Architect at the end of the required maintenance period. The seeded areas shall not be approved until the submittal has been received and reviewed by the Landscape Architect and/or client.

END OF SECTION 32 9200
SECTION 329219 - NATIVE GRASS SEEDING

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Provide all labor, materials, equipment and supervision required for the installation and establishment of native grass from seed.

1.2 ADMINISTRATIVE REQUIREMENTS

A. Coordination: Coordinate installation with work of other trades and University of Missouri specifications.

1.3 SUBMITTALS

A. Qualification data for firms and persons specified in “Quality Assurance” article to demonstrate their capabilities and experience. Include lists of completed projects with project names and addresses, names and addresses of Landscape Architects and owners, and other information specified.

B. Plant and Material Certifications

1. Manufacturer’s literature: submit schedule of maintenance program spanning the life of the guarantee and three copies of a recommended post guarantee maintenance program.

2. Certificates of inspection as required by governmental authorities.

3. Certification of grass seed from seed vendor for each grass-seed mixture stating the botanical and common name and percentage by weight of each species and variety, and percentage of purity, germination, and weed seed. Include the year of production and date of packaging.
 a. Vendor must have available seed label for certification of grass seed mixtures.

4. Planting schedule indicating anticipated dates and locations for each type of planting.

5. Maintenance instructions recommending procedures to be established by Owner Representative for maintenance of landscaping during an entire year. Submit 3 copies before expiration of required maintenance programs.

6. Product Data: Submit product data, supplier sources and small sample of the following:
 a. Soil amendments
 b. Mulch
 c. Erosion Control Blanket
 d. Inoculants

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Engage a single firm specializing in native grass seed installation with a minimum of five (5) years experience who has completed work similar in material, design and extent to that indicated for this project and with a record of successful native grass stand establishment.

1. Installer’s Field Supervision: Installer to maintain an experienced full-time supervisor on Project site when native seeding is in progress.

2. PLANET Certification: Full-time on-site supervisor must be a CLT-E (Certified Landscape Technician – Exterior) in current and good standing with PLANET (Professional Landcare Network) throughout the duration of the project. Proof of certification shall be submitted to Landscape Architect within 21 days of award of Contract and should be maintained on jobsite at all times.
3. The above-described individual(s) shall be identified by the contractor and shall be on the project during the following installations;
4. Native seed Installation/Maintenance.

1.5 DELIVERY, STORAGE AND HANDLING

A. Packaged Materials: Deliver packaged materials in original sealed, labeled and undamaged containers showing weight, analysis, and name of distributor. Protect materials from deterioration during delivery and while stored at site.

C. Provide seed of grass species and varieties, proportions by weight, and minimum percentages of purity, germination, and maximum percentage of weed seed as indicated on the plans or Contract Documents.

D. Do not use wet seed or seed that is moldy or otherwise damaged in transit or storage.

1.6 PROJECT CONDITIONS

A. Utilities: Determine location of above grade and underground utilities and perform work in a manner which will avoid damage. Hand excavate, as required. Maintain grade stakes until removal is mutually agreed upon by parties concerned.

B. Excavation: When conditions detrimental to plant growth are encountered, such as rubble fill, adverse drainage conditions, or obstructions, notify Landscape Architect before planting.

1.7 SEQUENCING AND SCHEDULING

A. General Warranty: The special warranty specified in this Article shall not deprive the Owner of other rights the Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by the Contractor under requirements of the Contract Documents.

B. For Native Grasses, the Contractor shall provide a warranty period of twelve (12) months.

C. Seeding shall be conducted in early spring or as a late dormant fall seeding in accordance with the following
 1. Spring Planting: April – July
 2. Dormant Planting: November - March

D. Proceed with planting only when current and forecasted weather conditions are favorable.

PART 2 - PRODUCTS

2.1 NATIVE GRASSES

A. Fresh, clean, dry, pure-live seed complying with Missouri Department of Agriculture laws for purity, germination, and noxious weed tolerances.

B. All grass species shall be supplied as pure live seed. Submit to the Landscape Architect germination test results.

C. Seed of all species native to Kansas shall be from within a 300-mile (485 km)

D. Deliver packaged seed materials in original sealed, labeled, and undamaged containers showing weight, analysis, and name of distributor. Protect materials for deterioration during delivery and while stored at site.
E. Landscape Architect has final approval, no exceptions.

F. Seed Type (or an approved equivalent):
 1. Native Prairie Seed Mix
 a. As supplied by Critical Site Products, Inc.
 16245 US-71 Belton, Missouri 64012
 816.331.9738
 b. Spring Seeding Rate: 25 pounds per acre
 c. Dormant Seeding Rate: 25 pounds per acre
 d. Equal Distribution of the following plant material:
 15% Adropogon gerardii
 10% Avena sativa
 2% Carex vulpinoidea
 10% Elymus canadensis
 25% Elymus virginicus
 5% Panicum virgatum
 30% Pascopyrum smithii
 3% Spartina pennisetata

2.2 COVER CROP SEEDING

A. If native grass is installed as a dormant seeding, provide fresh, clean, new-crop seed complying with tolerance for purity and germination established by Official Seed Analysts of North America. Provide seed mixture composed of grass species, proportions and minimum percentages purity, germination, and maximum percentage of seed as specified below.
 1. *Triticum x agropyron* (Spr./Fall) Red-green sterile wheat
 2. Recommended seeding rate: 15lbs/acre

2.3 TOPSOIL

A. Topsoil: ASTM D 5268, pH range of 6.0 to 7.0 percent organic material minimum, free of stones 1/2 inch (25 mm) or larger in any dimension, and other extraneous materials harmful to plant growth.
 1. Topsoil Source: Reuse surface soil stockpiled on the site. Verify suitability of surface soil to produce topsoil meeting requirements and amend to achieve required pH and organic content as necessary and recommended through soil tests. Clean topsoil of roots, plants, sods, stones, clay lumps, and other extraneous materials harmful to plant growth. Soil shall not contain more than 20 stones or other foreign material less than 1 inch (25 mm) in diameter in any one square yard area.

2.4 FERTILIZER

A. Do NOT use fertilizers in Native Grass seeding areas.

2.5 EROSION CONTROL BLANKET

A. Provide a biodegradable single net, two-sided organic straw mat with functional longevity of 10-12 months in all areas where slopes exceed a 4:1 gradient. Product: Greenfix America, Product WS072 Double Net Straw (or approved equal).
 Supplier:
 Greenfix America (or approved equal)
 LLC P.O. Box 1620
 Calipatrera, CA 92233
PART 3 - PRODUCTS

3.1 EXAMINATION

A. Examine areas to receive seeding for compliance with requirements and for conditions affecting performance of work of this Section. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Contractor to verify minimum of 6” of topsoil over all areas to receive seed prior to installation of seed. Subgrade materials to meet standards specified in Section 319100

B. Protect structures, utilities, sidewalks, pavements and other facilities, trees, shrubs and plantings from damage caused by seeding operations.

C. Provide erosion control measures to prevent erosion and displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways.

D. Lay out seeding areas. Stake locations and secure Landscape Architect’s acceptance before the start of planting work. Make minor adjustments as may be required.

E. Seeds shall have proper stratification and/or scarification to break seed dormancy for spring planting.

3.3 SEEDING COVER CROP AND NATIVE GRASSES

A. Seeding shall be installed in accordance with the plans, per the zone and seed mix specified in the plans. Sow seeds using seed drill (Truax-type) that accurately meters the seed types and mixes all seeds uniformly during seeding. It should have, at the minimum, two seed boxes to separate fine seeds from large/fluffy seeds. This seed drill should also be equipped with disc furrow openers and a no-till trash plow assembly, which will compact the soil directly over the drill rows. The maximum row spacing for drill seeding should be (8”) 8 inches. Fine seeds shall be dropped onto the ground from the fine seed box, while large/fluffy seed should be placed to obtain final planting depth of 1/4”. The path of the drill seeding shall be done at a right angle to that of the drainage patterns.
 1. Do not use wet seed or seed that is moldy or otherwise damaged in transit or storage.
 2. Sow native grass seed at rates outlined in Section 2.1.

B. Protect all native grass areas on slopes 4:1 and greater using biodegradable single net, two-sided organic straw erosion control mat with functional longevity of 10-12 months installed according to manufacturer’s recommendations.

C. Seeding shall be conducted in early spring or as a late fall dormant seeding in accordance with the planting requirements stated in Part 1 of this section.

D. Regardless of the method of seeding, all bare areas larger than 12” (300mm) square shall be reseeded. Bare areas will be measured by the Landscape Architect six weeks after start of the growing season during which the seed is applied. In the case of dormant seeding, the Engineer shall measure the bare areas six weeks after the start of the growing season following the seeding. Any weeds growing at the time of this measurement shall be removed by the Contractor at the Contractor’s expense.

3.4 NATIVE GRASS MAINTENANCE

A. Native Grass
 1. Begin maintenance of native grass areas immediately after each area is planted and continue until established and accepted, but for not less than the following periods:
 a. Native grass: Two years after date of Substantial Completion.
1) The Installer shall be responsible for the proper care until verification that all plant materials are present in the density and health to ensure self-maintenance.

2. Maintain and establish native grasses by mowing, weeding, trimming, replanting, and other operations as stated below. Re-grade erosion rills, replant bare or eroded areas, and re-mulch to produce a uniform prairie. Landscape installer shall perform maintenance as determined by the Landscape Architect.
 a. Year 1
 Maintenance (June – September):
 1) Mow to 6-8” when plants reach 12” during first complete growing season. After first complete growing season, mow to 6” and remove thatch in late February/March to remove mature top growth.
 2) Weed Control - mowing should keep annual weeds down. Spot spray weeds using Round-Up before first mowing.
 3) Overseed all native grass areas with the same mix and seeding rate as first seeding, 1 year after first seeding.
 4) If first seeding occurs late fall or early winter, overseed in spring.
 Monitoring:
 1) Monitor for invasive weeds such as: velvet leaf, brome grass, Johnson grass, crown vetch, clover, prickly lettuce, etc.
 Evaluation and Remediation:
 1) Cover crop should be growing within 2 weeks of planting.
 2) Seedlings spaced 1-6” apart in drill rows.
 3) Native grass seedlings may only be 4-6” tall.
 4) If there is a flush of growth from invasive weeds, mow more frequently.
 5) Fill in and reseed rills caused by erosion (May-July).
 6) As determined by the Owner’s Representative, add new mulch in areas where mulch has been disturbed by wind or maintenance operations sufficiently to nullify its purpose. Anchor as required to prevent displacement.
 b. Year 2
 Maintenance (June – September):
 1) Mow to 6-8” when plants reach 12” during growing season.
 2) Weed Control - periodic mowing should keep annual weeds down. Spot spray or manually remove invasive weeds.
 3) Some sites may not require as much maintenance the first year, depending upon growth of native grasses.
 4) Mow to 6” and remove thatch in late February/March to remove mature top growth.
 Monitoring:
 1) Monitor for invasive weeds such as: velvet leaf, brome grass, Johnson grass, crown vetch, clover, prickly lettuce, etc.
 Evaluation and Remediation:
 1) Cover crop will not be present.
 2) Grasses should be forming clumps 1-6” apart in drill rows, but still remain short.
 3) If there is a flush of growth from invasive weeds, mow site again.
 4) Fill in and reseed rills caused by erosion (May-July).

3. Watering: Provide and maintain temporary piping, hoses, and lawn-watering equipment to convey water from sources and to keep lawns uniformly moist to a depth of 4 inches.
 a. Lay out temporary lawn-watering system and arrange watering schedule to prevent wilting, puddling, erosion, and displacement of seed or mulch. Lay out temporary watering system to avoid walking over muddy or newly seeded areas.
 b. Daily for the first week, 1-1 ½ inch minimum depth.
 c. Every 3-4 days for the second week at the minimum rate of 1 inch per week.
 d. One day a week for the next 60 days at the minimum rate of 1 inch per week.

3.5 SATISFACTORY NATIVE GRASS

A. An acceptable native grass stand will contain no less than 5 healthy mature or developing plants per square foot with a population distribution per 10,000 square feet representative of ratios in the original blend. The result of maintenance shall be that weeds are being controlled through competition with the desired plants, and that mowed bio-mass is not accumulating in such a manner to be detrimental to existing plant materials as determined by the Landscape Architect.
B. An acceptable native grass stand shall control erosion through root mass development. The occurrence of rills and gullies shall be unacceptable.

3.6 CLEANUP AND PROTECTION

A. Protect landscaping from damage due to landscape operations, operations by other contractors and trades, and trespassers. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged landscape work as directed.

B. During seeding operations, keep pavements clean and work area in an orderly condition. Promptly remove soil and debris created by lawn work from paved areas. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks and paved areas.

C. Erect barriers and warning signs as required to protect newly planted areas from traffic. Maintain barricades throughout maintenance period and remove after seeding is established.

3.7 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Disposal: Remove surplus soil and waste material, including excess subsoil, unsuitable soil, trash, and debris, and legally dispose of it off the Owner’s property.

END OF SECTION 329219
SECTION 331113 – WATER DISTRIBUTION PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. The scope of this document is to provide instruction for the installation and testing of underground domestic water lines.

1.2 REFERENCES

A. Section 331300 Disinfecting
B. Section 331114 Potable Water Horizontal Directional Drilling

PART 2 - PRODUCTS

2.1 MATERIALS, PIPE AND PIPE FITTINGS

A. All underground water piping shall be PVC.
 1. EXCEPTION 1: Domestic water service lines 2” or less shall be Type K copper or high density polyethylene (HDPE) piping.
 2. EXCEPTION 2: Lines passing directly over or under steam tunnels or direct buried steam/condensate lines must be ductile iron or Type K copper (2” or less) with 4” R-5 extruded polystyrene insulation board between the pipe and steam lines.

B. PVC Pipe (Open Trench Construction)
 1. 2 Inches to 12 Inches: AWWA C900; Pressure Class 235 (DR 18); Cast Iron O.D. equivalent; with bell end and elastomeric gasket.
 2. 14 Inches to 48 Inches: AWWA C905; Pressure Rating 165 (DR 25); Cast Iron O.D. equivalent; with bell end and elastomeric gasket.

C. Ductile-Iron Pipe
 1. 4 Inches to 12 Inches: AWWA C151; Mechanical Joint Pipe; Minimum Thickness Class 52 or Pressure Class 350; with integrally cast flanged bell, cast iron gland, and rubber gasket.
 2. Lining: Standard cement lining with asphalt coating.

D. High-Density Polyethylene (HDPE) Pipe and Fittings
 1. 2 Inches and Less: SDR9 CTS Premium Grade Pipe, AWWA C901, ASTM D3035, NSF 14 and 61, 200 psi pressure rating. Pipe to be CenCore HDPE as manufactured by Centennial Plastics or approved equal.
 2. Fittings and Joints: All molded fittings and fabricated fittings shall be fully pressure rated to match the pipe pressure rating. All fittings shall be molded or fabricated by the pipe manufacturer. Connections must be made by either the use of brass/stainless steel compression couplings with insert rings or by creating a fusion butt weld all in strict accordance with manufacturer’s recommendations. All brass fittings shall be lead free.

E. Pipe Fittings
 1. 4 Inches to 24 Inches: AWWA C153; 350-psi pressure rating.
 2. Lining: Standard cement lining with asphalt coating.
 3. All pipe fittings shall be cast-iron construction, installed wrapped with AWWA C105 polyethylene film.

F. Restraints
 1. Mechanical joint: AWWA C111. Provide retainer type packing glands with rubber gasket, for use with PVC pipe and conforming to Uni-B-13-
 a. Pipe sizes 4” to 12” must also be FM approved. Mechanical joint restraints shall be Megalug 2000 PV, as manufactured by EBAA Iron Inc., Eastland TX, or approved equal.
 2. Joint Retainers: Provide ductile iron split serrated ring harnesses and rod type joint retainers for PVC bell and spigot joints. Clamps shall be designed for use with PVC pipe and shall meet Uni-B-13-92 Standards and be FM approved on sizes 4” to 12”. Restraint harnesses shall be Series 1500 for pipe 4 inches to 12 inches, and Series 2800 for pipe 14 inches and larger, all as manufactured by EBAA Iron Inc., Eastland TX or approved equal.
 3. Rods, nuts and washers: ¾” SS304 all thread rods, nuts and washers.
 4. All pipe restraints and ductile iron fittings shall be installed wrapped with AWWA C105 polyethylene film.
 5. Link Assembly: Seal annular space for piping passing through walls with interlocking synthetic rubber link assembly, Link-Seal® as manufactured by PSI-Thunderline Corporation, Houston TX, or approved equal.
6. Pipes, fittings, valves, meters, and other appurtenances containing more than .25 percent lead calculated by weighted average shall not be used. System design, materials, and installation of water systems shall comply with "Minimum Design Standards for Missouri Community Water Systems" (latest edition) as published by Missouri DNR.

G. Trace Wire
1. Tracer wire shall be #14 AWG Solid, steel core soft drawn high strength tracer wire, 250# average tensile break load, 30 mil high molecular weight-high density blue polyethylene jacket complying with ASTM-D-1248, 30 volt rating. No THHN insulated wire shall be allowed. Tracer wire shall be Copperhead Industries HS-CCS or approved equal.
2. Tracer wire shall have moisture resistant splices for direct bury applications. Splices shall be Copperhead Industries Snakebite or 3M DBR or approved equal.
3. Tracer wire test stations shall be designed to be easily detected by magnetic and electronic locators. A magnet shall be securely attached at the top of the upper tube of the box for locating purposes. Lid shall be blue and have a brass terminal for attaching locating equipment and a brass 5 sided nut for removing cap. Tracer wire test station shall be Copperhead Industries Snake Pit or approved equal.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Preparation of Trench
1. Final bury depth shall have a minimum of 42” cover to the top of the pipe.
2. Trench bottom shall be graded to provide a smooth, firm, stable, and rock-free foundation throughout the length of the piping.
3. All rock greater than one inch in diameter found in the trench shall be removed for a depth of six inches below the bottom of the pipe and replaced by suitable bedding material.
4. Unstable, soft, and unsuitable materials shall be removed at the surface upon which pipes are to be laid and backfill with crushed stone as indicated on the drawings.
5. Layers of crushed stone shall be installed in the bottom of trench as indicated on the drawings. Shape stone layer to fit bottom of piping. Dig bell holes at each pipe joint to relieve the bells of all loads and to ensure continuous bearing of the pipe barrel on the foundation.

B. Pipe Separation
1. Finished pipe installation shall have minimum 12” separation to all other utilities.
2. Maintain at least a ten foot (10’) horizontal separation of water mains from any existing or proposed sanitary sewer. The distance must be measured edge to edge. Installation of the water main closer to a sanitary sewer is acceptable where the water main is laid in a separate trench or on an undisturbed earth shelf located on one (1) side of the sanitary sewer at an elevation so the bottom of the water main is at least eighteen inches (18”) above the top of the sanitary sewer.
3. Provide a minimum vertical distance of eighteen inches (18”) between the outside of the water main and the outside of the sanitary sewer where water mains cross the sanitary sewer mains. This shall be the case where the water main is either above or below the sanitary sewer. At crossings, one (1) full length of water pipe must be located so both joints will be as far from the sanitary sewer line as possible. Special structural support for the water and sanitary sewer pipes may be required.
4. Provide at least a ten-foot (10’) horizontal separation between water mains and sanitary sewer force mains. There shall be an eighteen-inch (18”) vertical separation at crossings.
5. Locate water mains so that they do not pass through or come in contact with any sanitary sewer manhole
6. Consult the system owner where above conditions cannot be met.

C. Installation of Pipe and Pipe Fittings
1. Piping 2” and less:
 a. All domestic water service piping from the water main to the building with a nominal diameter of two inches and less shall be Type K copper or HDPE piping.
 b. In all installations, Type K copper shall be used where the water line enters the building. If the water meter is located in a meter pit, the piping within the meter pit, and stubbed out on either side shall also be Type K copper.
 c. All buried copper piping shall be wrapped.
 d. For pulled pipe installations, tracer wire shall be pulled with pipe, without splices. Upon completion of installation, a continuity test on the wire shall be performed and all breaks shall be repaired.
 e. For trenched pipe installation, tracer wire shall be taped to the pipe at the three o’clock position every 5 feet. Upon completion of installation, a continuity test on the wire shall be performed and all breaks shall be repaired.
2. PVC (Polyvinyl Chloride) Pipe: Install in accordance with AWWA C605.
3. All joints shall be restrained with joint retainers. All fittings shall be restrained with retainer type packing glands.

4. Install stainless steel rods between fittings on all offsets and between fittings, valves, and blind flanges, in addition to the Megalugs. On isolated fittings, valves, etc., attach restraint rings to PVC pipe and install stainless steel rods between fitting and restraint rings. Rods shall be positioned through the bolt holes in fitting and Megalug. Each rod will require four nuts and washers. Duct lugs are acceptable.

The number of stainless steel rods required per fitting flange shall be as follows:

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>No. of Rods</th>
</tr>
</thead>
<tbody>
<tr>
<td>10” and Less</td>
<td>2</td>
</tr>
<tr>
<td>12”</td>
<td>3</td>
</tr>
<tr>
<td>14”</td>
<td>4</td>
</tr>
<tr>
<td>16”</td>
<td>5</td>
</tr>
<tr>
<td>18”</td>
<td>6</td>
</tr>
</tbody>
</table>

5. All ductile iron pipe, fittings, valves, bell end restraints, etc. shall be wrapped with a polyethylene cover conforming to AWWA C105, and installed per AWWA C600.

6. All dead end mains shall have a dry barrel fire hydrant at the end to facilitate flushing of the main.

7. Pipe shall be installed in clean condition, and shall never be laid in trenches with standing water. The trench shall be dewatered during installation of the water line. Open pipe ends shall be protected with a hard cap or inflatable plug at the end of the work day. NO PLYWOOD OR DUCT TAPE COVERINGS WILL BE ALLOWED.

D. Backfill

1. Under Pipe: All backfill under the barrel of the pipe shall be free from debris, organic matter, and stones larger than one inch, and shall be tamped into place. Sand or crushed stone aggregate (95% passing a ½” screen but not more than 10% passing a #200 sieve) are acceptable substitutes for soil.

2. Adjacent To and Top of Pipe: The first one foot of backfill over the top of pipe shall be “3/4 inch minus waste rock with fines” uncleaned crushed stone aggregate or suitable soil. Backfill shall be free of debris, brush, roots and stones or rubble more than one inch.

3. Rough final grading of subgrade and the placement of final topsoil shall be detailed on the drawings.

4. All sidewalks, paving, etc. which are removed or damaged during construction shall be replaced and shall match existing.

E. Identification

1. Install continuous plastic underground warning tape during back-filling of trench for underground water piping. Tape shall be located twenty-four (24) inches above pipe, directly over each water line.

2. Tape trace wire to the top of each water line with duct tape every five (5) feet. Wire splices shall be minimized. Terminate trace wires inside building and inside valve boxes. Drill ¼” hole in PVC valve box one inch below cast iron cover. Route wire up outside of valve box, through ¼” hole and knot. A tracer wire test station shall be installed at all fire hydrants and at all runs of piping without valves every 400 feet. Upon completion of installation and final grading, a continuity test on the wire shall be performed and all breaks shall be repaired.

3.2 TESTING

A. Field Quality Control: See section 331300 Disinfecting for cleaning and disinfection, and pressure test requirements.

3.3 COMMISSIONING

A. System shall be placed in operation only after testing shows the absence of bacteriological contamination and approved by Owner’s Representative.

B. At MU: Only Campus Facilities - Energy Management Steam and Water personnel will be allowed to operate valves on new water systems.

END OF SECTION
SECTION 331216 – WATER UTILITIES DISTRIBUTION VALVES

PART 1 - GENERAL

1.1 SUMMARY
A. The scope of this document is to provide instruction for the installation and testing of domestic water valves.

PART 2 - PRODUCTS

2.1 MATERIALS
A. Valves and Valves Boxes
 1. Non-rising Stem Gate Valves: ANSI/AWWA C509, resilient seated, lead free, bronze stem, cast-iron or ductile-iron body and bonnet, epoxy coated disc, stem nut, 250 psig working pressure, mechanical joint ends. Valves shall be Model A-2360 as manufactured by Mueller Company, Decatur IL, or approved equal. Valves shall turn clockwise to close.
 2. Ball Valves: Threaded lead free bronze, 125 lb., 2-piece design, full port. Valves shall be Model T-FP-600A-LF-LL as manufactured by NIBCO, Elkhart IL, or approved equal.
 3. Valve Boxes: Valve box shall be 6” PVC C900 pipe with cast iron cover No. 2195 as manufactured by Clay and Bailey Manufacturing Company, Kansas City MO, or approved equal. Lid shall be marked "WATER". Provide below grade concrete collar in planted and asphalt areas.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Valve Storage:
 1. Use the following precautions for valves during storage:
 a. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
 b. Protect valves from weather - valves shall be stored indoors. Maintain valve temperature higher than the ambient dew point temperature. If outdoor storage is necessary, support valves off the ground or pavement in watertight enclosures.

3.2 HANDLING:
A. Use a sling to handle valves whose size requires handling by crane or lift. Valves shall be rigged to avoid damage to exposed valve parts. Do not use hand wheels or stems as lifting or rigging points.
B. Domestic Water Service: AWWA-Type Gate Valves: Comply with AWWA C600. Install buried valves with stem pointing up and with valve box.
C. Valve boxes shall be installed vertically with top of box even with final grade.

3.3 TESTING
A. All valves shall be pressure tested in accordance with standards set forth in the Water Piping Construction Standard.
B. All valves shall be disinfected in accordance with standards set forth in the Water Piping Construction Standard.

3.4 COMMISSIONING
A. MU only: All valves under pressure in the MU water distribution mains will be operated only by Campus Facilities - Steam & Water Distribution personnel, except in cases of extreme emergency. All valves installed as part of new construction shall remain fully closed during construction.

END OF SECTION
SECTION 331219 – WATER UTILITIES DISTRIBUTION FIRE HYDRANTS

PART 1 - GENERAL

1.1 SUMMARY
A. The scope of this document is to provide instruction for the installation and testing of a fire hydrant installed at the University of Missouri - Columbia.

1.2 REFERENCES
A. 331219 Detail – Fire Hydrant.dwg
B. Section 331300 - Disinfecting of Water Utility Distribution.

PART 2 - PRODUCTS

2.1 MATERIALS
A. University fire hydrants shall be lead free Super Centurion Fire Hydrants, Model 250, Number A-423, as manufactured by Mueller Water Products, Decatur IL. No substitutions will be allowed.
B. Fire hydrants shall be painted in the following manner using Sign Painters’ 1 Shot Lettering Enamel or approved equal:
C. University water: Barrel - Metallic Gold, Caps - Black, Bonnet - Blue.
D. City water, University maintained fire system: Barrel - Metallic Gold, Caps - Blue, Bonnet - Blue.
E. Final hydrant bonnet color based on measured flow will be painted by MU.
F. Tracer Wire
 1. Tracer wire shall be #14 AWG Solid, steel core soft drawn high strength tracer wire, 250# average tensile break load, 30 mil high molecular weight- high density blue polyethylene jacket complying with ASTM-D-1248, 30 volt rating. No THHN insulated wire shall be allowed. Tracer wire shall be Copperhead Industries HS-CCS or approved equal.
 2. Tracer wire shall have moisture resistant splices for direct bury applications. Splices shall be Copperhead Industries Snakebite or 3M DBR or approved equal.
 3. Tracer wire test stations shall be designed to be easily detected by magnetic and electronic locators. A magnet shall be securely attached at the top of the upper tube of the box for locating purposes. Lid shall be blue and have a brass terminal for attaching locating equipment and a brass 5 sided nut for removing cap. Tracer wire test station shall be Copperhead Industries Snake Pit or approved equal.

PART 3 - EXECUTION

3.1 INSTALLATION
A. The location of new fire hydrants shall be determined by a collaboration of system owner, City of Columbia Fire Department and the design engineers.
B. Installation of fire hydrants maintained by the University shall be installed per “Fire Hydrant Detail” and in strict accordance with manufacturer’s written instructions.
C. Installation of fire hydrants maintained by the City of Columbia shall be in strict accordance with Columbia Water and Light Specifications as last revised.
D. The pumper nozzle shall be installed pointing to the street and/or away from the building.
 1. Testing
E. Newly installed fire hydrants shall be cleaned and pressure tested in accordance with standards set forth in section 331300 - Disinfecting of Water Utility Distribution, and will be flow tested by system owner.
F. COMMISSIONING
 1. Water will be turned on to the hydrant by Campus Facilities - Energy Management Utility Distribution personnel.
 2. Hydrant will be tested by owner.

END OF SECTION
SECTION 331300 - DISINFECTING OF WATER UTILITY DISTRIBUTION

PART 1 - GENERAL

1.1 SUMMARY
 A. The scope of this document is to provide instruction for the cleaning and disinfecting of underground domestic water lines.

1.2 REFERENCES
 A. Drawings

PART 2 - PRODUCTS

2.1 DESIGN GUIDELINES:
 A. Cleaning
 1. All domestic potable water systems shall be clean and free of foreign matter and shall be disinfected and tested for bacteriological contamination before the system is put into operation, as required by the State Division of Health and in accordance with AWWA C651 or C652.
 2. All domestic potable water systems will be pressure tested in accordance with AWWA M23.
 3. Disinfection shall be performed AFTER leak and pressure tests are completed.
 4. Water line shall be completely separated from water system for pressure test and disinfection purposes.
 5. Contractor shall install number and size of taps based on the water line size in the table below:

 | Pipe Diameter (in) | 2" Taps Needed |
 |-------------------|---------------|
 | 4" | 1 |
 | 6" | 1 |
 | 8" | 1 |
 | 10" | 2 |
 | 12" | 2 |

 6. Contractor shall install water line entrance and exit piping which enters and exits above ground as shown in “Taps for Flushing and Disinfection of Water Line drawing referenced below. The purpose of this piping is to provide a means for flushing, pressure testing, and disinfecting the new water line.
 7. MU ONLY: MU will perform pressure testing and disinfection of new water lines. Contractor shall prepare water line for testing and disinfection. Notify Owner’s Representative at least 72 hours prior to requesting disinfection of a new water line. Owner will draw and send samples for testing. Allow 24 hours for disinfection of the water line and an additional 48 hours for return of testing prior to connecting to existing system.
 8. Fill the system with a water-chlorine solution containing at least 50 parts per million of chlorine, valve off, and allow to stand for at least twenty-four (24) hours; or fill system with a water-chlorine solution containing at least 200 parts per million of chlorine, valve off, and let stand for three (3) hours.
 9. After allowed standing time, flush the system with clean potable water until no chlorine (in excess of public water supply) remains at any point of outlet.
 10. The system shall be thoroughly and completely flushed at maximum water pressure, and if it is shown by a bacteriological examination made by the Owner that contamination still persists in the system, the above procedure shall be repeated.
 11. The contractor shall be responsible for taking and sending the sample for testing.
 12. The system owner will be financially responsible for first bacteriological test on a section of line to be tested. The cleaning procedure shall repeated if biological examination shows evidence of contamination. Costs incurred due to subsequent testing from an initial positive sample shall be paid for by the installers.
 13. Allow forty-eight (48) hours for return of testing before making tie-ins to existing system.

 B. Commissioning
 1. System shall be placed in operation only after testing shows the absence of bacteriological contamination and approved by system owner.
 2. MU Only: Only Campus Facilities - Energy Management Steam and Water personnel will be allowed to operate valves on new water systems.
PART 3 - EXECUTION – NOT USED

END OF SECTION
SECTION 333100 - SANITARY UTILITY SEWERAGE PIPING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Sanitary sewage piping.
 2. Manholes.
 3. Connection of building sanitary drainage system to municipal sewers.
 4. Related accessories.
B. Related Sections:
 1. Section 312000 – Earth Moving.

1.2 SUBMITTALS
A. Product Data: Manufacturer’s specifications and technical data on the following:
 1. Piping.
 2. Fittings.
 3. Cleanouts.
B. Shop Drawings: Indicate dimensions, description of materials, general construction, specific modifications, component connections, anchorage methods, and installation procedures, plus the following specific requirements.
 1. Include manholes, frames, and covers.
C. Contract Closeout Submittals:
 1. Project Record Documents.
 a. Contractor to provide as-built survey, prepared by Registered Land Surveyor, that indicates the exact location, top elevations, flow lines and pipe sizes of all structures.

1.3 QUALITY ASSURANCE
A. Manufacturer’s Qualifications: Not less than 5 years experience in the actual production of specified products.
B. Installer’s Qualifications: Firm experienced in installation of systems similar in complexity to those required for this Project, plus the following:
 1. Not less than 3 years experience with systems.
 2. Successfully completed not less than 5 comparable scale projects using this system.
C. Regulatory Requirements:
 2. Comply with requirements of City.
D. Certificates: Certification from precast manufacturer that ConmicShield® with CONTINT was used in the fabrication of sewer manhole.

1.4 DELIVERY, STORAGE, AND HANDLING
A. Packing and Shipping: Deliver products in original unopened packaging with legible manufacturer’s identification.
B. Precast concrete sections shall not be delivered to the job until the concrete control cylinders have attained a strength of at least 80 percent of the specified minimum.
C. Precast concrete sections shall be handled carefully and shall not be bumped or dropped. Hooks shall not be permitted to come in contact with joint sections.
D. Precast concrete sections shall be inspected when delivered. All cracked or otherwise visibly defective units will be rejected. City reserves the right to inspect the production of the units at the manufacturing plant.
E. Storage and Protection: Comply with manufacturer’s recommendations.

PART 2 - PRODUCTS

2.1 MATERIALS
 1. Joints: Pipe and fittings shall have elastomeric gasket joints providing a watertight seal when tested in accordance with ASTM D3212. Gaskets shall conform to ASTM F477. Solvent welded joints shall not be permitted.
B. Concrete:
 1. Portland Cement Design Mix: 4000 psi (27.6 MPa) minimum, with 0.45 maximum water/cementitious materials ratio.
b. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420-MPa) deformed steel.

2. Conmic®Shield® with CONTINT shall be added to all precast and cast-in-place manholes in accordance with the manufacturer’s recommendations.
 a. Cast-in-place concrete invert fill and collars inside the manhole shall contain Conmic®Shield® with CONTINT per manufacturer's recommendation.

2.2 COMPONENTS
 1. Base section:
 a. Floor slab: 8 inch thick, unless otherwise indicated on drawings.
 b. Walls: 6 inch thick, unless otherwise indicated on drawings.
 c. Base riser section: 6 inch thick, unless otherwise indicated on drawings.
 2. Riser section: 48 inch diameter unless otherwise indicated on Drawings, with 6 inch thick walls.
 3. Top section: Concentric cone, eccentric cone, or flat slab type, as indicated on Drawings.
 a. Top of cone to match grad rings.
 4. Grade rings: Reinforced concrete rings, 4 to 9 inches thick.
 5. Gasket: O-ring, double ring, or preformed bitumastic sealant.
 6. Steps: Steel reinforced polypropylene plastic steps per ASTM 4101, cast into base, riser and top sections at 12 inch intervals.
 7. Frame and cover: ASTM A48, Class 35B gray iron.
 a. Frame size: 24 inch inside diameter, by 9 inch riser with 4 inch width flange.
 a. Provide “boot” type nitrile rubber connections at locations indicated on Drawings.
 10. Conmic®Shield® with CONTINT shall be added to all precast manholes in accordance with the manufacturer’s recommendations.
 a. Cast-in-place concrete invert fill and collars inside the manhole shall contain Conmic®Shield® with CONTINT per manufacturer's recommendation.

2.3 ACCESSORIES
A. Cleanouts: Cast-iron ferrule and countersunk brass cleanout plug, with round cast-iron access frame and heavy-duty, secured, scoriated cast-iron cover.
B. Underground Warning Tape: Polyethylene plastic tape with magnetic detectable conductor, 6 inches wide by 4 mils thick.
 1. Imprint warning tape with “CAUTION – SEWER SERVICE LINE BURIED BELOW” in large black letters.
C. Bedding Materials: As specified under Section 312000.
D. Fill Materials: As specified under Section 312000.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Verification of Conditions: Examine areas and conditions under which Work is to be performed and identify conditions detrimental to proper and timely completion.
 1. Do not proceed until unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Trenching: Comply with requirements of Section 312000.
 1. Grade trench bottom to provide smooth, firm, stable, and rock free foundation throughout length of pipe.
 2. Remove unstable, soft, and unsuitable materials from surface upon which pipe is to lay.
 a. Backfill with bedding materials.
 3. Shape bottom of trench to fit design of pipe.
 a. Fill unevenness with tamped bedding materials.
 b. Dig bell holes at each pipe joint to assure continuous bearing of pipe.
B. Install bedding material at trench bottom in accordance with Section 312000.
 1. Install bedding materials in continuous layers not exceeding 6 inches in compacted depth, to total depths indicated on Drawings.
 2. Compact bedding materials as specified under Section 312000.
C. Pipe Installation: Comply pipe manufacturer’s instructions.
1. Install pipe beginning at low point of system, true to grades and alignment indicated on Drawings and unbroken continuity of invert.
2. Install PVC pipe in accordance with ASTM D2855 and ASTM F447.
3. Place bell ends or groove ends of piping facing upstream.
4. Install gaskets in accordance with manufacturer’s instructions.
5. Install bedding at sides and over top of pipe to minimum compacted thickness of 12 inches.
6. Clean interior of piping as Work progresses.
7. Maintain swab or drag line and pull past each joint as it is completed.
8. Install plugs in ends of incomplete piping at end of each day and whenever Work stops.

D. Install manholes complete with accessories indicated on Drawings.
2. Form continuous concrete channel and benches between inlets and outlets.
3. Install top of frames and covers flush with adjacent paved surfaces.
 a. Install top of frame 3 inches above adjacent landscaped surfaces.

E. Install clean-outs and extension from sewer pipe to clean-out at grade at locations indicated on Drawings.
1. Set cleanout frame and cover in concrete pad, 18 inches by 18 inches by 12 inches deep, except at where location is in concrete paving.
2. Set top of cleanout 1 inch above surrounding grade.
3. Set top of cleanout flush with surrounding pavement.

F. Tap Connections:
1. Make connections to existing sanitary sewer and underground to comply with requirements of this Section, as indicated on Drawings.

G. Install underground warning tape continuous buried 6 inches below finish grade, above pipe line.
1. Coordinate with Section 312000.

H. Backfilling: Comply with requirements of Section 312000.

3.3 CLEANING
A. Flush piping between manholes and other structures if required by authority having jurisdiction.
 1. Remove collected debris.

3.4 FIELD QUALITY CONTROL
A. Tests:
 1. Perform testing of completed system in accordance with local authorities having jurisdiction.
2. Perform the following tests in accordance with APWA Street Construction and Material Specifications, Division II, Section 2509.
 a. Infiltration-exfiltration air test.
 b. Deflection test.

B. Inspections:
 1. Perform inspections in accordance with APWA Street Construction and Material Specifications, Division II, Section 2509.
2. Inspect interior of piping to determine whether line displacement or other damage has occurred.
3. Make inspections after pipe between manholes and manhole locations has been installed and approximately 2 feet of backfill material in place.
 a. Reinspect at completion of Project.
4. If inspections indicate poor alignment, debris, displaced pipe, infiltration, or other defects, correct such defects and reinspect.
 a. Defects requiring correction include the following:
 1) Alignment: Less than full diameter of inside of pipe is visible between structures.
 2) Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 3) Crushed, broken, cracked, or otherwise damaged piping.
 4) Infiltration: Water leakage into piping.
 5) Exfiltration: Water leakage from or around piping.

3.5 PROTECTION
A. Protect installed sewage system from damage and/or displacement until backfilling operation is complete.
SECTION 334100 - STORM UTILITY DRAINAGE PIPING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Storm sewage piping.
 2. Junction boxes.
 3. Inlets.
 4. Yard drains.
 5. Related accessories.
B. Related Sections:
 1. Section 033000 – Cast-In-Place Concrete.
 2. Section 312000 – Earth Moving.
 3. Section 334613 – Foundation Drainage.

1.2 SUBMITTALS
A. Submit in accordance with Division 1 unless otherwise indicated.
B. Product Data: Manufacturer's specifications and technical data on the following:
 1. Piping.
 2. Fittings.
 3. Yard Drains.
C. Shop Drawings: Indicate dimensions, description of materials, general construction, specific modifications, component connections, and installation procedures, plus the following specific requirements:
 1. Include junction boxes, inlets, frames, covers, and grates.
D. Contract Closeout Submittals: Submit in accordance with Division 1.
 1. Project Record Documents.
 a. Accurately record location of underground utilities, by horizontal dimensions from above grade permanent fixtures, elevations or inverts, and slope gradients.

1.3 QUALITY ASSURANCE
A. Manufacturer's Qualifications: Not less than 5 years experience in the actual production of specified products.
B. Installer’s Qualifications: Firm experienced in installation of systems similar in complexity to those required for this Project, plus the following:
 1. Not less than 3 years experience with systems.
 2. Successfully completed not less than 5 comparable scale projects using this system.

1.4 DELIVERY, STORAGE, AND HANDLING
A. Packing and Shipping: Deliver products in original unopened packaging with legible manufacturer’s identification.
B. Storage and Protection: Comply with manufacturer’s recommendations.

PART 2 - PRODUCTS

2.1 MATERIALS
A. Reinforced Concrete Pipe: ASTM C76, Class III.
 1. Fittings: Same strength of adjoining pipe.
 2. Joints:
 a. Gaskets: Contractor has option of the following:
 1) ASTM C443, flat gaskets cemented to pipe tongue or spigot.
 2) ASTM C443 O-ring gaskets.
 3) ASTM C443 roll-on gaskets.
C. High Density Polyethylene (HDPE) pipe and fittings: AASHTO M252, Type S; AASHTO M294, Type S.
D. Concrete: Comply with requirements of Section 033000.
E. High Density Polypropylene Dual Wall Storm Sewer Drainage Pipe (HDPP pipe): Dual wall pipe and fittings 12 inch through 30 inch diameter shall conform to ASTM F2736 and ASTM F2881 for 36 inch through 60 inch. The pipe shall be dual wall polypropylene pipe with a smooth interior and annular exterior corrugations. Pipe shall be joined with an integral bell and spigot joint on all sizes. The joints shall be watertight in accordance with ASTM D3212. The spigot shall have two gaskets meeting the requirements of ASTM F477. The gaskets shall be installed by the pipe manufacturer and shall be covered with a removable, protective wrap to ensure the gaskets are free from debris. A joint lubricant shall be used on the gasket and pipe bell during assembly. Pipe shall have a reinforced bell with a polymer composite band installed by the manufacturer.

2.2 COMPONENTS

A. Junction Boxes: ASTM C858, precast reinforced concrete.
 1. Base section:
 a. Floor slab: 8 inch thick.
 b. Walls: 6 inch thick.
 c. Base riser section: 6 inch thick.
 2. Riser section: 48 inch diameter unless otherwise indicated on Drawings, with 6 inch thick walls.
 3. Top section: Concentric cone, eccentric cone, or flat slab type, as indicated on Drawings.
 a. Top of cone to match grade rings.
 4. Grade rings: Reinforced concrete rings, 4 to 9 inches thick.
 5. Gasket: ASTM C443, rubber.
 6. Steps: Cast iron steps, case into base, riser and top sections at 16 inch intervals.
 7. Frame and cover: ASTM A48, Class 35B gray iron.
 a. Frame size: 24 inch diameter, by 9 inch riser with 4 inch width flange.
 b. Cover: 26 inch diameter, indented top design, with lettering “STORM SEWER” cast into cover.

B. Inlets: ASTM C858, precast reinforced concrete
 1. Base section:
 a. Floor slab: 8 inch thick.
 b. Walls: 6 inch thick.
 c. Base riser section: 6 inch thick.
 2. Riser section: 48 inch diameter unless otherwise indicated on Drawings, with 6 inch thick walls.
 3. Top section: Flat slab type.
 a. Opening to match grade rings.
 4. Grade rings: Reinforced concrete rings, 4 to 9 inches thick.
 5. Gasket: ASTM C443, rubber.
 6. Steps: Steel reinforced plastic steps, cast into base, riser and top sections at 16 inch intervals.

C. Yard Drains:
 1. Size: 12 inches by 12 inches unless otherwise indicated on Drawings.
 4. Acceptable manufacturers and product:
 a. Nyloplast America, Inc.: Inline Drain.
 b. Comparable products of other manufacturers.

2.3 ACCESSORIES

A. Cleanouts: Cast-iron ferrule and countersunk brass cleanout plug, with round cast-iron access frame and heavy-duty, secured, scoriated cast-iron cover.

B. Underground Warning Tape: Polyethylene plastic tape, 6 inches wide by 4 mils thick.
 1. Imprint warning tape with “CAUTION – SEWER SERVICE LINE BURIED BELOW” in large black letters.

C. Bedding Materials: As specified under Section 312000.

D. Backfill Materials: As specified under Section 312000.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verification of Conditions: Examine areas and conditions under which Work is to be performed and identify conditions detrimental to proper and timely completion.
 1. Do not proceed until unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Trenching: Comply with requirements of Section 312000.
 1. Grade trench bottom to provide smooth, firm, stable, and rock free foundation throughout length of pipe.
 2. Remove unstable, soft, and unsuitable materials from surface upon which pipe is to lay.
 a. Backfill with bedding material.
 3. Shape bottom of trench to fit design of pipe.
 a. Fill unevenness with tamped bedding material.
 b. Dig bell holes at each pipe joint to assure continuous bearing of pipe.

B. Install bedding material at trench bottom in accordance with Section 312000.
 1. Install bedding materials in continuous layers not exceeding 6 inches in compacted depth, to total depths indicated on Drawings.
 2. Compact bedding materials as specified under Section 312000.

C. Pipe Installation: Comply with pipe manufacturers instructions.
 1. Install pipe beginning at low point of system, true to grades and alignment indicated on Drawings and unbroken continuity of invert.
 2. Install concrete pipe in accordance with ACPA Concrete Piping Installation Manual.
 3. Install polyethylene corrugated pipe in accordance with ASTM D2321.
 a. Install fittings in accordance with manufacturer’s instructions.
 4. Install PVC pipe in accordance with ASTM D2855 and ASTM F402.
 5. Place bell ends or groove ends of piping facing upstream.
 6. Install gaskets in accordance with manufacturer’s instructions.
 7. Install bedding at sides and over top of pipe to minimum compacted thickness of 12 inches.
 8. Clean interior of piping as Work progresses.
 9. Maintain swab or drag line and pull past each joint as it is completed.
 10. Install plugs in ends of incomplete piping at end of each day.

D. Install junction boxes complete with accessories indicated on Drawings.
 2. Form continuous concrete channel and benches between inlets and outlets.
 3. Install top of frames and covers flush with adjacent paved surfaces.
 a. Install top of frame flush with adjacent landscaped surfaces, unless otherwise indicated on Drawings.

E. Install inlets complete with accessories indicated on Drawings.
 2. Form continuous concrete channel and benches between inlets and outlets.
 3. Install top of frames and covers flush with adjacent paved surfaces.
 a. Install top of frame flush with adjacent landscaped surfaces.

F. Install cleanouts and extensions from storm drainage pipe to cleanout at grade at locations indicated on Drawings.
 1. Set cleanout frame and cover in concrete pad, 18 inches by 18 inches by 12 inches deep except at where location is in concrete paving.
 2. Set top of cleanout 1 inch above surrounding earth grade.
 3. Set top of cleanout flush with surrounding pavement.

G. Tap Connections:
 1. Make connections to existing storm sewer and underground structures to comply with requirements of this Section, as indicated on Drawings.

H. Install underground warning tape continuous buried 12 inches below finish grade, above pipe line.
 1. Coordinate with Section 312000.

I. Backfilling: Comply with requirements of Section 312000.

3.3 PROTECTION

A. Protect installed sewage system from damage of displacement until backfilling operation is complete.

3.4 INSPECTION

A. TV inspection videos shall be submitted to the Owner and Engineer for review/approval after construction is complete.

END OF SECTION