PROJECT MANUAL FOR: WOMEN’S AND CHILDREN’S HOSPITAL – EXTERIOR ENVELOPE REPLACEMENT

PROJECT NUMBER: CP180131

AT
UNIVERSITY OF MISSOURI
COLUMBIA, MISSOURI

FOR:

THE CURATORS OF THE UNIVERSITY OF MISSOURI

PREPARED BY:
INTERNATIONAL ARCHITECTS ATELIER
MAJID AMIRAHMADI, AIA
912 BROADWAY, SUITE 300
KANSAS CITY, MISSOURI 64105
PHONE: 816-471-6522

ISSUE FOR BID

DATE: AUGUST 30, 2019
I hereby certify that the following Structural Drawings and/or Specifications have been prepared by me, or under my supervision. I further certify that to the best of my knowledge these Drawings and/or Specifications are as required by and in compliance with Building Codes of the University of Missouri.

DRAWINGS

S001 GENERAL NOTES
S100 2ND FLOOR FRAMING PLAN
S101 3RD FLOOR FRAMING PLAN
S102 4TH FLOOR FRAMING PLAN
S103 5TH FLOOR FRAMING PLAN
S118 UPPER ROOF FRAMING PLAN
S200 NEW ELEVATIONS – PHASE ONE
S201 NEW ELEVATIONS – PHASE ONE
S202 NEW ELEVATIONS – PHASE TWO
S203 NEW ELEVATIONS – PHASE TWO
S204 NEW ELEVATIONS – PHASE THREE
S205 NEW ELEVATIONS – PHASE THREE
S206 NEW ELEVATIONS – PHASE FOUR
S207 NEW ELEVATIONS – PHASE FIVE
S208 NEW ELEVATIONS – PHASE SIX
S209 NEW ELEVATIONS – PHASE SIX
S210 NEW ELEVATIONS – PHASE SEVEN
S211 NEW ELEVATIONS – PHASE EIGHT
S212 NEW ELEVATIONS – PHASE NINE
S213 NEW ELEVATIONS – PHASE NINE
S214 NEW ELEVATIONS – PHASE TEN
S320 PLAN DETAILS
S500 WALL SECTIONS
S501 WALL SECTIONS AND DETAILS
S502 SECTIONS

SPECIFICATIONS

051200 STRUCTURAL STEEL
054000 COLD-FORMED METAL FRAMING
055000 METAL FABRICATIONS

Signature:______________________________________

I hereby certify that these Mechanical, Electrical, Plumbing and Fire Protection Drawings and/or Specifications have been prepared by me, or under my supervision. I further certify that to the best of my knowledge these Drawings and/or Specifications are as required by and in compliance with Building Codes of the University of Missouri.
<table>
<thead>
<tr>
<th>DRAWINGS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM000</td>
<td>SYMBOLS, ABBREVIATIONS, & GENERAL NOTES</td>
</tr>
<tr>
<td>PM102.1</td>
<td>PHASES 5, 6, 9, & 10 – MECH EXTERIOR WALL PENETRATIONS</td>
</tr>
<tr>
<td>PME100.1</td>
<td>LOWER ROOF PLAN</td>
</tr>
<tr>
<td>PME101.1</td>
<td>UPPER ROOF PLAN</td>
</tr>
<tr>
<td>PME102.1</td>
<td>PENTHOUSE ROOFS PLAN</td>
</tr>
<tr>
<td>PME500</td>
<td>PLUMB, MECH, & ELEC PENETRATION FIRE STOP DETAILS</td>
</tr>
<tr>
<td>M100.1</td>
<td>PHASE 1 – MECHANICAL EXTERIOR WALL PENETRATIONS</td>
</tr>
<tr>
<td>M101.1</td>
<td>PHASES 3 & 4 – MECHANICAL EXTERIOR WALL PENETRATIONS</td>
</tr>
<tr>
<td>M100.2</td>
<td>PHASE ONE - 2ND & 3RD FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M101.2</td>
<td>PHASE ONE - 4TH & 5TH FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M102.2</td>
<td>PHASE TWO - 2ND & 3RD FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M103.2</td>
<td>PHASE TWO - 4TH & 5TH FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M104.2</td>
<td>PHASE THREE - 2ND & 3RD FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M105.2</td>
<td>PHASE THREE - 4TH & 5TH FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M106.2</td>
<td>PHASE FOUR - 3RD & 4TH FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M107.2</td>
<td>PHASE FOUR - 5TH FLOOR MECHANICAL PLAN</td>
</tr>
<tr>
<td>M108.2</td>
<td>PHASE FIVE - 2ND & 3RD FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M109.2</td>
<td>PHASE FIVE - 4TH & 5TH FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M110.2</td>
<td>PHASE SIX - 2ND & 3RD FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M111.2</td>
<td>PHASE SIX - 4TH & 5TH FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M112.2</td>
<td>PHASE SEVEN - 3RD, 4TH, & 5TH FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M113.2</td>
<td>PHASE EIGHT - 3RD, 4TH, & 5TH FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M114.2</td>
<td>PHASE NINE - 3RD, 4TH, & 5TH FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M115.2</td>
<td>PHASE TEN - 2ND & 3RD FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>M116.2</td>
<td>PHASE TEN - 4TH & 5TH FLOOR MECHANICAL PLANS</td>
</tr>
<tr>
<td>P100.2</td>
<td>PHASE ONE - 2ND & 3RD FLOOR PLUMBING PLANS</td>
</tr>
<tr>
<td>P101.2</td>
<td>PHASE ONE - 4TH FLOOR PLUMBING PLAN</td>
</tr>
<tr>
<td>P102.2</td>
<td>PHASE TWO - 2ND & 3RD FLOOR PLUMBING PLANS</td>
</tr>
<tr>
<td>P103.2</td>
<td>PHASE THREE - 2ND & 3RD FLOOR PLUMBING PLANS</td>
</tr>
<tr>
<td>P104.2</td>
<td>PHASE THREE - 4TH & 5TH FLOOR PLUMBING PLANS</td>
</tr>
<tr>
<td>P105.2</td>
<td>PHASE FOUR - 3RD & 4TH FLOOR PLUMBING PLANS</td>
</tr>
<tr>
<td>P106.2</td>
<td>PHASE FOUR - 5TH FLOOR PLUMBING PLAN</td>
</tr>
<tr>
<td>P107.2</td>
<td>PHASE FIVE - 3RD & 5TH FLOOR PLUMBING PLANS</td>
</tr>
<tr>
<td>P108.2</td>
<td>PHASE FIVE - 5TH FLOOR PLUMBING PLAN</td>
</tr>
<tr>
<td>P109.2</td>
<td>PHASE SIX - 3RD & 4TH FLOOR PLUMBING PLANS</td>
</tr>
<tr>
<td>P110.2</td>
<td>PHASE SIX - 5TH FLOOR PLUMBING PLAN</td>
</tr>
<tr>
<td>P111.2</td>
<td>PHASE SEVEN - 3RD & 4TH FLOOR PLUMBING PLANS</td>
</tr>
<tr>
<td>P112.2</td>
<td>PHASE EIGHT - 2ND, 3RD, 4TH, & 5TH FLOOR PLUMBING PLANS</td>
</tr>
<tr>
<td>P113.2</td>
<td>PHASE NINE - 5TH FLOOR PLUMBING PLAN</td>
</tr>
<tr>
<td>P114.2</td>
<td>PHASE TEN - 2ND & 3RD FLOOR PLUMBING PLANS</td>
</tr>
<tr>
<td>P115.2</td>
<td>PHASE TEN - 4TH & 5TH FLOOR PLUMBING PLANS</td>
</tr>
<tr>
<td>E000.0</td>
<td>SYMBOLS, ABBREVIATIONS AND GENERAL NOTES</td>
</tr>
<tr>
<td>E900.1</td>
<td>LIGHTNING PROTECTION PLAN</td>
</tr>
<tr>
<td>E901.1</td>
<td>LIGHTNING PROTECTION DETAILS</td>
</tr>
<tr>
<td>EL100.2</td>
<td>PHASE ONE - 2ND & 3RD FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL101.2</td>
<td>PHASE ONE - 4TH & 5TH FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL102.2</td>
<td>PHASE TWO - 2ND & 3RD FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL103.2</td>
<td>PHASE TWO - 4TH & 5TH FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL104.2</td>
<td>PHASE THREE - 2ND & 3RD FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL105.2</td>
<td>PHASE THREE - 4TH & 5TH FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL106.2</td>
<td>PHASE FOUR - 3RD & 4TH FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL107.2</td>
<td>PHASE FOUR - 5TH FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL108.2</td>
<td>PHASE FIVE - 2ND & 3RD FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL109.2</td>
<td>PHASE FIVE - 4TH & 5TH FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL110.2</td>
<td>PHASE SIX - 2ND & 3RD FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL111.2</td>
<td>PHASE SIX - 4TH & 5TH FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>EL112.2</td>
<td>PHASE SEVEN - 3RD, 4TH, & 5TH FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL113.2</td>
<td>PHASE EIGHT - 3RD, 4TH, & 5TH FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL114.2</td>
<td>PHASE NINE - 3RD, 4TH, & 5TH FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL115.2</td>
<td>PHASE TEN - 2ND & 3RD FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL116.2</td>
<td>PHASE TEN - 4TH & 5TH FLOOR LIGHTING PLANS</td>
</tr>
<tr>
<td>EL120.1</td>
<td>FAÇADE LIGHTING INFRASTRUCTURE</td>
</tr>
<tr>
<td>EP100.2</td>
<td>PHASE ONE - 2ND & 3RD FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP101.2</td>
<td>PHASE ONE - 4TH & 5TH FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP102.2</td>
<td>PHASE TWO - 2ND & 3RD FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP103.2</td>
<td>PHASE TWO - 4TH & 5TH FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP104.2</td>
<td>PHASE THREE - 2ND & 3RD FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP105.2</td>
<td>PHASE THREE - 4TH & 5TH FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP106.2</td>
<td>PHASE FOUR - 3RD & 4TH FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP107.2</td>
<td>PHASE FOUR - 5TH FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP108.2</td>
<td>PHASE FIVE - 2ND & 3RD FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP109.2</td>
<td>PHASE FIVE - 4TH & 5TH FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP110.2</td>
<td>PHASE SIX - 2ND & 3RD FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP111.2</td>
<td>PHASE SIX - 4TH & 5TH FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP112.2</td>
<td>PHASE SEVEN - 3RD, 4TH, & 5TH FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP113.2</td>
<td>PHASE EIGHT - 3RD, 4TH, & 5TH FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP114.2</td>
<td>PHASE NINE - 3RD, 4TH, & 5TH FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP115.2</td>
<td>PHASE TEN - 2ND & 3RD FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
<tr>
<td>EP116.2</td>
<td>PHASE TEN - 4TH & 5TH FLOOR ELECTRICAL POWER AND COMM PLANS</td>
</tr>
</tbody>
</table>

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>210500</td>
<td>COMMON WORK RESULTS FOR FIRE SUPPRESSION</td>
</tr>
<tr>
<td>211313</td>
<td>WET-PIPE SPRINKLER SYSTEMS</td>
</tr>
<tr>
<td>220500</td>
<td>COMMON WORK RESULTS FOR PLUMBING</td>
</tr>
<tr>
<td>220519</td>
<td>METERS AND GAGES FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220523</td>
<td>GENERAL-DUTY VALVES FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220529</td>
<td>HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>220553</td>
<td>IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>220700</td>
<td>PLUMBING INSULATION</td>
</tr>
<tr>
<td>221116</td>
<td>DOMESTIC WATER PIPING</td>
</tr>
<tr>
<td>221119</td>
<td>DOMESTIC WATER PIPING SPECIALTIES</td>
</tr>
<tr>
<td>221316</td>
<td>SANITARY WASTE, SEWER AND VENT PIPING</td>
</tr>
<tr>
<td>221319</td>
<td>SANITARY WASTE PIPING SPECIALTIES</td>
</tr>
<tr>
<td>221413</td>
<td>FACILITY STORM DRAINAGE PIPING</td>
</tr>
<tr>
<td>221423</td>
<td>STORM DRAINAGE SPECIALTIES</td>
</tr>
<tr>
<td>221600</td>
<td>FACILITY NATURAL-GAS PIPING</td>
</tr>
<tr>
<td>226113</td>
<td>COMPRESSED-AIR PIPING FOR LABORATORY AND HEALTHCARE FACILITIES</td>
</tr>
<tr>
<td>226213</td>
<td>VACUUM PIPING FOR LABORATORY AND HEALTHCARE FACILITIES</td>
</tr>
<tr>
<td>226313</td>
<td>GAS PIPING FOR LABORATORY AND HEALTHCARE FACILITIES</td>
</tr>
<tr>
<td>230500</td>
<td>COMMON WORK RESULTS FOR HVAC</td>
</tr>
<tr>
<td>230523</td>
<td>GENERAL-DUTY VALVES FOR HVAC PIPING</td>
</tr>
<tr>
<td>230529</td>
<td>HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>230553</td>
<td>IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>230593</td>
<td>TESTING, ADJUSTING, AND BALANCING FOR HVAC</td>
</tr>
<tr>
<td>230700</td>
<td>HVAC INSULATION</td>
</tr>
<tr>
<td>230900</td>
<td>INSTRUMENTATION AND CONTROL FOR HVAC</td>
</tr>
<tr>
<td>232113</td>
<td>HYDROSTATIC PIPING</td>
</tr>
<tr>
<td>233221</td>
<td>STEAM AND CONDENSATE HEATING PIPING</td>
</tr>
<tr>
<td>233230</td>
<td>REFRIGERANT PIPING</td>
</tr>
<tr>
<td>233313</td>
<td>METAL DUCTS</td>
</tr>
<tr>
<td>233330</td>
<td>AIR DUCT ACCESSORIES</td>
</tr>
<tr>
<td>233713</td>
<td>DIFFUSERS, REGISTERS, AND GRILLES</td>
</tr>
<tr>
<td>260500</td>
<td>COMMON WORK RESULTS FOR ELECTRICAL</td>
</tr>
<tr>
<td>260505</td>
<td>ELECTRICAL TESTING</td>
</tr>
</tbody>
</table>
I hereby certify that the following Architectural Drawings and/or Specifications have been prepared by me, or under my supervision. I further certify that to the best of my knowledge these Drawings and/or Specifications are as required by and in compliance with Building Codes of the University of Missouri.

DRAWINGS

G001 GENERAL INFORMATION
G002 CODE ANALYSIS / 1ST AND 2ND FLOOR LIFE SAFETY PLANS
G003 3RD & 4TH FLOOR LIFE SAFETY PLANS
G004 5TH FLOOR & PENTHOUSE LIFE SAFETY PLANS
G010 GENERAL INFORMATION INTERIORS
G011 WALL TYPES & TEMPORARY CONSTRUCTION BARRIERS
G100 2ND FLOOR PHASING PLAN
G101 3RD FLOOR PHASING PLAN
G102 4TH FLOOR PHASING PLAN
G103 5TH FLOOR PHASING PLAN
G104 PENTHOUSE PHASING PLAN
D100 ENLARGED DEMO 2ND AND 3RD FLOOR PLANS - PHASE ONE
D101 ENLARGED DEMO 4TH AND 5TH FLOOR PLANS - PHASE ONE
D102 ENLARGED DEMO 2ND AND 3RD FLOOR PLANS - PHASE TWO
D103 ENLARGED DEMO 4TH AND 5TH FLOOR PLANS - PHASE TWO
D104 ENLARGED DEMO 2ND FLOOR PLAN - PHASE THREE
D105 ENLARGED DEMO 3RD FLOOR PLAN - PHASE THREE
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D106</td>
<td>ENLARGED DEMO 4TH FLOOR PLAN - PHASE THREE</td>
</tr>
<tr>
<td>D107</td>
<td>ENLARGED DEMO 5TH FLOOR PLAN - PHASE THREE</td>
</tr>
<tr>
<td>D108</td>
<td>ENLARGED DEMO 3RD FLOOR PLAN - PHASE FOUR</td>
</tr>
<tr>
<td>D109</td>
<td>ENLARGED DEMO 4TH AND 5TH FLOOR PLANS - PHASE FOUR</td>
</tr>
<tr>
<td>D110</td>
<td>ENLARGED DEMO 2ND AND 3RD FLOOR PLANS - PHASE FIVE</td>
</tr>
<tr>
<td>D111</td>
<td>ENLARGED DEMO 4TH AND 5TH FLOOR PLANS - PHASE FIVE</td>
</tr>
<tr>
<td>D112</td>
<td>ENLARGED DEMO 2ND AND 3RD FLOOR PLANS - PHASE SIX</td>
</tr>
<tr>
<td>D113</td>
<td>ENLARGED DEMO 4TH AND 5TH FLOOR PLANS - PHASE SIX</td>
</tr>
<tr>
<td>D114</td>
<td>ENLARGED DEMO 2ND - 5TH FLOOR PLANS PHASE SEVEN</td>
</tr>
<tr>
<td>D115</td>
<td>ENLARGED DEMO 3RD - 5TH FLOOR PHASE NINE</td>
</tr>
<tr>
<td>D116</td>
<td>ENLARGED DEMO 2ND AND 3RD FLOOR - PHASE TEN</td>
</tr>
<tr>
<td>D117</td>
<td>ENLARGED DEMO 4TH AND 5TH FLOOR - PHASE TEN</td>
</tr>
<tr>
<td>D130</td>
<td>LOWER ROOFS DEMOLITION PLAN</td>
</tr>
<tr>
<td>D200</td>
<td>DEMOLITION ELEVATIONS – PHASE ONE</td>
</tr>
<tr>
<td>D201</td>
<td>DEMOLITION ELEVATIONS – PHASE ONE</td>
</tr>
<tr>
<td>D202</td>
<td>DEMOLITION ELEVATIONS – PHASE TWO</td>
</tr>
<tr>
<td>D203</td>
<td>DEMOLITION ELEVATIONS – PHASE THREE</td>
</tr>
<tr>
<td>D204</td>
<td>DEMOLITION ELEVATIONS – PHASE THREE</td>
</tr>
<tr>
<td>D205</td>
<td>DEMOLITION ELEVATIONS – PHASE FOUR</td>
</tr>
<tr>
<td>D206</td>
<td>DEMOLITION ELEVATIONS – PHASE FOUR</td>
</tr>
<tr>
<td>D207</td>
<td>DEMOLITION ELEVATIONS – PHASE FIVE</td>
</tr>
<tr>
<td>D208</td>
<td>DEMOLITION ELEVATIONS – PHASE SIX</td>
</tr>
<tr>
<td>D209</td>
<td>DEMOLITION ELEVATIONS – PHASE SIX</td>
</tr>
<tr>
<td>D210</td>
<td>DEMOLITION ELEVATIONS – PHASE SEVEN</td>
</tr>
<tr>
<td>D211</td>
<td>DEMOLITION ELEVATIONS – PHASE EIGHT</td>
</tr>
<tr>
<td>D212</td>
<td>DEMOLITION ELEVATIONS – PHASE NINE</td>
</tr>
<tr>
<td>D213</td>
<td>DEMOLITION ELEVATIONS – PHASE TEN</td>
</tr>
<tr>
<td>D214</td>
<td>DEMOLITION ELEVATIONS – PHASE TEN</td>
</tr>
<tr>
<td>D300</td>
<td>DEMOLITION DETAILS</td>
</tr>
<tr>
<td>A117</td>
<td>LOWER ROOFS PLAN</td>
</tr>
<tr>
<td>A118</td>
<td>UPPER ROOFS PLAN</td>
</tr>
<tr>
<td>A200</td>
<td>NEW ELEVATIONS – PHASE ONE</td>
</tr>
<tr>
<td>A201</td>
<td>NEW ELEVATIONS – PHASE ONE</td>
</tr>
<tr>
<td>A202</td>
<td>NEW ELEVATIONS – PHASE TWO</td>
</tr>
<tr>
<td>A203</td>
<td>NEW ELEVATIONS – PHASE TWO</td>
</tr>
<tr>
<td>A204</td>
<td>NEW ELEVATIONS – PHASE THREE</td>
</tr>
<tr>
<td>A205</td>
<td>NEW ELEVATIONS – PHASE THREE</td>
</tr>
<tr>
<td>A206</td>
<td>NEW ELEVATIONS – PHASE FOUR</td>
</tr>
<tr>
<td>A207</td>
<td>NEW ELEVATIONS – PHASE FOUR</td>
</tr>
<tr>
<td>A208</td>
<td>NEW ELEVATIONS – PHASE FIVE</td>
</tr>
<tr>
<td>A209</td>
<td>NEW ELEVATIONS – PHASE SIX</td>
</tr>
<tr>
<td>A210</td>
<td>NEW ELEVATIONS – PHASE SIX</td>
</tr>
<tr>
<td>A211</td>
<td>NEW ELEVATIONS – PHASE SEVEN</td>
</tr>
<tr>
<td>A212</td>
<td>NEW ELEVATIONS – PHASE EIGHT</td>
</tr>
<tr>
<td>A213</td>
<td>NEW ELEVATIONS – PHASE NINE</td>
</tr>
<tr>
<td>A214</td>
<td>NEW ELEVATIONS – PHASE NINE</td>
</tr>
<tr>
<td>A215</td>
<td>NEW ELEVATIONS – PHASE TEN & MOCK-UP UNIT</td>
</tr>
<tr>
<td>A216</td>
<td>NEW ELEVATIONS – PHASE TEN</td>
</tr>
<tr>
<td>A220</td>
<td>SOUTH & SE STAIR TOWER</td>
</tr>
<tr>
<td>A221</td>
<td>STAIR TOWER REPAIR</td>
</tr>
<tr>
<td>A230</td>
<td>PAINTED METAL PANEL ELEVATIONS</td>
</tr>
<tr>
<td>A231</td>
<td>PAINTED METAL PANEL ELEVATIONS</td>
</tr>
</tbody>
</table>
A232 PAINTED METAL PANEL ELEVATIONS
A300 ENLARGED FLOOR PLANS - PHASE ONE
A301 ENLARGED FLOOR PLANS - PHASE ONE
A302 ENLARGED FLOOR PLANS - PHASE TWO
A303 ENLARGED FLOOR PLANS - PHASE TWO
A304 ENLARGED FLOOR PLANS - PHASE THREE
A305 ENLARGED FLOOR PLANS - PHASE THREE
A306 ENLARGED FLOOR PLANS - PHASE THREE
A307 ENLARGED FLOOR PLANS - PHASE THREE
A308 ENLARGED FLOOR PLANS - PHASE FOUR
A309 ENLARGED FLOOR PLANS - PHASE FOUR
A310 ENLARGED FLOOR PLANS - PHASE FIVE
A311 ENLARGED FLOOR PLANS - PHASE FIVE
A312 ENLARGED FLOOR PLANS - PHASE SIX
A313 ENLARGED FLOOR PLANS - PHASE SIX
A314 ENLARGED FLOOR PLANS - PHASE SEVEN
A315 ENLARGED FLOOR PLANS - PHASE EIGHT
A316 ENLARGED FLOOR PLANS - PHASE NINE
A317 ENLARGED FLOOR PLANS - PHASE TEN
A318 ENLARGED FLOOR PLANS - PHASE TEN
A320 ENLARGED PLAN DETAILS
A321 ENLARGED PLAN DETAILS
A400 2ND FLOOR CEILING PLAN
A401 3RD FLOOR CEILING PLAN
A402 4TH FLOOR CEILING PLAN
A403 5TH FLOOR CEILING PLAN
A500 WALL SECTIONS
A501 WALL SECTIONS
A502 WALL SECTIONS
A520 SECTION DETAILS
A521 SECTION DETAILS
A522 SECTION DETAILS
A523 SECTION DETAILS
A530 ROOF DETAILS
A531 ROOF DETAILS
A532 ROOF DETAILS
A600 INTERIOR MOUNTING HEIGHTS & DETAILS
A601 INTERIOR DETAILS
A602 INTERIOR DETAILS
A610 CASEWORK DETAILS
A611 CASEWORK DETAILS
A620 FINISH SCHEDULE KEY AND LEGENDS
A621 2ND FLOOR FINISH SCHEDULE
A622 3RD FLOOR FINISH SCHEDULE
A623 4TH FLOOR FINISH SCHEDULE
A624 5TH FLOOR FINISH SCHEDULE
A700 DOOR SCHEDULE & DETAILS
A710 WINDOW SCHEDULE & TYPES

SPECIFICATIONS

017419 CONSTRUCTION WASTE MANAGEMENT
024119 SELECTIVE DEMOLITION
045000 MASONRY RESTORATION
051200 STRUCTURAL STEEL
054000 COLD-FORMED METAL FRAMING
055000 METAL FABRICATIONS
061000 ROUGH CARPENTRY
061600 EXTERIOR SHEATHING
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>064023</td>
<td>INTERIOR ARCHITECTURAL WOODWORK</td>
</tr>
<tr>
<td>072100</td>
<td>THERMAL INSULATION</td>
</tr>
<tr>
<td>072726</td>
<td>FLUID-APPLIED MEMBRANE AIR BARRIER</td>
</tr>
<tr>
<td>074213.19</td>
<td>INSULATED METAL WALL PANELS</td>
</tr>
<tr>
<td>075216</td>
<td>STYRENE-BUTADIENE-STYRENE MODIFIED BITUMINOUS MEMBRANE</td>
</tr>
<tr>
<td></td>
<td>ROOFING</td>
</tr>
<tr>
<td>076200</td>
<td>SHEET METAL FLASHING AND TRIM</td>
</tr>
<tr>
<td>077200</td>
<td>ROOF ACCESSORIES</td>
</tr>
<tr>
<td>078100</td>
<td>APPLIED FIREPROOFING</td>
</tr>
<tr>
<td>078413</td>
<td>PENETRATION FIRESTOPPING</td>
</tr>
<tr>
<td>078443</td>
<td>JOINT FIRESTOPPING</td>
</tr>
<tr>
<td>079200</td>
<td>JOINT SEALANTS</td>
</tr>
<tr>
<td>081113</td>
<td>HOLLOW METAL DOORS AND FRAMES</td>
</tr>
<tr>
<td>084423</td>
<td>GLAZED ALUMINUM CURTAIN WALLS</td>
</tr>
<tr>
<td>087100</td>
<td>DOOR HARDWARE</td>
</tr>
<tr>
<td>088000</td>
<td>GLAZING</td>
</tr>
<tr>
<td>092216</td>
<td>NON-STRUCTURAL METAL FRAMING</td>
</tr>
<tr>
<td>092900</td>
<td>GYPSUM BOARD</td>
</tr>
<tr>
<td>093013</td>
<td>WALL AND FLOOR TILING</td>
</tr>
<tr>
<td>095113</td>
<td>ACOUSTICAL PANEL CEILINGS</td>
</tr>
<tr>
<td>096516</td>
<td>RESILIENT SHEET FLOORING, BASE, AND ACCESSORIES</td>
</tr>
<tr>
<td>096519</td>
<td>RESILIENT TILE FLOORING</td>
</tr>
<tr>
<td>096813</td>
<td>TILE CARPETING</td>
</tr>
<tr>
<td>097200</td>
<td>WALL COVERINGS</td>
</tr>
<tr>
<td>099113</td>
<td>EXTERIOR PAINTING</td>
</tr>
<tr>
<td>099123</td>
<td>INTERIOR PAINTING</td>
</tr>
<tr>
<td>102600</td>
<td>WALL PROTECTION</td>
</tr>
<tr>
<td>102800</td>
<td>TOILET AND BATH ACCESSORIES</td>
</tr>
<tr>
<td>122413</td>
<td>ROLLER WINDOW SHADES</td>
</tr>
</tbody>
</table>

Signature: ______________________________________

Date: 8-30-2019
TABLE OF CONTENTS

DIVISION 1 GENERAL REQUIREMENTS
017419 CONSTRUCTION WASTE MANAGEMENT

DIVISION 2 EXISTING CONDITIONS
024119 SELECTIVE DEMOLITION

DIVISION 4 MASONRY
045000 MASONRY RESTORATION

DIVISION 5 METALS
051200 STRUCTURAL STEEL
054000 COLD-FORMED METAL FRAMING
055000 METAL FABRICATIONS

DIVISION 6 WOODS, PLASTICS, AND COMPOSITES
061000 ROUGH CARPENTRY
061600 EXTERIOR SHEATHING
064023 INTERIOR ARCHITECTURAL WOODWORK

DIVISION 7 THERMAL AND MOISTURE PROTECTION
072100 THERMAL INSULATION
072726 FLUID-APPLIED MEMBRANE AIR BARRIER
074213.19 INSULATED METAL WALL PANELS
075216 STYRENE-BUTADIENE-STYRENE MODIFIED BITUMINOUS MEMBRANE ROOFING
076200 SHEET METAL FLASHING AND TRIM
077200 ROOF ACCESSORIES
078100 APPLIED FIREPROOFING
078413 PENETRATION FIRESTOPPING
078443 JOINT FIRESTOPPING
079200 JOINT SEALANTS

DIVISION 8 OPENINGS
081113 HOLLOW METAL DOORS AND FRAMES
084423 GLAZED ALUMINUM CURTAIN WALLS
087100 DOOR HARDWARE
088000 GLAZING

DIVISION 9 FINISHES
092216 NON-STRUCTURAL METAL FRAMING
092900 GYPSUM BOARD
093013 WALL AND FLOOR TILING
095113 ACOUSTICAL PANEL CEILINGS
096516 RESILIENT SHEET FLOORING, BASE, AND ACCESSORIES
096519 RESILIENT TILE FLOORING
096813 TILE CARPETING
097200 WALL COVERINGS
099113 EXTERIOR PAINTING
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOC - 2</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>260533</td>
</tr>
<tr>
<td>260543</td>
</tr>
<tr>
<td>260548</td>
</tr>
<tr>
<td>260553</td>
</tr>
<tr>
<td>260923</td>
</tr>
<tr>
<td>262726</td>
</tr>
<tr>
<td>265110</td>
</tr>
<tr>
<td>265600</td>
</tr>
<tr>
<td>270500</td>
</tr>
<tr>
<td>271500</td>
</tr>
<tr>
<td>280500</td>
</tr>
<tr>
<td>280513</td>
</tr>
<tr>
<td>283111</td>
</tr>
</tbody>
</table>

END OF TABLE OF CONTENTS
SECTION 017419 – CONSTRUCTION WASTE MANAGEMENT

1. GENERAL

1.1 RELATED DOCUMENTS

A. All of the Contract Documents, including General and Supplementary Conditions and Division 01 General Requirements, apply to the work of this Section.

1.2 SUMMARY

A. This Section specifies requirements for the Contractor's implementation of waste management controls and systems for the duration of the Work.

The intent of this Section is to develop and implement a Construction Waste Management Plan (CWMP) in order to quantify material diverted from Solid Waste Disposal Facility or incineration. At least fifty (50) percent of non-hazardous Demolition and Construction Debris generated by the construction project must be diverted through recycling or salvage. Quantities must be reported by weight and consistent in units reported and calculation method throughout.

Diversion Methods and Materials Eligible for Reporting:

1. Appropriate materials suitably placed in a Clean Fill Site may be reported
2. Appropriate materials diverted for use as Wood Derived Fuel (WDF) may be reported

Diversion Methods and Materials Ineligible for Reporting:

3. Material disposal by incineration
4. Excavated soil and land-clearing debris
5. Material for use as Alternative Daily Cover (ADC)
6. Hazardous waste; should be disposed of according to relevant regulations

B. Contractor may subcontract work of this Section to a sub-contractor specializing in recycling and salvaging of construction waste.

1.3 DEFINITIONS

A. ALTERNATIVE DAILY COVER (ADC): Material (other than earthen material) that is placed on the surface of the active face of a municipal solid waste landfill at the end of each operating day.

B. AVERAGE RECYCLING RATE: The weighted average for the diversion of materials by the commingled (mixed-stream) recycling facility over time.

C. CLEAN FILL SITE: Re-grading fill site for land reclamation or other beneficial use. Typically requiring permits, regular site maintenance and hours of operation. With material consisting of demolition debris and construction waste from buildings, roads and highway pavement, and other structures. Commonly comprised of brick, ceramics, concrete, and asphalt paving fragments that are virtually inert and pose neither a pollution threat to ground or surface waters nor a fire hazard. May contain minimal amounts of wood, metal and inert solids.
D. **COMMINGLED WASTE:** Waste streams that are combined on the project site and hauled away for sorting into recyclable streams. Also known as mixed or single-stream recycling.

E. **DEMOLITION AND CONSTRUCTION DEBRIS:** Debris, waste and surplus materials, including recyclables, generated as a result of the Contractor’s onsite activities while executing the requirements of the contract. Also, commonly includes materials from renovation, demolition, or deconstruction activities.

F. **RECYCLE:** Recovery of materials, otherwise diverted from the solid waste stream for remanufacturing.

G. **SALVAGE:** Recovery of useful items repurposing without the need for remanufacturing or reducing to raw materials due to their intrinsic value.

H. **SOLID WASTE DISPOSAL FACILITY:** A managed landfill, regulated at the Federal, State, and/or Local level.

1.4 **INTENT**

A. The Owner and Architect have established that this Project shall generate the least amount of Demolition and Construction debris as practical. The Contractor shall develop and employ processes that ensure that the amount of demolition and construction debris actually generated during the execution of this project due to error, poor planning, breakage, mishandling, contamination or other factors is minimized.

B. Of the construction and demolition debris generated, as much as is economically feasible shall be reused, salvaged, or recycled. Disposal of construction and demolition debris in solid waste disposal facilities shall be minimized to the greatest extent practical but at a minimum shall be consistent with the percentage goal stated herein.

C. The Contractor shall develop, for the Architect's review, a Construction Waste Management Plan (CWMP) for this Project.

D. Contractor shall be responsible for ensuring that construction and demolition debris, not otherwise salvaged or recycled will be disposed of at appropriately licensed solid waste disposal facilities.

1.5 **SUBMITTALS**

A. **Construction Waste Management Plan (CWMP):** Within 21 calendar days after receipt of Notice to Proceed, the Contractor shall provide a plan for review and approval by Architect and Owner. The Construction Waste Management Plan shall be in the format provided at the end of this section and shall at a minimum contain the following:

1. Analysis of the proposed jobsite waste to be generated, including types and estimated quantities.
2. Solid Waste Disposal Facility Options: The name of the facilities landfills where construction and demolition debris not otherwise salvaged or recycled will be disposed of, the applicable landfill tipping disposal fees, and the projected cost of such disposal.
3. Solid Waste Disposal Facility Certification: Contractor’s statement of verification that facilities proposed for use are licensed for types of waste to be deposited and have sufficient capacity to receive waste from this project.

4. Recycling Facility Options: Facilities providing commingled or mixed-stream recycling must provide diversion rates either specific to the project, or an average diversion rate that is regulated by the local or state authority. The average recycling rate for the facility must exclude ADC. Measurements must be based on weight (not volume), using scales. Reporting increments shall be no more than annually, and must use consistent time increments throughout calculations.

5. Alternatives: A list of each material proposed to be salvaged or recycled during the course of the Project and the planned reuse strategy or diversion destination of each. Include the following and any additional items proposed:
 a. Cardboard
 b. Clean wood
 c. Beverage containers
 d. Concrete
 e. Slurry wall materials
 f. Bricks and masonry
 g. Asphalt
 h. Metals from framing, banding, stud trim, ductwork, piping, rebar, roofing, other trim, steel, iron, galvanized sheet steel, stainless steel, aluminum, copper, zinc, lead, brass, and bronze
 i. Mechanical and electrical equipment
 j. Building components which can be removed relatively intact from existing construction
 k. Packaging materials
 l. Glass
 m. Scraps from new gypsum wall board
 n. Carpet and pad
 o. Acoustical ceiling panels
 p. Plastics

6. Meetings: A description of the regular meetings to be held to ensure proper execution of the construction waste management plan.

7. Debris Handling Procedures: A description of the means by which any construction waste materials identified above will be protected from contamination, and a description of the means to be employed in recycling the above materials consistent with requirements for acceptance by designated facilities.

8. Transportation: A description of the means of transportation of the debris (whether debris will be site-separated and self-hauled to designated centers, or whether mixed materials will be collected by a waste hauler and removed from the site).

B. Waste Management Progress Report: Concurrent with each Application for Payment, submit a written Waste Management Progress Report in the same format as required for Final Report. Submission of this report shall be a pre-requisite to the Owner’s approval of the Contractor’s application for Payment. Provide statement indicating original estimated total diversion rate, diversion to date, and expected final diversion rate. Include narrative regarding discrepancies or activity since the previous report.

C. Waste Management Final Report: Within five (5) Calendar Days of Substantial Completion, submit a written Construction Waste Management Final Report summarizing the types and
quantities of materials recycled, salvaged and disposed of under the Construction Waste Management Plan. This report shall be in the same format as the monthly reports. Include the name and location of disposal facilities. Quantities must be reported by weight and consistent in units reported and calculation method throughout. Include the following:

1. Material category
2. Generation point
3. Total quantity of waste by category
4. Total quantity of waste reused
5. Total quantity of waste salvaged, both estimated and actual
6. Total quantity of waste recycled, both estimated and actual
7. Total quantity of waste diverted (salvaged and recycled)
8. Total quantity of waste diverted (salvaged and recycled) as a percentage of total waste

D. Other Submittals:

1. Records of Donations: Indicate receipt and acceptance of salvageable waste donated to individuals and organizations.
2. Records of Sales: Indicate receipt and acceptance of salvageable waste sold to individuals and organizations.
3. Recycling and Processing Facility Records: Indicate receipt and acceptance of recyclable waste by recycling and processing facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.
4. Landfill Disposal Records: Indicate receipt and acceptance of waste by landfills facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.
5. Wood Derived Fuel Processing Facility Records: Indicate receipt and acceptance of materials by (WDF) processing facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.
6. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician responsible for recovering refrigerant, stating that all refrigerant that was present was recovered and that recovery was performed according to EPA regulations. Include name and address of technician and date refrigerant was recovered.

2. PRODUCTS (NOT USED)

3. EXECUTION

3.1 ON-SITE OPERATIONS

A. Manager: The Contractor shall designate an on-site person responsible for instructing workers and overseeing and documenting results of the Waste Management Plan for the Project.

B. Distribution: The Contractor shall distribute copies of the Waste Management Plan to the Job Site Foreman, each Subcontractor, and the Owner’s Representative.

C. Instruction: The Contractor shall provide on-site instruction of appropriate separation, handling, and recycling, salvage, reuse, and return methods to be used by all parties at the appropriate stages of the Project.
D. Separation Facilities: The Contractor shall lay out and label a specific area to facilitate separation of materials for recycling, salvage, and return. Recycling and waste bin areas are to be kept neat and clean and clearly marked in order to avoid contamination of materials. Location shall be acceptable to the Owner’s Representative.

1. Commingling Waste: Commingling waste at the job site may be allowed, provided that the following conditions are met:
 a. Comminglers shall be included in the Construction Waste Management Plan (CWMP)
 b. Additional comminglers must be pre-approved by the Architect via CWMP addenda, prior to tipping on the job site.

E. Hazardous Wastes: Any unforeseen hazardous wastes shall be separated, stored, and disposed of according to local regulations and as directed by the Owner.

END OF SECTION 017419
SECTION 024119 - SELECTIVE DEMOLITION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Demolition and removal of selected portions of building or structure.
 2. Salvage of existing items to be reused or recycled.

1.3 DEFINITIONS
 A. Remove: Detach items from existing construction and dispose of them off-site unless indicated to be salvaged or reinstalled.
 B. Remove and Salvage: Detach items from existing construction, in a manner to prevent damage, and deliver to Owner ready for reuse.
 C. Remove and Reinstall: Detach items from existing construction, in a manner to prevent damage, prepare for reuse, and reinstall where indicated.
 D. Existing to Remain: Leave and protect existing items that are not to be removed and that are not otherwise indicated to be salvaged or reinstalled. (BID DOCUMENTS August 30, 2019)

1.4 MATERIALS OWNERSHIP
 A. Unless otherwise indicated, demolition waste becomes property of Contractor.
 B. Any items of interest or value to Owner that may be uncovered during demolition remain the property of Owner.
 1. Carefully salvage in a manner to prevent damage and promptly return to Owner.

1.5 INFORMATIONAL SUBMITTALS
 A. Schedule of Selective Demolition Activities: Indicate the following:
 1. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Coordinate any on-site operations with Owner’s representative.
2. Interruption of utility services. Indicate how long utility services will be interrupted.
3. Coordination for shutoff, capping, and continuation of utility services.

B. Pre-demolition Photographs or Video: For the purposes of reinstallation of items removed during demolition, show existing conditions of adjoining construction, including finish surfaces, installed equipment, patient information boards, casework, and other accessories that will be reinstalled. This shall be done in order to protect the Contract in instances where any the above listed items in 1.5.B might be misconstrued as damaged due to demolition operations. Submit before Work begins. (BID DOCUMENTS August 30, 2019)

1.6 FIELD CONDITIONS
A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted beyond limit of construction for each phase.

B. Maintain temperature and humidity conditions in active construction areas such that spaces adjacent to construction areas are maintained at Owner-specified temperatures and humidity levels. Close coordination with Owner’s Representative and Facilities Department is essential. (BID DOCUMENTS August 30, 2019)

C. Where indicated in Drawings, at ductwork, plumbing pipes, and fire sprinklers to remain active during construction, Contractor shall maintain temperatures and humidity at standard interior temperature and humidity levels to ensure that systems performance is not compromised. (BID DOCUMENTS August 30, 2019)

D. Existing conditions at time of inspection for bidding purpose will be maintained by Owner as far as practical. (BID DOCUMENTS August 30, 2019)

E. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.

F. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 1. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.

G. Storage or sale of removed items or materials on-site is not permitted.

H. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
 1. Maintain fire-protection facilities in service during selective demolition operations.

I. Where any existing fire- or smoke-rated assemblies or egress routes are disrupted by construction, alert the Owner and Architect at least one construction phase in advance to coordinate temporary or alternative life safety plans and measures with Owner and Architect.
1.7 WARRANTY – NOT USED (BID DOCUMENTS August 30, 2019)

1.8 COORDINATION
 A. Arrange selective demolition schedule so as not to interfere with Owner's operations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
 B. Standards: Comply with ASSE A10.6 and NFPA 241.
 C. Construction Waste Management: Comply with requirements of Section 017419 for the Contractor's implementation of waste management controls and systems.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Verify that utilities have been disconnected and capped before starting selective demolition operations.
 B. Review Project Record Documents of existing construction or other existing condition and hazardous material information provided by Owner. Owner does not guarantee that existing conditions are same as those indicated in Project Record Documents.
 C. If hazardous material remediation is required, verify that hazardous materials have been remediated before proceeding with building demolition operations.
 D. Survey of Existing Conditions: Record existing conditions by use of measured drawings, preconstruction photographs, and templates.
 1. Inventory and record the condition and locations of items to be removed, salvaged, and scheduled to be reinstalled at their current locations. Provide photographs or video of conditions that might be misconstrued as damage caused by salvage operations. (BID DOCUMENTS August 30, 2019)
 2. Before selective demolition or removal of existing building elements that will be reproduced or duplicated in final Work, make permanent record of measurements, materials, and construction details required to make exact reproduction.
3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.

1. Arrange to shut off utilities with utility companies and Owner.
2. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.

3.3 PROTECTION

A. Temporary Protection: Provide temporary weather barrier partitions and infectious control barriers as shown in Drawings and as directed by Owner. Other protection barricades are required to prevent injury to people and damage to adjacent facilities to remain. *(BID DOCUMENTS August 30, 2019)*

1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.
2. Provide temporary weather protection, during interval between selective demolition of existing construction on exterior surfaces and new construction, to prevent water leakage and damage to structure and interior areas.
3. Protect walls, ceilings, floors, and other existing finish work that are to remain or that are exposed during selective demolition operations.
4. Cover and protect furniture, furnishings, and equipment that have not been removed.

B. Temporary Shoring: Design, provide, and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.

1. Strengthen or add new supports when required during progress of selective demolition.

C. Remove temporary barricades and protections where hazards no longer exist.

3.4 SELECTIVE DEMOLITION, GENERAL

A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:

1. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping. Temporarily cover openings to remain.
2. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
3. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of
hidden space before starting flame-cutting operations. Maintain portable fire-suppression devices during flame-cutting operations.

4. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.

5. Dispose of demolished items and materials promptly.

6. Contractor shall remove the following from each room prior to construction:
 a. Large, loose furniture items, including, but not limited to visitor chairs, visitor couches, office desks, filing and storage cabinets, and bookshelves.
 b. Kitchen appliances, including, but not limited to refrigerators and microwaves.
 c. Sanitation items, including, but not limited to hand sanitation dispensers, paper towel dispensers...
 d. Toilet and bath accessories, including, but not limited to towel racks, robe hooks, grab bars, shower seats...
 e. Locker units.

7. For the above items in 3.4.A.6, small, loose items may be moved into adjacent rooms within the limits of infection control at each phase, but not actively impacted by construction, such as patient restrooms.
 a. At such instances, doors to adjacent rooms where loose items are stored, the door shall be shut and the opening covered in plastic and sealed at the edges to prevent construction dust and debris from infiltrating the room where items are stored.

8. For the above items in 3.4.A.6, if no adjacent room is available to store items during construction, items shall be moved off-site to a Contractor-managed storage location where temperature and humidity is maintained such that items will not be damaged by water, temperature extremes, or humidity.
 a. Items shall be stored and not returned to the construction site until the exterior envelope has been replaced at the exterior wall and the room and its contents can be protected from exterior weather conditions. (BID DOCUMENTS August 30, 2019)

B. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.

C. Removed and Salvaged Items:
 1. Clean salvaged items.
 2. Pack or crate items after cleaning. Identify contents of containers.
 3. Store items in a secure area until delivery to Owner.
 4. Transport items to Owner's storage area designated by Owner. Protect items from damage during transport and storage.

D. Removed and Reinstall Items:
 1. Clean and repair items to functional condition adequate for intended reuse.
 2. Pack or crate items after cleaning and repairing. Identify contents of containers.
 3. Protect items from damage during transport and storage.
 4. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.

E. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Owner's Representative, items may be removed
to a suitable, protected storage location during selective demolition, cleaned and reinstalled in their original locations after selective demolition operations are complete. *(BID DOCUMENTS August 30, 2019)*

1. Any furniture, equipment, casework, or other items other than constructed floors, walls, and ceilings shall be covered in plastic and sealed to prevent the accumulation of dust or other construction byproduct. *(BID DOCUMENTS August 30, 2019)*

3.5 SELECTIVE DEMOLITION PROCEDURES FOR SPECIFIC MATERIALS

A. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, and then remove masonry between saw cuts.

B. Resilient Floor Coverings: Remove floor coverings and adhesive according to recommendations in RFCI's "Recommended Work Practices for the Removal of Resilient Floor Coverings." Do not use methods requiring solvent-based adhesive strippers.

C. Roofing: Remove no more existing roofing than what can be covered in one day by new roofing and so that building interior remains watertight and weather tight. See Section 075216 “Styrene-Butadiene-Styrene (SBS) Modified Bituminous Roofing” for new roofing requirements.

 1. Remove existing roof membrane, flashings, copings, and roof accessories.
 2. Remove existing roofing system down to substrate.

3.6 DISPOSAL OF DEMOLISHED MATERIALS

A. Remove demolition waste materials from Project site and dispose of them in an EPA-approved construction and demolition waste clean fill or landfill location acceptable to authorities having jurisdiction.

 1. Do not allow demolished materials to accumulate on-site.
 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.

B. Burning: Do not burn demolished materials.

3.7 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION 024119
SECTION 045000 - MASONRY RESTORATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. The general provisions of the Contract, including the Conditions of the Contract and General Requirements, apply to the work specified in this section.

B. Related Requirements:
 1. Section 076200 "Sheet Metal Flashing and Trim."
 2. Section 079200 "Joint Sealants."

1.2 SUMMARY
A. This Section includes the following masonry restoration and cleaning:
 1. Replacement of cracked or damaged bricks.
 2. Rake and tuckpointing mortar joints.

1.3 DEFINITION
A. Repointing: The process of raking out (removing) mortar and replacing it with new mortar.

B. Low-Pressure Spray: 100 to 400 psi; 4 - 6 gpm per spray head.

C. Medium-Pressure Warm Water Wash: 400 to 800 psi; 4 - 6 gpm at 180 deg. F.

1.4 QUALITY ASSURANCE
A. Restoration Specialist: The repair and pointing shall be carried out by a firm having not less than five (5) years successful experience in the cleaning, repair, joint raking and pointing of masonry similar to the work described in this Section.
 1. The Contractor shall submit all the following information demonstrating the masonry contractor’s qualifications and experience for approval by the Architect and Owner. Contractors not submitting the required information or failing to meet the minimum requirements will be disqualified and will not be allowed to perform the work of this Section.
 a. Provide written description of a minimum of three projects completed within the past five years for which the masonry contractor has performed the masonry cleaning, pointing, and repair. Projects must have been performed on properties 75 years old or older. Provide the name and address of the project, the name and telephone number of the Owner and Architect, dates work was performed, and a description of the materials and methods used to perform the work for each project.
 b. Submit a resume for each of the persons who will be supervising and performing the work of this Section demonstrating a minimum of 3 years experience working in their trades, list of three example projects describing the work the person has performed. Example projects can be the same or different than the example projects described for the said masonry contractor described above. Only individuals whose resumes have been submitted, reviewed, and accepted will be allowed to perform the work of this Section.
 c. The masonry contractor’s qualifications submittals shall be completed by the masonry contractor and shall be signed by an authorized official of the firm and dated.
B. Field-Constructed Mock-Ups: Prior to start of general masonry restoration, prepare the following sample panels on the building where directed by Architect. Obtain Architect's acceptance of visual qualities before proceeding with the work. Retain acceptable panels in undisturbed condition, suitably marked, during construction as a standard for judging completed work. Contractor should anticipate submitting multiple samples for approval prior to approval of each panel. All costs associated with producing multiple samples shall be included in the base bid.

1. Repointing: Prepare 2 separate sample areas of approximately 3’ high by 6’ wide for each type of repointing required, one for demonstrating methods and quality of workmanship expected in removal of mortar from joints and the other for demonstrating quality of materials and workmanship expected in pointing mortar joints.

2. Provide approximately 4’-0” linear feet of soft joint consisting of selected sealant with masonry sand rubbed on fresh sealant to simulate and match adjacent mortar joints.

3. Provide two samples of removal of crack brick and replacement with matching brick.

C. Source of Materials: Obtain materials for masonry restoration from a single source for each type material required to ensure match of quality, color, pattern, and texture.

D. Architect may randomly select areas of tuck-pointing to be raked for verification of the appropriate depth of pointing and void filling. Contractor shall bear the cost of repointing these areas of selected destructive testing in their base bid.

1.5 SUBMITTALS
A. Product Data: Submit manufacturers’ technical data for each product indicated including recommendations for their application and use. Include test reports and certifications substantiating that products comply with requirements.

B. Restoration Program: Submit written program for each phase of restoration process including protection of surrounding materials on building and site during operations. Describe in detail materials, methods and equipment to be used for each phase of restoration work.

C. Pointing Mortar: Submit the following items in time to prevent delay of the work and to allow adequate time for review and resubmittals, if needed; do not order materials or start work before receiving the written approval:

1. Written certificates from the repair mortar Manufacturer shall be submitted stating that all installers of the repair mortar have successfully completed the training workshop for installation of the mortar.

2. Samples of all specified materials and Material Safety Data Sheets (MSDS) as appropriate.

3. Certificates, except where the material is labeled with such certification, by the producers of the materials, that all materials supplied comply with all the requirements of these specifications and the appropriate standards.

4. Color-match patch samples fabricated on pieces of appropriate masonry from or on the building using the specified pointing mortar as required.

5. Written verification that all specified items will be used. Provide purchase orders, shipping tickets, receipts, etc. to prove that the specified materials were ordered and received.
1.6 DELIVERY, STORAGE, AND HANDLING
A. Deliver materials to site in manufacturer's original and unopened containers and packaging, bearing labels as to type and names of products and manufacturers.

B. Protect masonry restoration materials during storage and construction from wetting by rain, snow or ground water, and from staining or intermixture with earth or other types of materials.

C. Protect mortar and other materials from deterioration by moisture and temperature. Store in a dry location or in waterproof containers. Keep containers tightly closed and away from open flames. Protect liquid components from freezing. Comply with manufacturer's recommendations for minimum and maximum temperature requirements for storage.

1.7 PROJECT CONDITIONS
A. Clean masonry surfaces only when air temperatures are 40 deg. F and above and will remain so until masonry has dried out, but for not less than 7 days after completion of cleaning.

B. Do not repoint mortar joints, repair masonry, or grout inject masonry walls unless air temperatures are between 40 deg. F and 90 deg. F and will remain so for at least 48 hours after completion of work.

C. Prevent mortar used in repointing repair work from staining face of surrounding masonry and other surfaces. Remove immediately mortar in contact with exposed masonry and other surfaces.

D. Protect sills, ledges and projections from mortar droppings.

1.8 SEQUENCING/SCHEDULING
A. Perform masonry restoration and void injection work in the following sequence:
1. Repair existing masonry including replacing existing masonry with new masonry materials.
2. Repoint existing mortar joints as shown on the Drawings or as selected by Architect at time of construction.
3. Tooth-in of new bricks in place of cracked or damaged brick.
4. Clean masonry surfaces after tuck-pointing and repairs to remove mortar residues.

PART 2 - PRODUCTS

2.1 MASONRY MATERIALS
A. Provide brick to match existing bricks’ sizes, profiles, color, and surface textures.

2.2 MORTAR MATERIALS
A. Historic Pointing Mortar to be used for final pointing of all joints.

2.3 MORTAR MIXES
A. Measurement and Mixing: Measure cementitious and aggregate material in a dry condition by volume or equivalent weight. Do not measure by shovel, use known measure. Mix

MASONRY RESTORATION 045000 - 3
Project No.: CP180131
August 30, 2019
materials in a clean mechanical batch mixer.

B. Do not use admixtures of any kind in mortar, unless otherwise indicated.

2.4 PRE-MIXED POINTING MORTAR
A. Factory mixed Historic Pointing Mortar specially formulated for the masonry restoration.
 2. Any additional mortar samples that may be required shall be taken from selected areas as directed by Architect and sent to pointing mortar manufacturer for custom color matching and mortar proportions.

B. Surface Preparation: Joints to receive pointing mortar must be sound and free of all dust, dirt, grease, latency and/or any other coating or foreign substance which may prevent proper adhesion. Remove all loose and deteriorated mortar. The minimum depth of mortar application is 1". Rinse joints with clean water.

C. Mixing: The mixing ratio is approximately 4 to 5 parts replication mix to 1 part water by volume, depending on temperature and humidity. Place clean water in a clean, rust free mixing container and add the powder. Mix manually until the mortar is thoroughly mixed. The mortar shall be the consistency of damp sand.

D. Pointing: Moisten the joint using clean water. If the surface is allowed to dry out before applying pointing mortar, this step must be repeated. The mortar shall be applied using appropriate pointing tools. Place the mortar into the joint so that it matches the original joint profile.

E. Curing: Periodically mist mortar joints using clean water for at least a 72 hour period.

F. Clean Up: Remove uncured mortar from the substrate before it dries using clean water and a rubber sponge. Cured mortar may only be removed chemically or mechanically.

G. Safety Requirements: It is recommended that safety goggles, gloves, and a dust mask equipped with P-2 filters (or equivalent) be worn for protection when mixing.

H. Limitations:
 1. Never apply pointing mortar to a frosted or exceedingly hot substrate. The applied mortar must be protected from extreme heat, freezing, excessive wind, direct sunlight, and rain. Ambient temperature range shall be 40 deg. F to 90 deg. F with low to average humidity.
 2. Never add bonding agents to pointing mortar or use them as surface preparation materials.
 3. Minimum thickness of mortar application is 1".

2.5 CLEANING MATERIALS AND EQUIPMENT
A. Water for Cleaning: Clean, potable, free of oils, acids, alkalis, salts, and organic matter.

B. Brushes: Fiber bristle only.
C. Mild Acidic Brick Cleaner: Manufacturer's standard mildly acidic cleaner containing no muriatic (hydrochloric), hydrofluoric, or sulfuric acid; or ammonium bifluoride or chlorine bleaches.
 1. Products: Subject to compliance with requirements, base of specification:
 a. ProSoCo: Vana Trol brick and stone cleaner.
 b. ProSoCo: Enviro Klean restoration cleaner.

D. Spray Equipment: Provide equipment for controlled spray application of water and chemical cleaners, if any, at rates indicated for pressure, measured at spray tip, and for volume.
 1. For spray application of chemical cleaners provide low-pressure tank or chemical pump suitable for chemical cleaner indicated, equipped with cone-shaped spray-tip.
 2. For spray application of water provide fan-shaped spray-tip which disperses water at angle of not less than 45 degrees.

PART 3 - EXECUTION

3.1 BRICK CLEANING
 A. Hot-Water Wash: Use hot water applied by medium pressure spray.

 B. Detergent Cleaning for general cleaning of entire building:
 1. Wet masonry with hot water applied by low-pressure spray.
 2. Scrub masonry with detergent solution using medium-soft brushes until soil is thoroughly dislodged and can be removed by rinsing. Use small brushes to remove soil from mortar joints and crevices. Dip brush in solution often to ensure that adequate fresh detergent is used and that masonry surface remains wet.
 3. Rinse with hot water applied by medium pressure spray to remove detergent solution and soil.
 4. Repeat cleaning procedure above where required to produce cleaning effect established by mockup.

 C. Mold, Mildew, and Algae Removal:
 1. Wet masonry with hot water applied by low-pressure spray.
 2. Apply mold, mildew, and algae remover by brush.
 3. Scrub masonry with medium-soft brushes until mold, mildew, and algae are thoroughly dislodged and can be removed by rinsing. Use small brushes for mortar joints and crevices. Dip brush in mold, mildew, and algae remover often to ensure that adequate fresh cleaner is used and that masonry surface remains wet.
 4. Rinse with hot water applied by medium pressure spray to remove mold, mildew, and algae remover and soil.
 5. Repeat cleaning procedure above where required to produce cleaning effect established by mockup.

 D. Mild Acidic Chemical Cleaning for all areas with new mortar or seepage from grout injection:
 1. Wet masonry with cold water applied by low-pressure spray.
 2. Apply cleaner to masonry in two applications by brush. Let cleaner remain on for period as recommended by chemical-cleaner manufacturer.
 3. Rinse with cold water applied by medium pressure spray to remove chemicals and soil.
4. Repeat cleaning procedure above where required to produce cleaning effect established by mockup. Do not repeat more than once. If additional cleaning is required, use a steam cleaning.

3.2 REPOINTING EXISTING MASONRY

A. Joint Raking:

1. Rake out mortar from all joints to depths of not less than 1" nor less than that required to expose sound, unweathered mortar.
2. Remove mortar from masonry surfaces within raked-out joints to provide reveals with square backs and to expose masonry for contact with pointing mortar. Brush, vacuum or flush joints to remove dirt and loose debris.
3. Do not spall edges of masonry units or widen joints. Replace any masonry which become damaged.
4. Cut out old mortar head joint by electric caulk cutter knife. For all bed joints a small hand power saw with 1/8" thick, 3" to 4" diameter with diamond blades could be used if Contractor has demonstrated ability to work with this tool to Owner's Representative.
5. Do not cut mortar where masonry become loose, displaced and may fall. Those areas shall be handled with care and one row at a time shall be cut.

B. Joint Pointing:

1. Rinse masonry joint surfaces with water to remove any dust and mortar particles. Time application of rinsing so that, at time of pointing, excess water has evaporated or run off, and joint surfaces are damp but free of standing water.
2. Fill the voids with pointing mortar in layers. Compact each layer and allow it to become thumbprint hard before applying the next layer. Fill the voids to about 1" from exposed face of masonry. Fill remaining 1" depth simultaneously with final pointing.
3. When mortar is thumbprint hard, tool joints to match original appearance of joints, unless otherwise indicated. Remove excess mortar from edge of joint by brushing.
4. Cure mortar by maintaining in a damp condition for not less than 72 hours. Provide temporary protection in areas exposed to direct sun.
5. Where repointing work precedes cleaning of existing masonry, allow mortar to harden not less than 7 days before beginning cleaning work.

3.3 BRICK REMOVAL AND REBUILDING

A. Brick Removal:

1. Carefully remove by hand at locations indicated any brick which are damaged, spalled or deteriorated due to construction activities, including shoring and bracing of the existing building envelope. Cut out full units from joint to joint and in manner to permit replacement with full size units. Small hand power saw (3-4" diameter) with 1/8" thick diamond blade only could be used for bed joints. Cut out head joints by hand with chisel and mallet only.
2. Support and protect masonry indicated to remain which surround removal area.
3. Salvage as many whole, undamaged bricks as possible.
4. Remove mortar, loose particles and soil from salvaged brick by cleaning with brushes and water. Store brick for reuse.
5. Clean remaining brick at edges of removal areas by removing mortar, dust, and loose debris in preparation of rebuilding.
6. Repair any damaged flashing to make watertight.

END OF SECTION 045000
SECTION 051200 - STRUCTURAL STEEL

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Structural steel.

B. Related Sections include the following:
 1. Division 9 painting Sections for surface preparation and priming requirements.

1.2 DEFINITIONS

A. Structural Steel: Elements of structural-steel frame, as classified by AISC's "Code of Standard Practice for Steel Buildings and Bridges," that support design loads.

1.3 PERFORMANCE REQUIREMENTS

A. Connections: Provide details of simple shear connections required by the Contract Documents to be selected or completed by structural-steel fabricator to withstand ASD-service loads indicated and comply with other information and restrictions indicated.
 2. Engineering Responsibility: Fabricator's responsibilities include using a qualified professional engineer to prepare structural analysis data for structural-steel connections.

B. Construction: Type PR, partially restrained.

C. Construction: Type 2, simple framing.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication of structural-steel components.
 1. Include details of cuts, connections, splices, camber, holes, and other pertinent data.
 2. Include embedment drawings.
 3. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld.
 4. Indicate type, size, and length of bolts, distinguishing between shop and field bolts. Identify pretensioned and slip-critical high-strength bolted connections.
 5. For structural-steel connections indicated to comply with design loads, include structural analysis data prepared by the qualified professional engineer responsible for their preparation.
C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel."

B. Comply with applicable provisions of the following specifications and documents:
 1. AISC's "Code of Standard Practice for Steel Buildings and Bridges."
 4. AISC's "Specification for the Design of Steel Hollow Structural Sections."
 6. RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

1.6 DELIVERY, STORAGE, AND HANDLING

A. Store materials to permit easy access for inspection and identification. Keep steel members off ground and spaced by using pallets, dunnage, or other supports and spacers. Protect steel members and packaged materials from erosion and deterioration.
 1. Store fasteners in a protected place. Clean and relubricate bolts and nuts that become dry or rusty before use.
 2. Do not store materials on structure in a manner that might cause distortion, damage, or overload to members or supporting structures. Repair or replace damaged materials or structures as directed.

1.7 COORDINATION

A. Furnish anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, sheet metal templates, instructions, and directions for installation.

PART 2 - PRODUCTS

2.1 STRUCTURAL-STEEL MATERIALS

A. W-Shapes: ASTM A 992/A 992M, Grade 50.

B. Channels, Angles, M, S-Shapes: ASTM A 36/A 36M.

C. Plate and Bar: ASTM A 36/A 36M.

D. Cold-Formed Hollow Structural Sections: ASTM A 500, Grade B, structural tubing.

E. Welding Electrodes: Comply with AWS requirements.
2.2 BOLTS, CONNECTORS, AND ANCHORS

A. High-Strength Bolts, Nuts, and Washers: ASTM A 325, Type 1, heavy hex steel structural bolts; ASTM A 563 heavy hex carbon-steel nuts; and ASTM F 436 hardened carbon-steel washers.
 1. Finish: Plain.
 2. Direct-Tension Indicators: ASTM F 959, Type 325 compressible-washer type.
 a. Finish: Plain.

B. High-Strength Bolts, Nuts, and Washers: ASTM A 490, Type 1, heavy hex steel structural bolts or tension-control, bolt-nut-washer assemblies with splined ends; ASTM A 563 heavy hex carbon-steel nuts; and ASTM F 436 hardened carbon-steel washers, plain.
 1. Direct-Tension Indicators: ASTM F 959, Type 490, compressible-washer type, plain.

2.3 PRIMER

A. Primer: Fabricator's standard lead- and chromate-free, nonasphaltic, rust-inhibiting primer.

B. Galvanizing Repair Paint: MPI#18, MPI#19, or SSPC-Paint 20.

2.4 FABRICATION

 1. Camber structural-steel members where indicated.
 2. Identify high-strength structural steel according to ASTM A 6/A 6M and maintain markings until structural steel has been erected.
 3. Mark and match-mark materials for field assembly.
 4. Complete structural-steel assemblies, including welding of units, before starting shop-priming operations.

B. Thermal Cutting: Perform thermal cutting by machine to greatest extent possible.
 1. Plane thermally cut edges to be welded to comply with requirements in AWS D1.1.

C. Bolt Holes: Cut, drill or punch standard bolt holes perpendicular to metal surfaces.

D. Finishing: Accurately finish ends of columns and other members transmitting bearing loads.

E. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1 and manufacturer's written instructions.

F. Holes: Provide holes required for securing other work to structural steel and for passage of other work through steel framing members.
 1. Cut, drill, or punch holes perpendicular to steel surfaces. Do not thermally cut bolt holes or enlarge holes by burning.
 2. Base-Plate Holes: Cut, drill, mechanically thermal cut, or punch holes perpendicular to steel surfaces.
 3. Weld threaded nuts to framing and other specialty items indicated to receive other work.
2.5 SHOP CONNECTIONS

A. High-Strength Bolts: Shop install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified.
 1. Joint Type: Pretensioned.

B. Weld Connections: Comply with AWS D1.1 for welding procedure specifications, tolerances, appearance, and quality of welds and for methods used in correcting welding work.
 1. Assemble and weld built-up sections by methods that will maintain true alignment of axes without exceeding tolerances of AISC's "Code of Standard Practice for Steel Buildings and Bridges" for mill material.

2.6 SHOP PRIMING

A. Shop prime steel surfaces except the following:
 1. Surfaces embedded in concrete or mortar. Extend priming of partially embedded members to a depth of 2 inches.
 2. Surfaces to be field welded.
 3. Surfaces to be high-strength bolted with slip-critical connections.

B. Painting: Apply a 1-coat, nonasphaltic primer complying with SSPC-PS Guide 7.00, "Painting System Guide 7.00: Guide for Selecting One-Coat Shop Painting Systems," to provide a dry film thickness of not less than 1.5 mils.

2.7 GALVANIZING

A. Hot-Dip Galvanized Finish: Apply zinc coating by the hot-dip process to structural steel according to ASTM A 123/ A 123M.
 1. Fill vent holes and grind smooth after galvanizing.
 2. Galvanize lintels and shelf angles attached to structural-steel frame and located in exterior walls.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify elevations of concrete- and masonry-bearing surfaces and locations of anchor rods, bearing plates, and other embedments, with steel erector present, for compliance with requirements.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Provide temporary shores, guys, braces, and other supports during erection to keep structural steel secure, plumb, and in alignment against temporary construction loads and loads equal in intensity to design loads. Remove temporary supports when permanent structural steel, connections, and bracing are in place, unless otherwise indicated.
1. Do not remove temporary shoring supporting composite deck construction until cast-in-place concrete has attained its design compressive strength.

3.3 ERECTION

 1. Set base and bearing plates for structural members on wedges, shims, or setting nuts as required.
 2. Weld plate washers to top of base plate.
 3. Pretension anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of base or bearing plate before packing with grout.
 4. Promptly pack grout solidly between bearing surfaces and base or bearing plates so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure.

C. Maintain erection tolerances of structural steel within AISC's "Code of Standard Practice for Steel Buildings and Bridges."

D. Align and adjust various members forming part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that will be in permanent contact with members. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.
 1. Level and plumb individual members of structure.
 2. Make allowances for difference between temperature at time of erection and mean temperature when structure is completed and in service.

E. Splice members only where indicated.

F. Do not use thermal cutting during erection unless approved by Architect. Finish thermally cut sections within smoothness limits in AWS D1.1.

G. Do not enlarge unfair holes in members by burning or using drift pins. Ream holes that must be enlarged to admit bolts.

H. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1 and manufacturer's written instructions.

3.4 FIELD CONNECTIONS

A. High-Strength Bolts: Install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified.
 1. Joint Type: Pretensioned.

B. Weld Connections: Comply with AWS D1.1 for welding procedure specifications, tolerances, appearance, and quality of welds and for methods used in correcting welding work.

2. Assemble and weld built-up sections by methods that will maintain true alignment of axes without exceeding tolerances of AISC's "Code of Standard Practice for Steel Buildings and Bridges" for mill material.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to inspect field welds and high-strength bolted connections.

B. Bolted Connections: Shop-bolted connections will be tested and inspected according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

C. Welded Connections: Field welds will be visually inspected according to AWS D1.1.
 1. In addition to visual inspection, field welds will be tested according to AWS D1.1 and the following inspection procedures, at testing agency’s option:
 a. Liquid Penetrant Inspection: ASTM E 165.
 b. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted.
 c. Ultrasonic Inspection: ASTM E 164.
 d. Radiographic Inspection: ASTM E 94.

D. In addition to visual inspection, test and inspect field-welded shear connectors according to requirements in AWS D1.1 for stud welding and as follows:
 1. Perform bend tests if visual inspections reveal either a less-than-continuous 360-degree flash or welding repairs to any shear connector.
 2. Conduct tests on additional shear connectors if weld fracture occurs on shear connectors already tested, according to requirements in AWS D1.1.

E. Correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.

3.6 REPAIRS AND PROTECTION

A. Repair damaged galvanized coatings on galvanized items with galvanized repair paint according to ASTM A 780 and manufacturer’s written instructions.

B. Touchup Painting: After installation, promptly clean, prepare, and prime or reprime field connections, rust spots, and abraded surfaces of prime-painted joists and accessories, bearing plates, and abutting structural steel.
 1. Clean and prepare surfaces by SSPC-SP 2 hand-tool cleaning or SSPC-SP 3 power-tool cleaning.
 2. Apply a compatible primer of same type as shop primer used on adjacent surfaces.

C. Touchup Painting: Cleaning and touchup painting are specified in Division 9 painting Sections.
SECTION 054000 - COLD-FORMED METAL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Exterior non-load-bearing wall framing.
 B. Related Requirements:
 1. Section 092216 "Non-Structural Metal Framing" for standard, interior non-load-bearing, metal-stud framing, with height limitations and ceiling-suspension assemblies.

1.3 PREINSTALLATION MEETINGS
 A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings:
 1. Include layout, spacings, sizes, thicknesses, and types of cold-formed steel framing; fabrication; and fastening and anchorage details, including mechanical fasteners.
 2. Indicate reinforcing channels, opening framing, supplemental framing, strapping, bracing, bridging, splices, accessories, connection details, and attachment to adjoining work.
 C. Delegated-Design Submittal: For cold-formed steel framing.

1.5 INFORMATIONAL SUBMITTALS
 A. Product Certificates: For each type of code-compliance certification for studs and tracks.
 B. Product Test Reports: For each listed product, for tests performed by manufacturer and witnessed by a qualified testing agency.
 1. Steel sheet.
 2. Expansion anchors.
4. Mechanical fasteners.
5. Vertical deflection clips.
6. Horizontal drift deflection clips
7. Miscellaneous structural clips and accessories.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.

B. Product Tests: Mill certificates or data from a qualified independent testing agency, indicating steel sheet complies with requirements, including base-metal thickness, yield strength, tensile strength, total elongation, chemical requirements, and metallic-coating thickness.

C. Code-Compliance Certification of Studs and Tracks: Provide documentation that framing members are certified according to the product-certification program of the Certified Steel Stud Association, the Steel Framing Industry Association or the Steel Stud Manufacturers Association.

D. Welding Qualifications: Qualify procedures and personnel according to the following:

1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design cold-formed steel framing.

B. Structural Performance: Provide cold-formed steel framing capable of withstanding design loads within limits and under conditions indicated.

1. Design Loads: As indicated on Drawings.
2. Deflection Limits: Design framing systems to withstand design loads without deflections greater than the following:
 a. Exterior Non-Load-Bearing Framing: Horizontal deflection of 1/360 of the wall height.

3. Design framing systems to provide for movement of framing members located outside the insulated building envelope without damage or overstressing, sheathing failure, connection failure, undue strain on fasteners and anchors, or other detrimental effects when subject to a maximum ambient temperature change of 120 deg F (67 deg C).

4. Design framing system to maintain clearances at openings, to allow for construction tolerances, and to accommodate live load deflection of primary building structure as follows:
a. Upward and downward movement of 3/4 inch (19 mm).

5. Design exterior non-load-bearing wall framing to accommodate horizontal deflection without regard for contribution of sheathing materials.

C. Cold-Formed Steel Framing Standards: Unless more stringent requirements are indicated, framing shall comply with AISI S100, AISI S200, and the following:
 1. Wall Studs: AISI S211.

D. Fire-Resistance Ratings: Comply with ASTM E119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Indicate design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency acceptable to authorities having jurisdiction.

2.2 COLD-FORMED STEEL FRAMING MATERIALS

A. Steel Sheet: ASTM A1003/A1003M, Structural Grade, Type H, metallic coated, of grade and coating designation as follows:
 1. Grade: As required by structural performance.
 2. Coating: G60 (Z180), A60 (ZF180), AZ50 (AZM150), or GF30 (ZGF90).

B. Steel Sheet for Vertical Deflection Clips: ASTM A653/A653M, structural steel, zinc coated, of grade and coating as follows:
 1. Grade: As required by structural performance.
 2. Coating: G60 (Z180).

2.3 EXTERIOR NON-LOAD-BEARING WALL FRAMING

A. Steel Studs: Manufacturer's standard C-shaped steel studs, of web depths indicated, punched, with stiffened flanges, and as follows:
 1. Minimum Base-Metal Thickness: 0.0428 inch (1.09 mm).
 2. Flange Width: As required by structural performance.

B. Steel Track: Manufacturer's standard U-shaped steel track, of web depths indicated, unpunched, with unstiffened flanges, and as follows:
 1. Minimum Base-Metal Thickness: 0.0538 inch (1.37 mm).
 2. Flange Width: 1-1/4 inches (32 mm).

C. Single Deflection Track: Manufacturer's single, deep-leg, U-shaped steel track; unpunched, with unstiffened flanges, of web depth to contain studs while allowing free vertical movement, with flanges designed to support horizontal loads and transfer them to the primary structure, and as follows:
1. Minimum Base-Metal Thickness: 0.0538 inch (1.37 mm)
2. Flange Width: 1 inch (25 mm) plus the design gap for one-story structures.

2.4 FRAMING ACCESSORIES

A. Fabricate steel-framing accessories from ASTM A1003/A1003M, Structural Grade, Type H, metallic coated steel sheet, of same grade and coating designation used for framing members.

B. Provide accessories of manufacturer's standard thickness and configuration, unless otherwise indicated, as follows:
 1. Supplementary framing.
 2. Bracing, bridging, and solid blocking.
 3. Web stiffeners.
 4. Anchor clips.
 5. End clips.
 6. Foundation clips.
 7. Stud kickers and knee braces.
 8. Joist hangers and end closures.

2.5 ANCHORS, CLIPS, AND FASTENERS

A. Steel Shapes and Clips: ASTM A36/A36M, zinc coated by hot-dip process according to ASTM A123/A123M.

B. Post-Installed Anchors: Fastener systems with bolts of same basic metal as fastened metal, if visible, unless otherwise indicated; with working capacity greater than or equal to the design load, according to an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC01, ICC-ES AC193, ICC-ES AC58 or ICC-ES AC308 as appropriate for the substrate.
 1. Uses: Securing cold-formed steel framing to structure.
 2. Type: Torque-controlled expansion anchor.
 3. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B633 or ASTM F1941 (ASTM F1941M), Class Fe/Zn 5, unless otherwise indicated.

C. Power-Actuated Anchors: Fastener systems with working capacity greater than or equal to the design load, according to an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

 1. Head Type: Low-profile head beneath sheathing; manufacturer's standard elsewhere.
E. Welding Electrodes: Comply with AWS standards.

2.6 MISCELLANEOUS MATERIALS

A. Galvanizing Repair Paint: ASTM A780/A780M.

B. Cement Grout: Portland cement, ASTM C150/C150M, Type I; and clean, natural sand, ASTM C404. Mix at ratio of 1 part cement to 2-1/2 parts sand, by volume, with minimum water required for placement and hydration.

C. Nonmetallic, Nonshrink Grout: Factory-packaged, nonmetallic, noncorrosive, nonstaining grout, complying with ASTM C1107/C1107M, and with a fluid consistency and 30-minute working time.

D. Shims: Load-bearing, high-density, multimonomer, nonleaching plastic; or cold-formed steel of same grade and metallic coating as framing members supported by shims.

E. Sealer Gaskets: Closed-cell neoprene foam, 1/4 inch (6 mm) thick, selected from manufacturer's standard widths to match width of bottom track or rim track members as required.

2.7 FABRICATION

A. Fabricate cold-formed steel framing and accessories plumb, square, and true to line, and with connections securely fastened, according to referenced AISI's specifications and standards, manufacturer's written instructions, and requirements in this Section.

1. Fabricate framing assemblies using jigs or templates.
2. Cut framing members by sawing or shearing; do not torch cut.
3. Fasten cold-formed steel framing members by welding, screw fastening, clinch fastening, pneumatic pin fastening, or riveting as standard with fabricator. Wire tying of framing members is not permitted.
 a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 b. Locate mechanical fasteners and install according to Shop Drawings, with screws penetrating joined members by no fewer than three exposed screw threads.

4. Fasten other materials to cold-formed steel framing by welding, bolting, pneumatic pin fastening, or screw fastening, according to Shop Drawings.

B. Reinforce, stiffen, and brace framing assemblies to withstand handling, delivery, and erection stresses. Lift fabricated assemblies by means that prevent damage or permanent distortion.

C. Tolerances: Fabricate assemblies level, plumb, and true to line to a maximum allowable variation of 1/8 inch in 10 feet (1:960) and as follows:

1. Spacing: Space individual framing members no more than plus or minus 1/8 inch (3 mm) from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.
2. Squareness: Fabricate each cold-formed steel framing assembly to a maximum out-of-square tolerance of 1/8 inch (3 mm).

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, conditions, and abutting structural framing for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Before sprayed fire-resistive materials are applied, attach continuous angles, supplementary framing, or tracks to structural members indicated to receive sprayed fire-resistive materials.

B. After applying sprayed fire-resistive materials, remove only as much of these materials as needed to complete installation of cold-formed framing without reducing thickness of fire-resistive materials below that required to obtain fire-resistance ratings indicated. Protect remaining fire-resistive materials from damage.

C. Install load-bearing shims or grout between the underside of load-bearing wall bottom track and the top of foundation wall or slab at locations with a gap larger than 1/4 inch (6 mm) to ensure a uniform bearing surface on supporting concrete or masonry construction.

D. Install sealer gaskets at the underside of wall bottom track or rim track and at the top of foundation wall or slab at stud or joist locations.

3.3 INSTALLATION, GENERAL

A. Cold-formed steel framing may be shop or field fabricated for installation, or it may be field assembled.

B. Install cold-formed steel framing according to AISI S200, AISI S202, and manufacturer's written instructions unless more stringent requirements are indicated.

C. Install shop- or field-fabricated, cold-formed framing and securely anchor to supporting structure.

1. Screw, bolt, or weld wall panels at horizontal and vertical junctures to produce flush, even, true-to-line joints with maximum variation in plane and true position between fabricated panels not exceeding 1/16 inch (1.6 mm).

D. Install cold-formed steel framing and accessories plumb, square, and true to line, and with connections securely fastened.
1. Cut framing members by sawing or shearing; do not torch cut.
2. Fasten cold-formed steel framing members by welding, screw fastening, clinch fastening, or riveting. Wire tying of framing members is not permitted.
 a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 b. Locate mechanical fasteners, install according to Shop Drawings, and comply with requirements for spacing, edge distances, and screw penetration.

E. Install framing members in one-piece lengths unless splice connections are indicated for track or tension members.

F. Install temporary bracing and supports to secure framing and support loads equal to those for which structure was designed. Maintain braces and supports in place, undisturbed, until entire integrated supporting structure has been completed and permanent connections to framing are secured.

G. Do not bridge building expansion joints with cold-formed steel framing. Independently frame both sides of joints.

H. Install insulation, specified in Section 072100 "Thermal Insulation," in framing-assembly members, such as headers, sills, boxed joists, and multiple studs at openings, that are inaccessible on completion of framing work.

I. Fasten hole-reinforcing plate over web penetrations that exceed size of manufacturer's approved or standard punched openings.

3.4 EXTERIOR NON-LOAD-BEARING WALL INSTALLATION

A. Install continuous tracks sized to match studs. Align tracks accurately and securely anchor to supporting structure.

B. Fasten both flanges of studs to top and bottom track unless otherwise indicated. Space studs as follows:
 1. Stud Spacing As indicated on Drawings.

C. Set studs plumb, except as needed for diagonal bracing or required for nonplumb walls or warped surfaces and similar requirements.

D. Isolate non-load-bearing steel framing from building structure to prevent transfer of vertical loads while providing lateral support.
 1. Install single deep-leg deflection tracks and anchor to building structure.
 2. Connect vertical deflection clips to infill studs and anchor to building structure.

E. Install horizontal bridging in wall studs, spaced vertically in rows indicated on Shop Drawings but not more than 48 inches (1220 mm) apart. Fasten at each stud intersection.
1. Channel Bridging: Cold-rolled steel channel, welded or mechanically fastened to webs of punched studs.

2. Strap Bridging: Combination of flat, taut, steel sheet straps of width and thickness indicated and stud-track solid blocking of width and thickness to match studs. Fasten flat straps to stud flanges and secure solid blocking to stud webs or flanges.

3. Bar Bridging: Proprietary bridging bars installed according to manufacturer’s written instructions.

F. Top Bridging for Single Deflection Track: Install row of horizontal bridging within 12 inches (305 mm) of single deflection track. Install a combination of bridging and stud or stud-track solid blocking of width and thickness matching studs, secured to stud webs or flanges.

1. Install solid blocking at 96-inch (2440-mm) centers or centers indicated on Shop Drawings.

G. Install miscellaneous framing and connections, including stud kickers, web stiffeners, clip angles, continuous angles, anchors, and fasteners, to provide a complete and stable wall-framing system.

3.5 ERECTION TOLERANCES

A. Install cold-formed steel framing level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet (1:960) and as follows:

1. Space individual framing members no more than plus or minus 1/8 inch (3 mm) from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.

3.6 FIELD QUALITY CONTROL

A. Testing: Owner will engage a qualified independent testing and inspecting agency to perform field tests and inspections and prepare test reports.

B. Field and shop welds will be subject to testing and inspecting.

C. Testing agency will report test results promptly and in writing to Contractor and Architect.

D. Cold-formed steel framing will be considered defective if it does not pass tests and inspections.

E. Additional testing and inspecting, at Contractor’s expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.7 REPAIRS AND PROTECTION

A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on fabricated and installed cold-formed steel framing with galvanized repair paint according to ASTM A780/A780M and manufacturer’s written instructions.
B. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that cold-formed steel framing is without damage or deterioration at time of Substantial Completion.

END OF SECTION 054000
SECTION 055000 - METAL FABRICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Aluminum perforated metal panel system.
 2. Aluminum framing and supports for perforated metal panel system.
 3. Aluminum ladder with cage and walkthrough.

1.3 COORDINATION

A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.

B. Coordinate installation of metal fabrications that are anchored to or that receive other work. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

1.4 ACTION SUBMITTALS

A. Product Data: For the following:
 1. Fasteners.
 2. Shop primers.
 3. Manufactured metal ladders.
 4. Ladder safety cages.

B. Shop Drawings: Show fabrication and installation details. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items. Provide Shop Drawings for the following:
 1. Aluminum framing and supports for applications where framing and supports are not specified in other Sections.
 2. Metal ladders.
 3. Ladder safety cages.
1.5 INFORMATIONAL SUBMITTALS

A. Welding certificates.

B. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.

C. Research/Evaluation Reports: For post-installed anchors, from ICC-ES.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel in accordance with the following:

1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
2. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."
3. AWS D1.6/D1.6M, "Structural Welding Code - Stainless Steel."

1.7 FIELD CONDITIONS

A. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes acting on exterior metal fabrications by preventing buckling, opening of joints, overstressing of components, failure of connections, and other detrimental effects.

1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

B. Structural Performance of Aluminum Ladders: Ladders, including landings, shall withstand the effects of loads and stresses within limits and under conditions specified in ANSI A14.3.

2.2 METALS

A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.

B. Steel Plates, Shapes, and Bars: ASTM A36/A36M.

C. Steel Tubing: ASTM A500/A500M, cold-formed steel tubing.

D. Steel Pipe: ASTM A53/A53M, Standard Weight (Schedule 40) unless otherwise indicated.

E. Stainless Steel Sheet, Strip, and Plate: ASTM A240/A240M or ASTM A666, Type 304.
F. Stainless Steel Bars and Shapes: ASTM A276/A276M, Type 304.

G. Slotted Channel Framing: Cold-formed metal box channels (struts) complying with MFMA-4.
 1. Size of Channels: 1-5/8 by 1-5/8 inches
 2. Material: Cold-rolled steel, ASTM A1008/A1008M, structural steel, Grade 33; 0.0677-inch minimum thickness; coated with rust-inhibitive, baked-on, acrylic enamel.

J. Aluminum Castings: ASTM B26/B26M, Alloy 443.0-F.

2.3 FASTENERS

A. General: Unless otherwise indicated, provide Type 304 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5, at exterior walls. Select fasteners for type, grade, and class required.
 1. Provide stainless-steel fasteners for fastening aluminum.

B. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A307, Grade A; with hex nuts, ASTM A563; and, where indicated, flat washers.

C. Stainless-Steel Bolts and Nuts: Regular hexagon-head annealed stainless-steel bolts, ASTM F 593; with hex nuts, ASTM F 594; and, where indicated, flat washers; Alloy Group 1.

D. Anchor Bolts: ASTM F 1554, Grade 36, of dimensions indicated; with nuts, ASTM A 563; and, where indicated, flat washers.
 1. Hot-dip galvanize or provide mechanically deposited, zinc coating where item being fastened is indicated to be galvanized.

E. Anchors, General: Anchors capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488, conducted by a qualified independent testing agency.

F. Post-Installed Anchors: chemical anchors.

G. Slotted-Channel Inserts: Cold-formed, hot-dip galvanized-steel box channels (struts) complying with MFMA-4, 1-5/8 by 7/8 inches by length indicated with anchor straps or studs not less than 3 inches long at not more than 8 inches o.c. Provide with temporary filler and tee-head bolts, complete with washers and nuts, all zinc-plated to comply with ASTM B 633, Class Fe/Zn 5, as needed for fastening to inserts.

2.4 MISCELLANEOUS MATERIALS

A. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.
1. Use primer containing pigments that make it easily distinguishable from zinc-rich primer.

B. Shop Primer for Galvanized Steel: Primer formulated for exterior use over zinc-coated metal and compatible with finish paint systems indicated.

C. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.

2.5 FABRICATION, GENERAL

A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.

B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.

C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.

D. Form exposed work with accurate angles and surfaces and straight edges.

E. Weld corners and seams continuously to comply with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing.

F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners or welds where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) fasteners unless otherwise indicated. Locate joints where least conspicuous.

G. Fabricate seams and other connections that are exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.

H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.

I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.
2.6 MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.

B. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.
 1. Furnish inserts for units installed after concrete is placed.

C. Galvanize miscellaneous framing and supports where indicated.

D. Prime miscellaneous framing and supports with zinc-rich primer where indicated.

2.7 PERFORATED METAL PANELS

A. Aluminum sheets with stamped or water jet cut custom pattern and factory milled edge. Aluminum sheets and shapes shop-formed.
 2. Pattern file to be provided by Architect.
 3. General locations: At stair brick stair towers.
 4. Powder-coated paint finish and color to be selected by Architect from Manufacturer's standard options.
 5. Aluminum sheet thickness shall be 3/16 inches.
 7. Overall individual panel dimensions shall not be greater than 5 feet in width and 12 feet in height. Refer to Drawings for panel dimensions.
 8. Fastening openings at the edges of formed panel edges shall be slotted and provide at minimum ¾ inches of vertical clear opening to accommodate for differential due to thermal expansion of the panel.
 9. Perforations shall create 20-30% openness of the panel.
 10. Perforations shall be of a shape and size to be selected by the Architect.

2.8 METAL LADDERS

A. General:

B. Aluminum Ladders:
 1. Basis of Design: Provide fixed ladder with cage BT Precision Ladder, LLC. Phone: 423-586-2265, or approved equal.
 2. Space siderails 24 inches apart unless otherwise indicated.
 3. Siderails: Continuous extruded-aluminum channels or tubes, not less than 2-1/2 inches deep, 3/4 inch wide, and 1/8 inch thick.
 4. Rungs: 2-1/4” serrated aluminum rung.
 5. Fit rungs in centerline of siderails; fasten by welding or with stainless steel fasteners or brackets and aluminum rivets.
 6. 1/4”x2” safety cage.
 7. 1-1/4” aluminum square tubing safety bars.
8. Provide platforms as indicated fabricated from pressure-locked aluminum bar grating, supported by extruded-aluminum framing. Limit openings in gratings to no more than 3/4 inch (19 mm) in least dimension.
9. Support each ladder at top and bottom and not more than 60 inches o.c. with welded or bolted aluminum brackets. Coordinate supports with steel backup structure.
10. Provide minimum 72-inch-high, hinged security door with padlock hasp at foot of ladder to prevent unauthorized ladder use.

2.9 LADDER SAFETY CAGES

A. General:
 1. Fabricate ladder safety cages to comply with ANSI A14.3. Assemble by welding or with stainless steel fasteners.
 2. Provide primary hoops at tops and bottoms of cages and spaced not more than 20 feet o.c. Provide secondary intermediate hoops spaced not more than 48 inches o.c. between primary hoops.
 3. Fasten assembled safety cage to ladder rails and adjacent construction by welding or with stainless steel fasteners unless otherwise indicated.

B. Aluminum Ladder Safety Cages: Bases of Design, Precision Ladders, LLC. Phone: 423-586-2265
 1. Primary Hoops: 1/4-by-4-inch flat bar hoops.
 3. Vertical Bars: 1/4-by-2-inch flat bars secured to each hoop.

2.10 MISCELLANEOUS STEEL TRIM

A. Unless otherwise indicated, fabricate units from steel shapes, plates, and bars of profiles shown with continuously welded joints and smooth exposed edges. Miter corners and use concealed field splices where possible.
B. Provide cutouts, fittings, and anchorages as needed to coordinate assembly and installation with other work.
C. Galvanize and prime exterior miscellaneous steel trim.

2.11 LOOSE BEARING AND LEVELING PLATES

A. Provide loose bearing and leveling plates for steel items bearing on masonry or concrete construction. Drill plates to receive anchor bolts and for grouting.
B. Galvanize plates.
C. Prime plates with zinc-rich primer.
2.12 STEEL WELD PLATES AND ANGLES

A. Provide steel weld plates and angles not specified in other Sections, for items supported from concrete construction as needed to complete the Work. Provide each unit with no fewer than two integrally welded steel strap anchors for embedding in concrete.

2.13 FINISHES, GENERAL

A. Finish metal fabrications after assembly.

B. Finish exposed surfaces to remove tool and die marks and stretch lines, and to blend into surrounding surface.

2.14 STEEL AND IRON FINISHES

A. Galvanizing: Hot-dip galvanize items as indicated to comply with ASTM A 153 for steel and iron hardware and with ASTM A 123 for other steel and iron products.
 1. Do not quench or apply post galvanizing treatments that might interfere with paint adhesion.

2.15 ALUMINUM

A. Fabricate products from alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated, and with strength and durability properties for each aluminum form required not less than that of alloy and temper designated below.

B. Bars and Shapes: ASTM B221, Alloy 6063-T5/T52

C. Tubing: ASTM B210, Alloy 6063-T832

D. Plate and Sheet: ASTM B209, Alloy 6061-T6

E. Forgings: ASTM B247, Alloy 6061-T6

F. Castings: ASTM B26/B26M, Alloy A356.0-T6

2.16 ALUMINUM FINISHES

A. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designing aluminum finishes.

B. High-Performance Organic Two-Coat Fluoropolymer Finish: AAMA 2604 and containing not less than 70 percent polyvinylidene fluoride (PVDF) resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers’ written instructions.
PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.

B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.

C. Field Welding: Comply with the following requirements:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag screws, wood screws, and other connectors.

E. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.

F. Corrosion Protection: Coat concealed surfaces of aluminum that come into contact with grout, concrete, masonry, wood, or dissimilar metals with the following:
 1. Cast Aluminum: Heavy coat of bituminous paint.
 2. Extruded Aluminum: Two coats of clear lacquer.

3.2 INSTALLING MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings.

B. Support steel girders on solid grouted masonry, concrete, or steel pipe columns. Secure girders with anchor bolts embedded in grouted masonry or concrete or with bolts through top plates of pipe columns.
 1. Where grout space under bearing plates is indicated for girders supported on concrete or masonry, install as specified in "Installing Bearing and Leveling Plates" Article.

C. Install pipe columns on concrete footings with grouted baseplates. Position and grout column baseplates as specified in "Installing Bearing and Leveling Plates" Article.
1. Grout baseplates of columns supporting steel girders after girders are installed and leveled.

3.3 INSTALLING BEARING AND LEVELING PLATES

B. Set bearing and leveling plates on wedges, shims, or leveling nuts. After bearing members have been positioned and plumbed, tighten anchor bolts. Do not remove wedges or shims but, if protruding, cut off flush with edge of bearing plate before packing with nonshrink grout. Pack grout solidly between bearing surfaces and plates to ensure that no voids remain.

3.4 ADJUSTING AND CLEANING

A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 1. Apply by brush or spray to provide a minimum 2.0-mil dry film thickness.

B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A 780/A 780M.

C. Unless otherwise indicated, clean materials by washing thoroughly with clean water and soap, rinsing with clean water, and drying with soft cloths.

D. Touchup Painting: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint and specified in Section 099113 “Exterior Painting.”

E. Protect finishes of decorative metal from damage during construction period with temporary protective coverings approved by decorative metal fabricator. Remove protective covering at time of Substantial Completion.

F. Restore finishes damaged during installation and construction period so no evidence remains of correction work. Return items that cannot be refinished in the field to the shop; make required alterations and refinish entire unit, or provide new units.

END OF SECTION 055000
SECTION 061000 - ROUGH CARPENTRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Wood blocking and nailers
 2. Fire treated wood blocking.

1.3 DEFINITIONS
A. Dimension Lumber: Lumber of 2 inches nominal or greater but less than 5 inches nominal in least dimension.
B. Lumber grading agencies, and the abbreviations used to reference them, include the following:
 2. NLGA: National Lumber Grades Authority.
 3. RIS: Redwood Inspection Service.
 5. WCLIB: West Coast Lumber Inspection Bureau.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.

1.5 INFORMATIONAL SUBMITTALS
A. Evaluation Reports: For the following, from ICC-ES:
 1. Wood-preservative-treated wood.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Stack lumber flat with spacers beneath and between each bundle to provide air circulation. Protect lumber from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.

1. Factory mark each piece of lumber with grade stamp of grading agency.
2. Where nominal sizes are indicated, provide actual sizes required by DOC PS 20 for moisture content specified. Where actual sizes are indicated, they are minimum dressed sizes for dry lumber.

B. Maximum Moisture Content of Lumber: 19 percent unless otherwise indicated.

2.2 WOOD-PRESERVATIVE-TREATED LUMBER

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC3b.
 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.

B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or that does not comply with requirements for untreated material.

C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.

D. Application: Treat all rough carpentry indicated on Drawings.

2.3 MISCELLANEOUS LUMBER

A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:

 1. Blocking.
 2. Nailers.

B. For concealed boards, provide lumber with 19 percent maximum moisture content and any of the following species and grades:

 1. Mixed southern pine; No. 2 grade; SPIB.
2. Hem-fir or hem-fir (north); Construction or No. 2 Common grade; NLGA, WCLIB, or WWPA.
3. Spruce-pine-fir (south) or spruce-pine-fir; Construction or No. 2 Common grade; NeLMA, NLGA, WCLIB, or WWPA.

C. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.

D. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots and other defects that will interfere with attachment of other work.

2.4 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.

1. Where rough carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A 153.

B. Nails, Brads, and Staples: ASTM F 1667.

D. Wood Screws: ASME B18.6.1.

E. Lag Bolts: ASME B18.2.1.

F. Bolts: Steel bolts complying with ASTM A 307, Grade A; with ASTM A 563 hex nuts and, where indicated, flat washers.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Set rough carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit rough carpentry to other construction; scribe and cope as needed for accurate fit. Locate nailers, blocking and similar supports to comply with requirements for attaching other construction.

B. Provide blocking and framing as indicated and as required to support facing materials, fixtures, specialty items, and trim.

C. Sort and select lumber so that natural characteristics will not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.
D. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.
 1. Use inorganic boron for items that are continuously protected from liquid water.
 2. Use copper naphthenate for items not continuously protected from liquid water.

E. Where wood-preservation-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

F. Securely attach rough carpentry work to substrate by anchoring and fastening as indicated, complying with the following:

G. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.

3.2 WOOD BLOCKING AND NAILER INSTALLATION

A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.

B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.

END OF SECTION 061000
SECTION 061600 – EXTERIOR SHEATHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Wall sheathing.

B. Related Requirements:
 1. Section 061000 “Rough Carpentry”.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated plywood complies with requirements. Indicate type of preservative used and net amount of preservative retained.
 2. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.

1.4 QUALITY ASSURANCE

A. Testing Agency Qualifications: For testing agency providing classification marking for fire-retardant-treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Stack panels flat with spacers beneath and between each bundle to provide air circulation. Protect sheathing from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.
PART 2 - PRODUCTS

2.1 WALL SHEATHING

A. Glass-Mat Gypsum Wall Sheathing: ASTM C 1177/1177M.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. CertainTeed Corporation; GlasRoc.
 b. G-P Gypsum Corporation; Dens-Glass Gold.
 c. National Gypsum Company; Gold Bond e(2)XP.
 d. United States Gypsum Co.; Securock.

 2. Type and Thickness: Type X, 5/8 inch (15.9 mm) thick.
 3. Size: 48 by 96 inches (1219 by 2438 mm) for vertical installation.

B. Plywood Sheathing: Doc PS1, Exterior Sheathing.
 1. Span rating: Not less than 24/0.
 2. Nominal Thickness: Not less than 5/8 inch.

2.2 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 1. For wall sheathing, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M.

C. Screws for Fastening Gypsum Sheathing to Cold-Formed Metal Framing: Steel drill screws, in length recommended by sheathing manufacturer for thickness of sheathing to be attached, with organic-polymer or other corrosion-protective coating having a salt-spray resistance of more than 800 hours according to ASTM B 117.
 1. For steel framing less than 0.0329 inch (0.835 mm) thick, use screws that comply with ASTM C 1002.

D. Screws for Fastening Wood Structural Panels to Cold-Formed Metal Framing: ASTM C954, except with wafer heads and reamer wings, length as recommended by screw manufacturer for material being fastened.
2.3 SHEATHING JOINT-AND-PENETRATION TREATMENT MATERIALS

A. Sealant for Glass-Mat Gypsum Sheathing: Silicone emulsion sealant complying with ASTM C834, compatible with sheathing tape and sheathing and recommended by tape and sheathing manufacturers for use with glass-fiber sheathing tape and for covering exposed fasteners.

1. Sheathing Tape: Self-adhering glass-fiber tape, minimum 2 inches wide, 10 by 10 or 10 by 20 threads/inch, of type recommended by sheathing and tape manufacturers for use with silicone emulsion sealant in sealing joints in glass-mat gypsum sheathing and with a history of successful in-service use.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement. Arrange joints so that pieces do not span between fewer than three support members.

B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction unless otherwise indicated.

C. Securely attach to substrate by fastening as indicated, complying with the following:

1. NES NER-272 for power-driven fasteners.
2. Table 2304.9.1, "Fastening Schedule," in ICC's "International Building Code."

D. Coordinate wall sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.

E. Do not bridge building expansion joints; cut and space edges of panels to match spacing of structural support elements.

F. Coordinate sheathing installation with installation of materials installed over sheathing so sheathing is not exposed to precipitation or left exposed at end of the workday when rain is forecast.

G. Do not bridge building expansion joints; cut and space edges of panels to match spacing of structural support elements.

H. Coordinate sheathing installation with installation of materials installed over sheathing so sheathing is not exposed to precipitation or left exposed at end of the workday when rain is forecast.

3.2 GYPSUM SHEATHING INSTALLATION

A. Comply with GA-253 and with manufacturer's written instructions.
1. Fasten gypsum sheathing to cold-formed metal framing with screws.
2. Install boards with a 3/8-inch (9.5-mm) gap where non-load-bearing construction abuts structural elements.
3. Install boards with a 1/4-inch (6.4-mm) gap where they abut masonry or similar materials that might retain moisture, to prevent wicking.

B. Apply fasteners so heads bear tightly against face of sheathing, but do not cut into facing.

C. Horizontal Installation: Install sheathing with V-grooved edge down and tongue edge up. Interlock tongue with groove to bring long edges in contact with edges of adjacent boards without forcing. Abut ends of boards over centers of studs, and stagger end joints of adjacent boards not less than one stud spacing. Attach boards at perimeter and within field of board to each steel stud.
 1. Space fasteners approximately 8 inches (200 mm) o.c. and set back a minimum of 3/8 inch (9.5 mm) from edges and ends of boards.
 2. Tape all the joints.

D. Vertical Installation: Install board vertical edges centered over studs. Abut ends and edges of each board with those of adjacent boards. Attach boards at perimeter and within field of board to each stud.
 1. Space fasteners approximately 8 inches (200 mm) o.c. and set back a minimum of 3/8 inch (9.5 mm) from edges and ends of boards.
 2. Tape all the joints.

E. Seal sheathing joints according to sheathing manufacturer's written instructions.
 1. Apply glass-fiber sheathing tape to glass-mat gypsum sheathing joints and apply and trowel sealant to embed entire face of tape in sealant. Apply sealant to exposed fasteners with a trowel so fasteners are completely covered. Seal other penetrations and openings.

3.3 WOOD STRUCTURAL PANEL INSTALLATION

B. Fastening Methods: Fasten panels as indicated below:
 1. Wall Sheathing
 a. Screw to cold-formed metal framing.
 b. Space panels 1/8 inch (3mm) apart at edges and ends.

END OF SECTION 061600
SECTION 064023 – INTERIOR ARCHITECTURAL WOODWORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Wood furring, blocking, shims, and hanging strips for installing interior architectural woodwork items that are not concealed within other construction.
2. Solid surface material countertops.
3. Solid surface material window sills.
5. Plastic-laminate countertops.
6. Cabinet hardware and accessories.
7. Manufactured cabinets.

1.3 ACTION SUBMITTALS

A. Product Data: For countertop materials and sinks.

B. Shop Drawings: Show materials, finishes, edge and backsplash profiles, methods of joining, and cutouts for plumbing fixtures.

1. Show locations and details of joints.
2. Show direction of directional pattern, if any.

C. Samples for Verification: For the following products:

1. Window sill material, 6 inches (150 mm) square.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For fabricator.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For solid surface material window sills to include in maintenance manuals. Include Product Data for care products used or recommended by Installer and names, addresses, and telephone numbers of local sources for products.
1.6 QUALITY ASSURANCE
A. Fabricator Qualifications: Shop that employs skilled workers who custom-fabricate window sills similar to that required for this Project, and whose products have a record of successful in-service performance.
B. Installer Qualifications: Fabricator of window sills.

1.7 FIELD CONDITIONS
A. Field Measurements: Verify dimensions of window sills by field measurements after sill wall are installed but before window sills fabrication is complete.
B. Field Verification: Prior to construction, field-verify and document all finishes for casework within or adjacent to Limits of Construction.
 1. If casework is indicated in the Drawings as new or modified, match new or patched finishes with existing finishes.
 2. If finishes are discontinued, report to Architect or Owner’s Representative before proceeding with casework finishing.

1.8 COORDINATION
A. Coordinate locations of utilities that will penetrate window sills.

PART 2 - PRODUCTS

2.1 INTERIOR ARCHITECTURAL WOODWORK, GENERAL
A. Quality Standard: Unless otherwise indicated, comply with the "Architectural Woodwork Standards" for grades of interior architectural woodwork indicated for construction, finishes, installation, and other requirements.
 1. Provide inspections of fabrication and installation together with labels and certificates from AWI certification program indicating that woodwork complies with requirements of grades specified.
 2. The Contract Documents contain requirements that are more stringent than the referenced quality standard. Comply with requirements of Contract Documents in addition to those of the referenced quality standard.

2.2 WOOD MATERIALS
A. Wood Products: Provide materials that comply with requirements of referenced quality standard for each type of interior architectural woodwork and quality grade specified unless otherwise indicated.
 1. Do not use plain-sawn softwood lumber with exposed, flat surfaces more than 3 inches wide.
2. Wood Moisture Content: 5 to 10 percent.

B. Composite Wood and Agrifiber Products: Provide materials that comply with requirements of referenced quality standard for each type of interior architectural woodwork and quality grade specified unless otherwise indicated.
 1. Composite Wood Products: Products shall be made without urea formaldehyde.

4. Veneer-Faced Panel Products (Hardwood Plywood): HPDL.

2.3 SOLID SURFACE COUNTERTOP MATERIALS

1. Basis-of-Design Product: Subject to compliance with requirements, provide Formica Solid Surfacing or comparable product by one of the following:
 a. Formica Corporation
 b. Wilsonart
 c. Corian

2. Type: Provide Standard Type unless Special Purpose type is indicated.
3. Colors and Patterns: To be selected by Architect from Manufacturer’s standard selection.

2.5 SOLID SURFACE WINDOW SILL MATERIALS

1. Basis-of-Design Product: Subject to compliance with requirements, provide DuPont Corian Solid Surface or comparable product by one of the following:
 a. DuPont Corian
 b. Wilsonart
 c. Formica Corporation

2. Type: Provide Standard Type unless Special Purpose type is indicated.
3. Colors and Patterns: Fossil.

2.7 MISCELLANEOUS MATERIALS

A. Furring, Blocking, Shims, and Nailers: Softwood or hardwood lumber, kiln-dried to less than 15 percent moisture content.

B. Provide self-drilling screws for metal-framing supports, as recommended by metal-framing manufacturer.

C. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage. Provide metal expansion sleeves or expansion bolts for post-installed anchors. Use nonferrous-metal or hot-dip galvanized anchors and inserts at inside face of exterior walls and at floors.

D. Adhesives: Do not use adhesives that contain urea formaldehyde.
E. Installation Adhesive: Product recommended by fabricator for each substrate for secure anchorage.
 1. Adhesives shall have a VOC content of 70 g/L or less.

F. Z-Clip/Panel Clips.
 2. Standard Clip Length: min. 72-inch, max. 144-inch; field cut and install as required for paneling extents shown per drawings.

G. Vinyl Countertop Edge
 1. PVC tee-molding to match thickness of countertops, color as scheduled.

2.8 INSTALLATION MATERIALS

A. Adhesive: Product recommended by solid surface material manufacturer.

B. Sealant for window sills: Comply with applicable requirements in Section 079200 "Joint Sealants."

2.9 PLASTIC-LAMINATE CABINETS

A. AWI Type of Cabinet Construction: Custom.

B. Laminate Cladding for Exposed Surfaces: High-pressure decorative laminate complying with the following requirements:
 1. Horizontal Surfaces Other Than Tops: Grade HGS.
 2. Postformed Surfaces: Grade HGP.
 3. Vertical Surfaces: Grade VGS.
 4. Edges: PVC edge banding, 0.12 inch thick, matching laminate in color, pattern, and finish.

C. Materials for Semiexposed Surfaces:
 1. Surfaces Other Than Drawer Bodies: Thermoset decorative panels.
 2. Drawer Sides and Backs: Thermoset decorative panels.
 3. Drawer Bottoms: Thermoset decorative panels.

D. Concealed Backs of Panels with Exposed Plastic Laminate Surfaces: High-pressure decorative laminate, Grade BKL.

E. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:
 1. To be selected by Architect from Manufacturer’s full range.
 2. Wood-look Laminate: Typical grain direction to be vertical.

F. Provide dust panels of 1/4-inch plywood or tempered hardboard above compartments and drawers, unless located directly under tops.
2.10 PLASTIC-LAMINATE COUNTERTOPS

A. High-Pressure Decorative Laminate Grade: HGS.

B. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:
 1. To be selected by Architect from Manufacturer’s full range.

C. Grain Direction: Parallel to cabinet fronts.

D. Edge Treatment: PVC tee-molding to match thickness of countertops, color as scheduled.

E. Core Material: Fabricate using two layers of ¾ inch plywood covered with HPDL.

F. Core Material at Sinks: Fabricate using two layers of ¾ inch exterior-grade plywood.

G. Backer Sheet: Provide plastic-laminate backer sheet, Grade BKL, on underside of countertop substrate.

2.11 COUNTERTOP SUPPORT BRACKETS

A. Wall, flush mounted, heavy duty, welded aluminum bracket for supporting countertops.
 1. Manufacturer: Subject to compliance with requirements, provide product by one of the following:
 a. Rakks/Rangine Corporation; #EH1824FM (18x24) or #EH1818FM (18x18) or approved equal.

B. Material: Fabricate components from extruded aluminum sections complying with ASTM B221, 6063-T5 alloy and temper.

C. Finish: Clear anodized aluminum.

D. Flush mounted counter brackets: Bracket for 24 inch deep countertops..
 1. Construction: Fabricated from horizontal aluminum T section and vertical aluminum L section. Vertical leg designed to attach to side of supporting stud and be concealed by gypsum board.
 2. Size (height by depth): 18 inches by 18 inches.
 3. Load capacity per bracket: 300 pounds.

E. Flush mounted counter brackets: Bracket for 30 inch or greater deep countertops..
 1. Construction: Fabricated from horizontal aluminum T section and vertical aluminum L section. Vertical leg designed to attach to side of supporting stud and be concealed by gypsum board.
 2. Size (height by depth): 18 inches by 24 inches.
 3. Load capacity per bracket: 300 pounds.

2.12 CABINET HARDWARE AND ACCESSORIES

A. Cabinet door hinges: 5-knuckle hinges.
B. Wire Pulls: U-shaped wire pull, 4 inch centers.

C. Shelf Rests: BHMA A156.9, B04013; metal.

D. Drawer Slides: BHMA A156.9.
 1. Grade 1 and Grade 2: Bottom corner-mounted; full-extension type; 100-lb load rated epoxy-coated steel with smooth and quiet nylon rollers. Positive stop both directions with self-closing feature. Paper storage, 150-pound load rated epoxy coating steel slides.
 2. For drawers not more than 3 inches high and not more than 24 inches wide, provide Grade 1.
 3. For drawers more than 3 inches high but not more than 6 inches high and not more than 24 inches wide, provide Grade 1.

E. Cabinet Locks:
 1. Door Locks: BHMA A156.11, E07121.
 a. CompX National Stock Locks – Master Keyed to E041A.
 b. Ives Elbow Catches IV2-A92.
 2. Drawer Locks: BHMA A156.11, E07041.

F. Door and Drawer Silencers: BHMA A156.16, L03011.

G. Floor Stop:
 1. Basis of Design: Rockwood, 446, US26D.

H. Exposed Hardware Finishes: For exposed hardware, provide finish that complies with BHMA A156.18 for BHMA finish number indicated.
 1. Satin Chromium Plated: BHMA 626 for brass or bronze base; BHMA 652 for steel base.

I. For concealed hardware, provide manufacturer's standard finish that complies with product class requirements in BHMA A156.9.

2.13 MANUFACTURED CABINETS

A. Manufacturers: Subject to compliance with requirements, pre-approved manufacturer offering products that may be incorporated into the Work include:
 1. Seville Woodworks.
 a. 1516 I-70 Complex Dr. Columbia, MO 65201
 b. Phone 573-442-4425
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates to receive solid surface material window sills and conditions under which window sills will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of window sills.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 WINDOW SILL INSTALLATION

A. Fabricate window sills according to solid surface material manufacturer's written instructions and to the AWI/AWMAC/WI's "Architectural Woodwork Standards: Custom."

B. Window sills: 1/2-inch thick, solid surface material with front edge built up with same material.

C. Fabricate sills with shop-applied edges unless otherwise indicated. Comply with solid surface material manufacturer's written instructions for adhesives, sealers, fabrication, and finishing.

D. Joints: Fabricate window sills without joints.

E. Joints: Where necessary, fabricate window sills in sections for joining in field.

1. Joint Locations: Where multiple sections are required for a continuous window sill, coordinate joints at the center of the window sill or at equally spaced center lines along the length of the sill.

F. Install window sills level to a tolerance of 1/8 inch in 8 feet, 1/4 inch maximum. Do not exceed 1/64-inch difference between planes of adjacent units.

G. Predrill holes for screws as recommended by manufacturer. Align adjacent surfaces and, using adhesive in color to match countertop, form seams to comply with manufacturer's written instructions. Carefully dress joints smooth, remove surface scratches, and clean entire surface.

H. Bond joints with adhesive and draw tight as window sills are set. Mask areas of window sills adjacent to joints to prevent adhesive smears.

1. Clamp units to temporary bracing, supports, or each other to ensure that window sills are properly aligned and joints are of specified width.

I. Apply sealant to gaps at walls; comply with Section 079200 “Joint Sealants”.

3.3 PREPARATION

A. Before installation, condition woodwork to average prevailing humidity conditions in installation areas.

B. Before installing woodwork, examine shop-fabricated work for completion and complete work as required.
3.4 ARCHITECTURAL WOODWORK INSTALLATION

A. Grade: Install woodwork to comply with same grade as item to be installed.

B. Assemble woodwork and complete fabrication at Project site to the extent that it was not completed in the shop.

C. Install woodwork level, plumb, true, and straight. Shim as required with concealed shims. Install level and plumb to a tolerance of 1/8 inch in 96 inches.

D. Scribe and cut woodwork to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.

E. Anchor woodwork to anchors or blocking built in or directly attached to substrates. Secure with countersunk, concealed fasteners and blind nailing. Use fine finishing nails or finishing screws for exposed fastening, countersunk and filled flush with woodwork.
 1. Use filler matching finish of items being installed.

F. Cabinets: Install without distortion so doors and drawers fit openings properly and are accurately aligned. Adjust hardware to center doors and drawers in openings and to provide unencumbered operation. Complete installation of hardware and accessory items as indicated.
 1. Install cabinets with no more than 1/8 inch in 96-inch sag, bow, or other variation from a straight line.
 2. Fasten wall cabinets through back, near top and bottom, and at ends not more than 16 inches o.c. with No. 10 wafer-head screws sized for not less than 1-1/2-inch penetration into wood framing, blocking, or hanging strips.

G. Install countertops level to a tolerance of 1/8 inch in 8 feet.

H. Fasten countertops by screwing through corner blocks of base units into underside of countertop. Pre-drill holes for screws as recommended by manufacturer. Align adjacent surfaces and, using adhesive in color to match countertop, form seams to comply with manufacturer's written instructions. Carefully dress joints smooth, remove surface scratches, and clean entire surface.
 1. Install endspashes to comply with manufacturer's written instructions for adhesives, sealers, fabrication, and finishing.

I. Standing and Running Trim: Install with minimum number of joints possible, using full-length pieces (from maximum length of lumber available) to greatest extent possible. Do not use pieces less than 60 inches long except where shorter single-length pieces are necessary. Scarf running joints and stagger in adjacent and related members.
 1. Install standing and running trim with no more variation from a straight line than 1/8 inch in 96 inches.

J. Touch up finishing work specified in this Section after installation of wood trim. Fill nail holes with matching filler where exposed.

K. Casework finishes: Where new or patched casework finishes have a pattern or grain direction, match pattern or grain direction of new finishes with existing and adjacent finishes.
3.5 ADJUSTING AND CLEANING

A. Repair damaged and defective woodwork, where possible, to eliminate functional and visual defects; where not possible to repair, replace woodwork. Adjust joinery for uniform appearance.

B. Clean, lubricate, and adjust hardware.

C. Clean woodwork on exposed and semiexposed surfaces.

END OF SECTION 064023
SECTION 072100 - THERMAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Foam-plastic board insulation.
2. Glass-fiber blanket.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for each product.

B. Research/Evaluation Reports: for foam-plastic insulation, from ICC-ES.

1.5 QUALITY ASSURANCE

A. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Protect insulation materials from physical damage and from deterioration due to moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.

B. Protect foam-plastic board insulation as follows:

1. Do not expose to sunlight except to necessary extent for period of installation and concealment.
2. Protect against ignition at all times. Do not deliver foam-plastic board materials to Project site before installation time.
3. Quickly complete installation and concealment of foam-plastic board insulation in each area of construction.

PART 2 - PRODUCTS

2.1 FOAM-PLASTIC BOARD INSULATION

A. Extruded-Polystyrene Board Insulation: ASTM C 578, of type and minimum compressive strength indicated below, with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, per ASTM E 84.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. DiversiFoam Products.
 b. Dow Chemical Company (The).
 c. Owens Corning.

2. Type IV, 25 psi.

B. Adhesive for Bonding Insulation: Product with demonstrated capability to bond insulation securely to substrates without damaging insulation and substrates.

2.2 GLASS-FIBER BLANKET

A. Glass-Fiber Blanket, Unfaced ASTM C 665, Type I; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively, per ASTM E 84; passing ASTM E 136 for combustion characteristics.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. CertainTeed Corporation.
2. Guardian Building Products, Inc.
5. Owens Corning.

2.3 GLASS-FIBER BLANKET, FOIL FACED

A. Glass-Fiber Blanket, Foil Faced ASTM C 665, Type III (reflective faced); Class A (faced surface with a flame-propogation resistance of 0.12 W/sq.cm); Category 1 (membrane is a vapor barrier) faced with foil scrim, foil scrim kraft, or foil-scrim polyethylene. Maximum flame-spread and smoke-developed indexes of 25 and 50, respectively, per ASTM E 84; passing ASTM E 136 for combustion characteristics.
B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. CertainTeed Corporation.
2. Guardian Building Products, Inc.
5. Owens Corning.

C. Minimum R-value of 13 for batt insulation. (BID DOCUMENTS August 30, 2019)

2.4 ACCESSORIES

A. Insulation for Miscellaneous Voids:

1. Glass-Fiber Insulation: ASTM C764, Type II, loose fill; with maximum flame-spread and smoke-developed indexes of 5, per ASTM E84.

B. Adhesive for Bonding Insulation: Product compatible with insulation and air and water barrier materials, and with demonstrated capability to bond insulation securely to substrates without damaging insulation and substrates.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean substrates of substances that are harmful to insulation, including removing projections capable of puncturing insulation or vapor retarders, or that interfere with insulation attachment.

3.2 INSTALLATION, GENERAL

A. Comply with insulation manufacturer's written instructions applicable to products and applications indicated.

B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed to ice, rain, or snow at any time.

C. Extend insulation to envelop entire area to be insulated. Cut and fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.

D. Provide sizes to fit applications indicated and selected from manufacturer’s standard thicknesses, widths, and lengths. Apply single layer of insulation units to produce thickness indicated unless multiple layers are otherwise shown or required to make up total thickness.

E. Foam-Plastic Board Insulation: Seal joints between units by applying adhesive, mastic, or sealant to edges of each unit to form a tight seal as units are shoved into place. Fill voids in completed installation with adhesive, mastic, or sealant as recommended by insulation manufacturer.
3.3 INSTALLATION OF INSULATION FOR FRAMED CONSTRUCTION

A. Apply insulation units to substrates by method indicated, complying with manufacturer’s written instructions. If no specific method is indicated, bond units to substrates with adhesive or use mechanical anchorage to provide permanent placement and support of units.

B. Foam-Plastic Board Insulation: Seal joints between units by applying adhesive, mastic, or sealant to edges of each unit to form a tight seal as units are shoved into place. Fill voids in completed installation with adhesive, mastic, or sealant as recommended by insulation manufacturer.

C. Glass-Fiber or Mineral-Wool Blanket Insulation: Install in cavities formed by framing members according to the following requirements:

1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill the cavities, provide lengths that will produce a snug fit between ends.
2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members.
3. Maintain 3-inch clearance of insulation and around recessed lighting fixtures not rated for or protected from contact with insulation.
4. For metal-framed wall cavities where cavity heights exceed 96 inches, support unfaced blankets mechanically and support faced blankets by taping flanges of insulation to flanges of metal studs.

D. Miscellaneous Voids: Install insulation in miscellaneous voids and cavity spaces where required to prevent gaps in insulation using the following materials.
1. Loose-Fill Insulation: Compact to approximately 40 percent of normal volume equaling a density of approximately 2.5 lb/cu. ft..

3.4 PROTECTION

A. Protect installed insulation from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION 072100
SECTION 072726 - FLUID-APPLIED MEMBRANE AIR BARRIERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes:
 1. Fluid-applied, vapor-permeable membrane air barriers.
 B. Related Requirements:
 1. Section 061600 "Sheathing" for wall sheathings and wall sheathing joint-and-penetration treatments.

1.3 DEFINITIONS
 A. Air-Barrier Material: A primary element that provides a continuous barrier to the movement of air.
 B. Air-Barrier Accessory: A transitional component of the air barrier that provides continuity.
 C. Air-Barrier Assembly: The collection of air-barrier materials and accessory materials applied to an opaque wall, including joints and junctions to abutting construction, to control air movement through the wall.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include manufacturer's written instructions for evaluating, preparing, and treating substrate; technical data; and tested physical and performance properties of products.
 B. Shop Drawings: For air-barrier assemblies.
 1. Show locations and extent of air barrier. Include details for substrate joints and cracks, counterflashing strips, penetrations, inside and outside corners, terminations, and tie-ins with adjoining construction.
 2. Include details of interfaces with other materials that form part of air barrier.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For Installer.
B. Product Certificates: From air-barrier manufacturer, certifying compatibility of air barriers and accessory materials with Project materials that connect to or that come in contact with the barrier.

C. Product Test Reports: For each air-barrier assembly, for tests performed by a qualified testing agency.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Remove and replace liquid materials that cannot be applied within their stated shelf life.

B. Protect stored materials from direct sunlight.

1.8 FIELD CONDITIONS

A. Environmental Limitations: Apply air barrier within the range of ambient and substrate temperatures recommended by air-barrier manufacturer.
 1. Protect substrates from environmental conditions that affect air-barrier performance.
 2. Do not apply air barrier to a damp or wet substrate or during snow, rain, fog, or mist.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Source Limitations: Obtain primary air-barrier materials and air-barrier accessories from single source from single manufacturer.

B. VOC Content: 250 g/l or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24), and comply with VOC content limits of authorities having jurisdiction.

2.2 PERFORMANCE REQUIREMENTS

A. General: Air barrier shall be capable of performing as a continuous air barrier and as a liquid-water drainage plane flashed to discharge to the exterior incidental condensation or water penetration. Air-barrier assemblies shall be capable of accommodating substrate movement and of sealing substrate expansion and control joints, construction material changes, penetrations and transitions at perimeter conditions without deterioration and air leakage exceeding specified limits.

B. Air-Barrier Assembly Air Leakage: Maximum 0.04 cfm/sq. ft. of surface area at 1.57 lbf/sq. ft., when tested according to ASTM E 2357.
2.3 VAPOR-PERMEABLE MEMBRANE AIR-BARRIER

A. Fluid-Applied, Vapor-Permeable Membrane Air Barrier: synthetic polymer membrane.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Carlisle Coatings & Waterproofing Inc; Barritech VP.
 b. DuPont; Tyvek Fluid-Applied Air Barrier.
 c. Grace Construction Products; W.R. Grace & Co. -- Conn.; Perm-A-Barrier VP.
 d. Tremco Incorporated; ExoAir 230.
 e. BASF Wall Systems; Enershield-HP.

2. Physical and Performance Properties:
 a. Air Permeance: Maximum 0.004 cfm/sq. ft. of surface area at 1.57-lbf/sq. ft. pressure difference; ASTM E 2178.
 b. Vapor Permeance: Minimum 10 perms; ASTM E 96.
 c. Ultimate Elongation: Minimum 200 percent; ASTM D 412, Die C.

3. Location: Install at all exterior face of new gypsum or plywood sheathing and locations indicated on Drawings.

2.4 ACCESSORY MATERIALS

A. General: Accessory materials recommended by air-barrier manufacturer to produce a complete air-barrier assembly and compatible with primary air-barrier material.

B. Primer: Liquid waterborne primer recommended for substrate by air-barrier material manufacturer.

C. Counterflushing Strip: Modified bituminous, 40-mil- thick, self-adhering sheet consisting of 32 mils of rubberized asphalt laminated to an 8-mil- thick, cross-laminated polyethylene film with release liner backing.

D. Joint Reinforcing Strip: Air-barrier manufacturer's glass-fiber-mesh tape.

E. Substrate-Patching Membrane: Manufacturer's standard trowel-grade substrate filler.

F. Sprayed Polyurethane Foam Sealant: One- or two-component, foamed-in-place, polyurethane foam sealant, 1.5- to 2.0-lb/cu. ft density; flame-spread index of 25 or less according to ASTM E 162; with primer and noncorrosive substrate cleaner recommended by foam sealant manufacturer.

G. Modified Bituminous Transition Strip: Vapor retarding, 40 mils thick, smooth surfaced, self-adhering; consisting of 36 mils of rubberized asphalt laminated to a 4-mil- thick polyethylene film with release liner backing.

H. Joint Sealant: ASTM C 920, single-component, neutral-curing silicone; Class 100/50 (low modulus), Grade NS, Use NT related to exposure, and, as applicable to joint substrates indicated, Use O. Comply with Section 079200 "Joint Sealants."

I. Termination Mastic: Air-barrier manufacturer's standard cold fluid-applied elastomeric liquid; trowel grade.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
 1. Verify that substrates are sound and free of oil, grease, dirt, excess mortar, or other contaminants.
 2. Verify that substrates are visibly dry and free of moisture.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SURFACE PREPARATION

A. Clean, prepare, treat, and seal substrate according to manufacturer's written instructions. Provide clean, dust-free, and dry substrate for air-barrier application.

B. Mask off adjoining surfaces not covered by air barrier to prevent spillage and overspray affecting other construction.

C. At changes in substrate plane, apply sealant or termination mastic beads at sharp corners and edges to form a smooth transition from one plane to another.

D. Cover gaps in substrate plane and form a smooth transition from one substrate plane to another with stainless-steel sheet mechanically fastened to structural framing to provide continuous support for air barrier.

E. Bridge isolation joints, expansion joints, and discontinuous wall-to-wall, deck-to-wall, and deck-to-deck joints with air-barrier accessory material that accommodates joint movement according to manufacturer's written instructions and details.

3.3 ACCESSORIES INSTALLATION

A. Install accessory materials according to air-barrier manufacturer's written instructions and details to form a seal with adjacent construction and ensure continuity of air and water barrier.

1. Coordinate the installation of air barrier with installation of roofing membrane and base flashing to ensure continuity of air barrier with roofing membrane.
2. Install transition strip on roofing membrane or base flashing so that a minimum of 3 inches (75 mm) of coverage is achieved over each substrate.
3. Unless manufacturer recommends in writing against priming, apply primer to substrates at required rate and allow it to dry.
4. Apply primer to substrates at required rate and allow it to dry. Limit priming to areas that will be covered by air-barrier material on same day. Reprime areas exposed for more than 24 hours.

B. Connect and seal exterior wall air-barrier material continuously to roofing-membrane air barrier, concrete below-grade structures, floor-to-floor construction, exterior glazing and window
systems, glazed curtain-wall systems, storefront systems, exterior louvers, exterior door framing, and other construction used in exterior wall openings, using accessory materials.

C. At end of each working day, seal top edge of strips and transition strips to substrate with termination mastic.

D. Apply joint sealants forming part of air-barrier assembly within manufacturer's recommended application temperature ranges. Consult manufacturer when sealant cannot be applied within these temperature ranges.

E. Wall Openings: Prime concealed, perimeter frame surfaces of windows, curtain walls, storefronts, and doors. Apply preformed silicone extrusion so that a minimum of 3 inches (75 mm) of coverage is achieved over each substrate. Maintain 3 inches (75 mm) of full contact over firm bearing to perimeter frames, with not less than 1 inch (25 mm) of full contact.

1. Transition Strip: Roll firmly to enhance adhesion.
2. Preformed Silicone Extrusion: Set in full bed of silicone sealant applied to walls, frame, and air-barrier material.

F. Fill gaps in perimeter frame surfaces of windows, curtain walls, storefronts, and doors, and miscellaneous penetrations of air-barrier material with foam sealant.

G. Seal strips and transition strips around masonry reinforcing or ties and penetrations with termination mastic.

H. Seal top of through-wall flashings to air barrier with an additional 6-inch- (150-mm-) wide, transition strip.

I. Seal exposed edges of strips at seams, cuts, penetrations, and terminations not concealed by metal counterflashings or ending in reglets with termination mastic.

J. Repair punctures, voids, and deficient lapped seams in strips and transition strips. Slit and flatten fishmouths and blisters. Patch with transition strips extending 6 inches (150 mm) beyond repaired areas in strip direction.

3.4 JOINT TREATMENT

A. Gypsum and Plywood Sheathing: Fill joints greater than 1/4 inch with sealant according to ASTM C 1193 and air-barrier manufacturer's written instructions. Apply first layer of fluid air-barrier material at joints. Tape joints with joint reinforcing strip after first layer is dry. Apply a second layer of fluid air-barrier material over joint reinforcing strip.

3.5 TRANSITION STRIP INSTALLATION

A. General: Install strips, transition strips, and accessory materials according to air-barrier manufacturer's written instructions to form a seal with adjacent construction and maintain a continuous air barrier.
B. Apply primer to substrates at required rate and allow it to dry. Limit priming to areas that will be covered by fluid air-barrier material on same day. Reprime areas exposed for more than 24 hours.
 1. Prime glass-fiber-surfaced gypsum and plywood sheathing with number of prime coats needed to achieve required bond, with adequate drying time between coats.

C. Connect and seal exterior wall air-barrier material continuously to concrete below-grade structures, floor-to-floor construction, exterior glazing and window systems, glazed curtain-wall systems, storefront systems, exterior louvers, exterior door framing, and other construction used in exterior wall openings, using accessory materials.

D. At end of each working day, seal top edge of strips and transition strips to substrate with termination mastic.

E. Apply joint sealants forming part of air-barrier assembly within manufacturer's recommended application temperature ranges. Consult manufacturer when sealant cannot be applied within these temperature ranges.

F. Wall Openings: Prime concealed, perimeter frame surfaces of windows, curtain walls, storefronts, and doors. Apply modified bituminous transition strip so that a minimum of 3 inches of coverage is achieved over each substrate. Maintain 3 inches of full contact over firm bearing to perimeter frames with not less than 1 inch of full contact.
 1. Modified Bituminous Transition Strip: Roll firmly to enhance adhesion.

G. Fill gaps in perimeter frame surfaces of windows, curtain walls, storefronts, and doors, and miscellaneous penetrations of air-barrier material with foam sealant.

H. Seal strips and transition strips around masonry reinforcing or ties and penetrations with termination mastic.

I. Seal top of through-wall flashings to air barrier with an additional 6-inch- wide, counterflashing strip.

J. Seal exposed edges of strips at seams, cuts, penetrations, and terminations not concealed by metal counterflashings or ending in reglets with termination mastic.

K. Repair punctures, voids, and deficient lapped seams in strips and transition strips. Slit and flatten fishmouths and blisters. Patch with transition strips extending 6 inches beyond repaired areas in strip direction.

3.6 FLUID AIR-BARRIER MEMBRANE INSTALLATION

A. General: Apply fluid air-barrier material to form a seal with strips and transition strips and to achieve a continuous air barrier according to air-barrier manufacturer's written instructions. Apply fluid air-barrier material within manufacturer's recommended application temperature ranges.
 1. Apply primer to substrates at required rate and allow it to dry.
 2. Limit priming to areas that will be covered by fluid air-barrier material on same day. Reprime areas exposed for more than 24 hours.
 3. Prime glass-fiber-surfaced gypsum sheathing with number of prime coats needed to achieve required bond, with adequate drying time between coats.
B. Membrane Air Barriers: Apply a continuous unbroken air-barrier membrane to substrates according to the following thickness. Apply air-barrier membrane in full contact around protrusions such as masonry ties.
 1. Vapor-Permeable Membrane Air Barrier: Total dry film thickness as recommended in writing by manufacturer to meet performance requirements, but not less than 40-mil dry film thickness, applied in one coat.

C. Apply strip and transition strip a minimum of 1 inch onto cured air-barrier material according to air-barrier manufacturer's written instructions.

D. Do not cover air barrier until it has been tested and inspected by Owner's testing agency.

E. Correct deficiencies in or remove air barrier that does not comply with requirements; repair substrates and reapply air-barrier components.

3.7 CLEANING AND PROTECTION

A. Protect air-barrier system from damage during application and remainder of construction period, according to manufacturer's written instructions.
 1. Protect air barrier from exposure to UV light and harmful weather exposure as required by manufacturer. If exposed to these conditions for more than 60 days, remove and replace air barrier or install additional, full-thickness, air-barrier application after repairing and preparing the overexposed membrane according to air-barrier manufacturer's written instructions.
 2. Protect air barrier from contact with incompatible materials and sealants not approved by air-barrier manufacturer.

B. Clean spills, stains, and soiling from construction that would be exposed in the completed work using cleaning agents and procedures recommended by manufacturer of affected construction.

C. Remove masking materials after installation.

END OF SECTION 072726
SECTION 074213.19 - INSULATED METAL WALL PANELS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. System Description:
 1. Fully-integrated insulated metal panel, window system, louvers, and sun shade devices to be provided by single manufacturer, and to provide water-tightness warranty for entire system.

B. Section Includes:
 1. Foamed-insulation-core horizontal metal wall panel assembly, with related metal trim and accessories.
 2. Integrated window system.
 3. Integrated wall louver units.
 4. Integrated sun shade units.

C. Related Requirements:
 1. Section 051200 "Structural Steel Framing" for supporting steel members.
 2. Section 054000 "Cold-Formed Metal Framing" for wall system framing.
 3. Section 079200 "Joint Sealants" for field applied joint sealants.
 4. Section 076200 "Sheet Metal Flashing and Trim" for metal copings, flashings and drainage items.
 5. Section 061600 "Exterior Sheathing" for exterior sheathing.

1.3 ACTION SUBMITTALS

A. Product Data: Manufacturer's data sheets for each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of panel and accessory.

B. Shop Drawings: Prepared by Manufacturer or Manufacturer's authorized dealer.
 1. Include fabrication and installation layouts of panels; details of edge conditions, joints, panel profiles, corners, anchorages, attachment system, trim, flashings, closures, and accessories; and special details.
2. Accessories: Include details of the flashing, trim, and anchorage systems, at a scale of not less than 1-1/2 inches per 12 inches (1:10) of all required trim and extrusions needed for a complete installation.

3. Include points of supporting structure that must coordinate with composite wall panel system installation.

4. Shop drawings to reflect composite wall system, including insulated metal panels, windows, louvers, and sun shade devices in panel layouts, accessories, and details.
 a. Shop drawings of insulated metal panel, window system, louvers, and sun shade devices shall be prepared and delivered under one single shop drawing submittal, showing interface between all systems.

C. Samples for Verification: For each type of exposed finish prepared on Samples in the same thickness and material indicated for the work and in the size indicated below.

 1. Provide 24 inch section of insulated metal wall panel showing finishes, horizontal joinery, vertical joint return, injected core material, panel stiffener and anchoring details.
 a. Provide sample for each panel profile and finish color.
 2. Factory finished extruded aluminum trim and gaskets: 5” long sections
 3. Sample color chip for integrated louvers with factory applied finish.
 4. Sample color chip for window mullions with factory applied finish.
 5. Sample color chip for sun shades with factory applied finish.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

 1. Submit Installer Certificate, signed by Installer, certifying compliance with project qualification requirements.

B. Product Test Reports: For each product, tests performed by a qualified independent testing agency. Provide reports for all products to satisfy performance requirements listed in Part 2.

 1. Previously completed reports will be acceptable if for current Manufacturer and indicative of products used on this project

C. Field quality-control reports.

D. Sample Warranties: For special warranties.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: To include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Manufacturer/Source: Provide metal wall panel system and panel accessories from a single Manufacturer.

B. Manufacturer Qualifications:
1. Insulated Metal Wall Panels:
 a. Approved Manufacturer listed in this Section with minimum 10 years experience in manufacture of similar products in successful use in similar applications.
 b. Approval of Comparable Products: Submit the following in accordance with project substitution requirements, within time allowed for substitution review as stipulated in Division 01 General Requirements.
 1) Product data, including certified independent test data indicating compliance with requirements. Include detailed data indicating compliance with AAMA 508-07 performance specified in this section.
 2) Samples of each component.
 3) Sample submittal from similar project.
 4) Project references: Minimum of 5 installations not less than 5 years old, with Owner and Architect contact information.
 5) Sample warranty.
 c. Substitutions following award of contract are not allowed except as stipulated in Division 01 General Requirements.
 d. Approved Manufacturers must meet separate requirements of Submittals Article.

C. Installer Qualifications: An entity that employs Installers and supervisors who are trained and approved by Manufacturer. Minimum of 5 years of experience with successfully completed projects of a similar nature and scope, and employing workers trained by Manufacturer to install products in section.

D. Testing Agency Qualifications: Qualify in accordance with requirements of ASTM E 329.

E. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for fabrication and installation.
 1. Build mockup per requirements on Sheet G001 and A216.
 2. Water-Spray Test: Conduct water-spray test of metal panel assembly mockup, testing for water penetration according to AAMA 501.2.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver components, metal panels, and other manufactured items in Manufacturer’s standard protective packaging so as not to be damaged or deformed.

B. At the time of delivery, all materials shall be visually inspected for damage. Any damaged boxes, crates, or products shall be noted on the receiving ticket and immediately reported to the shipping company and the material Manufacturer.

C. Unload, store, and erect composite wall panel and accessory items without misshaping panels or exposing panels to surface damage from weather or construction operations.
D. Stack metal panels horizontally on platforms or pallets, covered with suitable weathertight and ventilated covering. Store metal panels to ensure dryness, with positive slope for drainage of water. Do not store metal panels in contact with other materials that might cause staining, denting, or other surface damage.

E. Retain strippable protective covering on metal panels during installation.

1.8 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit assembly of metal panels to be performed according to Manufacturers' written instructions and warranty requirements.

1.9 COORDINATION

A. Coordinate metal panel installation with rain drainage work, flashing, trim, construction of soffits, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.

1.10 WARRANTY

A. Special Warranty: Manufacturer’s standard form in which Manufacturer agrees to repair or replace components of metal panel systems and integrated window units, louver units, and sunscreen units that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures including rupturing, cracking, or puncturing.
 b. Deterioration of metals and other materials beyond normal weathering.

2. Warranty Period: Two years from date of Substantial Completion.

B. Special Warranty on Panel Finishes: Manufacturer’s standard form in which Manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.

1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Finish Warranty Period: 25 years from date of Substantial Completion.

C. Special Weathertightness Warranty: Provide Manufacturer’s standard limited weathertight wall warranty in which Manufacturer will warrant against leakage under the specified project design criteria or normal weather and atmospheric conditions for period specified based on a review of final installation drawings and verification of installation by a Manufacturer trained Installer. Project installation inspection is at the sole discretion of the Manufacturer.

1. Warranty Period: 20 years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 INSULATED METAL WALL PANELS PERFORMANCE REQUIREMENTS

A. General: Provide metal wall panel system meeting performance requirements as determined by application of specified tests by a qualified testing agency on Manufacturer’s standard assemblies.

B. Air Infiltration: Maximum 0.06 cfm/sq. ft. (0.3 L/s per sq. m) per ASTM E 283 at a static-air-pressure difference of 6.24 lbf/sq. ft. (300 Pa), using minimum 10-by-10 foot (3050-by-3050 mm) test panel that includes horizontal and vertical joints.

C. Water Penetration, Static Pressure: No uncontrolled water penetration per ASTM E 331 at a minimum static differential pressure of 15 lbf/sq. ft. (718 Pa), using minimum 10-by-10 foot (3050-by-3050 mm) test panel that includes horizontal and vertical joints.

D. Water Penetration, Static Pressure – 2 hour duration: Panel system shall demonstrate no water penetration when tested in accordance with ASTM E331 at 6.24 psf pressure differential for a two (2) hour duration to satisfy International Building Code, Section 1403.2. Panel systems unable to demonstrate compliance with this requirement will require a separate weather-resistive barrier installed behind the wall panel system to comply with International Building Code requirements.

E. Water Penetration, Dynamic Pressure: No uncontrolled water penetration per AAMA 501.1 at a minimum static differential pressure of 15 lbf/sq. ft. (718 Pa), using minimum 10-by-10 foot (3050-by-3050 mm) test panel that includes horizontal and vertical joints.

F. System Performance: A 3rd party test report utilizing the standard ASTM E 283, E 331 and AAMA 501 procedures following the test protocol described in AAMA 508-07 must be submitted prior to bid. Test panel must include a horizontal joint, with an imperfect air barrier.

1. Bidders supplying panel systems that have not successfully passed AAMA 508-07 shall provide a backup system that meets the air and water infiltration values as listed above in sections 1.5.B – 1.5.E.

2. Water Absorption: Maximum 1.0 percent absorption rate by volume when tested according to ASTM C 209.

H. Structural Performance: Provide metal wall panel assemblies capable of withstanding the effects of indicated loads and stresses within limits and under conditions indicated, per ASTM E 72:

1. Wind Loads: Determine loads based on uniform pressure, importance factor, exposure category, and basic wind speed indicated on drawings.

2. Limits of Deflection: Composite wall panel system shall withstand scheduled wind pressure with the following allowable deflection:

 a. Maximum allowable deflection limited to L/180 deflection of panel perimeter normal to plane of wall with no evidence of failure.

3. Secondary Metal Framing: Design secondary metal framing according to AISI's "Standard for Cold-Formed Steel Framing - General Provisions."

 a. Backer Flash & IMV - Provide minimum 5-inch- (127-mm-) wide bearing surface for metal wall panels at the following locations:
WOMEN’S AND CHILDREN’S HOSPITAL – EXTERIOR ENVELOPE REPLACEMENT

UNIVERSITY OF MISSOURI

Issue for Bid

1) Horizontal Panel System: At typ. ½” vertical joints.
2) Vertical Panel System (located between windows only)

I. Thermal Movements: Allow for thermal movements from variations in both ambient and internal temperatures. Accommodate movement of support structure caused by thermal expansion and contraction.

J. Thermal Performance: Thermal-resistance (R) value indicated, per ASTM C 1363, with the following conditions:
1. 15 mph (24.1 km/h) exterior wind speed and still air on interior.
2. Include side joint and standard fastening.
3. Base R value reported on performance of specified panel, taking into account integral reveals and profiling with resultant reduction in panel insulation thickness.

1. Fire Performance of Insulated Wall: Class 1 wall panel per ANSI/FM 4880 & 4881.

2.2 FOAMED-INSULATION-CORE METAL WALL PANEL

A. SYSTEM DESCRIPTION

1. Factory-foamed-in-place horizontal wall panel system consisting of exterior metal face sheet with interior metal liner panel, bonded to factory foamed-in-place core in thermally-separated profile, utilizing no glues or adhesives, with factory sealed tongue-and-groove and pressure-equalized rainscreen-designed horizontal joint, attached to supports using concealed fasteners.

B. MANUFACTURERS

1. Basis of Design: CENTRIA, Formawall Dimension Series Insulated Core Metal Wall Panels.
 a. CENTRIA Architectural Systems; Moon Township, PA 15108-2944. Tel: (800)759-7474. Tel: (412)299-8000. Fax: (412)299-8317. Email: info@CENTRIA.com. Web: www.CENTRIA.com.
 b. Kingspan Insulation LLC; 2100 Riveredge Parkway, Atlanta, Georgia 30328. Phone: 1-800-241-4402.

2. Provide basis of design product, or comparable product approved by Architect prior to bid.

C. PANEL COMPONENTS

1. Metallic-Coated Steel Face Sheet: Coil-coated, ASTM A 755/A 755M.
 b. Face Sheet Thickness: Minimum 0.036 inch/20 gage (0.91 mm) thick.
 c. Surface: Smooth.

INSULATED METAL WALL PANELS 074213.19 - 6 Project No.: CP180131
August 30, 2019
2. Exposed Coil-Coated Finish:
 a. Fluoropolymer Two-Coat Corrosion and Abrasion Resistant System: 2.0 mil barrier coat primer with 0.8 mil 70 percent PVDF fluoropolymer color coat.
 1) Basis of Design: CENTRIA Versacor Elite PF.
 b. Color: Standard color from CENTRIA, Solids line as indicated on Drawings.
 1) Color “A” to be 996 Crushed Ice.
 2) Color “B” to be 181 Slate Gray.
 3) Color “C” to be 154 Dark Bronze.

3. Metallic-Coated Steel Liner Sheet: Coil-coated, ASTM A 755/A 755M, 0.030 inch/22 gage (0.76 mm) thick.
 b. Surface: Smooth planked.
 c. Interior Liner Panel Finish: 0.2 mil primer with 0.6 mil acrylic color coat.

4. Exposed Trim and Fasteners: To match adjacent panel finish.

D. INSULATION FOR METAL PANEL CORES

1. Metal Panel Foamed-Insulation-Core: Foamed-in-place urethane or isocyanurate containing no CFC or HCFC compounds.
 a. Density: Minimum 2.7 lb/cu. ft. (43.4 kg/cu. m)

E. FOAMED INSULATION-CORE METAL WALL PANELS

1. Factory-foamed-in-place horizontal and vertical wall panel system consisting of an exterior metal face sheet with interior metal liner panel, bonded to factory foamed-in-place core in thermally-separated profile, with no glues or adhesives, and with factory-sealed tongue-and-groove and rainscreen-designed pressure-equalized horizontal joint, configured with weep-hole-vented chamber to maintain equalized atmospheric pressure reducing potential for moisture drive into wall assembly, attached to supports using concealed fasteners.

2. Horizontal Joints: Horizontal joints with positive drip edge and integral venting to the exterior along the panel length to permit moisture drainage and to allow air to enter the pressure equalization chamber. Joint shall have a 2-3/8-inch baffle interlock to provide effective rain screen and pressure equalized performance as demonstrated by testing specified in 2.1.

3. Panel Ends:
 a. Horizontal Panels:
 1) Factory formed trimless ends, tabbed under panel horizontal shelf.

4. Panel Width: As shown on the drawings.

5. Panel Profile: As shown on drawings

 a. Standard Drain Shelf

6. Panel Thickness:
 a. 3.00 inch – T (76mm), flat.

8. End Joints between Panels shall include an integrated, Insulated Metal Vertical (IMV) Joint.
a. End joints for insulated metal panels shall be designed to allow moisture to be drained from the panel’s side joint. No end dam sealant is to be applied to the ends of the side joint at the end joint location.

b. Backer Flash - A continuous back-up flash behind the end joint is required with two beads of field applied non-curing butyl sealant between the panel and back up flashing for each panel. The field applied non-curing butyl sealant shall be married to the panel’s shop applied non-curing butyl sealant within the panel’s side joint.

1) Insulated Metal Vertical Joint (IMV) - End joint shall include an integrated, Insulated Metal Vertical Joint. The Insulated Metal Vertical Joint shall be recessed 1-3/16" deep and be 1/2" wide. The Insulated Metal Vertical Joint should not add exterior sightlines, contain exposed metal edges or exposed wet seals. The Insulated Metal Vertical Joint shall be constructed of mineral wool adhered to a metal face of the same material, gage and color as the face of the panel.

F. FABRICATION

1. General: Fabricate and finish metal panels and accessories at the factory, by Manufacturer’s standard procedures and processes, as necessary to fulfill indicated performance requirements demonstrated by laboratory testing. Comply with indicated profiles and with dimensional and structural requirements.

2. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.

3. Fabricate metal panel joints with factory-installed captive gaskets or separator strips that provide a weathertight seal and prevent metal-to-metal contact, and that minimize noise from movements.

4. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with Manufacturer’s recommendations and recommendations in SMACNA’s "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.

a. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.

b. Seams for Aluminum: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with epoxy seam sealer. Rivet joints for additional strength.

c. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flat-lock seams. Tin edges to be seamed, form seams, and solder.

d. Sealed Joints: Form nonexpansion, but movable, joints in metal to accommodate sealant and to comply with SMACNA standards.

e. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.

f. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal recommended in writing by metal panel Manufacturer.

1) Size: As recommended by SMACNA’s "Architectural Sheet Metal Manual" or metal wall panel Manufacturer for application but not less than thickness of metal being secured.

G. FINISHES
1. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

2. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.3 METAL WALL PANEL ACCESSORIES

A. General: Provide complete metal wall panel assembly incorporating trim, copings, fasciae, parapet caps, soffits, sills, inside and outside corners, and miscellaneous flashings. Provide Manufacturer's factory-formed clips, shims, flashings, gaskets, lap tapes, closure strips, and caps for a complete installation. Fabricate accessories in accordance with SMACNA Manual for a complete watertight panel system, unless otherwise indicated.

B. Formed Flashing and Trim: Match material, thickness, and color of metal wall panel face sheets.

C. Extrusion Trim: Provide Manufacturer-provided extruded trim for the following locations and as indicated on Drawings:

 1. Base trim.
 2. Panel installation perimeter.
 3. Opening perimeters.

D. Sealants: Type recommended by metal wall panel system Manufacturer for application, meeting requirements of Section 079200 "Joint Sealants."

E. Flashing Tape: 4-inch wide self-adhering butyl flashing tape.

F. Panel Attachment Clips: Concealed G-90 galvanized steel clip configured to prevent overdriving of fastener and crushing of foam core, with panel fasteners engaging both face and liner elements and mechanically attaching to panel supports. Clip configured also to be utilized without removing significant portions of the foam at each clip location. Clip shall be adjustable to accommodate uneven substrate.

G. Fasteners: Self-tapping screws, bolts, nuts, and other acceptable fasteners recommended by panel Manufacturer. Where exposed fasteners cannot be avoided, supply corrosion-resistant fasteners with heads matching color of metal wall panels by means factory-applied coating.

2.4 INTEGRATED WINDOW SYSTEM

A. Integrated window units: Thermally-improved fixed aluminum window units designed to integrate with metal wall panel profile and secondary support system without receptor channels or other flashing. System to be tested integrated with panels per the requirements of section 1.5 B and 1.5 C. Sash to accept 1 inch (25 mm) insulating glass units.

b. Sightlines: Head: 3 inch; Sill: 3 inch; Mullions: 3 inch.
c. Configuration: As indicated on Drawings.
d. Mullions: Full.
e. Frame: All fabricated joinery is shop assembled with sealant; Thermally-broken 6063-T5 aluminum extrusions; fully integrated with panel joinery; No receptors, interior glazed.

2. Provide basis of design product, or comparable product approved by Architect prior to bid.

B. FINISHES
1. Fluoropolymer Two-Coat Corrosion and Abrasion Resistant System: 2.0 mil barrier coat primer with 0.8 mil 70 percent PVDF fluoropolymer color coat.
 a. Basis of Design: CENTRIA Versacor Elite PF
2. Finish, Exterior: Aluminum window frames to be painted CENTRIA, Solids line 181 Slate Grey.
3. Finish Interior: Aluminum window frames to be painted CENTRIA, Solids line 181 Slate Grey.
4. Glazing: as specified in Division 08 Section "Glazing."

2.5 INTEGRATED LOUVER UNITS

A. MANUFACTURERS
1. C/S Louvers by Construction Specialties, Inc.

B. Exterior Wall Louvers, General: Extruded aluminum louvers, designed to integrate with metal wall panel profile and secondary support system without receptor channels or other flashing, nominal thickness not less than 0.080 inch for blades and 0.080 inch for frames, of types and performance indicated. System to be tested integrated with panels per the requirements of section 1.5 B and 1.5 C.
 1. Louver Depth: 4 inches deep.
 2. Mullion Type: Fully recessed.

C. Horizontal, Drainable-Blade Fixed Louver:
 1. Free Area: Not less than 54 percent for 48-inch-wide by 48-inch-high louver.
 2. Air Performance: Not more than 0.15 inch wg static pressure drop at 873-fpm free-area velocity.
 3. Point of Beginning Water Penetration: Not less than 873 fpm free-area velocity.

D. AMCA Seal: Mark units with AMCA Certified Ratings Seal.

E. Finish, Exterior:
 1. Fluoropolymer Two-Coat Corrosion and Abrasion Resistant System: 2.0 mil barrier coat primer with 0.8 mil 70 percent PVDF fluoropolymer color coat.
 a. Basis of Design: CENTRIA Versacor Elite PF
 2. Louvers shall be painted to match adjacent metal wall panels.

F. Bird Screens
 1. Unless otherwise indicated, all louvers to be furnished with mill finish bird or insect screens.
2.6 SUN SHADES

A. MANUFACTURERS
 1. Product: Formawall Integrated Sunshades by Construction Specialties, Inc.

B. Integrated Sun Screens, General: Extruded aluminum blades and outriggers, designed to integrate with metal wall panel profile and secondary support system, with gasketed cast aluminum fitting connecting outrigger to through-tube structural supports without flashing and without penetration of wall panel interior vapor seal.
 2. Outrigger Type: Tapered, to match end airfoil blade profile.
 3. Finish, Exterior:
 a. Fluoropolymer Two-Coat Corrosion and Abrasion Resistant System: 2.0 mil barrier coat primer with 0.8 mil 70 percent PVDF fluoropolymer color coat.
 1) Basis of Design: CENTRIA Versacor Elite PF
 b. All sun shade components, including airfoil blades and outriggers be painted CENTRIA, Solids line 996 Crushed Ice.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal panel supports, and other conditions affecting performance of the Work.
 1. Examine wall framing to verify that girts, angles, channels, studs, and other structural panel support members and anchorage for wall panels have been installed within alignment tolerances required by metal wall panel Manufacturer and as indicated on the approved shop drawings. Confirm presence of acceptable framing members at recommended spacing to match installation requirements of metal wall panels.

B. Examine roughing-in for components and systems penetrating metal panels to verify actual locations of penetrations relative to seam locations of metal panels before installation.

C. Openings: Verify that windows, doors, fans, louvers and other penetrations match layout on shop drawings.

D. Advise Construction Manager in writing, of all out-of-tolerance work and other deficient conditions prior to proceeding with metal wall panel installation.

E. Correct out of tolerance work and other deficient conditions prior to proceeding with insulated panel installation.

F. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Miscellaneous Supports: Install subframing, furring, and other miscellaneous panel support members and anchorages according to ASTM C 754 and metal panel Manufacturer’s written recommendations.

B. Ensure openings are square, accurately aligned, correctly located, and in tolerance

C. Metal Protection:
 1. Where aluminum will contact dissimilar metals, protect against galvanic action by painting contact surfaces with primer or by applying sealant or tape recommended by Manufacturer for this purpose.
 2. Where aluminum will contact concrete, masonry or pressure treated wood, protect against corrosion by painting contact surfaces with bituminous paint or method recommended by Manufacturer.

3.3 INSULATED METAL WALL PANEL INSTALLATION

A. General: Install metal wall panel system in accordance with approved shop drawings and Manufacturer’s recommendations. Install metal wall panels in orientation, sizes, and locations indicated. Anchor metal wall panels and other components securely in place. Provide for thermal and structural movement

B. Attach panels to metal framing using recommended clips, screws, fasteners, sealants, and adhesives indicated on approved shop drawings.
 1. Fasteners for Steel Wall Panels: Stainless-steel for exterior locations and locations exposed to moisture; carbon steel for interior use only.
 2. Apply elastomeric sealant continuously between metal base channel (sill angle) and concrete, and elsewhere as indicated or, if not indicated, as approved by Manufacturer.
 3. Fasten metal wall panels to supports with concealed clips at each joint at location, spacing, and with fasteners recommended by Manufacturer. Install clips to supports with self-tapping fasteners.
 4. Provide weatherproof escutcheons for pipe and conduit penetrating exterior walls.
 5. Horizontal Joinery: Working from base of installation to top connect upper panel to lower panel at dry seal joinery.
 6. Vertical Joinery: Provide reveal between vertical ends of panels as shown on shop drawings using hardware and gaskets furnished by Manufacturer to form a weather tight seal between panels.
 7. Dissimilar Materials: Where elements of metal wall panel system will come into contact with dissimilar materials, treat faces and edges in contact with dissimilar materials as recommended by Manufacturer.

C. Joint Sealers: Install gaskets, joint fillers, and sealants where indicated and where required for weatherproof performance of metal wall panel assemblies.
 1. Seal panel end utilizing 2 beads of non-curing butyl aligning with factory-applied seal in adjacent panel pocket; apply continuously without gaps to complete panel system air barrier.
2. Seal metal wall panel to supports or back-up flashing sealant, full width of panel. Seal side joints where recommended by metal wall panel Manufacturer. Do not install sealant in locations that will interfere with drainage of pressure-equalized panel chambers.

3. Prepare joints and apply sealants per Section 079200 "Joint Sealants." Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components.

D. Flashing and Trim: Comply with performance requirements, Manufacturer’s written installation instructions, and SMACNA’s "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level. Install work with laps, joints, and seams that are permanently weathertight.

1. Install related flashings and sheet metal trim per requirements of Section 076200 "Sheet Metal Flashing and Trim."

2. Install exposed flashing and trim that is without buckling and tool marks, and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet metal flashing and trim to fit substrates and to achieve waterproof performance.

3. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet (3 m) with no joints allowed within 24 inches (610 mm) of corner or intersection. Where lapped expansion provisions cannot be used or would not be sufficiently waterproof, form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with mastic sealant (concealed within joints).

3.4 Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components.

A. Install components required for a complete metal panel system including trim, copings, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items. Provide types indicated by metal panel Manufacturer; or, if not indicated, provide types recommended by metal panel Manufacturer.

1. Install components required for a complete metal wall panel assembly, including trim, copings, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items.

2. Comply with performance requirements and Manufacturer’s written installation instructions.

3. Provide concealed fasteners except where noted on approved shop drawings.

4. Set units true to line and level as indicated. Install work with laps, joints, and seams that will be permanently weathertight and weather resistant.

3.5 INTEGRATED UNIT INSTALLATION

A. Install metal wall panels, window units, louvers, and sun shade devices in accordance with manufacturer’s recommendations and approved shop drawings. Anchor supports to structure with approved anchors. Assemble wall components using gaskets, fasteners, and trim supplied by metal wall panel manufacturer. Separate dissimilar metals with manufacturer’s approved coating.
3.6 FIELD QUALITY CONTROL

A. The panel Installer shall water test panel areas for each crew at least twice during installation schedule and once at the conclusion of the installation.

B. Progress or check tests can be performed by the Installer following test procedures noted in AAMA 501.2. No independent test agency needs to be employed in this test phase. Results of this test phase is to be recorded and reported to the panel Manufacturer.

C. Final AAMA 501.2 testing will be conducted by an independent test agency following project completion. Areas of test are to be determined by the Architect/Engineer and General Contractor/Contract Manager and the panel Installer. Engagement of the test agency is the responsibility of the Construction Manager. A field representative from the panel Manufacturer is required for the final inspection and testing.

D. Testing Agency: Owner shall engage a qualified testing agency to perform tests and inspections.

E. Manufacturer’s Field Service: Engage a factory-authorized service representative to test and inspect completed metal wall panel installation, including accessories. Contractor to submit testing inspection report immediately following Manufacturer’s inspection.

F. Metal wall panels will be considered defective if they do not pass test and inspections.

G. Additional tests and inspections, at Contractor’s expense, shall be performed to determine compliance of replaced or additional work with specified requirements.

H. Prepare test and inspection reports.

3.7 CLEANING AND PROTECTION

A. Remove temporary protective coverings and strippable films, if any, as metal panels are installed, unless otherwise indicated in Manufacturer’s written installation instructions. On completion of metal panel installation, clean finished surfaces as recommended by metal panel Manufacturer. Maintain in a clean condition during construction.

B. After metal panel installation, clear weep holes and drainage channels of obstructions, dirt, and sealant.

C. Replace metal panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 074213
SECTION 075216 – STYRENE-BUTADIENE-STYRENE (SBS) MODIFIED BITUMINOUS MEMBRANE ROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The general provisions of the Contract, including the Conditions of the Contract and General Requirements, apply to work specified in this Section.

1.2 DESCRIPTION

A. General:

1. Modified bituminous built-up roofing classified as roofing membrane – cold adhesive applied consists to three (3) ply cold process modified bitumen mineral surfaced Roofing System. Two (1) ply Type I polyester reinforced fire resistant, smooth surfaced SBS modified bitumen sheet, one (1) ply Type II polyester reinforced fire resistant, granular surfaced SBS modified bitumen sheet. Flashing consists of one (1) ply granular surfaced fire resistant SBS modified bitumen sheet and one base ply.

2. Walkway Pads

B. Work includes; but is not necessarily limited to the following:

1. Demolition and removal of existing roof system and associated flashings to existing built-up gypsum deck or sloped metal deck as shown on the Demolition Drawings. Coordinate the work with all trades working on related parts of the building.

2. Provide all labor, materials, equipment and tools for the installation of a new Modified Bitumen Built-up Roofing System, cant strips, wood blocking, and associated metal flashings with new materials as detailed and shown on the Drawings and as specified, over existing built-up gypsum or sloped metal deck, whichever is applicable at particular roof locations across the Building.

1.3 DEFINITIONS

A. Roofing Terminology: Definitions is ASTM D1079 and glossary of NRCA’s “The NRCA Roofing Manual: Membrane Roof Systems” apply to Work of this section.

1.4 PREINSTALLATION MEETINGS

1. Preliminary roofing conference: Before starting roof deck construction, conduct conference at Women’s and Children’s Hospital, 404 North Keene Street, Columbia, Missouri 65201.

2. Meet with Owner, Construction Manager, Architect, Owner’s insuror if applicable, testing and inspecting agency representative, roofing Installer, Roofing System Manufacturer’s
representative, deck Installer, air barrier Installer, and Installers whose work interfaces
with or affects roofing, including Installers of roof accessories and roof-mounted
equipment.
3. Review methods and procedures related to roofing installation, including Manufacturer’s
written instructions.
4. Review and finalize construction schedule, and verify availability of materials, Installer’s
personnel, equipment, and facilities needed to make progress and avoid delays.
5. Review deck substrate requirements for condition s and finishes, including flatness and
fastening.
6. Review structural loading limitations of roof deck during and after roofing.
7. Review base flashings, special roofing details, roof drainage, roof penetrations,
equipment curbs, and condition of other construction that affects Roofing System.
8. Review governing regulations and requirements for insurance and certificates if
applicable.
9. Review temporary protection requirements for Roofing System during and after
installation.
10. Review roof obstruction and repair procedures after roofing installation.

B. Pre-installation Roofing Conference: Conduct conference at Women’s and Children’s Hospital,
404 North Keene Street, Columbia, Missouri 65201.

1. Meet with Owner, Construction Manager, Architect, Owner’s insurer if applicable, testing
and inspecting agency representative, roofing Installer, Roofing System Manufacturer’s
representative, deck Installer, air barrier Installer, and Installers whose work interfaces
with or affects roofing, including Installers of roof accessories and roofing-mounted
equipment.
2. Review methods and procedures related to roofing installation, including Manufacturer’s
written instructions.
3. Review and finalize construction schedule, and verify availability of materials, Installer’s
personnel, equipment, and facilities needed to make progress and avoid delays.
4. Examine deck substrate conditions and finishes for compliance with requirements,
including flatness and fastening.
5. Review structural loading limitations of roof deck during and after roofing.
6. Review base flashings, special roofing details, roof drainage, roof penetrations,
equipment curbs, and condition of other construction that affects Roofing System.
7. Review governing regulations and requirements for insurance and certificates if
applicable.
8. Review temporary protection requirements for Roofing System during and after
installation.
9. Review roof observation and repair procedures after roofing installation.

1.5 QUALITY ASSURANCE

A. Qualifications of Contractors

1. Contractor shall submit work history data showing a minimum of five (5) years of
successful warranted installation experience of system specified, and of being authorized
by the Roofing System Manufacturer to install the specified Manufacturer’s materials.
2. Contractor shall submit work history data sheet for each worker on the project showing
evidence of successful experience installing the specific type of warranted Roofing
System proposed for use. Only those workers with such qualified experience shall be
allowed on project. Work history data sheet shall contain the following information: Job name, size of roof, date of project, responsibility of worker.

3. The Contractor shall use adequate numbers of such pre-qualified workmen with at least one (1) year successful experience with specified product and who are thoroughly trained in the crafts and techniques required to properly install the type of Roofing System proposed for use and other work required to complete the work specified.

4. The Contractor shall have an experienced, pre-qualified, thoroughly trained superintendent with five (5) years experience with roof systems specified who is familiar with the requirements of this project, on the job at all times when Roofing System work is in progress.

 a. Training for Superintendent shall include certification of completion of Manufacturer’s in-house training course or on-site training. On-site training shall consist of at least eighty (80) hours of on-site application monitored by Manufacturer representative.

B. Warranty

1. The Warranty shall be a full Roofing System repair and replacement thirty (30) year warranty covering all materials and labor. The Warranty shall be a no dollar limit type and provide for completion of repairs or total replacement of the “Roofing System” at the then current material and labor prices during the life of the Warranty.

2. This Manufacturer's warranty will run concurrently with Roofing Contractor/Installer thirty-six (36) month warranty. This warranty shall cover labor materials for the complete Roofing System and the watertight integrity and performance of the Roofing System installed which includes all components identified under Roofing Contractor/Installer thirty-six (36) month warranty. The Manufacturer shall be liable for full replacement cost of the roof system.

3. The Roofing Contractor and roofing Manufacturer accompanied by a designated Owner's representative shall perform, at no additional cost to the Owner, an annual inspection of the complete Roofing System installation through the (36 month) contractor's warranty period. This inspection shall include a written detailed evaluation of the Roofing System including system failures and maintenance recommendations. All Roofing System failures and defects shall be repaired/corrected by the contractor at no additional cost to the Owner within thirty (30) days from date of annual inspection. These repairs/corrections shall be include replacing any and all wet insulation. All repairs shall be approved by, and made to the satisfaction of the Owner's representative.

4. The Owner will promptly notify the Roofing Contractor and Manufacturer, in writing, of the defects in the Roofing System. Within eight (8) hours after receipt of written notice from the Owner, Roofing Contractor shall make emergency repairs, at its expense, as required to render the facility watertight. Within five (5) days after receipt of such notice, Roofing Contractor shall, at its expense, correct any faults or defects in material or workmanship. Should the Roofing Contractor or roof Manufacturer fail or refuse to make the necessary repairs or replacements, when requested by the Owner, the Owner may perform, or cause the necessary work to be performed at the Roofing Contractor and Manufacturer’s expense.

C. The Roofing System in this specification shall be defined as those items listed below and in the Roofing System Manufacturer’s Warranty.

1. The Roofing System as defined shall meet or exceed every standard or requirement as listed in the Roofing System Manufacturer’s latest printed descriptive product literature.

2. The Roofing System shall consist of:
D. Code Approval

1. The Roofing System specified must be fully tested assembly that meets the following:
 a. UL Class A
 b. FM IA-90

2. Contractor must provide documented testing results from the Manufacturer of the specified system stating the approvals have been obtained for the complete cold-applied system. This shall include FM IA-90 wind rating with the specified urethane insulation adhesive and membrane mastic.

1.6 SUBMITTALS

A. General: Comply with the appropriate submittal instructions given in the Special Conditions.

B. Samples: Submit samples to the Architect for approval prior to ordering and delivery in a timely manner so as not to delay progress and completion of the work or final inspection. Submit copies of each in compliance with submittals.

1. Samples of roofing material to be submitted are as follows:
 a. Manufacturer’s Technical brochure for roofing membrane to be used
 b. Sample of flashing material
 c. A field ply sample
 d. Sample roof insulation
 e. Mechanical fasteners
 f. Sample of fastener plates
 g. Sheet metal flashing (as required)
 h. Maintenance and repair instructions of the Manufacturer

C. Shop Drawings: Detail specific layout drawings of similar scale as Contract Documents showing application of insulation and roofing materials, attachment locations and methods, pertinent details at all penetrations, application of blocking and flashing, and roof top material storage plan.

D. Warranty: The Contractor shall coordinate all necessary inspections, corrections, and re-inspections (if any), and certifications with the roofing Manufacturer as required, and the roofing Manufacturer shall issue an executed copy of the Roofing System Manufacturer’s Warranty and amendment to the Owner upon completion of the work and final inspection by Architect and
Manufacturer’s representatives. Submit a copy of Manufacturer’s Warranty and Contractor's qualifications for Architect's review prior to commencing with the work.

E. Maintenance Instructions: Prior to final acceptance by Owner, deliver to Architect for approval, three (3) written copies of Manufacturer’s maintenance and repair instructions for material installed. Upon approval Architect will submit to Owner for record.

1. Maintenance instruction shall be submitted in a spiral bound binder appropriately indexed and labeled.

F. Qualifications of workers assigned to Project.

G. Both specified Roofing Systems must comply with all the requirements and warranties outlined in the section. Selected Manufacturer must be able to sign the University of Missouri warranty.

1.7 1.7 PRODUCT HANDLING

A. General: Deliver materials and store as required in compliance with the Manufacturer’s instructions and with the following information:

1. Name or title of material
2. Federal Specification or ASTM Designation, Factory Mutual or Underwriters Class as applicable; labels shall be on all packaged materials used on project.
3. Manufacturer’s name and brand name.

B. Delivery and Storage

1. Materials shall be delivered in their original unopened containers clearly labeled with above noted information, and such additional information and identifying numbers as are appropriate. All material furnished shall be stored in accordance with Manufacturers recommendations. All roofing materials including insulation shall be kept covered and absolutely dry before, during and after installation. Membrane shall be stored at use temperature and kept absolutely dry prior to use. CAUTIONS: DO NOT STORE ROOFING MATERIALS ON ROOF.
2. Do not allow roofing membrane to come in contact or be exposed to any materials that would be detrimental to or cause degradation of the roofing membrane.
3. All hoisting equipment shall bear on solid pad blocking if on roof surface. Pad shall be large enough to evenly distribute the load to avoid crushing insulation and roof system. Pad shall consist of two separate layers of material to eliminate vibration and other movement to directly affect the roofing membrane. Pad shall be of sufficient size to accommodate work tools and weights used around hoist operations.

C. Weather Precautions: Proceed with roofing work when existing and forecasted weather conditions permit work performance in compliance with Manufacturer’s recommendations.

1. Roof application shall not proceed if ambient temperature is below 40°F. In cool weather special measures must be taken to ensure proper performance of the Roofing System. Coated rolls may require additional handling to relax the sheets during cold weather.
2. Any moisture that could cause poor adhesion, skips in mopping, or entrapment within the system must be removed from the substrate. Since bitumens tend to chill quickly on a cold deck, components of the Roofing System must be installed rapidly, close to the mop,
well embedded, and completely broomed. Bitumen must not be overheated to compensate for rapid cooling.

3. For further information concerning cold weather application, contact the Owner’s representative.

4. Do not install in rain or wet weather. Protect all roof area from moisture once work has begun.

D. Environmental Conditions: Roofing System shall not be applied when the surrounding air and surface temperature, relative humidity, or wind velocity is not within the range acceptable under the Manufacturer’s recommendations.

E. Protection: Protect adjacent surface, exterior walls, copings, parapets and roof penetrations from damage, staining or soiling resulting from the conduct of work under this section. Pay particular attention where material or workmen are hoisted or permitted access to the roofs. Adjacent roofing material, if installed, is to be protected from traffic and damage due to operations.

F. Repairs: Clean or repair damaged or soiled surface including lawn areas, floors, walls, stairs, elevators, steps, walks, curbs, or other roofs, damaged by operations under this Contract to the Building without additional cost to the Owner.

PART 2 - MATERIALS

2.1 ROOF MEMBRANE

1. Flashings shall consist of one premium elastomeric, modified bitumen flashing sheet incorporating a strong, flexible fiber glass/polyester composite mat in a blend of SBS rubber and high quality asphalt. Must meet ASTM D5221 Type: I.

2. Cap Sheet: Provide and install over field ply, one (1) granular surfaced fire rated modified bitumen reinforced with a 250 gram non-woven polyester mat that is saturated and coated with a blend of SBS rubber, high quality asphalt and fire retardant additives, surfaced with a layer of ceramic coated white roofing granules. Must meet ASTM D6164 standards.

3. Primer (if needed) must meet ASTM D41 standards.

5. Insulation Adhesive: Urethane Insulation Adhesive.

B. Manufacturer:

1. The following cold adhesive applied Manufacturers have been approved for this project. Any substitutions must be submitted for approval a minimum of seven (7) days prior to bid opening, and if they meet all requirements called out in this section, and if approved by the Architect and the University of Missouri.

a. Johns Manville
 1) 2 Layers of Base: Dynabase
 2) Cap: DynaMax FR
3) Flashing: DynaMax FR
4) Liquid-applied flashing: PermaFlash System
 a. Garland Company, Inc.
 1) Nailable Base: Tri-base
 2) Base: Stressbase 120
 3) Cap: Stressply Plus FR Mineral
 4) Flashing: Stressbase 120
 5) Liquid-applied flashing: Tuff-Flash
 b. Firestone
 1) Base: SBS Smooth
 2) Cap: SBS Premium FR
 3) Flashing: SBS Premium FR
 c. GAF
 1) Base: Gafglas #75
 2) Interlayer: Ruberoid 20 Smooth Membrane
 3) Cap: Ruberoid Mop Plus Granule Membrane
 4) Liquid-applied flashing: Matrix 201
 d. Siplast
 1) Vapor Retarder: Paradiene 20 SA
 2) 2 Layers of Base: Paradiene 20
 3) Cap: Paradiene 30FR
 4) Flashing: Veral Aluminium
 5) Liquid-applied flashing: Parapro 123

2. Fire resistance roofing membrane shall meet UL Class A. Also, all packaging of membrane and insulation shall bear UL Class A label.

2.2 AUXILIARY ROOFING MEMBRANE MATERIALS

A. General: Auxiliary materials recommended by Roofing System Manufacturer for intended use and compatible with roofing membrane.
 1. Liquid-type auxiliary materials shall comply with low VOC limit as required by MU Health Care.
 2. Liquid-type auxiliary materials shall be tested per EPA Method 24. Test results shall be submitted for review and approval prior to bidding.

B. Asphalt Primer: ASTM D 41.

C. Cold-Applied Adhesive: Roofing System Manufacturer’s standard asphalt-based, one-part, asbestos free, cold-applied adhesive specially formulated for compatibility and use with roofing membrane and base flashings.

D. Asphalt Roofing Cement: ASTM D 4586, asbestos free, of consistency required by Roofing System Manufacturer for application.

E. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with corrosion-resistance provision in FM Approvals 4470, designed for fastening roofing membrane
components to substrate; tested by Manufacturer for required pullout strength, and acceptable to Roofing System Manufacturer.

F. Lead Flashing Sheet (drains): 30” by 30” square, 4 pound per square foot.

G. Roofing Granules: Ceramic-coated roofing granules, No. 11 screen size with 100 percent passing No. 8 sieve and 98 percent of mass retained on No. 40 Sieve, color to match roofing membrane.

H. Miscellaneous Accessories: Provide those recommended by Roofing System Manufacturer.

2.3 2.4 SUBSTRATE BOARDS

A. Substrate Board: ASTM C 1177/ C 1278M, glass mat gypsum roof board, water-resistant gypsum substrate, 5/8 inch thick.

1. Products: Subject to compliance with requirements, provide the following or equal:

 a. Georgia Pacific; DensDeck.

B. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with corrosion-resistance provisions in FM Approvals 4470, designed for fastening substrate board to load bearing portion of roof deck, penetrating 1: (Perlock).

2.4 2.5 VAPOR RETARDER

A. Roofing Membrane Sheet: ASTM D 6222-16, Grade P, 152 mil APP-modified asphalt base sheet (reinforced with a polyester fiber mat); surfaced; suitable for application method specified. Set in cold adhesive and heat weld side and end laps.

2.5 2.6 ROOF INSULATION

A. General: Preformed roof insulation boards approved by roofing Manufacturer, selected from Manufacturer’s standard sizes suitable for application, of thicknesses indicated and that produce FM approved roof insulation.

B. Polyisocyanurate Board Insulation (base layer): ASTM C 1289, Type II, Class 1, Grade 2, glass-fiber mat facer on both major surfaces, 1” thick.

 1. Continuous Insulation R-value to be minimum of 30.

C. Provide preformed saddles, crickets, tapered edge stripes, and other insulation shapes where indicated for sloping to drain. Fabricate to slopes indicated.

2.6 2.7 INSULATION ACCESSORIES

A. General: Furnish roof insulation accessories recommended by insulation Manufacturer for intended use and compatibility with membrane roofing.
B. Bead-Applied Insulation Adhesive: Insulation Manufacturer’s recommended bead-applied, low-rise, two component urethane adhesive formulated to attach roof insulation to substrate.

 1. Products: Subject to compliance with requirements, provide the following or equal:
 a. Georgia Pacific; DensDeck.

D. Bead-Applied Cover Board Adhesive: Insulation Manufacturer’s recommended bead-applied, low-rise, two-component urethane adhesive formulated to attach roof insulation to substrate or another insulation layer.

E. Modified cant strips: 1-3/4 inch x 1-3/4 inch x 2 inch.

A.

B. 2.8 WALKWAY PAD: Interlocking, rubber, slip resistant, and with multi-directional drainage.
 1. Products: Subject to compliance with requirements, provide the follow or equal:
 1. Durastrong Walkway Pad by Sofsurfaces, 1-800-263-2363.
 2. Physical Dimensions: 24”x24”, 2” thickness.

PART 3 - PART 3 – EXECUTION

3.1 3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
 1. Verify that roof openings and penetrations are in place, curbs are set and braced, and roof-drain bodies are securely clamped in place.
 2. Verify that cants, blocking, curbs, and nailers are securely anchored to roof deck at penetrations and terminations and that nailers match thicknesses of insulation.
 3. Verify that deck is securely fastened with no projecting fasteners and with no adjacent units in excess of 1/16 inch (1.6 mm) out of plane relative to adjoining deck.
 4. Avoid from built-up gypsum substrate exposure to moisture. Ensure that gypsum deck remains dry during demolition and new roofing.
 5. Verify that sloped metal deck is visibly dry and free of moisture.
 6. Verify that any damaged sections of built-up gypsum or sloped metal decks have been repaired or replaced.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 3.2 PREPARATION
A. Clean substrate of dust, debris, moisture, and other substances detrimental to roofing installation according to Roofing System Manufacturer’s written instructions.
 1. Remove sharp projections.
B. Prevent materials from entering and clogging roof drains and conductors and from spilling or migrating onto surfaces of other construction.
 1. Remove roof-drain plugs when no work is taking place or when rain is forecast.
C. Prime surface of concrete deck with asphalt primer at a rate of 3/4 gal./100 sq. ft. (0.3 L/sq. m), and allow primer to dry.
D. Perform fastener-pullout tests according to roof system Manufacturer’s recommendations.
 1. Submit test result within 24 hours of performing tests.
 a. Include Manufacturer’s requirements for any revision to previously submitted fastener patterns required to achieve specified wind uplift requirements.

3.3 INSTALLATION OF ROOFING, GENERAL

A. Install Roofing System according to Roofing System Manufacturer’s written instructions, FM Approvals' RoofNav listed roof assembly requirements, and FM Global Property Loss Prevention Data Sheet 1-29.
B. Complete terminations and base flashings, and provide temporary seals to prevent water from entering completed sections of Roofing System at the end of the workday or when rain is forecast.
 1. Remove and discard temporary seals before beginning work on adjoining roofing.
C. Install roof membrane and auxiliary materials to tie in to existing roofing to maintain weathertightness of transition.

3.4 INSTALLATION OF SUBSTRATE BOARD

A. Install substrate board with long joints in continuous straight lines, with end joints staggered not less than 24 inches (600 mm) in adjacent rows.
 1. Tightly butt substrate boards together.
 2. Cut substrate board to fit tight around penetrations and projections, and to fit tight to intersecting sloping roof decks.
 3. Fasten substrate board to gypsum deck or sloped metal deck according to recommendations in FM Approvals' RoofNav listed roof assembly requirements for specified Windstorm Resistance Classification and FM Global Property Loss Prevention Data Sheet 1-29.
4. Fasten substrate board to gypsum deck or sloped metal deck to resist uplift pressure at corners, perimeter, and field of roof according to Roofing System Manufacturers' written instructions.
5. Loosely lay substrate board over roof deck.

3.5 3.5 INSTALLATION OF VAPOR RETARDER

A. Self-Adhering-Sheet Vapor Retarder: Prime substrate if required by Manufacturer. Install self-adhering-sheet vapor retarder over area to receive vapor retarder, side and end lapping each sheet a minimum of 3-1/2 and 6 inches (90 and 150 mm), respectively.
 1. Extend vertically up parapet walls and projections to a minimum height equal to height of the insulation and cover board.
 2. Seal laps by rolling.

B. Completely seal vapor retarder at terminations, obstruction, and penetrations to prevent air movement into Roofing System.

3.6 3.6 INSTALLATION OF INSULATION

A. Coordinate installing Roofing System components, so insulation is not exposed to precipitation or left exposed at the end of the workday.

B. Comply with Roofing System and insulation Manufacturer’s written instructions for installing roof insulation.

C. Insulation Cant Strips: Install and secure preformed 45-degree insulation cant strips at junctures of Roofing System with vertical surfaces or angle changes greater than 45°F (14°C).

D. Installation Over Metal Decking:
 1. Install layers of insulation with joints of each layer offset not less than 12 inches (300 mm) from previous layer of insulation.
 a. Staggered end joints within each layer not less than 24 inches (600 mm) in adjacent rows.
 b. Install with long joints continuous and with end joints staggered not less than 12 inches (300 mm) in adjacent rows.
 c. Trim insulation neatly to fit around penetrations and projections, and to fit tight to intersecting sloping roof decks.
 d. Make joints between adjacent insulation boards not more than 1/4 inch (6 mm) in width.
 e. At internal roof drains, slope insulation to create a square drain sump, with each side equal to the diameter of the drain bowl plus 24 inches (600 mm).
 f. Trim insulation, so that water flow is unrestricted.
 g. Fill gaps exceeding 1/4 inch (6 mm) with insulation.
 h. Cut and fit insulation within 1/4 inch (6 mm) of nailers, projections, and penetrations.
 i. Adhere each layer of insulation to substrate using adhesive according to FM Approvals’ RoofNav listed roof assembly requirements for specified Windstorm
Resistance Classification and FM Global Property Loss Prevention Data Sheet 1-29, as follows:

1) Set each layer of insulation in a uniform coverage of full-spread insulation adhesive, firmly pressing and maintaining insulation in place.

E. Installation Over Filled Gypsum Decking:

1. Mechanically fasten base sheet to gypsum roof deck, with vented side down, using mechanical fasteners specifically designed and sized for fastening to gypsum decks.
 a. Fasten vented base sheet according to requirements in FM Approvals’ RoofNav for specified Windstorm Resistance Classification.
 b. Fasten vented base sheet to resist uplift pressure at corners, perimeter, and field of roof.

2. Install base layer of insulation with joints staggered not less than 24 inches (600 mm) in adjacent rows.
 a. Where installing composite and noncomposite insulation in two or more layers, install noncomposite board insulation for bottom layer and intermediate layers, if applicable, and install composite board insulation for top layer.
 b. Trim insulation neatly to fit around penetrations and projections, and to fit tight to intersecting sloping roof decks.
 c. Make joints between adjacent insulation boards not more than 1/4 inch (6 mm) in width.
 d. Fill gaps exceeding 1/4 inch (6 mm) with insulation.
 e. Cut and fit insulation within 1/4 inch (6 mm) of nailers, projections, and penetrations.
 f. Adhere base layer of insulation to vented base sheet according to FM Approvals’ RoofNav listed roof assembly requirements for specified Windstorm Resistance Classification and FM Global Property Loss Prevention Data Sheet 1-29, as follows:
 1) Set insulation in a uniform coverage of full-spread insulation adhesive, firmly pressing and maintaining insulation in place.

3. Install upper layers of insulation, with joints of each layer offset not less than 12 inches (300 mm) from previous layer of insulation.
 a. Staggered end joints within each layer not less than 24 inches (600 mm) in adjacent rows.
 b. Install with long joints continuous and with end joints staggered not less than 12 inches (300 mm) in adjacent rows.
 c. Trim insulation neatly to fit around penetrations and projections, and to fit tight to intersecting sloping roof decks.
 d. Make joints between adjacent insulation boards not more than 1/4 inch (6 mm) in width.
 e. Fill gaps exceeding 1/4 inch (6 mm) with insulation.
f. Cut and fit insulation within 1/4 inch (6 mm) of nailers, projections, and penetrations.

g. Adhere each layer of insulation to substrate using adhesive according to FM Approvals’ RoofNav listed roof assembly requirements for specified Windstorm Resistance Classification and FM Global Property Loss Prevention Data Sheet 1-29, as follows:

1) Install each layer in a two-part urethane adhesive according to roofing system manufacturer’s instruction.

2) Install each layer to resist uplift pressure at corners, perimeter, and field of roof.

3) Set each layer of insulation in a uniform coverage of full-spread insulation adhesive, firmly pressing and maintaining insulation in place.

3.7 INSTALLATION OF COVER BOARDS

A. Install cover boards over insulation with long joints in continuous straight lines, with end joints staggered between rows. Offset joints of insulation below a minimum of 6 inches (150 mm) in each direction.

1. Trim cover board neatly to fit around penetrations and projections, and to fit tight to intersecting sloping roof decks.

2. At internal roof drains, conform to slope of drain sump.

 a. Trim cover board, so that water flow is unrestricted.

3. Cut and fit cover board tight to nailers, projections, and penetrations.

4. Adhere cover board to substrate using adhesive according to FM Approvals’ RoofNav listed roof assembly requirements for specified Windstorm Resistance Classification and FM Global Property Loss Prevention Data Sheet 1-29, as follows:

 a. Set cover board in a uniform coverage of full-spread insulation adhesive, firmly pressing and maintaining insulation in place.

B. Install sheathing paper over cover board and immediately beneath roof membrane.

3.8 INSTALLATION OF ROOFING MEMBRANE, GENERAL

A. Install Roofing System according to Roofing System Manufacturer’s written instructions and applicable recommendations in ARMA/NRCA’s “Quality Control Guidelines for the Application of Polymer Modified Bitumen Roofing.”

B. Start installation of roofing in presence of Roofing System Manufacturer’s technical personnel and Owner’s testing and inspection agency.

C. Coordinate installation of Roofing System so insulation and other components of the Roofing System not permanently exposed are not subjected to precipitation or left uncovered at the end of the workday or when rain is forecast.
1. Provide tie-offs at end of each day's work to cover exposed roofing sheets and insulation with a course of coated felt set in roofing cement or hot roofing asphalt, with joints and edges sealed.
2. Complete terminations and base flashings, and provide temporary seals to prevent water from entering completed sections of Roofing System.
3. Remove and discard temporary seals before beginning work on adjoining roofing.

3.9 INSTALLATION OF BASE SHEET

A. Before installing, unroll base sheet, cut into workable lengths, and allow to lie flat for a time period recommended by Manufacturer for the ambient temperature at which cap sheet will be installed.

B. Loosely lay one course of sheathing paper, lapping edges and ends a minimum of 2 inches (51 mm) and 6 inches (150 mm), respectively.

C. Installation of Base Sheet:

1. Install base sheet according to roofing Manufacturer’s written instructions, starting at low point of Roofing System.
2. Extend roofing sheets over and terminate above cants.
3. Install base sheet in a shingle fashion.
4. Adhere to substrate in a uniform coating of cold-applied adhesive.
5. Install base sheet without wrinkles, tears, and free from air pockets.
6. Laps: Accurately align roofing sheets, without stretching, and maintain uniform side and end laps.
 a. Lap side laps as recommended by roof membrane Manufacturer but not less than 3 inches (76 mm).
 b. Lap end laps as recommended by roof membrane Manufacturer but not less than 12 inches (300 mm).
 c. Stagger end laps not less than 18 inches (450 mm).
 d. Completely bond and seal laps, leaving no voids.
 e. Roll laps with a 20-pound (9-kg) roller.

7. Repair tears and voids in laps and lapped seams not completely sealed.
8. Apply pressure to the body of the base sheet according to Manufacturer’s instructions, to remove air pockets and to result in complete adhesion of base sheet to substrate.

D. Installation of Asphalt-Coated Fiberglass-Mat Base Sheet:

1. Install base sheet according to roofing Manufacturer’s written instructions, starting at low point of Roofing System.
2. Extend roofing sheets over and terminate above cants.
3. Install base sheet in a shingle fashion.
4. Adhere to substrate in a uniform coating of cold-applied adhesive.
5. Install base sheet without wrinkles or tears, and free from air pockets.
6. Laps: Accurately align roofing sheets, without stretching, and maintain uniform side and end laps.
a. Lap side laps as recommended by roof membrane Manufacturer but not less than 3 inches (76 mm).
b. Lap end laps as recommended by roof membrane Manufacturer but not less than 12 inches (300 mm).
c. Stagger end laps not less than 18 inches (450 mm).
d. Completely bond and seal laps, leaving no voids.

7. Repair tears and voids in laps and lapped seams not completely sealed.

3.10 INSTALLATION OF INTERPLY SHEETS

A. Install two (1) ply sheets, starting at low point of roofing.

1. Align ply sheets without stretching.
2. Shingle side laps of ply sheets uniformly to achieve required number of plies throughout thickness of roofing membrane.

 a. Shingle in direction to shed water.
3. Extend ply sheets over and terminate above cants.

3.11 INSTALLATION OF SBS-MODIFIED BITUMINOUS CAP SHEET

A. Before installing, unroll cap sheet, cut into workable lengths, and allow to lie flat for a time period recommended by Manufacturer for the ambient temperature at which cap sheet will be installed.

B. Install modified bituminous roofing cap sheet according to roofing Manufacturer’s written instructions, starting at low point of Roofing System.

1. Extend cap sheet over and terminate above cants.
2. Install cap sheet in a shingle fashion.
3. Install cap sheet as follows:
4.
 a. Adhere to substrate in cold-applied adhesive.
5. Install cap sheet without wrinkles or tears, and free from air pockets.
6. Install cap sheet, so side and end laps shed water.

C. Laps: Accurately align roofing sheets, without stretching, and maintain uniform side and end laps.

1. Lap side laps as recommended by roof membrane Manufacturer but not less than 3 inches (76 mm).
2. Lap end laps as recommended by roof membrane Manufacturer but not less than 12 inches (300 mm).
3. Stagger end laps not less than 18 inches (450 mm).
4. Completely bond and seal laps, leaving no voids.
5. Roll laps with a 20-pound (9-kg) roller.
6. Repair tears and voids in laps and lapped seams not completely sealed.
D. Apply pressure to the body of the cap sheet according to Manufacturer’s instructions, to remove air pockets and to result in complete adhesion of base sheet to substrate.

E. Apply roofing granules of same color as roof membrane to cover exuded bead at laps while bead is wet, to provide a continuous color appearance.

3.12 INSTALLATION OF FLASHING AND STRIPPING

A. Install base flashing over cant strips and other sloped and vertical surfaces, at roof edges, and at penetrations through roof, and secure to substrates according to Roofing System Manufacturer’s written instructions and as follows:

1. Prime substrates with asphalt primer if required by Roofing System Manufacturer.
2. Backer Sheet Application:
 a. Mechanically fasten backer sheet to walls or parapets.
 b. Adhere backer sheet over roofing membrane at cants in cold-applied adhesive.
 c. Seal all laps.
3. Backer Sheet Application:
 a. Adhere backer sheet to substrate in cold-applied adhesive.
 b. Seal all laps.
4. Flashing Sheet Application: Adhere flashing sheet to substrate in cold-applied adhesive at rate required by Roofing System Manufacturer.

B. Extend base flashing up walls or parapets a minimum of 8 inches (200 mm) above roofing membrane and 4 inches (100 mm) onto field of roofing membrane.

C. Install liquid flashing system according to Manufacturer’s recommendations.

1. Extend liquid flashing not less than 3 inches (76 mm) in all directions from edges of item being flashed.
2. Embed granules, matching color of roof membrane, into wet compound.

D. Install roofing cap-sheet stripping where metal flanges and edgings are set on roofing according to Roofing System Manufacturer’s written instructions.

E. Roof Drains: Set 30-by-30-inch- (760-by-760-mm-) 4-pound (1.8 kg) lead flashing in bed of asphaltic adhesive on completed roofing membrane.

1. Cover lead flashing with roofing cap-sheet stripping, and extend a minimum of 6 inches (150 mm) beyond edge of metal flashing onto field of roofing membrane.
2. Clamp roofing membrane, metal flashing, and stripping into roof-drain clamping ring.

3.13 INSTALLATION OF WALKWAYS

1. Walkway Pads: Install walkway pads using units of size indicated or, if not indicated, of manufacturers’ standard size, according to walkway pad manufacturer’s written instructions. Install walkways at the following locations:
 a. Perimeter of each rooftop unit.
a. Between each rooftop unit location, creating a continuous path connecting rooftop unit locations.
b. Between each roof hatch and each rooftop unit location or path connecting rooftop unit locations.
c. Top and bottom of each roof access ladder.
d. Between each roof access ladder and each rooftop unit location or path connecting rooftop unit locations.
e. Locations indicated on drawings.
f. As required by roof membrane manufacturer’s warranty requirements.

2. Provided 3-inch (76-mm) clearance between adjoining pads.
3. Adhere walkway products to substrate with compatible adhesive according to roofing system manufacturer’s written instruction.

3.14 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to inspect substrate conditions, surface preparation, roof membrane application, flashings, protection, and drainage components, and to furnish reports to Architect.

B. Perform the following tests:

1. Flood Testing: Flood test each roofing area for leaks, according to recommendations in ASTM D5957, after completing roofing and flashing but before overlying construction is placed. Install temporary containment assemblies, plug or dam drains, and flood with potable water.
 a. Perform tests before overlying construction is placed.
 b. Flood to an average depth of 2-1/2 inches (65 mm) with a minimum depth of 1 inch (25 mm) and not exceeding a depth of 4 inches (100 mm). Maintain 2 inches (51 mm) of clearance from top of base flashing.
 c. Flood each area for 72 hours.
 d. After flood testing, repair leaks, repeat flood tests, and make further repairs until roofing and flashing installations are watertight.
 1) Cost of retesting is the responsibility of the Contractor.
 e. Testing agency shall prepare survey report indicating locations of initial leaks, if any, and final survey report.

2. Infrared Thermography: Testing agency shall survey entire roof area using infrared color thermography according to ASTM C1153.
 a. Perform tests before overlying construction is placed.
 b. After infrared scan, locate specific areas of leaks by electrical capacitance/impedance testing, or by nuclear hydrogen detection testing.
 c. After testing, repair leaks, repeat tests, and make further repairs until roofing and flashing installations are watertight.
 1) Cost of retesting is Contractor's responsibility.
d. Testing agency shall prepare survey report of initial scan indicating locations of entrapped moisture if any.

C. Final Roof Inspection: Arrange for Roofing System Manufacturer’s technical personnel to inspect roofing installation on completion, in presence of Architect, and to prepare inspection report.

1. Notify Architect and Owner 48 hours in advance of date and time of inspection.

D. Repair or remove and replace components of Roofing System where inspections indicate that they do not comply with specified requirements.

E. Roofing System will be considered defective if it does not pass tests and inspections.

1. Additional testing and inspecting, at Contractor’s expense, will be performed to determine if replaced or additional work complies with specified requirements.

3.15 PROTECTING AND CLEANING

A. Protect Roofing System from damage and wear during remainder of construction period.

1. When remaining construction does not affect or endanger roofing, inspect Roofing System for deterioration and damage, describing its nature and extent in a written report, with copies to Architect and Owner.

B. Correct deficiencies in or remove Roofing System that does not comply with requirements, repair substrates, and repair or reinstall Roofing System to a condition free of damage and deterioration at time of Substantial Completion and according to warranty requirements.

C. Clean overspray and spillage from adjacent construction using cleaning agents and procedures recommended by Manufacturer of affected construction.

3.16 ROOFING INSTALLER’S WARRANTY

A. WHEREAS __, herein called the “Roofing Installer,” has performed roofing and associated work (“work”) on the following project:

1. Owner: <Insert name of Owner>.
2. Address: <Insert address>.
3. Building Name/Type: <Insert information>.
4. Address: <Insert address>.
5. Area of Work: <Insert information>.
6. Acceptance Date: ________________.
7. Warranty Period: <Insert time>.
8. Expiration Date: ________________.

B. AND WHEREAS Roofing Installer has contracted (either directly with Owner or indirectly as a subcontractor) to warrant said work against leaks and faulty or defective materials and workmanship for designated Warranty Period,
C. NOW THEREFORE Roofing Installer hereby warrants, subject to terms and conditions herein set forth, that during Warranty Period Roofing Installer will, at Roofing Installer’s own cost and expense, make or cause to be made such repairs to or replacements of said work as are necessary to correct faulty and defective work and as are necessary to maintain said work in a watertight condition.

D. This Warranty is made subject to the following terms and conditions:

1. Specifically excluded from this Warranty are damages to work and other parts of the building, and to building contents, caused by:
 a. lightning;
 b. peak gust wind speed exceeding <Insert mph (m/s)>;
 c. fire;
 d. failure of Roofing System substrate, including cracking, settlement, excessive deflection, deterioration, and decomposition;
 e. faulty construction of parapet walls, copings, chimneys, skylights, vents, equipment supports, and other edge conditions and penetrations of the work;
 f. vapor condensation on bottom of roofing; and
 g. activity on roofing by others, including construction contractors, maintenance personnel, other persons, and animals, whether authorized or unauthorized by Owner.

2. When work has been damaged by any of foregoing causes, Warranty shall be null and void until such damage has been repaired by Roofing Installer and until cost and expense thereof have been paid by Owner or by another responsible party so designated.

3. Roofing Installer is responsible for damage to work covered by this Warranty but is not liable for consequential damages to building or building contents resulting from leaks or faults or defects of work.

4. During Warranty Period, if Owner allows alteration of work by anyone other than Roofing Installer, including cutting, patching, and maintenance in connection with penetrations, attachment of other work, and positioning of anything on roof, this Warranty shall become null and void on date of said alterations, but only to the extent said alterations affect work covered by this Warranty. If Owner engages Roofing Installer to perform said alterations, Warranty shall not become null and void unless Roofing Installer, before starting said work, shall have notified Owner in writing, showing reasonable cause for claim, that said alterations would likely damage or deteriorate work, thereby reasonably justifying a limitation or termination of this Warranty.

5. During Warranty Period, if original use of roof is changed and it becomes used for, but was not originally specified for, a promenade, work deck, spray-cooled surface, flooded basin, or other use or service more severe than originally specified, this Warranty shall become null and void on date of said change, but only to the extent said change affects work covered by this Warranty.

6. Owner shall promptly notify Roofing Installer of observed, known, or suspected leaks, defects, or deterioration and shall afford reasonable opportunity for Roofing Installer to inspect work and to examine evidence of such leaks, defects, or deterioration.

7. This Warranty is recognized to be the only warranty of Roofing Installer on said work and shall not operate to restrict or cut off Owner from other remedies and resources lawfully available to Owner in cases of roofing failure. Specifically, this Warranty shall not operate to relieve Roofing Installer of responsibility for performance of original work according to requirements of the Contract Documents, regardless of whether Contract was a contract directly with Owner or a subcontract with Owner’s General Contractor.
E. IN WITNESS THEREOF, this instrument has been duly executed this _________ day of _________________.

1. Authorized Signature: __.
2. Name: __.
3. Title: __.

END OF SECTION 075216
SECTION 076200 - SHEET METAL FLASHING AND TRIM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

 A. Section Includes:
 1. Formed low-slope roof sheet metal fabrications.
 2. Bird Screen

 B. Related Requirements:
 1. Section 061000 “Rough Carpentry” for wood nailers, curbs, and blocking.
 2. Section 079200 “Joint Sealants”

1.3 COORDINATION

 A. Coordinate sheet metal flashing and trim layout and seams with sizes and locations of penetrations to be flashed, and joints and seams in adjacent materials.

 B. Coordinate sheet metal flashing and trim installation with adjoining roofing and wall materials, joints, and seams to provide leakproof, secure, and noncorrosive installation.

1.4 ACTION SUBMITTALS

 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each manufactured product and accessory.

 B. Shop Drawings: For sheet metal flashing, trim and framed insect screen.
 1. Include plans, elevations, sections, and attachment details.
 2. Detail fabrication and installation layouts, expansion-joint locations, and keyed details. Distinguish between shop- and field-assembled work.
 3. Include identification of material, thickness, weight, and finish for each item and location in Project.
 4. Include details for forming, including profiles, shapes, seams, and dimensions.
 5. Include details for joining, supporting, and securing, including layout and spacing of fasteners, cleats, clips, and other attachments. Include pattern of seams.
 6. Include details of termination points and assemblies.
7. Include details of expansion joints and expansion-joint covers, including showing direction of expansion and contraction from fixed points.
8. Include details of roof-penetration flashing.
9. Include details of edge conditions, including eaves, ridges, valleys, rakes, crickets, and counterflashings as applicable.
10. Include details of special conditions.
11. Include details of connections to adjoining work.
12. Detail formed flashing and trim at scale of not less than 3 inches per 12 inches (1:5).

C. Samples for Initial Selection: For each type of sheet metal and accessory indicated with factory-applied finishes.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For fabricator.
B. Product Test Reports: For each product, for tests performed by a qualified testing agency.
C. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sheet metal flashing and trim, and its accessories, to include in maintenance manuals.

1.7 QUALITY ASSURANCE

A. Fabricator Qualifications: Employs skilled workers who custom fabricate sheet metal flashing and trim similar to that required for this Project and whose products have a record of successful in-service performance.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Do not store sheet metal flashing and trim materials in contact with other materials that might cause staining, denting, or other surface damage. Store sheet metal flashing and trim materials away from uncured concrete and masonry.
B. Protect strippable protective covering on sheet metal flashing and trim from exposure to sunlight and high humidity, except to extent necessary for period of sheet metal flashing and trim installation.

1.9 WARRANTY

A. Special Warranty on Finishes: Manufacturer agrees to repair finish or replace sheet metal flashing and trim that shows evidence of deterioration of factory-applied finishes within specified warranty period.
1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Finish Warranty Period: 20 years from date of Substantial Completion.

B. Installer’s Warranty: Submit roofing Installer's warranty, on warranty form in Special Conditions, signed by Installer, covering labor and materials of this Section, including all components of roofing system such as membrane roofing, base flashing, roof insulation, fasteners, cover boards, substrate boards, vapor retarders, walkway products, and other components of membrane roofing system required to make the system watertight and complete, for the following warranty period:
 1. Warranty Period: Three (3) years from date of Substantial Completion.
 2. The roofing Contractor and roofing Manufacturer accompanied by a designated owner’s representative shall perform, at no additional cost to the owner, an annual inspection of the complete roofing system installation through the three (3) year Contractor’s Warranty period. This inspection shall include a written detailed evaluation of the roofing system including system failures and maintenance recommendations. All roofing system failures and defects shall be repaired/corrected by the Contractor at no additional cost to the Owner within thirty (30) days from date of annual inspection. These repairs/corrections shall include replacing any and all wet insulation. All repairs shall be approved by, and made to the satisfaction of the owner’s representative.
 3. The Owner will notify the roofing Contractor and Manufacturer, in writing, of the defects in the roofing system within twenty (20) days of discovery. Within eight (8) hours after receipt of written notice from the Owner, the roofing Contractor shall make emergency repairs, at its own expense, as required to render the facility watertight. Within thirty (30) days after receipt of such notice, the roofing Contractor shall, at its own expense, correct any faults or defects in material or workmanship. Should the roofing Contractor or roof Manufacturer fail or refuse to make the necessary repairs or replacements, when requested by the Owner, the Owner may perform, or cause the necessary work to be performed at the roofing Contractor’s and Manufacturer’s expense.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. General: Sheet metal flashing and trim assemblies shall withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Completed sheet metal flashing and trim shall not rattle, leak, or loosen, and shall remain watertight.

B. Sheet Metal Standard for Flashing and Trim: Comply with SMACNA's "Architectural Sheet Metal Manual" requirements for dimensions and profiles shown unless more stringent requirements are indicated.

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes to prevent buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
2. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 SHEET METALS

A. General: Protect mechanical and other finishes on exposed surfaces from damage by applying strippable, temporary protective film before shipping.

B. Metallic-Coated Steel Sheet: Provide aluminum-zinc alloy-coated steel sheet according to ASTM A 792/A 792M, Class AZ50 (Class AZM150) coating designation, Grade 40 (Grade 275); prepainted by coil-coating process to comply with ASTM A 755/A 755M.

1. Surface: Smooth, flat.
2. Exposed Coil-Coated Finish:
 a. Two-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
3. Color: To match adjacent metal wall color.
4. Concealed Finish: Pretreat with manufacturer's standard white or light-colored acrylic or polyester backer finish, consisting of prime coat and wash coat with minimum total dry film thickness of 0.5 mil (0.013 mm).

2.3 UNDERLAYMENT MATERIALS

A. Self-Adhering, High-Temperature Sheet: Minimum 30 mils (0.76 mm) thick, consisting of a slip-resistant polyethylene- or polypropylene-film top surface laminated to a layer of butyl- or SBS-modified asphalt adhesive, with release-paper backing; specifically designed to withstand high metal temperatures beneath metal roofing. Provide primer according to written recommendations of underlayment manufacturer.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Carlisle Residential, a division of Carlisle Construction Materials; WIP 300HT.
 c. Henry Company; Blueskin PE200 HT.
 d. Metal-Fab Manufacturing, LLC; MetShield.
 e. Owens Corning; WeatherLock Specialty Tile & Metal Underlayment.

2. Thermal Stability: ASTM D 1970; stable after testing at 240 deg F (116 deg C) or higher.
3. Low-Temperature Flexibility: ASTM D 1970; passes after testing at minus 20 deg F (29 deg C) or lower.

B. Slip Sheet: Rosin-sized building paper, 3 lb/100 sq. ft. (0.16 kg/sq. m) minimum.

2.4 MISCELLANEOUS MATERIALS
A. General: Provide materials and types of fasteners, [solder], protective coatings, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation and as recommended by manufacturer of primary sheet metal or manufactured item unless otherwise indicated.

B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads and recommended by manufacturer of primary sheet metal or manufactured item.

1. General: Blind fasteners or self-drilling screws, gasketed, with hex-washer head.

 a. Exposed Fasteners: Heads matching color of sheet metal using plastic caps or factory-applied coating. Provide metal-backed EPDM or PVC sealing washers under heads of exposed fasteners bearing on weather side of metal.

 b. Blind Fasteners: High-strength aluminum or stainless-steel rivets suitable for metal being fastened.

C. Sealant Tape: Pressure-sensitive, 100 percent solids, polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch (13 mm) wide and 1/8 inch (3 mm) thick.

D. Elastomeric Sealant: ASTM C 920, elastomeric [polyurethane] [polysulfide] [silicone] polymer sealant; of type, grade, class, and use classifications required to seal joints in sheet metal flashing and trim and remain watertight.

E. Butyl Sealant: ASTM C 1311, single-component, solvent-release butyl rubber sealant; polyisobutylene plasticized; heavy bodied for hooked-type expansion joints with limited movement.

2.5 FABRICATION, GENERAL

A. General: Custom fabricate sheet metal flashing and trim to comply with details shown and recommendations in cited sheet metal standard that apply to design, dimensions, geometry, metal thickness, and other characteristics of item required. Fabricate sheet metal flashing and trim in shop to greatest extent possible.

1. Fabricate sheet metal flashing and trim in thickness or weight needed to comply with performance requirements, but not less than that specified for each application and metal.

2. Obtain field measurements for accurate fit before shop fabrication.

3. Form sheet metal flashing and trim to fit substrates without excessive oil canning, buckling, and tool marks; true to line, levels, and slopes; and with exposed edges folded back to form hems.

4. Conceal fasteners and expansion provisions where possible. Do not use exposed fasteners on faces exposed to view.

B. Fabrication Tolerances: Fabricate sheet metal flashing and trim that is capable of installation to a tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines indicated on Drawings and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.
C. Fabrication Tolerances: Fabricate sheet metal flashing and trim that is capable of installation to tolerances specified in MCA’s "Guide Specification for Residential Metal Roofing."

D. Expansion Provisions: Form metal for thermal expansion of exposed flashing and trim.
 1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with butyl sealant concealed within joints.

E. Sealant Joints: Where movable, nonexpansion-type joints are required, form metal to provide for proper installation of elastomeric sealant according to cited sheet metal standard.

F. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal.

G. Seams: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with elastomeric sealant unless otherwise recommended by sealant manufacturer for intended use. Rivet joints where necessary for strength.

H. Do not use graphite pencils to mark metal surfaces.

2.6 LOW-SLOPE ROOF SHEET METAL FABRICATIONS

A. Roof Edge Flashing (Gravel Stop): Fabricate in minimum 96-inch-long, but not exceeding 12-foot-long sections. Furnish with 6-inch-wide, joint cover plates.
 1. Joint Style: Butted with expansion space and 6-inch-wide, concealed backup plate.
 2. Fabricate from the following materials:
 a. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch thick.

B. Copings: Fabricate in minimum 96-inch-long, but not exceeding 12-foot-long, sections. Fabricate joint plates of same thickness as copings. Furnish with continuous cleats to support edge of external leg and drill elongated holes for fasteners on interior leg. Fully welded corners, no miter corners are acceptable. Custom fabricated corners for intersection between sloped wall and flat wall copings required.
 1. Coping Profile: As indicated on Drawings.
 2. Joint Style: Intermeshing hooked flanges not less than 1 inch deep, filled with sealant concealed within joints.
 3. Corner Style: All coping corners to be fully welded.
 4. Fabricate from the following Materials:
 a. Aluminum-Zinc Alloy-Coated Steel: 0.040 inch thick.

C. Roof-to-Wall Transition: Expansion-Joint Cover: Fabricate from the following materials:
 1. Aluminum-Zinc Alloy-Coated Steel: 0.040 inch thick.

D. Counterflashings: Fabricate from the following materials:
 1. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch thick.

E. Flashing Receivers: Fabricate from the following materials:
 1. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch thick.
2.7 FRAMED BIRD SCREEN

A. Stainless Steel Angle: Bird screen frame welded at mitered corners.
 1. Finish: 304 Stainless Steel, ASTM A276
 2. Size: 1" x 1" x 1/8" x required length (refer to drawings)

 1. Finish: 304 Stainless Steel, ASTM A276
 2. Size: 1" x 1/8" x required length (refer to drawings)

C. Stainless Steel Wire Mesh: Welded to stainless steel angle frame and intermediate support.
 1. Wire type: Plain Weave
 2. Wire Centers or opening 0.213
 3. Wire Diameter: 0.032

D. Stainless Steel Fasteners

E. Welding Qualifications: Qualify procedures and personnel according to the following.
 1. AWS D1.6M, "Structural Welding Code – Stainless Steel."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, substrate, and other conditions affecting performance of the Work.
 1. Verify compliance with requirements for installation tolerances of substrates.
 2. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
 3. Verify that air- or water-resistant barriers have been installed over sheathing or backing substrate to prevent air infiltration or water penetration.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 UNDERLAYMENT INSTALLATION

A. Self-Adhering Sheet Underlayment: Install self-adhering sheet underlayment, wrinkle free. Prime substrate if recommended by underlayment manufacturer. Comply with temperature restrictions of underlayment manufacturer for installation; use primer for installing underlayment at low temperatures. Apply in shingle fashion to shed water, with end laps of not less than 6 inches (150 mm) staggered 24 inches (600 mm) between courses. Overlap side edges not less than 3-1/2 inches (90 mm). Roll laps and edges with roller. Cover underlayment within 14 days.

3.3 INSTALLATION, GENERAL
A. General: Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement. Use fasteners, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.

1. Install sheet metal flashing and trim true to line, levels, and slopes. Provide uniform, neat seams with minimum exposure of solder, welds, and sealant.
2. Install sheet metal flashing and trim to fit substrates and to result in watertight performance. Verify shapes and dimensions of surfaces to be covered before fabricating sheet metal.
3. Provide continuous cleats at all flashing locations.
4. Install exposed sheet metal flashing and trim with limited oil canning, and free of buckling and tool marks.
5. Torch cutting of sheet metal flashing and trim is not permitted.
6. Do not use graphite pencils to mark metal surfaces.

B. Metal Protection: Where dissimilar metals contact each other, or where metal contacts pressure-treated wood or other corrosive substrates, protect against galvanic action or corrosion by painting contact surfaces with bituminous coating or by other permanent separation as recommended by sheet metal manufacturer or cited sheet metal standard.

1. Underlayment: Where installing sheet metal flashing and trim directly on cementitious or wood substrates, install underlayment and cover with slip sheet.

C. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at maximum of 10 feet (3 m) with no joints within 24 inches (600 mm) of corner or intersection.

1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with sealant concealed within joints.

D. Fasteners: Use fastener sizes that penetrate substrate not less than recommended by fastener manufacturer to achieve maximum pull-out resistance.

E. Conceal fasteners and expansion provisions where possible in exposed work and locate to minimize possibility of leakage. Cover and seal fasteners and anchors as required for a tight installation.

F. Seal joints as required for watertight construction.

1. Use sealant-filled joints unless otherwise indicated. Embed hooked flanges of joint members not less than 1 inch (25 mm) into sealant. Form joints to completely conceal sealant. When ambient temperature at time of installation is between 40 and 70 deg F (4 and 21 deg C), set joint members for 50 percent movement each way. Adjust setting proportionately for installation at higher ambient temperatures. Do not install sealant-type joints at temperatures below 40 deg F (4 deg C).
2. Prepare joints and apply sealants to comply with requirements in Section 07920 "Joint Sealants."

3.4 ROOF FLASHING INSTALLATION

A. General: Install sheet metal flashing and trim to comply with performance requirements, sheet metal manufacturer's written installation instructions, and cited sheet metal standard. Provide
concealed fasteners where possible, and set units true to line, levels, and slopes. Install work with laps, joints, and seams that are permanently watertight and weather resistant.

B. Roof Edge Flashing: Anchor to resist uplift and outward forces according to recommendations in cited sheet metal standard unless otherwise indicated. Interlock bottom edge of roof edge flashing with continuous cleat anchored to substrate at staggered 3-inch (75-mm) centers.

C. Copings: Anchor to resist uplift and outward forces according to recommendations in cited sheet metal standard unless otherwise indicated.

1. Interlock exterior bottom edge of coping with continuous cleat anchored to substrate at 16-inch (400-mm) centers.

D. Copings: Anchor to resist uplift and outward forces according to recommendations in FM Global Property Loss Prevention Data Sheet 1-49 for specified FM Approvals’ listing for required windstorm classification.

E. Counterflashing: Coordinate installation of counterflashing with installation of base flashing. Insert counterflashing in reglets or receivers and fit tightly to base flashing. Extend counterflashing 4 inches (100 mm) over base flashing. Lap counterflashing joints minimum of 4 inches (100 mm). Secure in waterproof manner by means of interlocking folded seam or blind rivets and sealant unless otherwise indicated.

3.5 ERECTION TOLERANCES

A. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines indicated on Drawings and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.

3.6 CLEANING AND PROTECTION

A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.

B. Clean off excess sealants.

C. Remove temporary protective coverings and strippable films as sheet metal flashing and trim are installed unless otherwise indicated in manufacturer’s written installation instructions. On completion of sheet metal flashing and trim installation, remove unused materials and clean finished surfaces as recommended by sheet metal flashing and trim manufacturer. Maintain sheet metal flashing and trim in clean condition during construction.

D. Replace sheet metal flashing and trim that have been damaged or that have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 076200
SECTION 077200 - ROOF ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fall Protection.
 a. Section includes design and supply of double lanyard horizontal lifeline cable system intended for fall protection. This system is not designed for window cleaning or façade access.
 2. Preformed flashing sleeves.
 3. Insulated metal roof equipment curbs

B. Related Sections:
 1. Section 055000 "Metal Fabrications" for metal vertical ladders.
 2. Section 075216 "Styrene-Butadiene-Styrene Modified Bituminous Membrane" for roofing membrane.

1.3 REFERENCES

A. American Institute of Steel Construction (AISC).

B. Aluminum Association (AA).
 1. AA DAF 45, Designation System for Aluminum Finishes.
 2. AA ADM-1, Aluminum Design Manual.

C. American Welding Society (AWS).
 1. AWS D1.2, Structural Welding Code – Aluminum.
 2. AWS D1.1, Structural Welding Code – Steel.

D. ASTM International (ASTM).

E. International Code Council (ICC).

F. Occupational Safety and Health Administration (OSHA).
 1. OSHA 1910, Subpart D, Walking and Work Surfaces.
 2. OSHA 1910, Subpart F, Appendix C, Personal Fall Arrest Systems.

G. National Roofing Contractor’s Association (NRCA).

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.
 1. Inspect and discuss preparatory work required.
 a. Review existing structure conditions for compliance with shop drawing requirements.
 2. Review manufacturer’s installation instructions and manufacturer’s warranty requirements.
 3. Review sequence of operation for each type of fall protection system.
 4. Review required testing, inspecting, and certifying procedures.

1.5 COORDINATION

A. Coordinate layout and installation of roof accessories with roofing membrane and base flashing and interfacing and adjoining construction to provide a leakproof, weathertight, secure, and noncorrosive installation.

B. Coordinate dimensions with rough-in information or Shop Drawings of equipment to be supported.

1.6 ACTION SUBMITTALS

A. Product Data: For each type of roof accessory.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 2. Include rated capacities, and furnished specialties and accessories.

B. Shop Drawings: For roof accessories.
 1. General
a. Include plans, elevations, keyed details, and attachments to other work. Indicate
dimensions, loadings, and special conditions. Distinguish between plant- and field-
assembled work.

2. Fall Protection
 a. Submit shop drawings showing complete layout and configuration of fall protection
 system, including components and accessories.
 b. Indicate design and fabrication details, hardware, and installation details.
 c. Include installation and rigging instructions and:
 1) Required restrictive working usage and general safety notes.
 2) Non-restrictive working usage and general safety notes.
 d. Ensure Shop Drawings are reviewed by Engineer licensed in State of Missouri and
 submit calculations and test reports to Architect and Owner.

A. Delegated-Design Submittal: For fall protection system, including analysis data signed and
 sealed by the qualified professional engineer responsible for their preparation.
 1. Original structural drawings available upon request for preparation of engineering
 calculations and determining required fall protection anchor design. Contractor shall be
 responsible for field verification of existing member sizes per original documented
 conditions during preparation of required shop drawings for approval.

1.7 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Roof plans, drawn to scale, and coordinating penetrations and roof-
mounted items. Show the following:
 1. Size and location of roof accessories specified in this Section.
 2. Method of attaching roof accessories to roof or building structure.
 3. Other roof-mounted items including mechanical and electrical equipment, ductwork,
 piping, and conduit.
 4. Required clearances.

B. Sample Warranties: For manufacturer’s special warranties.

C. Fall Protection
 1. Qualification Data: For Installer.
 2. Product Test Reports: Certified test reports showing compliance with specified
 performance characteristics and physical properties.
 3. Certificates: Manufacturer signed product certificates certifying materials comply with
 specified performance characteristics and criteria and physical requirements.
 4. Installation Instructions: Manufacturer’s installation instructions.
 5. Manufacturer’s Field Reports.
 7. Warranty: Submit manufacturer’s standard 1-year warranty documents specified.

1.8 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For roof accessories to include in operation and maintenance
 manuals.

B. Fall Protection
1. Operation and Maintenance Data: For fall protection system, to include in operation and maintenance manuals.
 a. Submit and operating procedures outline system including necessary elements in both pictorial and written form, to instruct employees in safe use of roof supported building maintenance equipment. Ensure that operating procedures outline contains as a minimum, elements as follows:
 1) Isometric or plan view pictorial drawing of building’s roof, including building’s name, address, and date operating procedures outline system was prepared.
 2) Identification of anchorage points for personal fall arrest systems and building maintenance equipment.
 3) Identification of personal fall protection requirements and procedures for securing equipment.
 4) Identification of dangerous areas on roof by highlighting of “Danger Zone” on pictorial drawing.
 5) Identification of equipment limitations, load ratings, and special use conditions.
 6) Provisions for pre-operational, operation and maintenance inspections.
 7) Identification of access and egress to work locations.
 8) Emergency and rescue procedures, and means of communications to be used during such procedures.
 9) Method to be used to control employee exposure to falls while in “Danger Zone.”

2. Include Manufacturer’s instructions covering maintenance requirements and parts catalog giving complete list of repair and replacement parts with cuts and identifying numbers.

3. One (1) copy of system equipment manual and inspection log book, with “Initial Inspection – Certification for Use” and “Inspection Sign-Off” forms completed.

4. Two (2) copies of reduced, “as-built shop drawing” showing equipment locations and details.

1.9 COORDINATION

A. Coordinate layout and installation of roof accessories with roofing membrane and base flashing and interfacing and adjoining construction to provide a leakproof, weathertight, secure, and noncorrosive installation.

B. Coordinate dimensions with rough-in information or Shop Drawings of equipment to be supported.

1.10 FALL PROTECTION QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.
 1. Installer experienced in performing work of this Section who has specialized in installation of work similar to that required for this project.
 2. Provide experienced and qualified technicians to carry out erection, assembly, and installation of fall protection system equipment and components.

B. Manufacturer Qualifications: Manufacturer capable of providing field service representation during construction and approving application method.
C. Regulatory Requirements:
 2. Comply with OSHA regulations as follows:
 a. 1910, Subpart D, Walking and Working Surfaces.
 b. Appendix C to 1910 Subpart F, Personal Fall Arrest Systems.

D. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1, "Structural Welding Code - Steel."
 3. AWS D1.6, "Structural Welding Code - Stainless Steel."

E. Source Quality Control: ensure fall protection system equipment and components and materials are from single manufacturer.

1.11 DELIVERY, STORAGE, AND HANDLING

A. Ordering: Comply with manufacturer’s ordering instructions and lead time requirements to avoid construction delays.

B. Deliver materials in manufacturer’s original packaging with identification labels intact and sizes to suit project.

C. Store materials protected from exposure to harmful weather conditions and at temperature conditions recommended by manufacturer.

1.12 PROJECT AMBIENT CONDITIONS

A. Installation Location: Assemble and erect components only when temperatures are above 40 degrees F.

1.13 SEQUENCING

A. Sequence with other Work and comply with fall protection manufacturer’s written recommendations for sequencing construction operations.

1.14 WARRANTY

A. Special Warranty on Painted Finishes: Manufacturer's standard form in which manufacturer agrees to repair finishes or replace roof accessories that show evidence of deterioration of factory-applied finishes within specified warranty period.

 1. Fluoropolymer Finish: Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

 2. Finish Warranty Period: 20 years from date of Substantial Completion.
B. Fall Protection
 1. Manufacturer’s Warranty: Submit, for Owner’s acceptance, manufacturer’s standard warranty document executed by authorized company official. Manufacturer’s warranty is in addition to, and does not limit, other rights Owner may have under Contract Documents.
 2. Warranty Period: 1-year from date of Substantial Completion, set by Architect/Owner.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. General Performance: Roof accessories shall withstand exposure to weather and resist thermally induced movement without failure, rattling, leaking, or fastener disengagement due to defective manufacture, fabrication, installation, or other defects in construction.

B. MANUFACTURERS
 1. Ensure manufacturer has minimum ten (10) years experience in manufacturing fall protection system components similar to or exceeding requirements of project.
 2. Manufacturer’s Insurance: Ensure manufacturer carries liability insurance to protect against product and system failure in amount of ten million dollars US ($10,000,000.00) minimum.

C. PROPRIETARY PRODUCTS AND SYSTEMS
 1. Manufacturer: Pro-Bel Group of Companies; Phone: 905-427-0616, USA Toll Free: 800-461-0575; Fax: 905-427-2545; Email: info@pro-belgroup.com; URL: http://www.pro-belgroup.com.
 2. To be considered as an "Acceptable Substitution," other systems must be approved ten (10) days in advance of bidding as per the General Conditions of the Project.
 a. Summit Anchor Company, Inc.
 b. UniLine.

D. DESIGN PERFORMANCE REQUIREMENTS
 1. Delegated Design: Engage a qualified professional engineer, licensed in the State of Missouri, to design fall protection system.
 2. Design fall protection system to suit project requirements to AISC S342L and as indicated.
 3. Locate anchorages to suit suspension equipment specified.
 a. Anchorages noted per drawings are minimum requirements. Provide anchor components and locations as required to provide complete system installation per performance requirements specified.
 4. Design anchor components for fall protection equipment to:
 a. Ensure compatibility with industry standard equipment.
 b. Anchorage and anchor components: Design by Engineer qualified in design of fall protection systems in state of Missouri.
 5. Design system fall arrest safety anchors to AISC S342L (including Supplement No.1), and as follows:
 a. Comply with OSHA 1910, Subpart F, Appendix C.
 b. Fall Arrest Safety Anchors:
 1) Fall arresting force safety factor of 2 to 1 without permanent deformation: 1,800 lbs minimum.
E. ANCHORS

1. Anchors:
 a. Safety U-bars: Stainless steel to ASTM A276, Type 304 with 35 Ksi minimum yield strength.
 1) U-bar: 0.75-inch minimum diameter material with 1-1/2-inch eye opening.
 b. Safety Anchor Eye Plate: Mild steel, Type 300W with 44 Ksi minimum yield strength, hot-dip galvanized to ASTM A123.
 1) Plate: 0.875-inch diameter material with 2-inches eye opening.
 c. Hollow Steel Section (HSS) Piers: Mild steel, type 300W with 50 KSI minimum yield strength, hot-dip galvanized to ASTM A123.
 1) Wall Thickness: to suit application.
 d. Plate and Other Sections: Mild steel, Type 300W with 44 Ksi minimum yield strength, hot-dip galvanized to ASTM A123.
 1) Wall Thickness: to suit application.

2. Seamless Spun Aluminum Flashing (for Roof Anchors): To AA ADM-1 Type 6061-T6 alloy and to ASTM B221.
 a. Deck flange flashing: To NRCA Roofing and Waterproofing Manual recommendations, in accordance with Section 076200 “Sheet Metal Flashing and Trim.”
 b. Acceptable Material: Pro-Bel Group, Aluminum Deck Flange Flashing.

3. Miscellaneous Bolts, Nuts and Washers: Stainless steel to ASTM A276, Type 304 with 35 Ksi minimum yield strength.

F. HANDS-FREE DOUBLE LANYARD HORIZONTAL LIFELINE SYSTEM

1. Stainless steel to ASTM A492, Type 316, 0.3125-inch minimum diameter cable, 9,127 lbs minimum breaking strength with permanently swedged cable ends.

2. Data Plate: Ensure non-corrosive data plate stating Maximum Service Capacity of cable, Manufacturer’s Name, Serial No., Manufacturing Date, rated load and other pertinent information is prominently displayed at cable system entry points.

3. End Terminal Hardware: Stainless steel swedged termination at one end and stainless steel tensioner with shock absorber at other end, to meet project requirements.
 a. Tensioner: Stainless steel turnbuckle to ASTM A167, Type 316.

4. Lanyard Cable Runner: Stainless steel to ASTM A167, Type 316 with automatic runner bypass for continuous “hands-free” operation.
 a. Ensure lanyard can be inserted or removed anywhere on cable.

5. Harness: Manufacturer’s standard full body harness and lanyard with shock absorber.

2.2 METAL MATERIALS

A. Zinc-Coated (Galvanized) Steel Sheet: ASTM A 653/A 653M, G90 (Z275) coating designation and mill phosphatized for field painting where indicated.

1. Mill-Phosphatized Finish: Manufacturer's standard for field painting.

2. Factory Prime Coating: Where field painting is indicated, apply pretreatment and white or light-colored, factory-applied, baked-on epoxy primer coat, with a minimum dry film thickness of 0.2 mil (0.005 mm).
3. Exposed Coil-Coated Finish: Prepainted by the coil-coating process to comply with ASTM A 755/A 755M. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

a. Two-Coat Fluoropolymer Finish: AAMA 621. System consisting of primer and fluoropolymer color topcoat containing not less than 70 percent PVDF resin by weight.

4. Baked-Enamel or Powder-Coat Finish: Immediately after cleaning and pretreating, apply manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat, with a minimum dry film thickness of 1 mil (0.025 mm) for topcoat. Comply with coating manufacturer's written instructions for applying and baking to achieve a minimum dry film thickness of 2 mils (0.05 mm).

5. Concealed Finish: Pretreat with manufacturer's standard white or light-colored acrylic or polyester-backer finish consisting of prime coat and wash coat, with a minimum total dry film thickness of 0.5 mil (0.013 mm).

B. Steel Shapes: ASTM A 36/A 36M, hot-dip galvanized according to ASTM A 123/A 123M unless otherwise indicated.

C. Steel Tube: ASTM A 500, round tube.

D. Galvanized-Steel Tube: ASTM A 500, round tube, hot-dip galvanized according to ASTM A 123/A 123M.

2.3 PREFORMED FLASHING SLEEVES

A. Hot Pipe Flashing: Metal flashing sleeve, uninsulated, with integral deck flange.

1. Metal: Aluminum sheet, 0.063 inch (1.60 mm) thick.
2. Height: As indicated on Drawings.
3. Diameter: As indicated on Drawings.

2.4 INSULATED METAL ROOF EQUIPMENT CURB

2.5 MISCELLANEOUS MATERIALS

A. General: Provide materials and types of fasteners, protective coatings, sealants, and other miscellaneous items required by manufacturer for a complete installation.

B. Bituminous Coating: Cold-applied asphalt emulsion complying with ASTM D 1187.

C. Underlayment:

1. Felt: ASTM D 226, Type II (No. 30), asphalt-saturated organic felt, nonperforated.
2. Polyethylene Sheet: 6-mil- (0.15-mm-) thick polyethylene sheet complying with ASTM D 4397.
3. Slip Sheet: Building paper, 3-lb/100 sq. ft. (0.16-kg/sq. m) minimum, rosin sized.

D. Fasteners: Roof accessory manufacturer's recommended fasteners suitable for application and metals being fastened. Match finish of exposed fasteners with finish of material being fastened. Provide nonremovable fastener heads to exterior exposed fasteners. Furnish the following unless otherwise indicated:
 1. Fasteners for Zinc-Coated or Aluminum-Zinc Alloy-Coated Steel: Series 300 stainless steel or hot-dip zinc-coated steel according to ASTM A 153/A 153M or ASTM F 2329.

E. Gaskets: Manufacturer's standard tubular or fingered design of neoprene, EPDM, PVC, or silicone or a flat design of foam rubber, sponge neoprene, or cork.

F. Elastomeric Sealant: ASTM C 920, elastomeric polymer sealant as recommended by roof accessory manufacturer for installation indicated; low modulus; of type, grade, class, and use classifications required to seal joints and remain watertight.

G. Butyl Sealant: ASTM C 1311, single-component, solvent-release butyl rubber sealant; polyisobutylene plasticized; heavy bodied for expansion joints with limited movement.

2.6 GENERAL FINISH REQUIREMENTS

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, to verify actual locations, dimensions, and other conditions affecting performance of the Work.
 1. Verify compatibility with and suitability of substrates including compatibility with existing finishes or primers.

B. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.

C. Verify dimensions of roof openings for roof accessories.
D. Fall Protection: Verify that substrate conditions which have been previously installed under other Sections or Contracts, are acceptable for product installation in accordance with manufacturer’s instructions prior to installation of fall protection system.
 1. Inform Architect and Owner of unacceptable conditions immediately upon discovery.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FALL PROTECTION PREPARATION

A. Ensure structure or substrate is adequate to support complete fall protection system components.

B. Ensure structural steel to receive safety anchors has adequate bearing surface as indicated on shop drawings and has 100% welds between anchors and structural steel.

3.3 INSTALLATION

A. General: Install roof accessories according to manufacturer's written instructions.
 1. Install roof accessories level; plumb; true to line and elevation; and without warping, jogs in alignment, buckling, or tool marks.
 2. Anchor roof accessories securely in place so they are capable of resisting indicated loads.
 3. Use fasteners, separators, sealants, and other miscellaneous items as required to complete installation of roof accessories and fit them to substrates.
 4. Install roof accessories to resist exposure to weather without failing, rattling, leaking, or loosening of fasteners and seals.

B. Metal Protection: Protect metals against galvanic action by separating dissimilar metals from contact with each other or with corrosive substrates by painting contact surfaces with bituminous coating or by other permanent separation as recommended by manufacturer.
 1. Coat concealed side of uncoated aluminum and stainless-steel roof accessories with bituminous coating where in contact with wood, ferrous metal, or cementitious construction.
 2. Underlayment: Where installing roof accessories directly on cementitious or wood substrates, install a course of underlayment and cover with manufacturer’s recommended slip sheet.

C. Roof Curb Installation: Install each roof curb so top surface is level.

D. Equipment Support Installation: Install equipment supports so top surfaces are level with each other.

E. Seal joints with elastomeric sealant as required by roof accessory manufacturer.

F. Roof-Hatch Re-Installation:
1. Install roof hatch so top surface of hatch curb is level.
2. Verify that roof hatch operates properly. Clean, lubricate, and adjust operating mechanism and hardware.
3. Attach safety railing system to roof-hatch curb.
4. Attach ladder-assist post according to manufacturer's written instructions.

G. Preformed Flashing-Sleeve and Flashing Pipe Portal Installation: Secure flashing sleeve to roof membrane according to flashing-sleeve manufacturer's written instructions; flash sleeve flange to surrounding roof membrane according to roof membrane manufacturer's instructions.

H. Fall Protection

1. Installation:
 a. Coordinate fall protection system work with work of other trades, for proper time and sequence to avoid construction delays.
 b. Install fall protection system components plumb and level in accordance with manufacturer's written instructions.
 c. Mechanically fasten anchors in accordance with manufacturer’s recommendations.
 d. Accurately fit and align, securely fasten and install free from distortion or defects.
 e. Comply with manufacturer's written data, including product technical bulletins, product catalog installation instructions, and technical data sheets.
 f. Deform threads of tail end of anchor studs after nuts have been tightened to prevent accidental removal and vandalism.

2. Field Quality Control:
 a. When necessary, have the manufacturer assist in installation.
 b. Manufacturer’s Field Services: Have a manufacturer’s technical representative schedule site visits to review work as follows:
 1) After delivery and storage of products.
 2) When preparatory work for which work of this Section depends is complete, but before installation begins.
 3) Two (2) times during progress of work:
 a) 25% completion.
 b) 60% completion.
 4) Upon completion of work, after cleaning is completed.

3. Adjustment:

4. Cleaning and Protection:
 a. Upon completion of work, remove surplus and excess materials, rubbish, tools, and equipment from work areas.
 b. Protect installed product from damage during remainder of construction period.
 c. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A 780.

5. Demonstration:
 a. Engage a factory-authorized service representative to train Owner's maintenance personnel to operate and maintain fall protection equipment.
3.4 REPAIR AND CLEANING

A. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing according to ASTM A 780/A 780M.

B. Clean exposed surfaces according to manufacturer's written instructions.

C. Clean off excess sealants.

D. Replace roof accessories that have been damaged or that cannot be successfully repaired by finish touchup or similar minor repair procedures.

3.5 FALL PROTECTION MAINTENANCE

A. Provide complete maintenance on fall protection system and components for Twelve (12) months after date of Substantial Completion.
 1. Repair or replace parts of fall protection system whenever required due to defect and normal wear and tear.
 2. Use only standard parts of product line of manufacturer of fall protection system.
 3. Maintain locally adequate stock of parts for replacement or emergency purposes.
 4. Provide personnel to perform work under supervision and in direct employ of fall protection system manufacturer or manufacturer's licensed agent.
 5. Perform work during regular trade working hours satisfactory to Owner.
 6. Provide emergency call-back at no extra cost and ensure fulfillment of maintenance and emergency service without undue loss of time to Owner.
 7. Ensure that maintenance personnel register with designated building personnel at time of inspections and maintenance.

END OF SECTION 077200
SECTION 078100 - APPLIED FIREPROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes sprayed fire-resistive materials.

1.3 DEFINITIONS

A. SFRM: Sprayed fire-resistive materials.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Framing plans or schedules, or both, indicating the following:

C. Extent of fireproofing for each construction and fire-resistance rating.
 1. Applicable fire-resistance design designations of a qualified testing and inspecting agency acceptable to authorities having jurisdiction.
 2. Minimum fireproofing thicknesses needed to achieve required fire-resistance rating of each structural component and assembly.
 3. Treatment of fireproofing after application.

1.5 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of fireproofing.

B. Evaluation Reports: For fireproofing, from ICC-ES.

C. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: A firm or individual certified, licensed, or otherwise qualified by fireproofing manufacturer as experienced and with sufficient trained staff to install manufacturer’s products according to specified requirements.
1.7 FIELD CONDITIONS

A. Environmental Limitations: Do not apply fireproofing when ambient or substrate temperature is 44 deg F or lower unless temporary protection and heat are provided to maintain temperature at or above this level for 24 hours before, during, and for 24 hours after product application.

B. Ventilation: Ventilate building spaces during and after application of fireproofing, providing complete air exchanges according to manufacturer's written instructions. Use natural means or, if they are inadequate, forced-air circulation until fireproofing dries thoroughly.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Assemblies: Provide fireproofing, including auxiliary materials, according to requirements of each fire-resistance design and manufacturer's written instructions.

B. Fire-Resistance Design: Indicated on Drawings, tested according to ASTM E 119 or UL 263; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Steel members are to be considered unrestrained unless specifically noted otherwise.

C. Asbestos: Provide products containing no detectable asbestos.

2.2 SPRAYED FIRE-RESISTIVE MATERIALS

A. Sprayed Fire-Resistive Material: Manufacturer's high-traffic, moisture-resistant, factory-mixed, lightweight, dry formulation, complying with indicated fire-resistance design, and mixed with water at Project site to form a slurry or mortar before conveyance and application.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Grace, W. R. & Co. - Conn.; Grace Construction Products; Monokote Z-106/HY.
 2. Bond Strength: Minimum 1000-lbf/sq. ft. cohesive and adhesive strength based on field testing according to ASTM E 736.
 3. Density: Not less than 18 lb/cu. ft. and as specified in the approved fire-resistance design, according to ASTM E 605.
 4. Thickness: As required for fire-resistance design indicated, measured according to requirements of fire-resistance design or ASTM E 605, whichever is thicker, but not less than 1-3/16 inch.
 6. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 a. Flame-Spread Index: 0 or less.
 b. Smoke-Developed Index: 0 or less.
 7. Compressive Strength: Minimum 50 lbf/sq. in. according to ASTM E 761.
9. Deflection: No cracking, spalling, or delamination according to ASTM E 759.
10. Effect of Impact on Bonding: No cracking, spalling, or delamination according to ASTM E 760.
11. Air Erosion: Maximum weight loss of 0.0 g/sq. ft. in 24 hours according to ASTM E 859.
12. Fungal Resistance: Treat products with manufacturer's standard antimicrobial formulation to result in no growth on specimens per ASTM G 21.

2.3 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that are compatible with fireproofing and substrates and are approved by UL or another testing and inspecting agency acceptable to authorities having jurisdiction for use in fire-resistance designs indicated.

B. Substrate Primers: Primers approved by fireproofing manufacturer and complying with one or both of the following requirements:
 1. Primer and substrate are identical to those tested in required fire-resistance design by UL or another testing and inspecting agency acceptable to authorities having jurisdiction.
 2. Primer's bond strength in required fire-resistance design complies with specified bond strength for fireproofing and with requirements in UL's "Fire Resistance Directory" or in the listings of another qualified testing agency acceptable to authorities having jurisdiction, based on a series of bond tests according to ASTM E 736.

C. Bonding Agent: Product approved by fireproofing manufacturer and complying with requirements in UL's "Fire Resistance Directory" or in the listings of another qualified testing agency acceptable to authorities having jurisdiction.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for substrates and other conditions affecting performance of the Work and according to each fire-resistance design.
 1. Verify that substrates are free of dirt, oil, grease, release agents, rolling compounds, mill scale, loose scale, incompatible primers, paints, and encapsulants, or other foreign substances capable of impairing bond of fireproofing with substrates under conditions of normal use or fire exposure.
 2. Verify that objects penetrating fireproofing, including clips, hangers, support sleeves, and similar items, are securely attached to substrates.
 3. Verify that substrates receiving fireproofing are not obstructed by ducts, piping, equipment, or other suspended construction that will interfere with fireproofing application.

B. Verify that roof construction, other related work are complete before beginning fireproofing work.

C. Conduct tests according to fireproofing manufacturer's written instructions to verify that substrates are free of substances capable of interfering with bond.
D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Cover other work subject to damage from fallout or overspray of fireproofing materials during application.

B. Clean substrates of substances that could impair bond of fireproofing.

C. Prime substrates where included in fire-resistance design and where recommended in writing by fireproofing manufacturer unless compatible shop primer has been applied and is in satisfactory condition to receive fireproofing.

D. For applications visible on completion of Project, repair substrates to remove surface imperfections that could affect uniformity of texture and thickness in finished surface of fireproofing. Remove minor projections and fill voids that would telegraph through fire-resistive products after application.

3.3 APPLICATION

A. Construct fireproofing assemblies that are identical to fire-resistance design indicated and products as specified, tested, and substantiated by test reports; for thickness, primers, sealers, topcoats, finishing, and other materials and procedures affecting fireproofing work.

B. Comply with fireproofing manufacturer's written instructions for mixing materials, application procedures, and types of equipment used to mix, convey, and apply fireproofing; as applicable to particular conditions of installation and as required to achieve fire-resistance ratings indicated.

C. Coordinate application of fireproofing with other construction to minimize need to cut or remove fireproofing.
 1. Do not begin applying fireproofing until clips, hangers, supports, sleeves, and other items penetrating fireproofing are in place.
 2. Defer installing ducts, piping, and other items that would interfere with applying fireproofing until application of fireproofing is completed.

D. Metal Decks:
 1. Do not apply fireproofing to underside of metal roof deck until roofing is completed; prohibit roof traffic during application and drying of fireproofing.

E. Install auxiliary materials as required, as detailed, and according to fire-resistance design and fireproofing manufacturer's written instructions for conditions of exposure and intended use. For auxiliary materials, use attachment and anchorage devices of type recommended in writing by fireproofing manufacturer.
F. Spray apply fireproofing to maximum extent possible. After the spraying operation in each area, complete the coverage by trowel application or other placement method recommended in writing by fireproofing manufacturer.

G. Extend fireproofing in full thickness over entire area of each substrate to be protected.

H. Install body of fireproofing in a single course unless otherwise recommended in writing by fireproofing manufacturer.

I. For applications over encapsulant materials, including lockdown (post-removal) encapsulants, apply fireproofing that differs in color from that of encapsulant over which it is applied.

J. Provide a uniform finish complying with description indicated for each type of fireproofing material and matching finish approved for required mockups.

K. Cure fireproofing according to fireproofing manufacturer's written instructions.

L. Finishes: Where indicated, apply fireproofing to produce the following finishes:
 1. Manufacturer's Standard Finishes: Finish according to manufacturer's written instructions for each finish selected.
 2. Spray-Textured Finish: Finish left as spray applied with no further treatment.

3.4 FIELD QUALITY CONTROL

A. Special Inspections: Engage a qualified special inspector to perform the following special inspections:
 1. Test and inspect as required by the IBC, Subsection 1705.13, "Sprayed Fire-Resistant Materials."

B. Perform the tests and inspections of completed Work in successive stages. Do not proceed with application of fireproofing for the next area until test results for previously completed applications of fireproofing show compliance with requirements. Tested values must equal or exceed values as specified and as indicated and required for approved fire-resistance design.

C. Fireproofing will be considered defective if it does not pass tests and inspections.
 1. Remove and replace fireproofing that does not pass tests and inspections, and retest.
 2. Apply additional fireproofing, per manufacturer's written instructions, where test results indicate insufficient thickness, and retest.

D. Prepare test and inspection reports.

3.5 CLEANING, PROTECTING, AND REPAIRING

A. Cleaning: Immediately after completing spraying operations in each containable area of Project, remove material overspray and fallout from surfaces of other construction and clean exposed surfaces to remove evidence of soiling.

B. Protect fireproofing, according to advice of manufacturer and Installer, from damage resulting from construction operations or other causes, so fireproofing is without damage or deterioration at time of Substantial Completion.
C. As installation of other construction proceeds, inspect fireproofing and repair damaged areas and fireproofing removed due to work of other trades.

D. Repair fireproofing damaged by other work before concealing it with other construction.

E. Repair fireproofing by reapplying it using same method as original installation or using manufacturer's recommended trowel-applied product.

END OF SECTION 078100
SECTION 078413 - PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Penetrations in fire-resistance-rated walls.
 2. Penetrations in horizontal assemblies.
 3. Joints in smoke barriers. *(BID DOCUMENTS – August 30, 2019)*

B. Related Requirements:
 1. Section 078443 "Joint Firestopping" for joints in or between fire-resistance-rated construction, at exterior curtain-wall/floor intersections, and in smoke barriers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Product Schedule: For each penetration firestopping system. Include location, illustration of firestopping system, and design designation of qualified testing and inspecting agency.

 1. Engineering Judgments: Where Project conditions require modification to a qualified testing and inspecting agency's illustration for a particular penetration firestopping system, submit illustration, with modifications marked, approved by penetration firestopping system manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly. Obtain approval of authorities having jurisdiction prior to submittal.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Product Test Reports: For each penetration firestopping system, for tests performed by a qualified testing agency.

1.5 CLOSEOUT SUBMITTALS

A. Installer Certificates: From Installer indicating that penetration firestopping systems have been installed in compliance with requirements and manufacturer's written instructions.
1.6 QUALITY ASSURANCE

Installer Qualifications: A firm that has been approved by FM Approval according to FM Approval 4991, "Approval Standard for Firestop Contractors," or been evaluated by UL and found to comply with its "Qualified Firestop Contractor Program Requirements." A firm experienced in installing penetration firestopping similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful performance. Qualifications include having the necessary experience, staff, and training to install manufacturer's products per specified requirements. Manufacturer's willingness to sell its penetration firestopping products to Contractor or to Installer engaged by Contractor does not in itself confer qualification on buyer. (BID DOCUMENTS – August 30, 2019)

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Do not install penetration firestopping system when ambient or substrate temperatures are outside limits permitted by penetration firestopping system manufacturers or when substrates are wet because of rain, frost, condensation, or other causes.

B. Install and cure penetration firestopping materials per manufacturer's written instructions using natural means of ventilations or, where this is inadequate, forced-air circulation.

1.8 COORDINATION

A. Coordinate construction of openings and penetrating items to ensure that penetration firestopping systems can be installed according to specified firestopping system design.

B. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate penetration firestopping systems.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics:

1. Perform penetration firestopping system tests by a qualified testing agency acceptable to authorities having jurisdiction.

2. Test per testing standards referenced in "Penetration Firestopping Systems” Article. Provide rated systems complying with the following requirements:

 a. Penetration firestopping systems shall bear classification marking of a qualified testing agency.

 1) UL in its "Fire Resistance Directory."
2.2 PENETRATION FIRESTOPPING SYSTEMS

A. Penetration Firestopping Systems: Systems that resist spread of fire, passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. 3M Fire Protection Products.
 b. Hilti, Inc.
 c. Specified Technologies, Inc.

B. Penetrations in Fire-Resistance-Rated Walls: Penetration firestopping systems with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.

1. F-Rating: Not less than the fire-resistance rating of constructions penetrated.

C. Penetrations in Horizontal Assemblies: Penetration firestopping systems with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.

1. F-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated.

D. Penetrations in Smoke Barriers: Penetration firestopping systems with ratings determined per UL 1479, based on testing at a positive pressure differential of 0.30-inch wg.

1. F-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated.

2. L-Rating: Not exceeding 5.0 cfm/sq. ft. of penetration opening at and no more than 50-cfm cumulative total for any 100 sq. ft. at both ambient and elevated temperatures.

E. Exposed Penetration Firestopping Systems: Flame-spread and smoke-developed indexes of less than 25 and 450, respectively, per ASTM E 84.

F. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping system manufacturer and approved by qualified testing and inspecting agency for conditions indicated.

1. Permanent forming/damming/backing materials.
2. Substrate primers.
3. Collars.
4. Steel sleeves.

2.3 FILL MATERIALS

A. Latex Sealants: Single-component latex formulations that do not re-emulsify after cure during exposure to moisture.
B. Firestop Devices: Factory-assembled collars formed from galvanized steel and lined with intumescent material sized to fit specific diameter of penetrant.

C. Intumescent Wrap Strips: Single-component intumescent elastomeric sheets with aluminum foil on one side.

D. Intumescent Putties: Nonhardening, water-resistant, intumescent putties containing no solvents or inorganic fibers.

F. Mortars: Prepackaged dry mixes consisting of a blend of inorganic binders, hydraulic cement, fillers and lightweight aggregate formulated for mixing with water at Project site to form a nonshrinking, homogeneous mortar.

G. Pillows/Bags: Reusable heat-expanding pillows/bags consisting of glass-fiber cloth cases filled with a combination of mineral-fiber, water-insoluble expansion agents, and fire-retardant additives. Where exposed, cover openings with steel-reinforcing wire mesh to protect pillows/bags from being easily removed.

H. Mineral Wool

2.4 MIXING

A. Penetration Firestopping Materials: For those products requiring mixing before application, comply with penetration firestopping system manufacturer's written instructions for accurate proportioning of materials, water (if required), type of mixing equipment, selection of mixer speeds, mixing containers, mixing time, and other items or procedures needed to produce products of uniform quality with optimum performance characteristics for application indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning: Before installing penetration firestopping systems, clean out openings immediately to comply with manufacturer's written instructions and with the following requirements:
 1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of penetration firestopping materials.
2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with penetration firestopping materials. Remove loose particles remaining from cleaning operation.

B. Prime substrates where recommended in writing by manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

3.3 INSTALLATION

A. General: Install penetration firestopping systems to comply with manufacturer's written installation instructions and published drawings for products and applications.

B. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings.
 1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not forming permanent components of firestopping.

C. Install fill materials by proven techniques to produce the following results:
 1. Fill voids and cavities formed by openings, forming materials, accessories and penetrating items to achieve required fire-resistance ratings.
 2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
 3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 IDENTIFICATION

A. Penetration Identification: Identify each penetration firestopping system with legible metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches of penetration firestopping system edge so labels are visible to anyone seeking to remove penetrating items or firestopping systems. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:
 1. The words "Warning - Penetration Firestopping - Do Not Disturb. Notify Building Management of Any Damage."
 2. Contractor's name, address, and phone number.
 3. Designation of applicable testing and inspecting agency.
 4. Date of installation.
 5. Manufacturer's name.
 6. Installer's name.

3.5 FIELD QUALITY CONTROL

A. Owner will engage a qualified testing agency to perform tests and inspections according to ASTM E 2174.
B. Where deficiencies are found or penetration firestopping system is damaged or removed because of testing, repair or replace penetration firestopping system to comply with requirements.

C. Proceed with enclosing penetration firestopping systems with other construction only after inspection reports are issued and installations comply with requirements.

3.6 CLEANING AND PROTECTION

A. Clean off excess fill materials adjacent to openings as the Work progresses by methods and with cleaning materials that are approved in writing by penetration firestopping system manufacturers and that do not damage materials in which openings occur.

B. Provide final protection and maintain conditions during and after installation that ensure that penetration firestopping systems are without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, immediately cut out and remove damaged or deteriorated penetration firestopping material and install new materials to produce systems complying with specified requirements.

3.7 PENETRATION FIRESTopping SYSTEM SCHEDULE

A. Where UL-classified systems are indicated, they refer to system numbers in UL's "Fire Resistance Directory" under product Category XHEZ.

B. Floor Penetration Firestopping Systems for Nonmetallic Pipe, Conduit, or Tubing:
 1. Single pipe, 3 inch diameter or smaller, inside a wall cavity or chase.
 a. UL-Classified Systems: F-C-2387.
 b. F-Rating: 1 hour.
 2. Single pipe, 4 inch diameter or smaller, inside a chase.
 a. UL-Classified Systems: F-C-2024.
 b. F-Rating: 1 or 2 hour depending on the floor being penetrated.
 3. Single pipe, 2 inch diameter or smaller, not in a wall cavity or chase.
 b. F-Rating: 1 hour.
 4. Single pipe, 4 inch diameter or smaller, not inside a chase.
 a. UL-Classified Systems: F-C-2024.
 b. F-Rating: 1 or 2 hour depending on the floor being penetrated.
 5. Water closet including flange.
 a. UL-Classified Systems: F-C-2349.
 b. F-Rating: 1 hour.
 6. Floor drain.
 a. UL-Classified Systems: Engineering Judgement required.
 b. F-Rating: 1 hour.

C. Wall Penetration Firestopping Systems for Nonmetallic Pipe, Conduit, or Tubing:
 1. Single pipe, 2 inch diameter or smaller.
 b. F-Rating: 1 or 2 hour depending on the wall being penetrated.
 2. Single pipe, 4 inch diameter or smaller.
 b. F-Rating: 1 or 2 hour depending on the wall being penetrated.
END OF SECTION 078413
SECTION 078443 - JOINT FIRESTOPPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Joints in or between fire-resistance-rated constructions.
2. Joints at exterior curtain-wall/floor intersections.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Women’s and Children’s Hospital, 404 North Keene Street, Columbia, Missouri 65201.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Product Schedule: For each joint firestopping system. Include location, illustration of firestopping system, and design designation of qualified testing agency.

1. Engineering Judgments: Where Project conditions require modification to a qualified testing agency’s illustration for a particular joint firestopping system condition, submit illustration, with modifications marked, approved by joint firestopping system manufacturer’s fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Product Test Reports: For each joint firestopping system, for tests performed by a qualified testing agency.
1.6 CLOSEOUT SUBMITTALS

A. Installer Certificates: From Installer indicating that joint firestopping systems have been installed in compliance with requirements and manufacturer's written instructions.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: A firm that has been approved by FM Approvals according to FM Approvals 4991, "Approval of Firestop Contractors," or been evaluated by UL and found to comply with UL’s "Qualified Firestop Contractor Program Requirements."

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not install joint firestopping systems when ambient or substrate temperatures are outside limits permitted by joint firestopping system manufacturers or when substrates are wet due to rain, frost, condensation, or other causes.

B. Install and cure joint firestopping systems per manufacturer's written instructions using natural means of ventilation or, where this is inadequate, forced-air circulation.

1.9 COORDINATION

A. Coordinate construction of joints to ensure that joint firestopping systems can be installed according to specified firestopping system design.

B. Coordinate sizing of joints to accommodate joint firestopping systems.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics:

1. Perform joint firestopping system tests by a qualified testing agency acceptable to authorities having jurisdiction.

2. Test per testing standards referenced in "Joint Firestopping Systems" Article. Provide rated systems complying with the following requirements:

a. Joint firestopping systems shall bear classification marking of a qualified testing agency.

1) UL in its "Fire Resistance Directory,"

2) Intertek Group in its "Directory of Listed Building Products."
2.2 JOINT FIRESTOPPING SYSTEMS

A. Joint Firestopping Systems: Systems that resist spread of fire, passage of smoke and other gases, and maintain original fire-resistance rating of assemblies in or between which joint firestopping systems are installed. Joint firestopping systems shall accommodate building movements without impairing their ability to resist the passage of fire and hot gases.

B. Joints at Exterior Curtain-Wall/Floor Intersections: Provide joint firestopping systems with rating determined per ASTM E2307.

1. Hilti Firestop Systems
 a. Perimeter Fire Barrier System, Design No. CEJ263 (HI/PHV 120-09).
 b. Perimeter Fire Barriers, Design No. (HI/BPF 120-10).

2. F-Rating: Equal to or exceeding the fire-resistance rating of the floor assembly.

C. Accessories: Provide components of joint firestopping systems, including primers and forming materials, that are needed to install elastomeric fill materials and to maintain ratings required. Use only components specified by joint firestopping system manufacturer and approved by the qualified testing agency for conditions indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for joint configurations, substrates, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning: Before installing joint firestopping systems, clean joints immediately to comply with fire-resistive joint system manufacturer's written instructions and the following requirements:

1. Remove from surfaces of joint substrates foreign materials that could interfere with adhesion of elastomeric fill materials or compromise fire-resistive rating.
2. Clean joint substrates to produce clean, sound surfaces capable of developing optimum bond with elastomeric fill materials. Remove loose particles remaining from cleaning operation.
3. Remove laitance and form-release agents from concrete.

B. Prime substrates where recommended in writing by joint firestopping system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.
3.3 INSTALLATION

A. General: Install joint firestopping systems to comply with manufacturer's written installation instructions and published drawings for products and applications indicated.

B. Install forming materials and other accessories of types required to support elastomeric fill materials during their application and in position needed to produce cross-sectional shapes and depths required to achieve fire ratings indicated.

1. After installing elastomeric fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not indicated as permanent components of fire-resistive joint system.

C. Install elastomeric fill materials for joint firestopping systems by proven techniques to produce the following results:

1. Elastomeric fill voids and cavities formed by joints and forming materials as required to achieve fire-resistance ratings indicated.
2. Apply elastomeric fill materials so they contact and adhere to substrates formed by joints.
3. For elastomeric fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 IDENTIFICATION

A. Joint Identification: Identify joint firestopping systems with legible metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches (150 mm) of joint edge so labels are visible to anyone seeking to remove or joint firestopping system. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:

2. Contractor's name, address, and phone number.
3. Designation of applicable testing agency.
4. Date of installation.
5. Manufacturer's name.
6. Installer's name.

3.5 FIELD QUALITY CONTROL

A. Inspecting Agency: Owner will engage a qualified testing agency to perform tests and inspections according to ASTM E2393.

B. Where deficiencies are found or joint firestopping systems are damaged or removed due to testing, repair or replace joint firestopping systems so they comply with requirements.

C. Proceed with enclosing joint firestopping systems with other construction only after inspection reports are issued and installations comply with requirements.
3.6 CLEANING AND PROTECTION

A. Clean off excess elastomeric fill materials adjacent to joints as the Work progresses by methods and with cleaning materials that are approved in writing by joint firestopping system manufacturers and that do not damage materials in which joints occur.

B. Provide final protection and maintain conditions during and after installation that ensure joint firestopping systems are without damage or deterioration at time of Substantial Completion. If damage or deterioration occurs despite such protection, cut out and remove damaged or deteriorated joint firestopping systems immediately and install new materials to produce joint firestopping systems complying with specified requirements.

3.7 JOINT FIRESTOPPING SYSTEM SCHEDULE

A. Where UL-classified systems are indicated, they refer to system numbers in UL's "Fire Resistance Directory" under product Category XHBN or Category XHDG.

B. Where Intertek Group-listed systems are indicated, they refer to design numbers in Intertek Group's "Directory of Listed Building Products" under product category Firestop Systems.

C. Perimeter Joint Firestopping Systems PFRJS-1: At curtain wall glazing

2. F-Rating: 2 hours.

D. Perimeter Joint Firestopping Systems PFRJS-2: At insulated metal panels.

END OF SECTION 078443
SECTION 079200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Nonstaining silicone joint sealants.
 2. Urethane joint sealants.
 3. Latex joint sealants.

1.3 ACTION SUBMITTALS

A. Product Data: For each joint-sealant product.

B. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.

C. Joint-Sealant Schedule: Include the following information:
 1. Joint-sealant application, joint location, and designation.
 2. Joint-sealant manufacturer and product name.

1.4 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each kind of joint sealant, for tests performed by a qualified testing agency.

B. Sample Warranties: For special warranties.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

B. Product Testing: Test joint sealants using a qualified testing agency.
 1. Testing Agency Qualifications: Qualified according to ASTM C 1021 to conduct the testing indicated.
1.6 FIELD CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:

1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F.
2. When joint substrates are wet.
3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.7 WARRANTY

A. Special Installer's Warranty: Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.

1. Warranty Period: Two years from date of Substantial Completion.

B. Special warranties specified in this article exclude deterioration or failure of joint sealants from the following:

1. Movement of the structure caused by stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression.
2. Disintegration of joint substrates from causes exceeding design specifications.
3. Mechanical damage caused by individuals, tools, or other outside agents.
4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL

A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

B. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.

2.2 NONSTAINING SILICONE JOINT SEALANTS

A. Nonstaining Joint Sealants: No staining of substrates when tested according to ASTM C 1248.

B. Silicione, Nonstaining, S, NS, 50, NT: Nonstaining, single-component, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 50, Use NT.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Dow Corning Corporation; 795.
b. May National Associates, Inc.; a subsidiary of Sika Corporation; Bondaflex Sil 295 FPS NB.
c. Pecora Corporation; 895NST.
d. Tremco Incorporated; Spectrem 3.

2.3 URETHANE JOINT SEALANTS

A. Urethane, M, NS, 50, T, NT: Multicomponent, nonsag, plus 50 percent and minus 50 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type M, Grade NS, Class 50, Uses T and NT.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to the following:
 a. Tremco Incorporated; Dymeric 240.

B. Urethane, S, NS, 25, T, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type S, Grade NS, Class 25, Uses T and NT.

2.4 LATEX JOINT SEALANTS

A. Acrylic Latex: Acrylic latex or siliconized acrylic latex, ASTM C 834, Type OP, Grade NF.

B. Products: Subject to compliance with requirements, provide one of the following:
 1. BASF Construction Chemicals - Building Systems; Sonolac.
 2. May National Associates, Inc.; a subsidiary of Sika Corporation; Bondaflex 600.
 3. Tremco Incorporated; Tremflex 834.

2.5 JOINT-SEALANT BACKING

A. Sealant Backing Material, General: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.

B. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin), and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.

C. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint. Provide self-adhesive tape where applicable.

2.6 JOINT FILLERS

A. Sponge Rubber Expansion and Partition Joint Filler: Provide units complying with AASHTO M 153, Type 1, Sponge Rubber.
2.7 MISCELLANEOUS MATERIALS

A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.

C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:

1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.

2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:
 a. Concrete.
 b. Masonry.

3. Remove laitance and form-release agents from concrete.

4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following:
 a. Metal.
 b. Glass.
 c. Porcelain enamel.

B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to
comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.

B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.

C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 1. Do not leave gaps between ends of sealant backings.
 2. Do not stretch, twist, puncture, or tear sealant backings.
 3. Remove absorbent sealant backings that have become wet before sealant application, and replace them with dry materials.

D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.

E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 1. Place sealants so they directly contact and fully wet joint substrates.
 2. Completely fill recesses in each joint configuration.
 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability and as recommended by manufacturer but with the following limitations.
 a. For pavement, floor slabs and similar joints sealed with elastomeric sealants and subject to traffic and other abrasion and indentation exposures, fill joints to a depth equal to 75% of joint width, but neither more than 5/8 inch nor less than 3/8 inch deep.
 b. For normal moving joints sealed with elastomeric sealants but not subject to traffic, fill joints to a depth equal to 50% of joint width, but neither more than 1/2 inch deep or less than 1/4 inch deep.
 c. For joints sealed with non-elastomeric sealants and caulking compounds, fill joints to a depth in the range of 75% to 125% of joint width.
 4. Spillage: Do not allow sealants or compounds to overflow or spill onto adjoining surfaces. Clean the adjoining surfaces by whatever means necessary to eliminate evidence of spillage.
 5. Do not overheat hot-applied sealants.
 6. Recess exposed edges of gaskets and joint fillers slightly behind adjoining surfaces, unless otherwise shown, so that compressed units will not protrude from joint.
 7. Bond ends of gaskets together with adhesive or by any other means as recommended by the manufacturer to ensure continuous watertight and airtight performance. Miter-cut and bond ends of corners unless molded corner units are provided.
F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 1. Remove excess sealant from surfaces adjacent to joints.
 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 3. Provide concave joint profile per Figure 8A in ASTM C 1193 unless otherwise indicated.

3.4 CLEANING & PROTECTION
A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

B. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out, remove, and repair damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

3.5 JOINT-SEALANT SCHEDULE
 1. Joint Locations:
 a. Control and expansion joints in unit masonry.
 b. Joints between different materials listed above.
 c. Perimeter joints between materials listed above and frames of doors, windows and louvers.
 d. Other exterior joints as indicated on Drawings.
 2. Joint Sealant: Silicone, nonstaining, S, NS, 50, NT.
 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

B. Joint-Sealant Application: Interior joints in vertical surfaces and horizontal nontraffic surfaces not subject to significant movement.
 1. Joint Locations:
 a. Control joints on exposed interior surfaces of exterior walls.
 b. Perimeter joints between interior wall surfaces and frames of interior doors, windows and elevator entrances.
 c. Other interior joints as indicated on Drawings.
 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

END OF SECTION 079200
SECTION 081113 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:
 1. Hollow-metal work.

B. Related Requirements:
 1. Section 087100 "Door Hardware" for door hardware for hollow-metal doors.

1.3 DEFINITIONS

A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or SDI A250.8.

1.4 COORDINATION

A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.

B. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.
1.5 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, core descriptions, fire-resistance ratings, temperature-rise ratings, and finishes.
 B. Shop Drawings: Include the following:
 1. Elevations of each door type.
 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
 4. Locations of reinforcement and preparations for hardware.
 5. Details of each different wall opening condition.
 6. Details of anchorages, joints, field splices, and connections.
 7. Details of accessories.
 8. Details of moldings, removable stops, and glazing.
 C. Door Schedule: Provide a schedule of hollow-metal work prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final Door Hardware Schedule.

1.6 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For Installers.
 B. Product Certificates: For glass and glazing products from manufacturer.
 C. Product Test Reports: For each type of hollow-metal door and frame assembly and glazing sealants, tests performed by a qualified testing agency.
 D. Sample Warranties: For special warranties.

1.7 DELIVERY, STORAGE, AND HANDLING
 A. Deliver hollow-metal work palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic. Provide additional protection to prevent damage to factory-finished units.
 B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.
 C. Store hollow-metal work vertically under cover at Project site with head up. Place on minimum 4-inch- (102-mm-) high wood blocking. Provide minimum 1/4-inch (6-mm) space between each stacked door to permit air circulation.
PART 2 - PRODUCTS

2.1 EXTERIOR HOLLOW-METAL DOORS AND FRAMES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ceco Door; ASSA ABLOY.
 2. Curries Company; ASSA ABLOY.
 3. Steelcraft; an Ingersoll-Rand brand.
 4. Stiles Custom Metal, Inc.
 5. Republic Doors & Frames.

B. Source Limitations: Obtain hollow-metal work from single source from single manufacturer.

C. Construct exterior doors and frames to comply with the standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.

D. Heavy-Duty Doors and Frames: SDI A250.8, Level 2.
 1. Physical Performance: Level B according to SDI A250.4.
 2. Doors:
 a. Type: As indicated in the Door and Frame Schedule.
 b. Thickness: 1-3/4 inches (44.5 mm.)
 c. Face: Metallic-coated steel sheet, minimum thickness of 0.042 inch.
 d. Edge Construction: Model 1, Full Flush
 e. Core: Polyurethane or polyisocyanurate.
 f. Thermally Insulated
 3. Exposed Finish: Prime
 4. Frames:
 a. Materials: Metallic-coated steel sheet, minimum thickness of 0.053 inch.
 b. Construction: Face welded
 c. Thermally Insulated

2.2 FRAME ANCHORS

A. Jamb Anchors:
 1. Structural Steel Framing

B. Floor Anchors: Formed from same material as frames, minimum thickness of 0.042 inch (1.0 mm).
2.3 MATERIALS

A. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B.

B. Frame Anchors: ASTM A 879/A 879M, Commercial Steel (CS), 04Z coating designation; mill phosphatized.
 1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M, hot-dip galvanized according to ASTM A 153/A 153M, Class B.

C. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.

2.4 FABRICATION

A. Fabricate hollow-metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for metal thickness. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.

B. Hollow-Metal Doors:
 1. Vertical Edges for Single-Acting Doors: Bevel edges 1/8 inch in 2 inches (3.2 mm in 51 mm)
 2. Top Edge Closures: Close top edges of doors with flush closures of same material as face sheets.
 3. Bottom Edge Closures: Close bottom edges of doors where required for attachment of weather stripping with end closures or channels of same material as face sheets.
 4. Exterior Doors: Provide weep-hole openings in bottoms of exterior doors to permit moisture to escape. Seal joints in top edges of doors against water penetration.

C. Hollow-Metal Frames: Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.
 1. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
 2. Floor Anchors: Weld anchors to bottoms of jambs with at least four spot welds per anchor; however, for slip-on drywall frames, provide anchor clips or countersunk holes at bottoms of jambs.
 3. Jamb Anchors: Provide number and spacing of anchors as follows:
 a. Postinstalled Expansion Type: Locate anchors not more than 6 inches from top and bottom of frame. Space anchors not more than 26 inches o.c.
 4. Head Anchors: Two anchors per head for frames more than 42 inches (1067 mm) wide and mounted in metal-stud partitions.
 5. Door Silencers: Except on weather-stripped frames, drill stops to receive door silencers as follows. Keep holes clear during construction.
 a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.

D. Fabricate concealed stiffeners and edge channels from either cold- or hot-rolled steel sheet.
E. Hardware Preparation: Factory prepare hollow-metal work to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.
 1. Reinforce doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.
 2. Comply with applicable requirements in SDI A250.6 and BHMA A156.115 for preparation of hollow-metal work for hardware.

F. Stops and Moldings: Provide stops and moldings around glazed lites and louvers where indicated. Form corners of stops and moldings with butted or mitered hairline joints.
 1. Provide fixed frame moldings on outside of exterior doors and frames.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for embedded and built-in anchors to verify actual locations before frame installation.

C. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:
 1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
 2. Presence and functioning of weep systems.
 3. Minimum required face and edge clearances.
 4. Effective sealing between joints of glass-framing members.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces.

B. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.

3.3 INSTALLATION

A. General: Install hollow-metal work plumb, rigid, properly aligned, and securely fastened in place. Comply with Drawings and manufacturer's written instructions.
B. Hollow-Metal Frames: Install hollow-metal frames for doors of size and profile indicated. Comply with SDI A250.11 or NAAMM-HMMA 840 as required by standards specified.

1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.
 a. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
 b. Install frames with removable stops located on secure side of opening.
 c. Install door silencers in frames before grouting.
 d. Remove temporary braces necessary for installation only after frames have been properly set and secured.
 e. Check plumb, square, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.
 f. Field apply bituminous coating to backs of frames that will be filled with grout containing antifreezing agents.

2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.

 a. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.

3. Insulation: Solidly pack mineral-fiber insulation inside frames.

4. Structural Steel Framed Construction: Secure frames in place with postinstalled expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.

5. Installation Tolerances: Adjust hollow-metal door frames for squareness, alignment, twist, and plumb to the following tolerances:

 a. Squareness: Plus or minus 1/16 inch (1.6 mm), measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 b. Alignment: Plus or minus 1/16 inch (1.6 mm), measured at jambs on a horizontal line parallel to plane of wall.
 c. Twist: Plus or minus 1/16 inch (1.6 mm), measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 d. Plumbness: Plus or minus 1/16 inch (1.6 mm), measured at jambs at floor.

C. Hollow-Metal Doors: Fit hollow-metal doors accurately in frames, within clearances specified below. Shim as necessary.

1. Non-Fire-Rated Steel Doors:

 a. Between Door and Frame Jambs and Head: 1/8 inch (3.2 mm) plus or minus 1/32 inch (0.8 mm).
 b. Between Edges of Pairs of Doors: 1/8 inch (3.2 mm) to 1/4 inch (6.3 mm) plus or minus 1/32 inch (0.8 mm).
 c. At Bottom of Door: 3/4 inch (19.1 mm) plus or minus 1/32 inch (0.8 mm).
 d. Between Door Face and Stop: 1/16 inch (1.6 mm) to 1/8 inch (3.2 mm) plus or minus 1/32 inch (0.8 mm).
3.4 ADJUSTING AND CLEANING

A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow-metal work that is warped, bowed, or otherwise unacceptable.

B. Remove grout and other bonding material from hollow-metal work immediately after installation.

C. Metallic-Coated Surface Touchup: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.

END OF SECTION 081113
SECTION 084423 - GLAZED ALUMINUM CURTAIN WALLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes two-sided structural glazed aluminum curtain walls.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 B. Shop Drawings: For glazed aluminum curtain walls. Include plans, elevations, sections, full-size details, and attachments to other work.
 1. Include details of provisions for assembly expansion and contraction and for draining moisture occurring within the assembly to the exterior.
 2. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.
 C. Samples for Verification: For each type of exposed finish required, in manufacturer's standard sizes.
 D. Delegated-Design Submittal: For glazed aluminum curtain walls indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For Installer.
 B. Energy Performance Certificates: For glazed aluminum curtain walls, accessories, and components from manufacturer.
 1. Basis for Certification: NFRC-certified energy performance values for each glazed aluminum curtain wall.
 C. Product Test Reports: For glazed aluminum curtain walls, for tests performed by a qualified testing agency.
 D. Sample Warranties: For special warranties.
1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For glazed aluminum curtain walls to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

B. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.
 1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

1.7 WARRANTY

A. Special Assembly Warranty: Manufacturer agrees to repair or replace components of glazed aluminum curtain wall that do not comply with requirements or that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures including, but not limited to, excessive deflection.
 b. Noise or vibration created by wind and thermal and structural movements.
 c. Deterioration of metals and other materials beyond normal weathering.
 d. Water penetration through fixed glazing and framing areas.
 2. Warranty Period: 10 years from date of Substantial Completion.

B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 1. Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 2. Warranty Period: 20 years from date of Substantial Completion.

1.8 FIELD TESTING AND PERFORMANCE REQUIREMENTS

A. Test Units
 1. Air, water, and structural test unit size shall be a representative sample of typical construction and shall have no outstanding punch list or other visible defects. If no test area and/or location have been identified, the persons doing the test shall select an area. This area shall be selected to provide representative performance data, usually a minimum of 100ft². the area to be tested shall include perimeter caulking, typical splices, frame intersections, and, if applicable, at least two entire vision lites and two entire spandrel lites containing an intermediate horizontal member. All operable components within the test area shall be isolated and exempt from the test procedure.
B. Test Procedures and Performance
 1. Air Infiltration Test
 a. Test unit in accordance with AAMA 503-03 for field testing. The unit test shall be
 conducted at a minimum uniform static test pressure differential of at least 1.57 psf
 (75 Pa), but at a pressure differential not to exceed 6.24 psf (300Pa).
 b. The maximum allowable rates of air leakage for field testing shall not exceed 1.5
 times the project specification rate or .09 cfm/SF (.45 l/s·m²), whichever is greater.
 2. Water Resistance Test
 a. Test unit in accordance with AAMA 503-03.
 b. The field water penetration resistance tests shall be conducted at a static test
 pressure of two-thirds of the specified project water penetration test pressure, but
 not less than 6.24 psf (300Pa).

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. General Performance: Comply with performance requirements specified, as determined by
 testing of glazed aluminum curtain walls representing those indicated for this Project without
 failure due to defective manufacture, fabricaiton, installation, or other defects in construction.
 1. Glazed aluminum curtain walls shall withstand movements of supporting structure
 including, but not limited to, story drift, twist, column shortening, long-term creep, and
 deflection from uniformly distributed and concentrated live loads.
 2. Failure also includes the following:
 a. Thermal stresses transferring to building structure.
 b. Glass breakage.
 c. Noise or vibration created by wind and thermal and structural movements.
 d. Loosening or weakening of fasteners, attachments, and other components.
 e. Failure of operating units.

B. Delegated Design: Engage a qualified professional engineer to design glazed aluminum curtain
 walls.

C. Structural Loads:
 1. Wind Loads: As indicated on Drawings.
 2. Other Design Loads: As indicated on Drawings.

D. Deflection of Framing Members: At design wind pressure, as follows:
 1. Deflection Normal to Wall Plane: Limited to edge of glass in a direction perpendicular to
 glass plane not exceeding 1/175 of the glass edge length for each individual glazing lite
 or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.
 2. Deflection Parallel to Glazing Plane: Limited to 1/360 of clear span or 1/8 inch, whichever
 is smaller.

E. Structural: Test according to ASTM E 330 as follows:
 1. When tested at positive and negative wind-load design pressures, assemblies do not
 evidence deflection exceeding specified limits.
 2. When tested at 150 percent of positive and negative wind-load design pressures,
 assemblies, including anchorage, do not evidence material failures, structural distress,
 or permanent deformation of main framing members exceeding 0.2 percent of span.
3. Test Durations: As required by design wind velocity, but not less than 10 seconds.

F. Air Infiltration: Test according to ASTM E 283 for infiltration as follows:
 1. Fixed Framing and Glass Area:
 a. Maximum air leakage of 0.06 cfm/sq. ft. at a static-air-pressure differential of 6.24 lbf/sq. ft.

G. Water Penetration under Static Pressure: Test according to ASTM E 331 as follows:
 1. No evidence of water penetration through fixed glazing and framing areas when tested according to a minimum static-air-pressure differential of 20 percent of positive wind-load design pressure, but not less than 15 lbf/sq. ft.

H. Energy Performance: Certify and label energy performance according to NFRC as follows:
 1. Thermal Transmittance (U-factor): Fixed glazing and framing areas shall have U-factor of not more than 0.40 Btu/sq. ft. x h x deg F as determined according to NFRC 100.
 2. Condensation Resistance: Fixed glazing and framing areas shall have an NFRC-certified condensation resistance rating of no less than 65 as determined according to NFRC 500.

I. Thermal Movements: Allow for thermal movements resulting from ambient and surface temperature changes:
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide EFCO Corporation Series 5600 curtain wall:
 1. Kawneer North America; an Alcoa company.
 2. Oldcastle Building Envelope.

B. Source Limitations: Obtain all components of curtain wall system, including framing and accessories, from single manufacturer.

2.3 FRAMING

A. Framing Members: Manufacturer's extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 1. Construction: Thermally isolated.
 2. Glazing System: The two-sided structural glazed wall shall include a dense silicone spacer and silicone sealant at structural joint.
 4. Fabrication Method: Either factory- or field-fabricated system.

B. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.

C. Materials:
 1. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
2. Steel Reinforcement: Manufacturer's standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM, and prepare surfaces according to applicable SSPC standard.
 a. Structural Shapes, Plates, and Bars: ASTM A 36.
 b. Cold-Rolled Sheet and Strip: ASTM A 1008.

2.4 GLAZING
 A. Glazing: Comply with Section 088000 "Glazing."
 B. Glazing Gaskets: Comply with Section 088000 "Glazing."
 C. Glazing Sealants: Comply with Section 088000 "Glazing."
 D. Sealants used inside the weatherproofing system shall have a VOC content of 250 g/L or less.

2.5 ACCESSORIES
 A. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
 1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
 2. Reinforce members as required to receive fastener threads.
 3. Use exposed fasteners with countersunk Phillips screw heads, finished to match framing system.
 B. Anchors: Three-way adjustable anchors with minimum adjustment of 1 inch that accommodate fabrication and installation tolerances in material and finish compatible with adjoining materials and recommended by manufacturer.
 1. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts complying with ASTM A 123 or ASTM A 153 requirements.
 C. Concealed Flashing: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding flashing compatible with adjacent materials.
 D. Bituminous Paint: Cold-applied asphalt-mastic paint complying with SSPC-Paint 12 requirements except containing no asbestos, formulated for 30-mil thickness per coat.

2.6 FABRICATION
 A. Form or extrude aluminum shapes before finishing.
B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.

C. Fabricate components that, when assembled, have the following characteristics:
 1. Profiles that are sharp, straight, and free of defects or deformations.
 2. Accurately fitted joints with ends coping or mitered.
 3. Physical and thermal isolation of glazing from framing members.
 4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 5. Provisions for field replacement of glazing from interior or exterior.
 6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.

D. Fabricate components to resist water penetration as follows:
 1. Internal guttering system or other means to drain water passing joints, condensation occurring within framing members, and moisture migrating within glazed aluminum curtain wall to exterior.

E. Curtain-Wall Framing: Fabricate components for assembly using manufacturer's standard assembly method.

F. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.7 ALUMINUM FINISHES

A. High-Performance Organic Finish: Two-coat fluoropolymer finish complying with AAMA 2605 and containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 1. Color and Gloss: As selected by Architect from manufacturer's standard colors.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General:
 1. Comply with manufacturer's written instructions.
 2. Do not install damaged components.
 3. Fit joints to produce hairline joints free of burrs and distortion.
4. Rigidly secure nonmovement joints.
5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
6. Where welding is required, weld components in concealed locations to minimize distortion or discoloration of finish. Protect glazing surfaces from welding.
7. Seal joints watertight unless otherwise indicated.

B. Metal Protection:
1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with primer, applying sealant or tape, or installing nonconductive spacers as recommended by manufacturer for this purpose.
2. Where aluminum is in contact concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.

C. Install components to drain water passing joints, condensation occurring within framing members, and moisture migrating within glazed aluminum curtain wall to exterior.

D. Install components plumb and true in alignment with established lines and grades.

E. Install glazing as specified in Section 088000 "Glazing."

3.3 ERECTION TOLERANCES
A. Erection Tolerances: Install glazed aluminum curtain walls to comply with the following maximum tolerances:
1. Plumb: 1/8 inch in 10 feet; 1/4 inch in 40 feet.
2. Level: 1/8 inch in 20 feet; 1/4 inch in 40 feet.
3. Alignment:
 a. Where surfaces abut in line or are separated by reveal or protruding element up to 1/2 inch wide, limit offset from true alignment to 1/16 inch.
 b. Where surfaces are separated by reveal or protruding element from 1/2 to 1 inch wide, limit offset from true alignment to 1/8 inch.
 c. Where surfaces are separated by reveal or protruding element of 1 inch wide or more, limit offset from true alignment to 1/4 inch.
4. Location: Limit variation from plane to 1/8 inch in 12 feet; 1/2 inch over total length.
SECTION 087100 – DOOR HARDWARE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes finish hardware for the proper operation and control of all doors in the Project. Prior to bidding, notify Architect of any doors that do not have hardware meeting this intention.

B. Hardware supplier will be responsible to furnish and install hardware on labeled doors to satisfy State and Local Building Codes.

C. Related Sections include the following:
 1. Division 8 Section "Hollow Metal Doors and Frames."
 2. Division 8 Section "Flush Wood Doors."

1.3 SUBMITTALS

A. Product Data: For each product and material indicated, submit manufacturer’s technical product data. Include information necessary to show compliance with requirements, installation instructions and maintenance instructions.

B. Hardware Schedule: Submit a hardware schedule organized into sets, including the information below. Designations for door numbers and hardware sets shall match those used in the construction documents.

 1. Opening Number
 2. Door Type and Size
 3. Frame Type and Size
 4. Frame Anchoring Method
 5. Hardware Set
 6. Assembly Rating

C. Hardware Schedule shall be coordinated with the doors, frames and related work to ensure proper size, thickness, hand function and finish of door hardware

1.4 QUALITY ASSURANCE

A. Supplier Qualifications: A recognized Architectural Finish Hardware Supplier, with warehousing facilities, who has been furnishing hardware in the Project's vicinity for a period of not less than two (2) years. Supplier shall be or employ an experienced Architectural Hardware Consultant (AHC) who is certified by and member of the Door and Hardware Institute. The Architectural hardware Consultant shall be available, at reasonable times during the course of the work, for consultation about Project's hardware requirements, to Owner, Architect and Contractor.
B. Fire-Rated Openings: Provide hardware for fire-rated openings in compliance with NFPA Standard No. 80, No. 101 and local building code requirements. Provide only hardware, which has been tested and listed, by UL, FM or Warnock Hersey for types and sizes of doors required and complies with requirements of door and door frame labels.

C. Standards: Comply with the requirements of the latest edition of the following standards unless indicated otherwise:

1. American National Standards Institute Publications:
 a. A115 Series – Door and Frame Preparation
 b. A156 Series – Hardware
2. Builders Hardware Manufacturer’s Association Publications:
 a. 1201 – Auxiliary Hardware
 b. 1301 – Materials and Finishes
3. Door and Hardware Institute Publications:
 a. Keying – Procedures, Systems and Nomenclature
 b. Abbreviations and Symbols
 c. Hardware for Labeled Fire Doors
 d. Recommended Locations for Builder’s Hardware for Standard and Custom Steel Doors and Frames
 e. Wood Door Standards W1, W2, WDHS-2, WDHS-3
 a. NFPA 80 – Standards for Fire Doors and Windows

1.5 DELIVERY, STORAGE, AND HANDLING

A. Package each hardware item in separate containers with all screws, wrenches, installation instructions and installation templates. Mark each box with hardware heading and door number according to approved hardware schedule.

B. Deliver individually packaged hardware items at the proper times to the proper locations (shop or project site) for installation: Provide a complete packing list showing items, door numbers and hardware headings with each shipment.

C. Store hardware in shipping cartons above ground and under cover to prevent damage. Provide secure lockup for door hardware delivered to the Project, but not yet installed. Control handling and installation of hardware items that are not immediately replaceable -so that completion of the Work will not be delayed by hardware losses both before and after installation.

1.6 PROJECT CONDITIONS

A. Environmental Limitations: Do not proceed with delivery and/or installation when ambient and substrate temperature conditions are outside limits permitted by material manufacturers.

PART 2 - PRODUCTS

2.1 HARDWARE GENERAL

A. Provide the materials of products indicated by trade names, manufacturer’s name, or catalog numbers.
number. Substitutions will not be permitted except as described in Division 1.

B. Provide manufacturer’s standard products meeting the design intent of this Specification, free of imperfections affecting appearance or serviceability.

1. Provide hardware complete with all fasteners, anchors, instructions, layout templates, and any specialized tools as required for satisfactory installation and adjustment.
2. Hand of Door: Drawings show direction of slide, swing or hand of each door leaf. Furnish each item of hardware for proper installation and operation of door movement as shown.
3. Furnish screws for installation with each hardware item. Provide Phillips flat head screws except as otherwise indicated or approved. Finish screws exposed under any condition to match hardware finish, or, if exposed in surface of other work, to match finish of such other work as closely as possible. Use machine screws for metal connections and wood screws for connections to wood. Use manufacturer’s screws to secure hardware.
4. Provide concealed fasteners for hardware unit with care exposed when door is closed, except to extent no standard units of type specified are available with concealed fasteners. Do not use thru-bolts for installation where bolt, head or nut on opposite face is exposed in other work, except where indicated otherwise or where it is not feasible to adequately reinforce the work. In such cases, provide sleeves for each thru-bolt or use sex screw fasteners.
5. Special Tools: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner’s continued adjustment, maintenance and removal and replacement of finish hardware.

C. Hardware is specified in the hardware schedule by set, type and functions, which have been selected as best meeting the application requirements. Acceptable products for each category are specified in Paragraph 2.5 “Hardware Products”.

2.2 SPECIAL REQUIREMENTS

A. General:
1. Where new doors and hardware are scheduled to be installed in existing frames, contractor to coordinate hinge sizes and locations, lockset backsets, strikes, hardware mounting heights, etc with existing frames to ensure new door and hardware fits and functions properly in existing frame.

B. Hinges:
1. Use heavy weight hinges for all doors.
2. Use continuous hinges on all fire, corridor, and exterior doors.

C. Locksets:
1. All locksets to be grade 1 heavy duty cylindrical or as specified.

D. Closers:
1. Comply with manufacturer’s recommendations for unit size based on door size and usage.
2. Provide parallel arms for all overhead closers, except as otherwise indicated.
3. All closers UL Listed Certified to be n compliance with UBC 7.2 and UL 10C.
4. Closers with Pressure Relief Valves will not be acceptable.
5. Supplier to provide any brackets or plates required for proper installation of door closers.

E. Exit Devices:
 1. All latchbolts to be deadlatching type.
 2. All touchbars to be stainless steel.

2.3 KEYING

A. Contractor to turn all cylinders over to MU key shop for keying.

2.4 FINISHES

A. Standard: Comply with BHMA A156.18
 1. All door hardware to be US26D throughout project.

B. Provide quality of finish, including thickness of plating or coating (if any), composition, hardness and other qualities complying with manufacturer’s standards, but in no case less than specified by referenced standards for the application units of hardware.

C. Protect finishes on exposed surfaces from any damage by applying a strippable temporary protective covering before shipping.

D. BHMA Designations: Comply with base material and finish requirements indicated by BHMA standards.

2.5 HARDWARE PRODUCTS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SPECIFIED</th>
<th>APPROVED EQUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinges</td>
<td>Ives</td>
<td>Stanley</td>
</tr>
<tr>
<td>Locksets</td>
<td>Best</td>
<td>No Substitutions</td>
</tr>
<tr>
<td>Cylinders</td>
<td>Best</td>
<td>No Substitutions</td>
</tr>
<tr>
<td>Closers</td>
<td>LCN</td>
<td>No Substitutions</td>
</tr>
<tr>
<td>Flatgoods</td>
<td>Ives</td>
<td>Burns, Rockwood</td>
</tr>
<tr>
<td>Stops</td>
<td>Ives</td>
<td>Burns, Rockwood</td>
</tr>
<tr>
<td>Gasket</td>
<td>Zero</td>
<td>NGP, Reese</td>
</tr>
</tbody>
</table>

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine doors and frames with installer present for compliance with the requirements, for installation tolerances, labeled fire door assembly construction, wall and floor construction, and other conditions affecting performance.

B. Examine rough-in for electrical source power to verify actual locations of wiring connections before electrified door hardware installation.
C. Notify Architect of any discrepancies or conflicts between the door schedule, door types, frame types, drawings, scheduled hardware and built condition.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Steel Frames: Comply with ANSI/DHI A115 Series

3.3 INSTALLATION

A. Mounting Heights: Mount door hardware units at heights indicated in the following applicable publications, or as required to comply with governing regulations:

2. Custom Steel Doors and Frames: DHI’s “Recommended Locations for Builder’s Hardware for Custom Steel Doors and Frames.”

B. Install each door hardware item to complete with manufacturer’s written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage and reinstallation of surface protective trim units to with finishing work. Do not install surface mounted items until finishes have been completed on substrates involved.

3.4 FIELD QUALITY CONTROL

A. Field Inspection: Supplier will perform a final inspection of installed door hardware and state in written report whether work complies with or deviates from requirements, including whether door hardware is properly installed, operating and adjusted.

3.5 ADJUSTING

A. Initial Adjustment: Adjust and check each operating items of door hardware and each door to ensure proper operation of function of every unit. Replace units that cannot be adjusted to operate as intended and/or required. Adjust door control devices to compensation for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.

3.6 CLEANING AND PROTECTION

A. Clean adjacent surfaces soiled by door hardware installation.

B. Clean operating items as necessary to restore proper finish, and provide final protection and maintain condition that ensure door hardware is without damage or deterioration at time of owner occupancy.

3.7 DEMOESTRATION AND TRAINING
A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate and maintain door hardware and door hardware finishes.

3.8 DOOR HARDWARE SETS

HARDWARE GROUP NO. 1
For use on Door #s:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5 NRP</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCK</td>
<td>9K37D 14D</td>
<td>626</td>
<td>BES</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP SCUSH</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>429A</td>
<td>A</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>RAIN DRIP</td>
<td>142AA</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>DOOR SWEEP</td>
<td>8197AA</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD</td>
<td>566A-223</td>
<td>A</td>
<td>ZER</td>
</tr>
</tbody>
</table>

OPERATION: ACCESS TO ROOF BY KEY ONLY, DOOR ALWAYS CLOSED AND LOCKED. FREE EGRESS AT ALL TIMES.

HARDWARE GROUP NO. 2
For use on Door #s:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5 NRP</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCK</td>
<td>9K37D 14D</td>
<td>626</td>
<td>BES</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP SCUSH</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>WRAP PLATE</td>
<td>80CW</td>
<td></td>
<td>DON</td>
</tr>
<tr>
<td>1</td>
<td>RAIN DRIP</td>
<td>142AA</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>429A</td>
<td>A</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>DOOR SWEEP</td>
<td>8197AA</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD</td>
<td>566A-223</td>
<td>A</td>
<td>ZER</td>
</tr>
</tbody>
</table>

OPERATION: ACCESS TO ROOF BY KEY ONLY, DOOR ALWAYS CLOSED AND LOCKED. FREE EGRESS AT ALL TIMES.

(NOTE WRAP PLATE TO COVER DEADBOLT CUTOUT. DEADBOLT NOT ALLOWED PER ADA REQUIREMENTS)
HARDWARE GROUP NO. 3
For use on Door #(s):

Provide each PR door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5 NRP</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>2</td>
<td>MANUAL FLUSH BOLT</td>
<td>FB458</td>
<td>626</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCK</td>
<td>9K37D 14D</td>
<td>626</td>
<td>BES</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP SCUSH</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>WRAP PLATE</td>
<td>80CW</td>
<td></td>
<td>DON</td>
</tr>
<tr>
<td>1</td>
<td>RAIN DRIP</td>
<td>142AA</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>429A</td>
<td>A</td>
<td>ZER</td>
</tr>
<tr>
<td>2</td>
<td>MEETING STILE</td>
<td>8195AA</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>DOOR SWEEP</td>
<td>8197AA</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD</td>
<td>566A-223</td>
<td>A</td>
<td>ZER</td>
</tr>
</tbody>
</table>

OPERATION: ACCESS TO ROOF BY KEY ONLY, DOOR ALWAYS CLOSED AND LOCKED. FREE EGRESS AT ALL TIMES.

(NOTE WRAP PLATE TO COVER DEADBOLT CUTOUT. DEADBOLT NOT ALLOWED PER ADA REQUIREMENTS)

HARDWARE GROUP NO. 4
For use on Door #(#s):

Provide each PR door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5 NRP</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>2</td>
<td>MANUAL FLUSH BOLT</td>
<td>FB458</td>
<td>626</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>PASSAGE SET</td>
<td>9K30N 14D</td>
<td>626</td>
<td>BES</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4040XP SCUSH</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>RAIN DRIP</td>
<td>142AA</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>429A</td>
<td>A</td>
<td>ZER</td>
</tr>
<tr>
<td>2</td>
<td>MEETING STILE</td>
<td>8195AA</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>DOOR SWEEP</td>
<td>8197AA</td>
<td>AA</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD</td>
<td>566A-223</td>
<td>A</td>
<td>ZER</td>
</tr>
</tbody>
</table>

OPERATION: DOOR ALWAYS CLOSED AND UNLOCKED. FREE EGRESS AT ALL TIMES.

END OF SECTION 087100
SECTION 088000 - GLAZING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:
 1. Glass for windows, and glazed curtain walls.
 2. Glazing sealants and accessories.

1.3 DEFINITIONS

A. Glass Manufacturers: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.

B. Glass Thicknesses: Indicated by thickness designations in millimeters according to ASTM C 1036.

D. Interspace: Space between lites of an insulating-glass unit.

1.4 COORDINATION

A. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Glass Samples: For each type of glass product other than clear monolithic vision glass; 12 inches square.

C. Glazing Accessory Samples: For sealants and colored spacers, in 12-inch lengths.

D. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.
1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer and manufacturers of insulating-glass units with sputter-coated, low-E coatings.

B. Product Test Reports: For insulating glass and glazing sealants, for tests performed by a qualified testing agency.
 1. For glazing sealants, provide test reports based on testing current sealant formulations within previous 36-month period.

C. Preconstruction adhesion and compatibility test report.

D. Sample Warranties: For special warranties.

1.7 QUALITY ASSURANCE

A. Manufacturer Qualifications for Insulating-Glass Units with Sputter-Coated, Low-E Coatings: A qualified insulating-glass manufacturer who is approved and certified by coated-glass manufacturer.

B. Installer Qualifications: A qualified installer who employs glass installers for this Project who are certified under the National Glass Association's Certified Glass Installer Program.

C. Sealant Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1021 to conduct the testing indicated.

1.8 PRECONSTRUCTION TESTING

A. Preconstruction Adhesion and Compatibility Testing: Test each glass product, tape sealant, gasket, glazing accessory, and glass-framing member for adhesion to and compatibility with elastomeric glazing sealants.
 1. Testing is not required if data are submitted based on previous testing of current sealant products and glazing materials matching those submitted.
 2. Use ASTM C 1087 to determine whether priming and other specific joint-preparation techniques are required to obtain rapid, optimum adhesion of glazing sealants to glass, tape sealants, gaskets, and glazing channel substrates.
 3. Test no fewer than Four Samples of each type of material, including joint substrates, shims, sealant backings, secondary seals, and miscellaneous materials.
 4. Schedule enough time for testing and analyzing results to prevent delaying the Work.
 5. For materials failing tests, submit sealant manufacturer's written instructions for corrective measures including the use of specially formulated primers.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect glazing materials according to manufacturer's written instructions. Prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.
1.10 FIELD CONDITIONS
A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.
 1. Do not install glazing sealants when ambient and substrate temperature conditions are outside limits permitted by sealant manufacturer or are below 40 deg F.

1.11 WARRANTY
A. Manufacturer's Special Warranty for Coated-Glass Products: Manufacturer agrees to replace coated-glass units that deteriorate within specified warranty period. Deterioration of coated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning coated glass contrary to manufacturer's written instructions. Defects include peeling, cracking, and other indications of deterioration in coating.
 1. Warranty Period: 10 years from date of Substantial Completion.

B. Manufacturer's Special Warranty for Insulating Glass: Manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.
 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Viraco, Inc.
 2. Vitro Architectural Glass
 3. Oldcastle BuildingEnvelope™.
 4. PPG Industries, Inc.
 5. Guardian Industries Corp.

B. Source Limitations for Glass: Obtain from single source from single manufacturer for each glass type. Source Limitations for Glazing Accessories: Obtain from single source from single manufacturer for each product and installation method.

2.2 PERFORMANCE REQUIREMENTS
A. General: Installed glazing systems shall withstand normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to the following: defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.
B. Structural Performance: Glazing shall withstand the following design loads within limits and under conditions indicated determined according to the IBC and ASTM E 1300.
1. Design Wind Pressures: Determine design wind pressures applicable to Project according to ASCE/SEI 7, based on heights above grade indicated on Drawings.
 a. Wind Design Data: As indicated on Drawings.
 b. Basic Wind Speed: 120 mph.
 c. Importance Factor: 1.0.
 d. Exposure Category: B.
2. Maximum Lateral Deflection: For glass supported on all four edges, limit center-of-glass deflection at design wind pressure to not more than 1/50 times the short-side length or 1 inch, whichever is less.

C. Safety Glazing: Where safety glazing is indicated, provide glazing that complies with 16 CFR 1201, Category II.

D. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:
1. For monolithic-glass lites, properties are based on units with lites of thickness indicated.
2. For laminated-glass lites, properties are based on products of construction indicated.
3. For insulating-glass units, properties are based on units of thickness indicated for overall unit and for each lite.
4. U-Factors: Center-of-glassing values, according to NFRC 100 and based on LBL's WINDOW 5.2 computer program, expressed as Btu/sq. ft. x h x deg F.
5. Solar Heat-Gain Coefficient and Visible Transmittance: Center-of-glassing values, according to NFRC 200 and based on LBL's WINDOW 5.2 computer program.
6. Visible Reflectance: Center-of-glassing values, according to NFRC 300.

2.3 GLASS PRODUCTS, GENERAL

A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below unless more stringent requirements are indicated. See these publications for glazing terms not otherwise defined in this Section or in referenced standards.

B. Safety Glazing Labeling: Where safety glazing is indicated, permanently mark glazing with certification label of the SGCC or manufacturer. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.

C. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of IGCC.

D. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass that complies with performance requirements and is not less than the thickness indicated.
 1. Minimum Glass Thickness for Exterior Lites: 6 mm.

E. Strength: Where annealed float glass is indicated, provide annealed float glass, heat-strengthened float glass, or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where heat-strengthened float glass is indicated, provide heat-strengthened float glass or fully tempered float glass as needed to comply with "Performance Requirements" Article.
Requirements” Article. Where fully tempered float glass is indicated, provide fully tempered float glass.

2.4 GLASS PRODUCTS

A. Clear Annealed Float Glass: ASTM C 1036, Type I, Class 1 (clear), Quality-Q3.

B. Fully Tempered Float Glass: ASTM C 1048, Kind FT (fully tempered), Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.

C. Heat-Strengthened Float Glass: ASTM C 1048, Kind HS (heat strengthened), Type I, Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.

2.5 INSULATING GLASS

A. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E 2190.
 1. Sealing System: Dual seal, with manufacturer's standard primary and secondary sealants.
 2. Spacer: Aluminum with black, color anodic finish.
 3. Desiccant: Molecular sieve or silica gel, or a blend of both.

2.6 GLAZING SEALANTS

A. General:
 1. Compatibility: Compatible with one another and with other materials they contact, including glass products, seals of insulating-glass units, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
 2. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.
 3. Field-applied sealants shall have a VOC content of not more than 250 g/L.
 4. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer's full range.

B. Glazing Sealant: Neutral-curing silicone glazing sealant complying with ASTM C 920, Type S, Grade NS, Class 100/50, Use NT.

C. Products: Subject to compliance with requirements, provide one of the following:
 1. Dow Corning Corporation; 790.
 2. Pecora Corporation; 890NST.
 3. Sika Corporation; SikaSil WS-290.
 4. Tremco Incorporated; Spectrem 1.
2.7 MISCELLANEOUS GLAZING MATERIALS

A. General: Provide products of material, size, and shape complying with referenced glazing standard, with requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.

B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.

C. Setting Blocks: Elastomeric material with a Shore, Type A durometer hardness of 85, plus or minus 5.

D. Spacers: Elastomeric blocks or continuous extrusions of hardness required by glass manufacturer to maintain glass lites in place for installation indicated.

E. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).

F. Cylindrical Glazing Sealant Backing: ASTM C 1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.

2.8 FABRICATION OF GLAZING UNITS

A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.

1. Allow for thermal movements from ambient and surface temperature changes acting on glass framing members and glazing components.
 a. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:

1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
2. Presence and functioning of weep systems.
3. Minimum required face and edge clearances.
4. Effective sealing between joints of glass-framing members.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.

B. Examine glazing units to locate exterior and interior surfaces. Label or mark units as needed so that exterior and interior surfaces are readily identifiable. Do not use materials that leave visible marks in the completed Work.

3.3 GLAZING, GENERAL

A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.

B. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass includes glass with edge damage or other imperfections that, when installed, could weaken glass, impair performance, or impair appearance.

C. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.

D. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

E. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

F. Provide spacers for glass lites where length plus width is larger than 50 inches.
 1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.
 2. Provide 1/8-inch minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.

G. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

H. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.

I. Set glass lites with proper orientation so that coatings face exterior or interior as specified.

J. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.
K. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended by gasket manufacturer.

3.4 GASKET GLAZING (DRY)

A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.

B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.

C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

E. Install gaskets so they protrude past face of glazing stops.

3.5 SEALANT GLAZING (WET)

A. Install continuous spacers, or spacers combined with cylindrical sealant backing, between glass lites and glazing stops to maintain glass face clearances and to prevent sealant from extruding into glass channel and blocking weep systems until sealants cure. Secure spacers or spacers and backings in place and in position to control depth of installed sealant relative to edge clearance for optimum sealant performance.

B. Force sealants into glazing channels to eliminate voids and to ensure complete wetting or bond of sealant to glass and channel surfaces.

C. Tool exposed surfaces of sealants to provide a substantial wash away from glass.

3.6 CLEANING AND PROTECTION

A. Immediately after installation remove nonpermanent labels and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains.
1. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer. Remove and replace glass that cannot be cleaned without damage to coatings.

C. Remove and replace glass that is damaged during construction period.

D. Wash glass on both exposed surfaces not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.

3.7 INSULATING GLASS SCHEDULE

A. Glass Type [GL-1]: Low-E-coated, clear insulating glass.
 1. Basis-of-Design Product: Viracon 1” VE1 – 45/Optiwhite Insulating HS/HS
 2. Overall Unit Thickness: 1 inch.
 3. Minimum Thickness of Each Glass Lite: 6 mm.
 4. Outdoor Lite: Fully tempered float glass.
 5. Interspace Content: Air.
 6. Indoor Lite: Fully tempered float glass.
 7. Low-E Coating: Pyrolytic on second surface.
 8. Winter Nighttime U-Factor: 0.30 maximum.
 9. Summer Daytime U-Factor: 0.26 maximum.
 11. Solar Heat Gain Coefficient: 0.30 maximum.

B. Glass Type [GL-2]: Low-E-coated, clear insulating spandrel glass.
 1. Basis-of-Design Product: Viracon
 2. Overall Unit Thickness: 1 inch.
 3. Minimum Thickness of Each Glass Lite: 6 mm.
 4. Outdoor Lite: Fully tempered float glass.
 5. Interspace Content: Air.
 6. Indoor Lite: Fully tempered float glass.
 a. Ceramic frit on #4 surface. V175 High-Opacity White #2.
 7. Low-E Coating: Pyrolytic on second surface.
 8. Winter Nighttime U-Factor: 0.30 maximum.
 9. Summer Daytime U-Factor: 0.26 maximum.
 10. Solar Heat Gain Coefficient: 0.30 maximum.

C. Glass Type [GL-3]: Low-E-coated, clear insulating obscure glass.
 1. Basis-of-Design Product: Viracon
 2. Overall Unit Thickness: 1 inch.
 3. Minimum Thickness of Each Glass Lite: 6 mm.
 4. Outdoor Lite: Fully tempered float glass.
 5. Interspace Content: Air.
 6. Indoor Lite: Fully tempered float glass.
 a. Silk screen on #4 surface. V1086 Simulated Sandblast, Silk-screen #3058, 100% Coverage.
 7. Low-E Coating: Pyrolytic on second surface.
 8. Winter Nighttime U-Factor: 0.30 maximum.
 9. Summer Daytime U-Factor: 0.26 maximum.
 10. Solar Heat Gain Coefficient: 0.30 maximum.
D. Glass Type [GL-4]: Low-E-coated, tinted, insulating glass.
 1. Basis-of-Design Product: Vitro Graylite II on Solarban 60
 2. Overall Unit Thickness: 1 inch.
 3. Minimum Thickness of Each Glass Lite: 6 mm.
 4. Outdoor Lite: Fully tempered float glass.
 5. Interspace Content: Air.
 6. Indoor Lite: Fully tempered float glass.
 7. Low-E Coating: Pyrolytic on second surface.
 8. Winter Nighttime U-Factor: 0.29 maximum.
 9. Summer Daytime U-Factor: 0.27 maximum.
 10. Visible Light Transmittance: 7 percent minimum.
 11. Solar Heat Gain Coefficient: 0.13 maximum.

E. Glass Type [GL-5]: Low-E-coated, tinted, insulating spandrel glass.
 1. Basis-of-Design Product: Vitro
 2. Overall Unit Thickness: 1 inch.
 3. Minimum Thickness of Each Glass Lite: 6 mm.
 4. Outdoor Lite: Fully tempered float glass.
 5. Interspace Content: Air.
 6. Indoor Lite: Fully tempered float glass.
 a. Ceramic frit on #4 surface.
 7. Low-E Coating: Pyrolytic on second surface.
 8. Winter Nighttime U-Factor: 0.29 maximum.
 9. Summer Daytime U-Factor: 0.27 maximum.
 10. Solar Heat Gain Coefficient: 0.13 maximum.

END OF SECTION 088000
SECTION 092216 - NON-STRUCTURAL METAL FRAMING

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Non-load-bearing steel framing systems for interior gypsum board assemblies.
 2. Suspension systems for interior gypsum ceilings, soffits, and grid systems.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Evaluation Reports: For dimpled steel studs and runners and firestop tracks, from ICC-ES.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: For fire-resistance-rated assemblies that incorporate non-load-bearing steel framing, provide materials and construction identical to those tested in assembly indicated, according to ASTM E 119 by an independent testing agency.

B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated, according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.

2.2 FRAMING SYSTEMS

A. Framing Members, General: Comply with ASTM C 754 for conditions indicated.
 1. Steel Sheet Components: Comply with ASTM C 645 requirements for metal unless otherwise indicated.

B. Studs and Runners: ASTM C 645. Use either steel studs and runners or dimpled steel studs and runners.
 1. Steel Studs and Runners:
a. Minimum Base-Metal Thickness: 0.033 inch.
b. Depth: As indicated on Drawings.

2. Dimpled Steel Studs and Runners:
 a. Minimum Base-Metal Thickness: 0.030 inch.
 b. Depth: As indicated on Drawings.

C. Slip-Type Head Joints: At all locations where studs span from floor to floor, provide the following:
 1. Deflection Track: Steel sheet top runner manufactured to prevent cracking of finishes
 applied to interior partition framing resulting from deflection of structure above; in
 thickness not less than indicated for studs and in width to accommodate depth of studs.

D. Cold-Rolled Channel Bridging: Steel, 0.053-inch minimum base-metal thickness, with minimum
 1/2-inch- wide flanges.
 1. Depth: 1-1/2 inches.
 2. Clip Angle: Not less than 1-1/2 by 1-1/2 inches, 0.068-inch- thick, galvanized steel.

E. Hat-Shaped, Rigid Furring Channels: ASTM C 645.
 1. Minimum Base-Metal Thickness: 0.030 inch.
 2. Depth: As indicated on Drawings.

2.3 SUSPENSION SYSTEMS

A. Tie Wire: ASTM A 641, Class 1 zinc coating, soft temper, 0.062-inch- diameter wire, or double
 strand of 0.048-inch- diameter wire.

B. Hanger Attachments to Concrete:
 1. Powder-Actuated Fasteners: Suitable for application indicated, fabricated from corrosion-
 resistant materials with clips or other devices for attaching hangers of type indicated, and
 capable of sustaining, without failure, a load equal to 10 times that imposed by
 construction as determined by testing according to ASTM E 1190 by an independent
 testing agency.

C. Wire Hangers: ASTM A 641, Class 1 zinc coating, soft temper, 0.16 inch in diameter.

D. Grid Suspension System for Gypsum Board Ceilings: ASTM C 645, direct-hung system
 composed of main beams and cross-furring members that interlock.

2.4 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards.
 1. Fasteners for Metal Framing: Of type, material, size, corrosion resistance, holding power,
 and other properties required to fasten steel members to substrates.

B. Isolation Strip at Exterior Walls: Provide the following:
 1. Foam Gasket: Adhesive-backed, closed-cell vinyl foam strips that allow fastener
 penetration without foam displacement, 1/8 inch thick, in width to suit steel stud size.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL
A. Installation Standard: ASTM C 754.
 1. Gypsum Board Assemblies: Also comply with requirements in ASTM C 840 that apply to framing installation.
B. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.
C. Install bracing at terminations in assemblies.
D. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.3 INSTALLING FRAMED ASSEMBLIES
A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
 1. Single-Layer Application: 16 inches o.c. unless otherwise indicated.
 2. Multilayer Application: 16 inches o.c. unless otherwise indicated.
 3. Tile Backing Panels: 16 inches o.c. unless otherwise indicated.
B. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.
C. Install studs so flanges within framing system point in same direction.
D. Install tracks (runners) at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts penetrating partitions above ceiling.
 1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.
 2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install runner track section (for cripple studs) at head and secure to jamb studs.
 a. Install two studs at each jamb unless otherwise indicated.
 b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch clearance from jamb stud to allow for installation of control joint in finished assembly.
 c. Extend jamb studs through suspended ceilings and attach to underside of overhead structure.
3. Other Framed Openings: Frame openings other than door openings the same as required for door openings unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.

4. Fire-Resistance-Rated Partitions: Install framing to comply with fire-resistance-rated assembly indicated and support closures and to make partitions continuous from floor to underside of solid structure.

5. Sound-Rated Partitions: Install framing to comply with sound-rated assembly indicated.

E. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch from the plane formed by faces of adjacent framing.

3.4 INSTALLING SUSPENSION SYSTEMS

A. Install suspension system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.

1. Hangers: 48 inches o.c.

B. Isolate suspension systems from building structure where they abut or are penetrated by building structure to prevent transfer of loading imposed by structural movement.

C. Suspend hangers from building structure as follows:

1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or suspension system.
 a. Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.

2. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with locations of hangers required to support standard suspension system members, install supplemental suspension members and hangers in the form of trapezes or equivalent devices.
 a. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced installation standards.

3. Wire Hangers: Secure by looping and wire tying, either directly to structures or to inserts, eye screws, or other devices and fasteners that are secure and appropriate for substrate, and in a manner that will not cause hangers to deteriorate or otherwise fail.

4. Do not attach hangers to steel roof deck.

5. Do not connect or suspend steel framing from ducts, pipes, or conduit.

D. Grid Suspension Systems: Attach perimeter wall track or angle where grid suspension systems meet vertical surfaces. Mechanically join main beam and cross-furring members to each other and butt-cut to fit into wall track.

E. Installation Tolerances: Install suspension systems that are level to within 1/8 inch in 12 feet measured lengthwise on each member that will receive finishes and transversely between parallel members that will receive finishes.

END OF SECTION 092216
SECTION 092900 - GYPSUM BOARD

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Interior gypsum board.
 2. Tile backing panels.
 3. Sound barrier mullion trim cap. (BID DOCUMENTS August 30, 2019)
 4. Acoustic joint sealant. (BID DOCUMENTS August 30, 2019)

B. Related Requirements:
 1. Section 092216 "Non-Structural Metal Framing" for non-structural framing and suspension systems that support gypsum board panels.
 2. Section 079200 "Joint Sealants" for 'Part 1 General' and 'Part 3 Execution' requirements for sealants. (BID DOCUMENTS August 30, 2019)

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sound Barrier Mullion Trim Cap
 1. Product Data:
 a. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for sound barrier wall end cap system.
 2. Shop Drawings:
 a. Include typical dimensioned cross-section(s) at the location where drywall partition terminates at the perimeter curtain wall, indicating:
 1) Dimensions
 2) Finish
 3. Samples: For each exposed product and for each color and texture specified.
 a. Size: 6 inch (152 mm) sound barrier mullion trim cap sample and 2” x3-1/2” (51 mm x 89 mm) custom color paint sample. (BID DOCUMENTS August 30, 2019)

1.4 INFORMATIONAL SUBMITTALS

A. Sound Barrier Mullion Trim Cap
 1. Qualification Data: For Installer.
2. Product Test Reports: For each sound barrier mullion trim cap assembly, for ASTM E 90 tests performed by a qualified third party testing agency. (BID DOCUMENTS August 30, 2019)

1.5 QUALITY ASSURANCE

A. Sound Barrier Mullion Trim Cap
 1. Manufacturer Qualifications: Manufacturer of aluminum extrusions and anodizing shall be ISO-9001 certified.
 2. Installer Qualifications: An entity that employs installers and supervisors who are approved by manufacturer.
 3. Testing Agency Qualifications: ASTM E 90 testing to be performed by laboratory accredited by IAS as complying with ISO/IEC Standard 17025. (BID DOCUMENTS August 30, 2019)

1.6 DELIVERY, STORAGE AND HANDLING

A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.7 FIELD CONDITIONS

A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's written recommendations, whichever are more stringent.

B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.

C. Do not install panels that are wet, those that are moisture damaged, and those that are mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splochy surface contamination and discoloration.

1.8 WARRANTY

A. Sound Barrier Mullion Trim Cap
 1. Manufacturer's Warranty: Manufacturer agrees to repair or replace sound barrier mullion trim caps that fail in materials or workmanship within specified warranty period.
 a. Warranty Period: Ten years limited warranty from date of Substantial Completion.
 2. Limited warranty does not cover adjacent products or improper installation. (BID DOCUMENTS August 30, 2019)
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.

B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.

2.2 GYPSUM BOARD, GENERAL

A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.3 INTERIOR GYPSUM BOARD

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Georgia-Pacific Building Products.
 3. USG Corporation.

B. Gypsum Board, Type X or Type C as required to comply with UL details: ASTM C 1396.
 1. Thickness: 5/8 inch as indicated on Drawings.
 2. Long Edges: Tapered.

C. Moisture- and Mold-Resistant Gypsum Board: ASTM C 1396. With moisture- and mold-resistant core and paper surfaces.
 1. Core: 5/8 inch, Type X.
 2. Long Edges: Tapered.
 3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

D. Gypsum Wallboard: ASTM C1396/C1396M.
 1. Thickness: 1/2 inch as indicated on Drawings.
 2. Long Edges: Tapered; (BID DOCUMENTS August 30, 2019)

E. Gypsum Shaftliner Board, Type X: ASTM C 1396/C 1396M; manufacturer's proprietary fire-resistive liner panels with paper faces.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. American Gypsum; Shaft Liner.
 c. National Gypsum Company; Gold Bond Brand Fire-Shield Shaftliner.
2.4 TILE BACKING PANELS

A. Cementitious Backer Units: ANSI A118.9 and ASTM C 1288 or 1325, with manufacturer's standard edges.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 c. USG Corporation.
 2. Thickness: 5/8 inch.
 3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.5 TRIM ACCESSORIES

A. Interior Trim: ASTM C 1047.
 1. Material: Galvanized or aluminum-coated steel sheet or rolled zinc or paper faced metal.
 2. Shapes:
 a. Cornerbead.
 b. LC-Bead: J-shaped; exposed long flange receives joint compound.
 c. L-Bead: L-shaped; exposed long flange receives joint compound.
 d. Expansion (control) joint.

2.6 JOINT TREATMENT MATERIALS

A. General: Comply with ASTM C 475/C 475M.

B. Joint Tape:
 1. Interior Gypsum Board: Paper.
 2. Tile Backing Panels: As recommended by panel manufacturer.

C. Joint Compound for Interior Gypsum Board: For each coat use formulation that is compatible with other compounds applied on previous or for successive coats.
 1. Prefilling: At open joints, rounded or beveled panel edges, and damaged surface areas, use setting-type taping compound.
 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use drying-type, all-purpose compound.
 a. Use setting-type compound for installing paper-faced metal trim accessories.
 3. Fill Coat: For second coat, use drying-type, all-purpose compound.
 4. Finish Coat: For third coat, use drying-type, all-purpose compound.

D. Joint Compound for Tile Backing Panels:
 1. Cementitious Backer Units: As recommended by backer unit manufacturer.
2.7 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written recommendations.

B. Steel Drill Screws: ASTM C 1002, unless otherwise indicated.
 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
 2. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.

C. Sound Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.
 1. Fire-Resistance-Rated Assemblies: Comply with mineral-fiber requirements of assembly.

D. Acoustical Joint Sealant: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Grabber Construction Products.
 b. Pecora Corporation.
 c. USG Corporation.

2.8 SOUND BARRIER MULLION TRIM CAP

A. System Description
 1. General: Provide sound barrier mullion trim caps of design, basic profile, materials, and operation indicated. Provide units with capability to accommodate variations in adjacent surfaces.
 a. Furnish units in lengths of sufficient additional length to allow for field trimming to required length to match variations in construction tolerances of adjacent systems.
 b. Provide sound-deadening composite at interior face of product as necessary to achieve specified STC rating.

B. Performance Requirements
 1. Sound Transmission:
 a. Double-Sided Installations: STC 60 or higher.
 2. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 a. Mullion trim cap to be sized to accommodate thermal movement.

C. Basis-of-design product: MULL-it-OVER Products; Mullion Trim Cap, or comparable product approved by Architect.
 1. The following profiles where applicable according to plan configuration and wall assembly:
 a. 60 Classic Mullion Trim Cap
 b. 60 Flush Mullion Trim Cap
 c. 60 Wide Mullion Trim Cap
 d. 60 Classic Mullion Trim Cap, with 1-hour fire rating
e. 60 Classic Mullion Trim Cap, with 2-hour fire rating

D. Components
1. Aluminum Extrusions:
 a. Thickness: 0.125 inches.
 b. Profile: As selected and approved by Architect to allow solid attachment and fastening to the partition wall framing.
2. Sound Absorbing Foam:
 a. Resistant to smoke, flame, and microbial growth.
3. Compressible Foam: Between edge of extrusion and interior face of ribbon window or curtain wall glass.
 a. Thickness: Standard 1/2 inch (12.7 mm), 3/4” (19.1 mm), 1 inch (25.4 mm) or 1-1/2” (38.1 mm) as required to accommodate mullion deflection.
 b. Color: To be selected by Architect from Manufacturer’s full range.
4. Fasteners:
 a. Self Tapping or appropriate threaded fastener.
 b. Compatible with all materials fasteners will contact with and not causing galvanic corrosion.
5. Snap Cover: Snap-on fastener cover.

E. Accessories
1. Provide necessary and related parts and tools to complete installation.

F. Fabrication
1. Extrusions and generic profiles to be shipped in custom lengths as required to meet project requirements or shipped in standard incremental foot lengths and cut to exact length on jobsite.

G. Finishes
1. Exposed surfaces of exposed aluminum extrusion:
2. Custom Finish: Painted finish to match painted finish on window Mullions, re: 074213.19 “Insulated Metal Wall Panels” (BID DOCUMENTS August 30, 2019)

2.9 ACOUSTICAL JOINT SEALANT

A. Materials, General
1. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

2. VOC Content Interior Sealants: Sealants and sealant primers used inside the weatherproofing system shall comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 a. Architectural Sealants: Maximum allowable VOC limit is 200 g/L.
 b. Sealant Primers for Nonporous Substrates: Maximum allowable VOC limit is 200 g/L.
c. Sealant Primers for Porous Substrates: Maximum allowable VOC limit is 200 g/L.

3. Liquid-Applied Joint Sealants: Comply with ASTM C 920 and other requirements indicated for each liquid-applied joint sealant specified, including those referencing ASTM C 920 classifications for type, grade, class, and uses related to exposure and joint substrates.

 a. Suitability for Immersion in Liquids: Where sealants are indicated for Use I for joints that will be continuously immersed in liquids, provide products that have undergone testing according to ASTM C 1247. Liquid used for testing sealants is deionized water, unless otherwise indicated.

4. Stain-Test-Response Characteristics: Where sealants are specified to be nonstaining to porous substrates, provide products that have undergone testing according to ASTM C 1248 and have not stained porous joint substrates indicated for Project.

B. Acoustical Sealant for Exposed and Concealed Joints: Manufacturer’s standard nonsag, paintable, nonstaining latex acoustical sealant complying with ASTM C834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.

1. Products: Subject to compliance with requirements, provide one of the following:

 a. Pecora Corporation; AC-20 FTR
 b. USG Corporation; SHEETROCK Acoustical Sealant.
 c. Grabber Construction Products; Acoustical Sealant GSC.

2. Colors of Exposed Acoustical Joint Sealants: As selected by Architect from manufacturer’s full range of colors.

C. Joint Sealant Backing

1. General: Provide sealant backings of material that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.

2. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin), and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.

3. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint. Provide self-adhesive tape where applicable.

D. Miscellaneous Materials

1. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
2. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.

3. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints. (BID DOCUMENTS August 30, 2019)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates including welded hollow-metal frames and framing, with Installer present, for compliance with requirements and other conditions affecting performance.

B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS, GENERAL

A. Comply with ASTM C 840.

B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.

C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch of open space between panels. Do not force into place.

D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.

E. Form control and expansion joints with space between edges of adjoining gypsum panels.

F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. in area.
 2. Fit gypsum panels around ducts, pipes, and conduits.
 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch- wide joints to install sealant.

G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments, except floors. Provide 1/4- to 1/2-inch- wide spaces at these locations and trim
edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.

H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.

I. STC-Rated Assemblies: Seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C 919 and with manufacturer's written recommendations for locating edge trim and closing off sound-flanking paths around or through assemblies, including sealing partitions above acoustical ceilings. Install sound attenuation blankets before installing gypsum panels unless blankets are ready installed after panels have been installed on one side.

J. Shaft Wall Penetrations: At penetrations in shaft wall, maintain fire-resistance rating of shaft wall assembly by installing supplementary steel framing around perimeter of penetration and fire protection behind boxes containing wiring devices, elevator call buttons, elevator floor indicators, and similar items.

3.3 APPLYING INTERIOR GYPSUM BOARD

A. Install interior gypsum board in the following locations:
 1. Type X: All surfaces unless otherwise indicated.
 2. Moisture- and Mold-Resistant Type: Provide in restrooms, clean and soiled utility rooms. As indicated on drawings.
 3. Cementitious Backer Units: Provide at all locations where tile is the finish surface.

B. Single-Layer Application:
 1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
 2. On partitions/walls, apply gypsum panels horizontally (perpendicular to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
 3. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

C. Multilayer Application:
 1. On ceilings, apply gypsum board indicated for base layers before applying base layers on walls/partitions; apply face layers in same sequence. Apply base layers at right angles to framing members and offset face-layer joints one framing member, 16 inches minimum, from parallel base-layer joints, unless otherwise indicated or required by fire-resistance-rated assembly.
 2. On partitions/walls, apply gypsum board indicated for base layers and face layers vertically (parallel to framing) with joints of base layers located over stud or furring member and face-layer joints offset at least one stud or furring member with base-layer joints, unless otherwise indicated or required by fire-resistance-rated assembly. Stagger joints on opposite sides of partitions.
 3. Fastening Methods: Fasten base layers and face layers separately to supports with screws.
3.4 APPLYING TILE BACKING PANELS

A. Cementitious Backer Units: ANSI A108.11, at locations indicated to receive tile.

3.5 INSTALLING TRIM ACCESSORIES

A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.

B. Control Joints: Install control joints per ASTM C 840 and in specific locations approved by Architect for visual effect.

C. Interior Trim: Install in the following locations:
 1. Cornerbead: Use at outside corners.
 2. LC-Bead: Use at exposed panel edges.
 3. L-Bead: Use where indicated.

3.6 FINISHING GYPSUM BOARD

A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.

B. Prefill open joints, rounded or beveled edges, and damaged surface areas.

C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.

D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:
 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 2. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 a. Primer and its application to surfaces are specified in Section 099123 "Interior Painting."

E. Cementitious Backer Units: Finish according to manufacturer's written instructions.

3.7 PROTECTION

A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.

B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.

C. Remove and replace panels that are wet, moisture damaged, and mold damaged.
1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

3.8 SOUND BARRIER MULLION TRIM CAP

A. Examination
 1. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work;
 2. Examine walls and adjacent curtain wall for suitable conditions where sound barrier wall end cap will be installed;
 3. Proceed with installation only after unsatisfactory conditions have been corrected;

B. Installation
 1. Measure and cut sound barrier wall end cap to proper lengths;
 2. Notch around horizontal mullions, sills, or other obstructions leaving appropriate gap for differential movement between the sound barrier wall end cap and the obstruction;
 3. Apply continuous bead of acoustical sealant to the unexposed side of extruded aluminum surface that will be in contact with the drywall edge;
 4. Place sound barrier wall end cap on the vertical surface of the drywall partition wall and loosely install fasteners in the top and bottom slotted holes of the wall end cap;
 5. Plumb the wall end cap leaving recommended gap spacing between the interior glass surface and the wall end cap. Foam gasket to be in contact with glass;
 6. Tighten top and bottom fasteners to secure end cap;
 7. Install additional fasteners at 12 inches on center, minimum;
 8. Install snap cover to conceal fasteners;
 9. Apply color matched sealant at joints of dissimilar materials as desired;

C. Cleaning
 1. After work is complete in adjacent areas, clean exposed surfaces with suitable cleaner that will not harm or attack the finish;

D. Protection
 1. Protect sound barrier wall end caps from damage during installation, general construction activities, and until turnover of structure;

(BID DOCUMENTS August 30, 2019)

END OF SECTION 092900
SECTION 093013 – WALL AND FLOOR TILING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Glass wall tile.
 2. Porcelain wall tile.
 3. Ceramic floor and wall tile.

B. Related Requirements:
 1. Section 079200 "Joint Sealants" for sealing of expansion, contraction, control, and isolation joints in tile surfaces.

1.3 DEFINITIONS

A. General: Definitions in the ANSI A108 series of tile installation standards and in ANSI A137.1 apply to Work of this Section unless otherwise specified.

C. Module Size: Actual tile size plus joint width indicated.

D. Face Size: Actual tile size, excluding spacer lugs.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples for Verification:
 1. Full-size units of each type and composition of tile and for each color and finish required. For ceramic mosaic tile in color blend patterns, provide full sheets of each color blend.
 2. Metal edge strips in 6-inch lengths.
1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Product Test Reports: For tile-setting and -grouting products.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match and are from same production runs as products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Tile and Trim Units: Furnish quantity of full-size units equal to 3 percent of amount installed for each type, composition, color, pattern, and size indicated.
 2. Grout: Furnish quantity of grout equal to 3 percent of amount installed for each type, composition, and color indicated.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer employs Ceramic Tile Education Foundation Certified Installers or installers recognized by the U.S. Department of Labor as Journeyman Tile Layers.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver and store packaged materials in original containers with seals unbroken and labels intact until time of use. Comply with requirements in ANSI A137.1 for labeling tile packages.

B. Store tile and cementitious materials on elevated platforms, under cover, and in a dry location.

C. Store aggregates where grading and other required characteristics can be maintained and contamination can be avoided.

D. Store liquid materials in unopened containers and protected from freezing.

1.9 FIELD CONDITIONS

A. Environmental Limitations: Do not install tile until construction in spaces is complete and ambient temperature and humidity conditions are maintained at the levels indicated in referenced standards and manufacturer's written instructions.

B. Field Verification: Prior to construction, field-verify all tile products. If existing product varies from specified product, report to Architect or Owner’s Representative before proceeding with ordering and installation of new tile product.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Tile: Obtain tile of each type and color or finish from single source or producer.
 1. Obtain tile of each type and color or finish from same production run and of consistent quality in appearance and physical properties for each contiguous area.

B. Source Limitations for Setting and Grouting Materials: Obtain ingredients of a uniform quality for each mortar, adhesive, and grout component from single manufacturer and each aggregate from single source or producer.
 1. Obtain setting and grouting materials, except for unmodified Portland cement and aggregate, from single manufacturer.
 2. Obtain crack isolation membrane, except for sheet products, from manufacturer of setting and grouting materials.

2.2 PRODUCTS, GENERAL

A. ANSI Ceramic Tile Standard: Provide tile that complies with ANSI A137.1 for types, compositions, and other characteristics indicated.

B. ANSI Standards for Tile Installation Materials: Provide materials complying with ANSI A108.02, ANSI standards referenced in other Part 2 articles, ANSI standards referenced by TCNA installation methods specified in tile installation schedules, and other requirements specified.

C. Factory Blending: For tile exhibiting color variations within ranges, blend tile in factory and package so tile units taken from one package show same range in colors as those taken from other packages and match approved Samples.

D. Mounting: For factory-mounted tile, provide back- or edge-mounted tile assemblies as standard with manufacturer unless otherwise indicated.

2.3 GLASS WALL TILE [GLT-1]

A. Basis-of-Design Product: Subject to compliance with requirements, provide American Olean; Color Appeal Glass tile or comparable product approved by Architect.
 1. Face Size: 4 inches by 12 inches subway glass tile plank.
 2. Thickness: 5/16 inch.
 5. Grout Color: To be selected by Architect from Manufacturer’s full range.

2.4 GLASS WALL TILE [GLT-2]

A. Basis-of-Design Product: Subject to compliance with requirements, provide American Olean; Color Appeal Glass tile or comparable product approved by Architect.
1. Face Size: 4 inches by 12 inches subway glass tile plank.
2. Thickness: 5/16 inch.
3. Tile Color and Pattern: C102 Silver Cloud.
5. Grout Color: To be selected by Architect from Manufacturer’s full range.

2.5 GLASS WALL TILE [GLT-3]

A. Basis-of-Design Product: Subject to compliance with requirements, provide American Olean; Color Appeal Glass tile or comparable product approved by Architect.
1. Face Size: 2 inches by 8 inches subway glass tile plank.
2. Thickness: 5/16 inch.
5. Grout Color: To be selected by Architect from Manufacturer’s full range.

2.6 PORCELAIN TILE [PWT-1]

A. Basis-of-Design Product: Subject to compliance with requirements, provide American Olean; St. Germain Colorbody Porcelain tile or comparable product approved by Architect.
1. Face Size: 12 inches by 24 inches tile.
2. Thickness: 3/8 inch.
4. Grout
 a. Basis-of-Design Product: Subject to compliance with requirements, provide Mapei 94 Straw, or comparable product approved by Architect.

2.7 CRACK ISOLATION MEMBRANE

A. General: Manufacturer's standard product that complies with ANSI A118.12 for high performance and is recommended by the manufacturer for the application indicated. Include reinforcement and accessories recommended by manufacturer.

B. Fluid-Applied Membrane: Liquid-latex rubber or elastomeric polymer.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Bostik, Inc; GoldPlus.
 b. MAPEI Corporation; Mapelastic CL.
 c. TEC; H.B. Fuller Construction Products Inc.; Triple Flex.
2. Locations: All floor areas to receive tile.

2.8 SETTING MATERIALS

1. Basis-of-Design Product: Subject to compliance with requirements, provide TEC Full Flex or comparable product by one of the following:
 a. Bonsal American; an Oldcastle company.
 b. Bostik, Inc.
c. MAPEI Corporation.

2. Provide prepackaged, dry-mortar mix containing dry, redispersible, vinyl acetate or acrylic additive to which only water must be added at Project site.

2.9 GROUT MATERIALS

A. Water-Cleanable Epoxy Grout: ANSI A118.3, with a VOC content of 65 g/L or less.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Bostik, Inc; EzPoxy.
 b. MAPEI Corporation; Kerapoxy.
 c. TEC; H.B. Fuller Construction Products Inc.; AccuColor EFX.
 2. Provide product capable of withstanding continuous and intermittent exposure to temperatures of up to 140 and 212 deg F, respectively, and certified by manufacturer for intended use.

B. High-Performance Tile Grout: ANSI A118.7.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Bostik, Inc; Dry Tile Grout.
 b. MAPEI Corporation; Ultracolor Plus.
 c. TEC; H.B. Fuller Construction Products Inc.; AccuColor XT.
 2. Tile types: All types unless noted otherwise.

2.10 MISCELLANEOUS MATERIALS

A. Trowelable Underlayments and Patching Compounds: Latex-modified, portland cement-based formulation provided or approved by manufacturer of tile-setting materials for installations indicated.

B. Metal Flooring Edge Strips: Schluter Quadec or Reno-U as required to transition between materials, height to match tile and setting-bed thickness, metallic, designed specifically for flooring applications; stainless-steel, ASTM A 666, 300 Series exposed-edge material.

C. Metal Wall Edge Strips: Schluter Quadec, height to match tile and setting-bed thickness, metallic; stainless-steel, ASTM A 666, 300 Series exposed-edge material. To be installed at top of tile wainscot without bullnose trim pieces and at outside tile corners without trim pieces.

D. Tile Cleaner: A neutral cleaner capable of removing soil and residue without harming tile and grout surfaces, specifically approved for materials and installations indicated by tile and grout manufacturers.

E. Grout Sealer: Manufacturer's standard product for sealing grout joints and that does not change color or appearance of grout.

2.11 MIXING MORTARS AND GROUT

A. Mix mortars and grouts to comply with referenced standards and mortar and grout manufacturers' written instructions.
B. Add materials, water, and additives in accurate proportions.

C. Obtain and use type of mixing equipment, mixer speeds, mixing containers, mixing time, and other procedures to produce mortars and grouts of uniform quality with optimum performance characteristics for installations indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions where tile will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 1. Verify that substrates for setting tile are firm; dry; clean; free of coatings that are incompatible with tile-setting materials, including curing compounds and other substances that contain soap, wax, oil, or silicone; and comply with flatness tolerances required by ANSI A108.01 for installations indicated.
 2. Verify that concrete substrates for tile floors installed with thinset mortar comply with surface finish requirements in ANSI A108.01 for installations indicated.
 a. Verify that surfaces that received a steel trowel finish have been mechanically scarified.
 b. Verify that protrusions, bumps, and ridges have been removed by sanding or grinding.
 3. Verify that installation of grounds, anchors, recessed frames, electrical and mechanical units of work, and similar items located in or behind tile has been completed.
 4. Verify that joints and cracks in tile substrates are coordinated with tile joint locations; if not coordinated, adjust joint locations in consultation with Architect.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Fill cracks, holes, and depressions in concrete substrates for tile floors installed with thinset mortar with trowelable leveling and patching compound specifically recommended by tile-setting material manufacturer.

B. Blending: For tile exhibiting color variations, verify that tile has been factory blended and packaged so tile units taken from one package show same range of colors as those taken from other packages and match approved Samples. If not factory blended, either return to manufacturer or blend tiles at Project site before installing.

3.3 WALL TILE INSTALLATION

A. Comply with TCNA's "Handbook for Ceramic, Glass, and Stone Tile Installation" for TCNA installation methods specified in tile installation schedules. Comply with parts of the ANSI A108 series "Specifications for Installation of Ceramic Tile" that are referenced in TCNA installation
methods, specified in tile installation schedules, and apply to types of setting and grouting materials used.

1. For the following installations, follow procedures in the ANSI A108 series of tile installation standards for providing 95 percent mortar coverage:
 a. Tile floors consisting of tiles 8 by 8 inches or larger.
 b. Tile floors consisting of rib-backed tiles.

B. Extend tile work into recesses and under or behind equipment and fixtures to form complete covering without interruptions unless otherwise indicated. Terminate work neatly at obstructions, edges, and corners without disrupting pattern or joint alignments.

C. Accurately form intersections and returns. Perform cutting and drilling of tile without marring visible surfaces. Carefully grind cut edges of tile abutting trim, finish, or built-in items for straight aligned joints. Fit tile closely to electrical outlets, piping, fixtures, and other penetrations so plates, collars, or covers overlap tile.

D. Provide manufacturer's standard trim shapes where necessary to eliminate exposed tile edges.

E. Where accent tile differs in thickness from field tile, vary setting-bed thickness so that tiles are flush.

F. Jointing Pattern: Lay tile in grid pattern unless otherwise indicated. Lay out tile work and center tile fields in both directions in each space or on each wall area. Lay out tile work to minimize the use of pieces that are less than half of a tile. Provide uniform joint widths unless otherwise indicated.
 1. For tile mounted in sheets, make joints between tile sheets same width as joints within tile sheets so joints between sheets are not apparent in finished work.
 2. Where adjoining tiles on floor, base, walls, or trim are specified or indicated to be same size, align joints.
 3. Where tiles are specified or indicated to be whole integer multiples of adjoining tiles on floor, base, walls, or trim, align joints unless otherwise indicated.

G. Lay out tile wainscots to dimensions indicated or to next full tile beyond dimensions indicated.

H. Expansion Joints: Provide expansion joints and other sealant-filled joints, including control, contraction, and isolation joints, where indicated. Form joints during installation of setting materials, mortar beds, and tile. Do not saw-cut joints after installing tiles.
 1. Where joints occur in concrete substrates, locate joints in tile surfaces directly above them.

I. Metal Edge Strips: Install where exposed edge of tile flooring meets carpet, wood, or other flooring that finishes flush with or below top of tile and no threshold is indicated.

J. Floor Sealer: Apply floor sealer to cementitious grout joints in tile floors according to floor-sealer manufacturer's written instructions. As soon as floor sealer has penetrated grout joints, remove excess sealer and sealer from tile faces by wiping with soft cloth.

K. Where tile is new in entire room, or no other tile existing tile is located adjacent to new tile, install according to manufacturer’s standard instructions.
L. Where tile is new in portion of room and adjacent to existing tile, match pattern direction of new tile to pattern direction of existing tile.

3.4 TILE BACKING PANEL INSTALLATION
A. Install panels and treat joints according to ANSI A108.11 and manufacturer’s written instructions for type of application indicated.

3.5 CRACK ISOLATION MEMBRANE INSTALLATION
A. Install crack isolation membrane to comply with ANSI A108.17 and manufacturer’s written instructions to produce membrane of uniform thickness that is bonded securely to substrate.
B. Allow crack isolation membrane to cure before installing tile or setting materials over it.

3.6 ADJUSTING AND CLEANING
A. Remove and replace tile that is damaged or that does not match adjoining tile. Provide new matching units, installed as specified and in a manner to eliminate evidence of replacement.
B. Cleaning: On completion of placement and grouting, clean all ceramic tile surfaces so they are free of foreign matter.
 1. Remove grout residue from tile as soon as possible.
 2. Clean grout smears and haze from tile according to tile and grout manufacturer’s written instructions but no sooner than 10 days after installation. Use only cleaners recommended by tile and grout manufacturers and only after determining that cleaners are safe to use by testing on samples of tile and other surfaces to be cleaned. Protect metal surfaces and plumbing fixtures from effects of cleaning. Flush surfaces with clean water before and after cleaning.

3.7 PROTECTION
A. Protect installed tile work with kraft paper or other heavy covering during construction period to prevent staining, damage, and wear. If recommended by tile manufacturer, apply coat of neutral protective cleaner to completed tile walls and floors.
B. Prohibit foot and wheel traffic from tiled floors for at least seven days after grouting is completed.
C. Before final inspection, remove protective coverings and rinse neutral protective cleaner from tile surfaces.

END OF SECTION 093013
SECTION 095113 - ACOUSTICAL PANEL CEILINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes acoustical panels and exposed suspension systems for interior ceilings.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples for Verification: For each component indicated and for each exposed finish required, prepared on Samples of sizes indicated below:

1. Acoustical Panels: Set of 6-inch- square Samples of each type, color, pattern, and texture.
2. Exposed Suspension-System Members, Moldings, and Trim: Set of 6-inch- long Samples of each type, finish, and color.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Ceiling suspension-system members.
2. Structural members to which suspension systems will be attached.
3. Method of attaching hangers to building structure.
 a. Furnish layouts for cast-in-place anchors, clips, and other ceiling attachment devices whose installation is specified in other Sections.
4. Carrying channels or other supplemental support for hanger-wire attachment where conditions do not permit installation of hanger wires at required spacing.
5. Size and location of initial access modules for acoustical panels.
6. Items penetrating finished ceiling and ceiling-mounted items including the following:
 a. Lighting fixtures.
 b. Diffusers.
 c. Grilles.
 d. Speakers.
e. Sprinklers.
f. Access panels.

7. Show operation of hinged and sliding components covered by or adjacent to acoustical panels.

B. Product Test Reports: For each acoustical panel ceiling, for tests performed by manufacturer and witnessed by a qualified testing agency.

C. Evaluation Reports: For each acoustical panel ceiling suspension system and anchor and fastener type, from ICC-ES.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For finishes to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Acoustical Ceiling Units: Full-size panels equal to 2 percent of quantity installed.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver acoustical panels, suspension-system components, and accessories to Project site and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.

B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.

1.8 FIELD CONDITIONS

A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

1. Pressurized Plenums: Operate ventilation system for not less than 48 hours before beginning acoustical panel ceiling installation.

B. Field Verification: Prior to construction, field-verify all acoustic ceiling tile and grid products. If existing product varies from specified product, report to Architect or Owner's Representative before proceeding with ordering and installation of new acoustic ceiling tile product.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of acoustical ceiling panel and its supporting suspension system from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Suspended ceilings shall withstand the effects of earthquake motions determined according to ASCE/SEI 7 for Seismic Design Category D.

B. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame-Spread Index: Class A according to ASTM E1264.
2. Smoke-Developed Index: 50 or less.

2.3 ACOUSTICAL PANELS [ACT-1]

A. Basis-of-design product: Subject to compliance with requirements, provide the following or comparable product approved by Architect:

1. Armstrong World Industries, Inc; Ultima Lay-In and Tegular #1910.

B. Acoustical Panel Standard: Provide manufacturer’s standard panels according to ASTM E1264 and designated by type, form, pattern, acoustical rating, and light reflectance unless otherwise indicated.

C. Classification: Provide panels as follows:

1. Type and Form: Type IV, mineral base with membrane-faced overlay; Form 2.

D. Color: White.

E. Light Reflectance (LR): Not less than 0.90.

F. Ceiling Attenuation Class (CAC): Not less than 35.

G. Noise Reduction Coefficient (NRC): Not less than 0.75.

H. Edge/Joint Detail: Square Lay-In 15/16 inch.

I. Thickness: 3/4 inch.

J. Modular Size: 24 by 24 inches.

K. Antimicrobial Treatment: Manufacturer's standard broad spectrum, antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no
mold, mildew, or bacterial growth when tested according to ASTM D3273, ASTM D3274, or ASTM G21 and evaluated according to ASTM D3274 or ASTM G21.

2.4 **ACOUSTICAL PANELS [ACT-2]**

A. Basis-of-design product: Subject to compliance with requirements, provide the following or comparable product approved by Architect:

1. Armstrong World Industries, Inc; Designer #735.

B. Acoustical Panel Standard: Provide manufacturer's standard panels according to ASTM E1264 and designated by type, form, pattern, acoustical rating, and light reflectance unless otherwise indicated.

C. Classification: Provide panels as follows:
 1. Type and Form: Type III; Form 2.
 2. Pattern: F.

D. Color: White.

E. Light Reflectance (LR): Not less than 0.81.

F. Ceiling Attenuation Class (CAC): Not less than 30.

G. Noise Reduction Coefficient (NRC): Not less than 0.55.

H. Edge/Joint Detail: Square Lay-In 15/16 inch.

I. Thickness: 5/8 inch.

J. Modular Size: 24 by 24 inches.

K. Antimicrobial Treatment: Manufacturer's standard broad spectrum, antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D3273, ASTM D3274, or ASTM G21 and evaluated according to ASTM D3274 or ASTM G21.

2.5 **ACOUSTICAL PANELS [ACT-3]**

A. Basis-of-design product: Subject to compliance with requirements, provide the following or comparable product approved by Architect:

1. Armstrong World Industries, Inc; Georgian #796.

B. Acoustical Panel Standard: Provide manufacturer's standard panels according to ASTM E1264 and designated by type, form, pattern, acoustical rating, and light reflectance unless otherwise indicated.

C. Classification: Provide panels as follows:
 1. Type and Form: Type III; Form 2.
2. Pattern: C E.

D. Color: White.

E. Light Reflectance (LR): Not less than 0.86.

F. Ceiling Attenuation Class (CAC): Not less than 35.

G. Noise Reduction Coefficient (NRC): Not less than 0.65.

H. Edge/Joint Detail: Square Lay-In 15/16 inch.

I. Thickness: 3/4 inch.

J. Modular Size: 24 by 24 inches.

K. Antimicrobial Treatment: Manufacturer's standard broad spectrum, antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D3273, ASTM D3274, or ASTM G21 and evaluated according to ASTM D3274 or ASTM G21.

2.6 ACOUSTICAL PANELS [ACT-4]

A. Basis-of-design product: Subject to compliance with requirements, provide the following or comparable product approved by Architect:

1. Armstrong World Industries, Inc; Designer #737.

B. Acoustical Panel Standard: Provide manufacturer's standard panels according to ASTM E1264 and designated by type, form, pattern, acoustical rating, and light reflectance unless otherwise indicated.

C. Classification: Provide panels as follows:

 1. Type and Form: Type III; Form 2.
 2. Pattern: F.

D. Color: White.

E. Light Reflectance (LR): Not less than 0.81.

F. Ceiling Attenuation Class (CAC): Not less than 33.

G. Noise Reduction Coefficient (NRC): Not less than 0.55.

H. Edge/Joint Detail: Angled Tegular 15/16 inch.

I. Thickness: 5/8 inch.

J. Modular Size: 24 by 24 inches.
K. Antimicrobial Treatment: Manufacturer's standard broad spectrum, antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D3273, ASTM D3274, or ASTM G21 and evaluated according to ASTM D3274 or ASTM G21.

2.7 ACOUSTICAL PANELS [ACT-5]

A. Basis-of-design product: Subject to compliance with requirements, provide the following or comparable product approved by Architect:

 1. USG Ceiling Solution; Rock Face Acoustical Panels.

B. Acoustical Panel Standard: Provide manufacturer's standard panels according to ASTM E1264 and designated by type, form, pattern, acoustical rating, and light reflectance unless otherwise indicated.

C. Classification: Provide panels as follows:

 1. Type and Form: Type III; Form 2.
 2. Pattern: CE.

D. Color: White.

E. Light Reflectance (LR): Not less than 0.86.

F. Ceiling Attenuation Class (CAC): Not less than 35.

G. Noise Reduction Coefficient (NRC): Not less than 0.55.

H. Edge/Joint Detail: Square Lay-In.

I. Thickness: 5/8 inch.

J. Modular Size: 24 by 24 inches.

K. Antimicrobial Treatment: Manufacturer's standard broad spectrum, antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D3273, ASTM D3274, or ASTM G21 and evaluated according to ASTM D3274 or ASTM G21.

2.8 ACOUSTICAL PANELS [ACT-6]

A. Basis-of-design product: Subject to compliance with requirements, provide the following or comparable product approved by Architect:

 1. Armstrong World Industries, Inc; Tundra #303.

B. Acoustical Panel Standard: Provide manufacturer's standard panels according to ASTM E1264 and designated by type, form, pattern, acoustical rating, and light reflectance unless otherwise indicated.
C. Classification: Provide panels as follows:
 1. Type and Form: Type III; Form 2.
 2. Pattern: CE.

D. Color: White.

E. Light Reflectance (LR): Not less than 0.87.

F. Ceiling Attenuation Class (CAC): Not less than 33.

G. Noise Reduction Coefficient (NRC): Not less than 0.50.

H. Edge/Joint Detail: Beveled Tegular 15/16 inch.

I. Thickness: 5/8 inch.

J. Modular Size: 24 by 24 inches.

K. Antimicrobial Treatment: Manufacturer's standard broad spectrum, antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D3273, ASTM D3274, or ASTM G21 and evaluated according to ASTM D3274 or ASTM G21.

2.9 METAL SUSPENSION SYSTEM

A. Compatible with the following scheduled acoustic panel ceiling tiles:
 1. [ACT-1]
 2. [ACT-2]
 3. [ACT-3]
 4. [ACT-4]
 5. [ACT-6]

B. Basis-of-Design Product: Subject to compliance with requirements, provide the following or a comparable product approved by Architect:
 1. Armstrong World Industries, Inc; Prelude ML 15/16” Exposed Tee.
 2. Finish: To match existing conditions

C. To be compliant with ASTM C635/C635M and designated by type and structural classification.

D. Wide-Face, Capped, Double-Web, Steel Suspension System: Main and cross runners roll formed from cold-rolled steel sheet; prepainted, hot-dip galvanized, G30 coating designation; with prefinished 15/16-inch- wide metal caps on flanges.
 1. Structural Classification: Heavy-duty system.
 2. End Condition of Cross Runners: Override (stepped) or butt-edge type.
 3. Face Design: Flat, flush.
2.10 METAL SUSPENSION SYSTEM

A. Compatible with the following scheduled acoustic panel ceiling tiles:
 1. [ACT-5]

B. Basis-of-Design Product: Subject to compliance with requirements, provide the following or a comparable product approved by Architect:
 1. USG; Donn Brand ZXLA 15/16” Acoustical Suspension System.
 2. Finish: To match existing conditions.

C. To be compliant with ASTM C635/C635M and designated by type and structural classification.

D. Wide-Face, Capped, Double-Web, Steel Suspension System: Main and cross runners rolled from cold-rolled steel sheet; pre-painted, hot-dip galvanized, G30 coating designation; with prefinished 15/16-inch wide metal caps on flanges.
 1. Structural Classification: Heavy-duty system.
 2. End Condition of Cross Runners: Override (stepped) or butt-edge type.
 3. Face Design: Flat, flush.

2.11 ACCESSORIES

A. Attachment Devices: Size for five times the design load indicated in ASTM C635/C635M, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.
 1. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hangers of type indicated and with capability to sustain, without failure, a load equal to 10 times that imposed by ceiling construction, as determined by testing according to ASTM E1190, conducted by a qualified testing and inspecting agency.

B. Wire Hangers, Braces, and Ties: Provide wires as follows:
 2. Size: Wire diameter sufficient for its stress at three times hanger design load (ASTM C635/C635M, Table 1, "Direct Hung") will be less than yield stress of wire, but not less than 0.135-inch diameter wire.

C. Beam End Retaining Clips: Manufacturer’s standard clip designed as part of an ICC-ES approved system for Seismic Design Category D to allow narrow perimeter wall moldings and eliminate stabilizer bars.
2.12 METAL EDGE MOLDINGS AND TRIM

A. Roll-Formed, Sheet-Metal Edge Moldings and Trim: Type and profile indicated or, if not indicated, manufacturer's standard moldings for edges and penetrations that comply with seismic design requirements; formed from sheet metal of same material, finish, and color as that used for exposed flanges of suspension-system runners.

1. Edge moldings shall fit acoustical panel edge details and suspension systems indicated and match width and configuration of exposed runners unless otherwise indicated.

2. For circular penetrations of ceiling, provide edge moldings fabricated to diameter required to fit penetration exactly.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, including structural framing to which acoustical panel ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and with requirements for installation tolerances and other conditions affecting performance of acoustical panel ceilings.

B. Examine acoustical panels before installation. Reject acoustical panels that are wet, moisture damaged, or mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders unless otherwise indicated, and comply with layout shown on reflected ceiling plans.

B. Layout openings for penetrations centered on the penetrating items.

3.3 INSTALLATION

A. Install acoustical panel ceilings according to ASTM C636/C636M, seismic design requirements, and manufacturer's written instructions.

B. Suspend ceiling hangers from building's structural members and as follows:

1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.

2. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.

3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard
suspension-system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.

4. Secure wire hangers to ceiling-suspension members and to supports above with a minimum of three tight turns. Connect hangers directly to structure or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.

5. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, postinstalled mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.

6. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.

7. Do not attach hangers to steel roof deck. Attach hangers to structural members.

8. Space hangers not more than 48 inches o.c. along each member supported directly from hangers unless otherwise indicated; provide hangers not more than 8 inches from ends of each member.

9. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards.

C. Secure bracing wires to ceiling suspension members and to supports with a minimum of four tight turns. Suspend bracing from building's structural members as required for hangers, without attaching to permanent metal forms, steel deck, or steel deck tabs. Fasten bracing wires into concrete with cast-in-place or postinstalled anchors.

D. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.

1. Apply acoustical sealant in a continuous ribbon concealed on back of vertical legs of moldings before they are installed.

2. Screw attach moldings to substrate at intervals not more than 16 inches o.c. and not more than 3 inches from ends. Miter corners accurately and connect securely.

3. Do not use exposed fasteners, including pop rivets, on moldings and trim.

E. Install suspension-system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.

F. Install acoustical panels with undamaged edges and fit accurately into suspension-system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide precise fit.

1. For square-edged panels, install panels with edges fully hidden from view by flanges of suspension-system runners and moldings.

2. Install seismic clips in areas indicated; space according to panel manufacturer's written instructions unless otherwise indicated.

3.4 ERECTION TOLERANCES

A. Suspended Ceilings: Install main and cross runners level to a tolerance of 1/8 inch in 12 feet, non-cumulative.

B. Moldings and Trim: Install moldings and trim to substrate and level with ceiling suspension system to a tolerance of 1/8 inch in 12 feet, non-cumulative.
3.5 CLEANING

A. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension-system members. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage.

B. Remove and replace ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION 095113
SECTION 096516 - RESILIENT SHEET FLOORING, BASE, & ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Vinyl sheet floor covering, with backing.
 2. Resilient base.
 3. Resilient molding accessories.

B. Related Sections:
 1. Division 09 Section "Resilient Tile Flooring" for resilient floor tile.
 2. Section 02080 for Hazardous Material Abatement (Information provided by Owner).

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For adhesives, documentation including printed statement of VOC content.
 2. Product Data for Credit IEQ 4.3: For adhesives, documentation including printed statement of VOC content.
 3. Product Data for Credit IEQ 4.3: For resilient sheet flooring, documentation from an independent testing agency indicating compliance with the FloorScore Standard.

C. Shop Drawings: For each type of floor covering. Include floor covering layouts, locations of seams, edges, columns, doorways, enclosing partitions, built-in furniture, cabinets, and cutouts.
 1. Show details of special patterns.
 2. Show locations of all seams.

D. Samples for Verification: In manufacturer's standard size, but not less than 6-by-9-inch sections of each different color and pattern of floor covering required.
 1. For heat-welding bead, manufacturer's standard-size Samples, but not less than 9 inches long, of each color required.

E. Product Schedule: For floor coverings. Use same designations indicated on Drawings.
1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of floor covering to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Floor Covering: Furnish quantity of 2 full rolls, in roll form and in full roll width for each color, pattern, and type of floor covering installed.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: A qualified installer who employs workers for this Project who are competent in techniques required by manufacturer for floor covering installation and seaming method indicated.

1. Engage an installer who employs workers for this Project who are trained or certified by floor covering manufacturer for installation techniques required.

B. Fire-Test-Response Characteristics: As determined by testing identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.

1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store floor coverings and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F. Store rolls upright.

1.9 FIELD CONDITIONS

A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 85 deg F, in spaces to receive floor coverings during the following time periods:

1. 7 days before installation.
2. During installation.
3. 7 days after installation.
B. Until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 85 deg F.

C. Close spaces to traffic during floor covering installation.

D. Close spaces to traffic for 48 hours after floor covering installation.

E. Install floor coverings after other finishing operations, including painting, have been completed.

F. Field Verification: Prior to construction, field-verify all vinyl sheet flooring and resilient base products. If existing product varies from specified product, report to Architect before proceeding with ordering and installation of new sheet vinyl floor or resilient base product.

1.10 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace flooring that fails in materials or workmanship within specified warranty period.
 1. Warranty Period: Ten years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. FloorScore Compliance: Resilient sheet flooring shall comply with requirements of FloorScore Standard.

2.2 VINYL SHEET FLOOR COVERING [SV-1]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Armstrong Flooring; Medintech Medintone Homogeneous Sheet Flooring or comparable product approved by Architect.

B. Sheet Width: 6 feet 7 inches.

C. Thickness: 0.080 inches.

D. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

E. Colors and Patterns: 84390 Desert Gold.

F. Installation Method: Full spread.

2.3 VINYL SHEET FLOOR COVERING [SV-2]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Shannon Specialty Floors; Teknofloor Forestscapes Collection or comparable product approved by Architect.
B. Vinyl Sheet Floor Covering with Backing: ASTM F1303.
 1. Classification: Type 1 Grade 1.
 2. Wear-Layer Thickness: 20 mm.
 3. Overall Thickness: 2.3 mm.
 4. Backing Class: Class A 4-ply fused backing system comprised of PVC layer, Fiberglass, PVC internal layer, and polyester woven back.

C. Wearing Surface: Embossed.

D. Sheet Width: 6 feet.

E. Thickness: 0.090 inches.

F. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

G. Colors and Patterns: 52206 Fruitwood.

2.4 VINYL SHEET FLOOR COVERING [SV-3]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Shannon Specialty Floors; Teknoflor Timberscapes Collection or comparable product approved by Architect.

B. Vinyl Sheet Floor Covering with Backing: ASTM F1303.
 1. Classification: Type 1 Grade 1.
 2. Wear-Layer Thickness: 20 mm.
 3. Overall Thickness: 2.3 mm..
 4. Backing Class: Class A 4-ply fused backing system comprised of PVC layer, Fiberglass, PVC internal layer, and polyester mesh back.

C. Wearing Surface: Embossed.

D. Sheet Width: 5 feet 11 inches.

E. Thickness: 0.090 inches.

F. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

G. Colors and Patterns: 51024 Poplar.

2.5 VINYL SHEET FLOOR COVERING [SV-4]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Shannon Specialty Floors; Teknoflor Timberscapes Collection or comparable product approved by Architect.

B. Vinyl Sheet Floor Covering with Backing: ASTM F1303.
 1. Classification: Type 1 Grade 1.
2. Wear-Layer Thickness: 20 mm.
3. Overall Thickness: 2.3 mm.
4. Backing Class: Class A 4-ply fused backing system comprised of PVC layer, Fiberglass, PVC internal layer, and polyester mesh back.

C. Wearing Surface: Embossed.

D. Sheet Width: 5 feet 11 inches.

E. Thickness: 0.090 inches.

F. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

G. Colors and Patterns: 53903 Provincial Oak.

2.6 VINYL SHEET FLOOR COVERING [SV-5] – NOT USED

2.7 VINYL SHEET FLOOR COVERING [SV-6]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Shannon Specialty Floors; Teknoflor Forestscapes Collection or comparable product approved by Architect.

B. Vinyl Sheet Floor Covering with Backing: ASTM F1303.
 1. Classification: Type 1 Grade 1.
 2. Wear-Layer Thickness: 20 mm.
 3. Overall Thickness: 2.3 mm.
 4. Backing Class: Class A 4-ply fused backing system comprised of PVC layer, Fiberglass, PVC internal layer, and polyester woven back.

C. Wearing Surface: Embossed.

D. Sheet Width: 6 feet.

E. Thickness: 0.090 inches.

F. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

G. Colors and Patterns: 7803 Traditional Oak.

2.8 VINYL SHEET FLOOR COVERING [SV-7]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Shannon Specialty Floors; Tuf Stuf Fancy Free Collection or comparable product approved by Architect.

B. Vinyl Sheet Floor Covering with Backing: ASTM F1303.
1. Classification: Type 1 Grade 1.
2. Wear-Layer Thickness: 23 mm.
3. Overall Thickness: 2.3 mm.
4. Backing Class: Class B fused non-cushioned.

C. Wear Layer Composition: Virgin PVC wear layer infused with CS TUF STUF Ultimate Performance Technology.

D. Sheet Width: 6 feet.

E. Thickness: 0.090 inches.

F. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

G. Colors and Patterns: FF43201 Graham Cracker Crust.

2.9 VINYL SHEET FLOOR COVERING [SV-8]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Training Collection or comparable product approved by Architect.

B. Vinyl Sheet Floor Covering with Backing: ASTM F1303.
 1. Classification: Type 1 Grade 1.
 2. Backing Class: Class C foamed backing.

C. Sheet Width: 6 feet 6 inches.

D. Total Thickness: 0.195 inches.

E. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

F. Colors and Patterns: 9001 Beech.

2.10 VINYL SHEET FLOOR COVERING [SV-9]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Mannington Commercial; BioSpec MD Collection or comparable product approved by Architect.

B. Vinyl Sheet Floor Covering without Backing: ASTM F1913.

C. Sheet Width: 6 feet 6 inches.

D. Total Thickness: 0.080 inches.

E. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

2.11 VINYL SHEET FLOOR COVERING [SV-10]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Shannon Specialty Floors; Teknoflor Timberscapes Collection or comparable product approved by Architect.

B. Vinyl Sheet Floor Covering with Backing: ASTM F1303.
 1. Classification: Type 1 Grade 1.
 2. Wear-Layer Thickness: 20 mm.
 3. Overall Thickness: 2.3 mm.
 4. Backing Class: Class A 4-ply fused backing system comprised of PVC layer, Fiberglass, PVC internal layer, and polyester mesh back.

C. Wearing Surface: Embossed.

D. Sheet Width: 5 feet 11 inches.

E. Thickness: 0.090 inches.

F. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

G. Colors and Patterns: 51033 Sable Cherry.

2.12 VINYL SHEET FLOOR COVERING [SV-11]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Mannington Commercial; BioSpec MD Collection or comparable product approved by Architect.

B. Vinyl Sheet Floor Covering without Backing: ASTM F1913.

C. Sheet Width: 6 feet 6 inches.

D. Total Thickness: 0.080 inches.

E. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

F. Colors and Patterns: 15420 Linen. Random repeat, reverse sheet for seaming.

2.13 VINYL SHEET FLOOR COVERING [SV-12]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Mannington Commercial; Mannington Assurance III or comparable product approved by Architect.
B. Vinyl Sheet Floor Covering without Backing: ASTM F1913.

C. Sheet Width: 6 feet 6 inches.

D. Total Thickness: 0.080 inches.

E. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

2.14 VINYL SHEET FLOOR COVERING [SV-13]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Melodia 3.0 Collection or comparable product approved by Architect.

B. Homogeneous single layered vinyl floor covering: ASTM F1303.

C. Sheet Width: 6 feet 6 inches.

D. Total Thickness: 0.080 inches.

E. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

F. Colors and Patterns: 0976 Aloe Plant.

2.15 VINYL SHEET FLOOR COVERING [SV-14]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); IQ Natural Collection or comparable product approved by Architect.

B. Vinyl Sheet Floor Covering without Backing: ASTM F1913.

C. Sheet Width: 6 feet 6 inches.

D. Total Thickness: 0.080 inches.

E. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

F. Colors and Patterns: 0283 Sand Dunes.

2.16 VINYL SHEET FLOOR COVERING [SV-15]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Shannon Specialty Floors; Teknoflor Forestscapes Collection or comparable product approved by Architect.

B. Vinyl Sheet Floor Covering with Backing: ASTM F1303.
 1. Classification: Type 1 Grade 1.
 2. Wear-Layer Thickness: 20 mm.
 3. Overall Thickness: 2.3 mm.
 4. Backing Class: Class A 4-ply fused backing system comprised of PVC layer, Fiberglass, PVC internal layer, and polyester woven back.

C. Wearing Surface: Embossed.

D. Sheet Width: 6 feet.

E. Thickness: 0.090 inches.

F. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

G. Colors and Patterns: 31026 Colonial Maple.

2.17 VINYL SHEET FLOOR COVERING [SV-16]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Melodia 3.0 Collection or comparable product approved by Architect.

B. Homogeneous single layered vinyl floor covering: ASTM F1303.

C. Sheet Width: 6 feet 6 inches.

D. Total Thickness: 0.080 inches.

E. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

F. Colors and Patterns: 0784 Orange Marigold.

2.18 Installation Method: Full Spread. VINYL SHEET FLOOR COVERING [SV-17]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Melodia 3.0 Collection or comparable product approved by Architect.

B. Homogeneous single layered vinyl floor covering: ASTM F1303.

C. Sheet Width: 6 feet 6 inches.

D. Total Thickness: 0.080 inches.
E. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

F. Colors and Patterns: 0979 Mariblue.

2.19 VINYL SHEET FLOOR COVERING [SV-18]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Shannon Specialty Floors; Teknoflor Forestscapes HPD Collection or comparable product approved by Architect.

B. Vinyl Sheet Floor Covering with Backing: ASTM F1303.
 1. Classification: Type 1 Grade 1.
 2. Overall Thickness: 2.3 mm.
 3. Backing Class: Class A.

C. Sheet Width: 6 feet.

D. Thickness: 0.091 inches.

E. Seaming Method: Heat welded, using Manufacturer’s recommended weld rod color.

F. Colors and Patterns: 88056 Cinnamon.

2.20 RESILIENT BASE [RB-1]

A. Basis-of-Design Product: Subject to compliance with requirements, provide VPI; Wall Base or comparable product approved by Architect.

 1. Type: Vinyl type TV.
 2. Style: Cove (base with toe).

C. Gauge: 0.080 inch.

D. Height: 4 inches.

E. Lengths: Rolls in manufacturer’s standard length.

F. Outside Corners: Job formed.

G. Inside Corners: Job formed.

H. Colors and Patterns: Taupe 14.

I. Installation: #600 wall base adhesive.
2.21 RESILIENT BASE [RB-2]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Wall Base; Millwork Wall Finishing System or comparable product approved by Architect.
 1. Material Requirement: Type TP (thermoplastic rubber).

B. Profile: Reveal 4.25 inch MW-XX-F.

C. Lengths: Rolls in manufacturer's standard length.

D. Outside Corners: Job formed.

E. Inside Corners: Job formed.

F. Colors and Patterns: Either Ore 66.

G. Installation: #600 wall base adhesive.

2.22 RESILIENT BASE [RB-3]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Wall Base; Baseworks Thermoset Rubber (Type TS) or comparable product approved by Architect.

 1. Material Requirement: Type TS (thermoset rubber).

C. Thickness: 0.125 inch.

D. Profile: 4 inch with toe.

A. Lengths: Coils in manufacturer's standard length.

B. Outside Corners: Job formed.

C. Inside Corners: Job formed.

D. Finish: Matte.

E. Colors and Patterns: Navy Blue 18.

F. Installation: #600 wall base adhesive.

2.23 RESILIENT BASE [RB-4]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Wall Base; Baseworks Thermoset Rubber (Type TS) or comparable product approved by Architect.
 1. Material Requirement: Type TS (thermoset rubber).

C. Thickness: 0.125 inch.

D. Profile: 4 inch with toe.

E. Lengths: Coils in manufacturer's standard length.

F. Outside Corners: Job formed.

G. Inside Corners: Job formed.

H. Colors and Patterns: Cinnamon 76.

I. Installation: #600 wall base adhesive.

2.24 RESILIENT BASE [RB-5]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Wall Base; Baseworks Thermoset Rubber (Type TS) or comparable product approved by Architect.

 1. Material Requirement: Type TS (thermoset rubber).

C. Thickness: 0.125 inch.

D. Profile: 4 inch with toe.

E. Lengths: Coils in manufacturer's standard length.

F. Outside Corners: Job formed.

G. Inside Corners: Job formed.

H. Colors and Patterns: Skinny Dip 106.

I. Installation: #600 wall base adhesive.

2.25 RESILIENT BASE [RB-6]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Wall Base; Millwork Wall Finishing System or comparable product approved by Architect.
 1. Material Requirement: Type TP (thermoplastic rubber).

B. Profile: Reveal 4.25 inch MW-XX-F.

C. Lengths: Rolls in manufacturer's standard length.
D. Outside Corners: Job formed.

E. Inside Corners: Job formed.

F. Colors and Patterns: Steel 179.

G. Installation: #600 wall base adhesive.

2.26 RESILIENT BASE [RB-7]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Wall Base; Millwork Wall Finishing System or comparable product approved by Architect.
 1. Material Requirement: Type TP (thermoplastic rubber).

B. Profile: Reveal 4.25 inch MW-XX-F.

C. Lengths: Rolls in manufacturer's standard length.

D. Outside Corners: Job formed.

E. Inside Corners: Job formed.

F. Colors and Patterns: Ironstone 178.

G. Installation: #600 wall base adhesive.

2.27 RESILIENT BASE [RB-8]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Wall Base; Baseworks Thermoset Rubber (Type TS) or comparable product approved by Architect.

 1. Material Requirement: Type TS (thermoset rubber).

C. Thickness: 0.125 inch.

D. Profile: 4 inch with toe.

E. Lengths: Coils in manufacturer's standard length.

F. Outside Corners: Job formed.

G. Inside Corners: Job formed.

H. Colors and Patterns: Burgundy 85.

I. Installation: #600 wall base adhesive.
RESILIENT BASE [RB-9]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Wall Base; Baseworks Thermoset Rubber (Type TS) or comparable product approved by Architect.

 1. Material Requirement: Type TS (thermoset rubber).

C. Thickness: 0.125 inch.

D. Profile: 4 inch with toe.

E. Lengths: Coils in manufacturer's standard length.

F. Outside Corners: Job formed.

G. Inside Corners: Job formed.

H. Colors and Patterns: Either Ore 66.

I. Installation: #600 wall base adhesive.

RESILIENT BASE [RB-10]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Wall Base; Baseworks Thermoset Rubber (Type TS) or comparable product approved by Architect.

 1. Material Requirement: Type TS (thermoset rubber).

C. Thickness: 0.125 inch.

D. Profile: 4 inch with toe.

E. Lengths: Coils in manufacturer's standard length.

F. Outside Corners: Job formed.

G. Inside Corners: Job formed.

H. Colors and Patterns: Fudge 167.

I. Installation: #600 wall base adhesive.
2.30 RESILIENT BASE [RB-11]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Wall Base; Baseworks Thermoset Rubber (Type TS) or comparable product approved by Architect.

 1. Material Requirement: Type TS (thermoset rubber).

C. Thickness: 0.125 inch.

D. Profile: 4 inch with toe.

E. Lengths: Coils in manufacturer's standard length.

F. Outside Corners: Job formed.

G. Inside Corners: Job formed.

H. Colors and Patterns: Grey 48.

I. Installation: #600 wall base adhesive.

2.31 RESILIENT BASE [RB-12]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Flexco Floors; Wallflowers Wall Base or comparable product approved by Architect.
 1. Material Requirement: Type TS (thermoset rubber).

B. Thickness: 1/8 inch (3.2mm).

C. Profile: 4 inch cove.

D. Lengths: Rolls in manufacturer's standard length.

E. Outside Corners: Job formed.

F. Inside Corners: Job formed.

G. Colors and Patterns: Doe 033.

H. Installation: #600 wall base adhesive.

2.32 RESILIENT BASE [RB-13]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett (formerly Johnsonite); Wall Base; Millwork Wall Finishing System or comparable product approved by Architect.
 1. Material Requirement: Type TP (thermoplastic rubber).
B. Profile: Reveal 4.25 inch MW-XX-F.

C. Lengths: Rolls in manufacturer's standard length.

D. Outside Corners: Job formed.

E. Inside Corners: Job formed.

F. Colors and Patterns: Pebble 32.

G. Installation: #600 wall base adhesive.

2.33 RUBBER MOLDING ACCESSORY

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Armstrong World Industries, Inc.
 2. Flexco.
 3. Johnsonite; A Tarkett Company.
 4. Roppe Corporation, USA.

B. Description: Rubber nosing for carpet, nosing for resilient flooring, transition strips.

C. Profile and Dimensions:
 1. Rubber Nosing, by Tarkett (formerly Johnsonite).

D. Locations: Provide rubber molding accessories at all transitions between different flooring types.

E. Colors and Patterns: To be selected by Architect from Manufacturer’s full range.

F. All transitions must meet ADA requirements.

2.34 RESILIENT SHEET FLOORING INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by manufacturer for applications indicated.

B. Adhesives: Water-resistant type recommended by manufacturer to suit floor covering and substrate conditions indicated.
 1. Adhesives shall have a VOC content of not more than 50 g/L when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Seamless-Installation Accessories:
a. Color: Match floor covering.

D. Integral-Flash-Cove-Base Accessories:
 1. Cove Strip: 1-inch radius provided or approved by resilient sheet flooring manufacturer.
 2. Cap Strip: Square metal cap provided or approved by resilient sheet flooring manufacturer.
 3. Corners: Metal inside and outside corners and end stops provided or approved by resilient sheet flooring manufacturer.

E. Floor Polish: Provide protective, liquid floor-polish products recommended by resilient sheet flooring manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 B. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of floor coverings.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Prepare substrates according to manufacturer's written instructions to ensure adhesion of floor coverings.
 B. Concrete Substrates: Prepare according to ASTM F 710.
 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
 2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by manufacturer. Do not use solvents.
 3. Alkalinity and Adhesion Testing: Perform tests recommended by manufacturer. Proceed with installation only after substrates pass testing.
 4. Moisture Testing: Perform tests recommended by manufacturer and as follows. Proceed with installation only after substrates pass testing.
 a. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.
C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound and remove bumps and ridges to produce a uniform and smooth substrate.

D. Do not install floor coverings until they are same temperature as space where they are to be installed.
 1. Move floor coverings and installation materials into spaces where they will be installed at least 48 hours in advance of installation.

E. Sweep and vacuum clean substrates to be covered by floor coverings immediately before installation.

3.3 FLOOR COVERING INSTALLATION

A. Comply with manufacturer's written instructions for installing floor coverings.

B. Unroll floor coverings and allow them to stabilize before cutting and fitting.

C. Match pattern direction of new sheet vinyl flooring to pattern direction of existing sheet vinyl flooring.

D. Lay out floor coverings as follows:
 1. Maintain uniformity of floor covering direction.
 2. Minimize number of seams; place seams in inconspicuous and low-traffic areas, at least 6 inches away from parallel joints in floor covering substrates.
 3. Match edges of floor coverings for color shading at seams.
 4. Avoid cross seams.
 5. Seams are not allowed to intersect doorways.

E. Scribe and cut floor coverings to butt neatly and tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, and door frames.

F. Extend floor coverings into toe spaces, door reveals, closets, and similar openings.

G. Maintain reference markers, holes, or openings that are in place or marked for future cutting by repeating on floor coverings as marked on substrates. Use chalk or other nonpermanent marking device.

H. Install floor coverings on covers for telephone and electrical ducts and similar items in installation areas. Maintain overall continuity of color and pattern between pieces of floor coverings installed on covers and adjoining floor covering. Tightly adhere floor covering edges to substrates that abut covers and to cover perimeters.

I. Adhere floor coverings to substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.

J. Seamless Installation:
1. Heat-Welded Seams: Comply with ASTM F 1516. Rout joints and use welding bead to permanently fuse sections into a seamless floor covering. Prepare, weld, and finish seams to produce surfaces flush with adjoining floor covering surfaces.

3.4 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protection of floor coverings.

B. Perform the following operations immediately after completing floor covering installation:

1. Remove adhesive and other blemishes from floor covering surfaces.
2. Sweep and vacuum floor coverings thoroughly.
3. Damp-mop floor coverings to remove marks and soil.

C. Protect floor coverings from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.

1. Floor Polish: Product is a no wax product.

D. Cover floor coverings until Substantial Completion.

END OF SECTION 096516
SECTION 096519 - RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Luxury vinyl floor tile.
 B. Related Sections:
 1. Division 09 Section "Resilient Sheet Flooring, Base, & Accessories" for resilient base,
 reducer strips, and other accessories installed with resilient floor coverings.
 2. Section 02080 for Hazardous Material Abatement (Information provided by Owner).

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For adhesives, documentation including printed
 statement of VOC content.
 2. Product Data for Credit IEQ 4.3: For adhesives, documentation including printed
 statement of VOC content.
 3. Product Data for Credit IEQ 4.3: For resilient tile flooring, documentation from an
 independent testing agency indicating compliance with the FloorScore Standard.
 C. Shop Drawings: For each type of floor tile. Include floor tile layouts, edges, columns,
 doorways, enclosing partitions, built-in furniture, cabinets, and cutouts.
 1. Show details of special patterns.
 D. Samples for Verification: Full-size units of each color and pattern of floor tile required.
 E. Product Schedule: For floor tile. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For qualified Installer.
1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of floor tile to include in maintenance manuals.

1.6 MATERIALS MAINTENANCE SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Floor Tile: Furnish 1 unopened box for every type, color, and pattern of floor tile installed.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: A qualified installer who employs workers for this Project who are competent in techniques required by manufacturer for floor tile installation indicated.
 1. Engage an installer who employs workers for this Project who are trained or certified by manufacturer for installation techniques required.

B. Fire-Test-Response Characteristics: As determined by testing identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.
 1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store floor tile and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 65 deg F or more than 85 deg F. Store floor tiles on flat surfaces.

1.9 FIELD CONDITIONS

A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 65 deg F or more than 85 deg F, in spaces to receive floor tile during the following time periods:
 1. 48 hours before installation.
 2. During installation.
 3. 48 hours after installation.

B. Until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.

C. Close spaces to traffic during floor tile installation.

D. Close spaces to traffic for 48 hours after floor tile installation.

E. Install floor tile after other finishing operations, including painting, have been completed.

F. Field Verification: Prior to construction, field-verify all resilient tile flooring. If existing product varies from specified product, report to Architect or Owner’s Representative before proceeding with ordering and installation of new resilient tile flooring product.
1.10 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace flooring that fails in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. FloorScore Compliance: Resilient tile flooring shall comply with requirements of FloorScore Standard.

2.2 LUXURY VINYL TILE [LVT-1]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Mannington Commercial; Amtico Signature Collection – Wood or comparable product as approved by the Architect.

B. Tile Standard: ASTM F 1700.
 2. Type: B, embossed surface.

C. Thickness: 0.098 inches.

D. Size: 6 inch by 36 inch planks.

E. Colors and Patterns: Dry Teak AR0W7810.

F. Installation: Full spread adhesive.

2.3 LUXURY VINYL TILE [LVT-2]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Mannington Commercial; Amtico Signature Collection – Wood or comparable product as approved by the Architect.

B. Tile Standard: ASTM F 1700.
 2. Type: B, embossed surface.

C. Thickness: 0.098 inches.

D. Size: Plank sizes to match existing plank sizes.

E. Colors and Patterns: Merbau AR0W7590.

F. Installation: Full spread adhesive.
2.4 LUXURY VINYL TILE [LVT-3]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Mannington Commercial; Amtico Signature Collection – Wood or comparable product as approved by the Architect.

B. Tile Standard: ASTM F 1700.
 2. Type: B, embossed surface.

C. Thickness: 0.098 inches.

D. Size: 6 inch by 36 inch planks.

E. Colors and Patterns: Washed Teak AR0W5990.

F. Installation: Full spread adhesive.

2.5 LUXURY VINYL TILE [LVT-4]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Armstrong Flooring; Natural Creations with Diamond 10 Technology; Arbor Art or comparable product as approved by the Architect.

B. Tile Standard: ASTM F 1700.
 1. Class: Class III.
 2. Type: B, embossed surface.

C. Thickness: 0.125 inches.

D. Size: Plank sizes to match existing plank sizes.

E. Colors and Patterns: Bamboo Caramelized NA185.

F. Installation: Full spread adhesive.

2.6 LUXURY VINYL TILE [LVT-5]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Armstrong Flooring; Natural Creations with Diamond 10 Technology; Arbor Art or comparable product as approved by the Architect.

B. Tile Standard: ASTM F 1700.
 1. Class: Class III.
 2. Type: B, embossed surface.

C. Thickness: 0.125 inches.

D. Size: Plank sizes to match existing plank sizes.
E. Colors and Patterns: Fine Line Bamboo Titian Gold NA216.
F. Installation: Full spread adhesive.

2.7 VINYL COMPOSITION TILE [VCT-1]
A. Basis-of-Design Product: Subject to compliance with requirements, provide Armstrong Flooring; Standard Excelon Imperial Texture or comparable product as approved by the Architect.
 1. Class: Class 2, through pattern.
 2. Type: ISO 10595 Type II.
C. Thickness: 0.125 inches.
D. Size: 12 inch by 12 inch.
E. Colors and Patterns: 51911 Classic White.
F. Installation: Full spread adhesive.

2.8 VINYL COMPOSITION TILE [VCT-2]
A. Basis-of-Design Product: Subject to compliance with requirements, provide Armstrong Flooring; Standard Excelon Imperial Texture or comparable product as approved by the Architect.
 1. Class: Class 2, through pattern.
 2. Type: ISO 10595 Type II.
C. Thickness: 0.125 inches.
D. Size: 12 inch by 12 inch.
E. Colors and Patterns: 51836 Shelter White.
F. Installation: Full spread adhesive.

2.9 VINYL COMPOSITION TILE [VCT-2]
A. Basis-of-Design Product: Subject to compliance with requirements, provide Armstrong Flooring; Standard Excelon Imperial Texture or comparable product as approved by the Architect.
 1. Class: Class 2, through pattern.
 2. Type: ISO 10595 Type II.
C. Thickness: 0.125 inches.
D. Size: 12 inch by 12 inch.
E. Colors and Patterns: 51811 Antique White.
F. Installation: Full spread adhesive.

2.10 INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by manufacturer for applications indicated.
B. Adhesives: Water-resistant type recommended by manufacturer to suit floor tile and substrate conditions indicated.
 1. Adhesives shall comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 a. Maximum allowable VOC limit: 200 g/L.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
B. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of floor tile.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare substrates according to manufacturer's written instructions to ensure adhesion of resilient products.
B. Concrete Substrates: Prepare according to ASTM F 710.
 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
 2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by manufacturer. Do not use solvents.
 3. Alkalinity and Adhesion Testing: Perform tests recommended by manufacturer. Proceed with installation only after substrates pass testing.
 4. Moisture Testing: Perform tests recommended by manufacturer and as follows. Proceed with installation only after substrates pass testing.
3.3 FLOOR TILE INSTALLATION

A. Comply with manufacturer's written instructions for installing floor tile.

B. Lay out floor tiles from center marks established with principal walls, discounting minor offsets, so tiles at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half tile at perimeter.

1. Match pattern direction of new resilient tile flooring to pattern direction of existing resilient tile flooring.

C. Match floor tiles for color and pattern by selecting tiles from cartons in the same sequence as manufactured and packaged, if so numbered. Discard broken, cracked, chipped, or deformed tiles.

1. Match pattern direction of new resilient tile flooring to pattern direction of existing resilient tile flooring.

D. Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.

E. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.

F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on floor tiles as marked on substrates. Use chalk or other nonpermanent, nonstaining marking device.

G. Adhere floor tiles to flooring substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.

3.4 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protection of floor tile.
B. Perform the following operations immediately after completing floor tile installation:
 1. Remove adhesive and other blemishes from exposed surfaces.
 2. Sweep and vacuum surfaces thoroughly.
 3. Damp-mop surfaces to remove marks and soil.

C. Protect floor tile products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.

D. Cover floor tile until Substantial Completion.

END OF SECTION 096519
SECTION 096813 - TILE CARPETING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes modular carpet tile.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include manufacturer's written data on physical characteristics, durability, and fade resistance.
 2. Include manufacturer's written installation recommendations for each type of substrate.
 B. Samples: For each of the following products and for each color and texture required. Label each Sample with manufacturer's name, material description, color, pattern, and designation indicated on Drawings and in schedules.

1.4 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For Installer.
 B. Product Test Reports: For carpet tile, for tests performed by a qualified testing agency.
 C. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For carpet tiles to include in maintenance manuals. Include the following:
 1. Methods for maintaining carpet tile, including cleaning and stain-removal products and procedures and manufacturer's recommended maintenance schedule.
 2. Precautions for cleaning materials and methods that could be detrimental to carpet tile.
1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Carpet Tile: Full-size units equal to 5 percent of amount installed for each type indicated, but not less than 10 sq. yd..

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer who is certified by the International Certified Floorcovering Installers Association at the Commercial II certification level.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Comply with CRI's "CRI Carpet Installation Standard."

1.9 FIELD CONDITIONS

A. Comply with CRI's "CRI Carpet Installation Standard" for temperature, humidity, and ventilation limitations.

B. Environmental Limitations: Do not deliver or install carpet tiles until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, and ambient temperature and humidity conditions are maintained at levels planned for building occupants during the remainder of the construction period.

C. Do not install carpet tiles over concrete slabs until slabs have cured and are sufficiently dry to bond with adhesive and concrete slabs have pH range recommended by carpet tile manufacturer.

D. Where demountable partitions or other items are indicated for installation on top of carpet tiles, install carpet tiles before installing these items.

E. Field Verification: Prior to construction, field-verify all carpet tile products. If existing product varies from specified product, report to Architect or Owner’s Representative before proceeding with ordering and installation of new carpet tile product.

1.10 WARRANTY

A. Special Warranty for Carpet Tiles: Manufacturer agrees to repair or replace components of carpet tile installation that fail in materials or workmanship within specified warranty period.

1. Warranty does not include deterioration or failure of carpet tile due to unusual traffic, failure of substrate, vandalism, or abuse.

2. Failures include, but are not limited to, the following:
a. More than 10 percent edge raveling, snags, and runs.
b. Dimensional instability.
c. Excess static discharge.
d. Loss of tuft-bind strength.
e. Loss of face fiber.
f. Delamination.

PART 2 - PRODUCTS

2.1 CARPET TILE [CPT-1] – NOT USED

2.2 CARPET TILE [CPT-2] – NOT USED

2.3 CARPET TILE [CPT-3]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Mannington Commercial; Moso Infinity Modular tile or a comparable product as approved by the Architect.

B. Color: 43333 Sorrel.

C. Installation Method: Match existing installation method.

D. Dye Method: Solution/Yarn.

E. Fiber Content: Invista Antron Legacy Type 6,6 Four Hole, Hollow Filament Nylon.

F. Pile Thickness: 0.140 inches.

G. Tufted Yarn Weight: 22 oz./sq. yd.

H. Backing System (Primary): 100% Synthetic.

I. Back System (Secondary): Infinity Modular Reinforced Composite Closed Cell Polymer.

J. Size: 24 by 24 inch modular tile.

2.4 INSTALLATION ACCESSORIES

A. Trowelable Leveling and Patching Compounds: Latex-modified, hydraulic-cement-based formulation provided or recommended by carpet tile manufacturer.

B. Adhesives: Water-resistant, mildew-resistant, nonstaining, pressure-sensitive type to suit products and subfloor conditions indicated, that comply with flammability requirements for
installed carpet tile, and are recommended by carpet tile manufacturer for releasable installation.

1. Adhesives shall have a VOC content of 50 g/L or less.

C. Metal Edge/Transition Strips: Extruded aluminum with mill finish of profile and width shown, of height required to protect exposed edge of carpet, and of maximum lengths to minimize running joints.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for maximum moisture content, alkalinity range, installation tolerances, and other conditions affecting carpet tile performance.

B. Examine carpet tile for type, color, pattern, and potential defects.

C. Wood Subfloors: Verify the following:
 1. Underlayment surface is free of irregularities and substances that may interfere with adhesive bond or show through surface.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. General: Comply with CRI's "Carpet Installation Standards" and with carpet tile manufacturer's written installation instructions for preparing substrates indicated to receive carpet tile.

B. Use trowelable leveling and patching compounds, according to manufacturer's written instructions, to fill cracks, holes, depressions, and protrusions in substrates. Fill or level cracks, holes and depressions 1/8 inch wide or wider, and protrusions more than 1/32 inch unless more stringent requirements are required by manufacturer's written instructions.

C. Broom and vacuum clean substrates to be covered immediately before installing carpet tile.

3.3 INSTALLATION

A. General: Comply with CRI's "CRI Carpet Installation Standard," Section 18, "Modular Carpet" and with carpet tile manufacturer's written installation instructions.

B. Installation Method: Glue down; install every tile with full-spread, releasable, pressure-sensitive adhesive.

C. Maintain dye-lot integrity. Do not mix dye lots in same area.
D. Maintain pile-direction patterns recommended in writing by carpet tile manufacturer.

E. Cut and fit carpet tile to butt tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, edgings, thresholds, and nosings. Bind or seal cut edges as recommended by carpet tile manufacturer.

F. Extend carpet tile into toe spaces, door reveals, closets, open-bottomed obstructions, removable flanges, alcoves, and similar openings.

G. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on carpet tile as marked on subfloor. Use nonpermanent, nonstaining marking device.

H. Install pattern parallel to walls and borders.

I. Where new tile carpeting will be adjacent to existing tile carpeting, match pattern direction of new carpeting to pattern direction of existing carpeting.

3.4 CLEANING AND PROTECTION

A. Perform the following operations immediately after installing carpet tile:

1. Remove excess adhesive and other surface blemishes using cleaner recommended by carpet tile manufacturer.
2. Remove yarns that protrude from carpet tile surface.

B. Protect installed carpet tile to comply with CRI's "Carpet Installation Standard," Section 20, "Protecting Indoor Installations."

C. Protect carpet tile against damage from construction operations and placement of equipment and fixtures during the remainder of construction period. Use protection methods indicated or recommended in writing by carpet tile manufacturer.

END OF SECTION 096813
SECTION 097200 - WALL COVERINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Vinyl wall covering.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include data on physical characteristics, durability, fade resistance, and fire-test-response characteristics.

B. Samples for Verification: For each type of wall covering and for each color, pattern, texture, and finish specified, full width by 36-inch-long in size.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Product Test Reports: For each wall covering, for tests performed by a qualified testing agency.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For wall coverings to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Wall-Covering Materials: For each type, color, texture, and finish, full width by length to equal to 5 percent of amount installed.
1.7 FIELD CONDITIONS

A. Environmental Limitations: Do not deliver or install wall coverings until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above ceilings is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at levels intended for occupants after Project completion during the remainder of the construction period.

B. Lighting: Do not install wall covering until lighting that matches conditions intended for occupants after Project completion is provided on the surfaces to receive wall covering.

C. Ventilation: Provide continuous ventilation during installation and for not less than the time recommended by wall-covering manufacturer for full drying or curing.

D. Field Verification: Prior to construction, field-verify all wall covering products. If existing product varies from specified product, report to Architect or Owner’s Representative before proceeding with ordering and installation of new wall covering.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: As determined by testing identical wall coverings applied with identical adhesives to substrates according to test method indicated below by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 a. Flame-Spread Index: 25 or less.
 b. Smoke-Developed Index: 50 or less.

2. Fire-Growth Contribution: No flashover and heat and smoke release according to NFPA 286.

B. Field Verification: Prior to construction, field-verify all wall covering finishes. If existing product varies from specified product, report to Architect or Owner’s Representative before proceeding with ordering and installation of new wall covering finish.

2.2 VINYL WALL COVERING [WC-1]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Versa Wallcovering; Versaguard Halcyon or comparable product as approved by Architect.

B. Width: 52/54 in.

C. Weight: 33.0 oz per lineal yard.

D. Backing: Drill Cloth.
E. Installation: Reverse hang/random.

F. Colors, Textures, and Patterns: TYP3-127191 Dappled.

2.3 VINYL WALL COVERING [WC-2]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Momentum Textiles; Strand Pattern Profile or comparable product as approved by Architect.

B. Width: 53/54 in.

C. Weight: 20.0 oz per lineal yard.

D. Backing: Osnaburg.

E. Installation: Reversible pattern with a random match.

F. Colors, Textures, and Patterns: L2-SD-06 Bamboo.

2.4 VINYL WALL COVERING [WC-3]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Momentum Textiles; Strand Pattern Profile or comparable product as approved by Architect.

B. Width: 53/54 in.

C. Weight: 20.0 oz per lineal yard.

D. Backing: Osnaburg.

E. Installation: Reversible pattern with a random match.

F. Colors, Textures, and Patterns: L2-SD-07 Port.

2.5 VINYL WALL COVERING [WC-4]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Momentum Textiles; Strand Pattern Profile or comparable product as approved by Architect.

B. Width: 53/54 in.

C. Weight: 20.0 oz per lineal yard.

D. Backing: Osnaburg.

E. Installation: Reversible pattern with a random match.

F. Colors, Textures, and Patterns: L2-SD-14 Sprout.
2.6 VINYL WALL COVERING [WC-5]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Momentum Textiles; Strand Pattern Profile or comparable product as approved by Architect.

B. Width: 53/54 in.

C. Weight: 20.0 oz per lineal yard.

D. Backing: Osnaburg.

E. Installation: Reversible pattern with a random match.

F. Colors, Textures, and Patterns: L2-SD-18 Cadet.

2.7 VINYL WALL COVERING [WC-6]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Momentum Textiles; Strand Pattern Profile or comparable product as approved by Architect.

B. Width: 53/54 in.

C. Weight: 20.0 oz per lineal yard.

D. Backing: Osnaburg.

E. Installation: Reversible pattern with a random match.

F. Colors, Textures, and Patterns: L2-SD-08 Cherry.

2.8 VINYL WALL COVERING [WC-7]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Wolf Gordon; Contract Wallcovering 01 or comparable product as approved by Architect.

B. Width: 54 in.

C. Weight: 20.0 oz per lineal yard.

D. Backing: Nonwoven polyester.

E. Installation: Reverse hang, random match.

F. Colors, Textures, and Patterns: Photon PHT 7-9060 Viridian.

2.9 VINYL WALL COVERING [WC-8]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Symphony; Impromptu or comparable product as approved by Architect.
B. Width: 54 in.
C. Weight: 20.0 oz per lineal yard.
D. Backing: Osnaburg.
E. Installation: Reverse, random.
F. Colors, Textures, and Patterns: Carribean AZ52971.

2.10 VINYL WALL COVERING [WC-9]
A. Basis-of-Design Product: Subject to compliance with requirements, provide Momentum Textiles; Bungalow Pattern Profile or comparable product as approved by Architect.
B. Width: 53/54 in.
C. Weight: 20.0 oz per lineal yard.
D. Backing: Non-woven.
E. Installation: Reversible pattern with a random match.
F. Colors, Textures, and Patterns: R2-BU-14 Calypso.

2.11 VINYL WALL COVERING [WC-10]
A. Basis-of-Design Product: Subject to compliance with requirements, provide Momentum Textiles; Nest Pattern Profile or comparable product as approved by Architect.
B. Width: 52/54 in.
C. Weight: 25.0 oz per lineal yard.
D. Backing: Osnaburg.
E. Installation: Reversible hang with random match.
F. Colors, Textures, and Patterns: L2-NE-05 Kestrel.

2.12 VINYL WALL COVERING [WC-11] – NOT USED

2.13 VINYL WALL COVERING [WC-12]
A. Basis-of-Design Product: Subject to compliance with requirements, provide Momentum Textiles; Tower Collection; Lorelei Texture or comparable product as approved by Architect.
B. Width: 54 in.
C. Weight: 20.0 oz per lineal yard.
D. Backing: Osnaburg.
E. Installation: Reverse, random.
F. Colors, Textures, and Patterns: T2-LT-33 Alpine.

2.14 VINYL WALL COVERING [WC-13]
A. Basis-of-Design Product: Subject to compliance with requirements, provide Momentum Textiles; Type II Collection; Elan Too Texture or comparable product as approved by Architect.
B. Type: Type II.
C. Width: 54 in.
D. Weight: 20.0 oz per lineal yard.
E. Backing: Non-woven.
F. Installation: Reverse hung, random match.
G. Colors, Textures, and Patterns: 2VEA-04 Champagne.

2.15 VINYL WALL COVERING [WC-14]
A. Basis-of-Design Product: Subject to compliance with requirements, provide Wolf Gordon; Contract Wallcovering 03, Bode Collection or comparable product as approved by Architect.
B. Width: 52 in.
C. Weight: 25.0 oz per lineal yard.
D. Backing: Cotton Osnaburg.
E. Installation: Reverse hang, random match.
F. Colors, Textures, and Patterns: Bode BOD 3419 Nebula.

2.16 VINYL WALL COVERING [WC-15] – NOT USED

2.17 PROTECTIVE WALL COVERING [WC-16]
A. Basis-of-Design Product: Subject to compliance with requirements, provide Construction Specialties; Acrovyn 4000 .060N Sheet or comparable product as approved by Architect.
 1. Description: Engineered PETG rigid sheet. Nominal 0.060” thick rigid sheet.
2. Sheet Thickness: 0.060 inch.
4. Texture: To match existing condition.
5. Caulk: To match wall covering sheet color.
6. Height: To match existing condition.
7. Trim and Joint Moldings: Extruded rigid plastic that matches sheet wall covering color.

2.18 PROTECTIVE WALL COVERING [WC-17]
A. Basis-of-Design Product: Subject to compliance with requirements, provide Construction Specialties; Acrovyn 4000 Sheet or comparable product as approved by Architect.

1. Description: Engineered PETG rigid sheet.
3. Texture: To match existing condition.
4. Caulk: To match wall covering sheet color.
5. Height: To match existing condition.
6. Trim and Joint Moldings: Extruded rigid plastic that matches sheet wall covering color.
7. Mounting: Manufacturer’s recommendation for adhesive product and adhesive application method.

2.19 PROTECTIVE WALL COVERING [WC-18]
A. Basis-of-Design Product: Subject to compliance with requirements, provide Construction Specialties; Acrovyn 4000 .040N Sheet or comparable product as approved by Architect.

1. Description: Engineered PETG rigid sheet. Nominal 0.040” thick rigid sheet.
2. Sheet Thickness: 0.040 inch.
4. Texture: To match existing condition.
5. Caulk: To match wall covering sheet color.
6. Height: To match existing condition.

7. Trim and Joint Moldings: Extruded rigid plastic that matches sheet wall covering color.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for levelness, wall plumbness, maximum moisture content, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Comply with manufacturer's written instructions for surface preparation.

B. Clean substrates of substances that could impair bond of wall covering, including dirt, oil, grease, mold, mildew, and incompatible primers.

C. Prepare substrates to achieve a smooth, dry, clean, structurally sound surface free of flaking, unsound coatings, cracks, and defects.

 1. Moisture Content: Maximum of 4 percent on new plaster, concrete, and concrete masonry units when tested with an electronic moisture meter.
 2. Gypsum Board: Prime with primer as recommended in writing by primer/sealer manufacturer and wall-covering manufacturer.
 3. Painted Surfaces: Treat areas susceptible to pigment bleeding.

D. Check painted surfaces for pigment bleeding. Sand gloss, semigloss, and eggshell finish with fine sandpaper.

E. Remove hardware and hardware accessories, electrical plates and covers, light fixture trims, and similar items.

F. Acclimatize wall-covering materials by removing them from packaging in the installation areas not less than 24 hours before installation.

3.3 WALL-COVERING INSTALLATION

A. Comply with wall-covering manufacturers' written installation instructions applicable to products and applications indicated.
B. Cut wall-covering strips in roll number sequence. Change the roll numbers at partition breaks and corners.

C. Install strips in same order as cut from roll.
 1. For solid-color, even-texture, or random-match wall coverings, reverse every other strip.

D. Install wall covering without lifted or curling edges and without visible shrinkage.

E. Match pattern direction of new wall covering to pattern direction of existing wall covering to provide seamless transition between existing and new construction.

F. Match pattern 72 inches above the finish floor.

G. Install seams vertical and plumb at least 6 inches from outside corners and 6 inches from inside corners unless a change of pattern or color exists at corner. Horizontal seams are not permitted.

H. Trim edges and seams for color uniformity, pattern match, and tight closure. Butt seams without overlaps or gaps between strips.

I. Fully bond wall covering to substrate. Remove air bubbles, wrinkles, blisters, and other defects.

3.4 CLEANING

A. Remove excess adhesive at seams, perimeter edges, and adjacent surfaces.

B. Use cleaning methods recommended in writing by wall-covering manufacturer.

C. Reinstall hardware and hardware accessories, electrical plates and covers, light fixture trims, and similar items.

END OF SECTION 097200
SECTION 099113 - EXTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes surface preparation and the application of paint systems on the following exterior substrates:
 1. Galvanized Metal
 2. Previously Painted Metal Panels
 3. Exterior Doors and Frames
 4. OSHA Safety Lines

B. FLUOROPOLYMER COATING SYSTEM

C. Traffic and Zone Marking Paint

D. Related Requirements:
 1. Section 081113 "Hollow Metal Doors and Frames" for surface preparation.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.

B. Samples for Verification: For each type of coating system and in each color and gloss of topcoat indicated.
 1. Submit Samples on rigid backing, 8 inches square.
 2. Step coats on Samples to show each coat required for system.
 3. Label each coat of each Sample.
 4. Label each Sample for location and application area.

C. Product List: For each product indicated, include the following:
 1. Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules.
 2. Printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.
1.4 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F (7 deg C).
 1. Maintain containers in clean condition, free of foreign materials and residue.
 2. Remove rags and waste from storage areas daily.

1.5 FIELD CONDITIONS

A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F (10 and 35 deg C).

B. Do not apply paints in snow, rain, fog, or mist; when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 FLUOROPOLYMER COATING SYSTEM

A. Thermoset Fluoropolymer, Two-Component, Pigmented, Semi-Gloss:
 1. Prime Coat: Tnemec; FC Typoxy Series 27 @ 4.0-6.0 mils DFT
 2. Intermediate Coat: Tnemec; Endura-Shield Series 73 @ 2.0-3.0 mils DFT
 3. Finish Coat: Tnemec; Fluoronar Series 1071 @ 2.0-3.0 DFT. Finish colors to be selected by Architect.

B. MPI Standards: Provide products that comply with MPI standards indicated and that are listed in its "MPI Approved Products List."

C. Material Compatibility:
 1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 2. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.

D. VOC Content: Materials shall comply with low VOC limit as required by MU Health Care.

E. Testing of Paint Materials: Owner reserves the right to invoke the following procedure:
 1. Owner will engage the services of a qualified testing agency to sample paint materials. Construction Manager will be notified in advance and may be present when samples are taken. If paint materials have already been delivered to Project site, samples may be taken at Project site. Samples will be identified, sealed, and certified by testing agency.
 2. Testing agency will perform tests for compliance with product requirements.
3. Owner may direct Construction Manager to stop applying paints if test results show materials being used do not comply with product requirements. Construction Manager shall remove noncomplying paint materials from Project site, pay for testing, and repaint surfaces painted with rejected materials. Construction Manager will be required to remove rejected materials from previously painted surfaces if, on repainting with complying materials, the two paints are incompatible.

2.2 TRAFFIC AND ZONE MARKING PAINT

A. Acrylic Traffic and Zone Marking Paint, 100% acrylic, flat;
1. First coat: PPG Zonelines 11-53 Series
2. Second Coat: PPG Zoneline 11-53 Series

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

C. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Manual" applicable to substrates and paint systems indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection.

C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

D. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and abraded areas of shop paint, and paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.
E. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

F. For painted surfaces, apply SSPC-SP6/NACE 3 Commercial Blast Cleaning prior to the application of the primer. Primer shall be applied within 24 hours of blast cleaning.

3.3 APPLICATION

A. Apply paints according to manufacturer’s written instructions and recommendations in “MPI Manual.”

1. Use applicators and techniques suited for paint and substrate indicated.
2. Paint surfaces behind movable items same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed items with prime coat only.
3. Paint both sides and edges of exterior doors and entire exposed surface of exterior door frames.
4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.

B. Tint undercoats same color as topcoat, but tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Provide sufficient difference in shade of undercoats to distinguish each separate coat.

C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

3.4 FIELD QUALITY CONTROL

A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.

1. Contractor shall touch up and restore painted surfaces damaged by testing.
2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer’s written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer’s written recommendations.

3.5 CLEANING AND PROTECTION
A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 EXTERIOR PAINTING SCHEDULE

A. Galvanized-Metal Substrates:
 1. Topcoat: Fluoropolymer, Gloss; Tnemec Series 1070.
 a. Thickness: 2.0 – 3.0 mils DFT.

B. OSHA Safety Lines (at roofs):
 1. 2 coats: PPG Zoneline Series 11-53
 a. Thickness: Wet film thickness 12 mils, and dry film thickness 8.6 mils.

C. Existing Painted Metal:
 1. Prime Coat: Tnemec; FC Typoxy Series 27 @ 4.0-6.0mils DFT
 2. Intermediate Coat: Tnemec; Endura-Shield Series @ 2.0-3.0 mils DFT
 3. Finish Coat: Tnemec; Fluoronar 1071 @ 2.0-3.0 DFT. Finish color to match Centria, Solid Line 996 Crushed Ice.

END OF SECTION 099113
SECTION 099123 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:
 1. Surface preparation and the application of paint systems on interior substrates.
 2. Staining for wood chair rails and trim that are new, modified, or salvaged for reinstallation.

1.3 DEFINITIONS

A. Gloss Level 1: Not more than 5 units at 60 degrees and 10 units at 85 degrees, according to ASTM D523.
B. Gloss Level 2: Not more than 10 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D523.
C. Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D523.
D. Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D523.
E. Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D523.
F. Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D523.
G. Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D523.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.
B. Samples for Verification: For each type of paint system and in each color and gloss of topcoat.
 1. Submit actual painted samples of all specified colors. Submission of manufacturers’ fan-deck or color chips not acceptable.
 2. Submit two paper ‘draw-down’ samples at 8 ½ inches by 11 inches in size.
 3. Where sheen is specified, submit samples only in that sheen.
4. Submit Samples on rigid backing.
5. Step coats on Samples to show each coat required for system.
6. Label each coat of each Sample.
7. Label each Sample for location and application area.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Paint: 5 percent, but not less than 1 gal. of each material and color applied. Extra materials shall consist of unopened, gallon containers.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 1. Maintain containers in clean condition, free of foreign materials and residue.
 2. Remove rags and waste from storage areas daily.

1.7 FIELD CONDITIONS
A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.
B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.
C. Field Verification: Prior to construction, field-verify all paint gloss levels and colors. If existing finish varies from specified finish, report to Architect before proceeding with ordering and application of new paint finish.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Sherwin-Williams; Paint Stores Group.
 2. Benjamin Moore & Co.
 3. PPG Architectural Finishes, Inc.

2.2 PAINT, GENERAL
A. MPI Standards: Provide products that comply with MPI standards indicated and that are listed in its "MPI Approved Products List."
B. Material Compatibility:
1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
2. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.

C. Colors: As indicated in the Finish Schedule.

2.3 PRIMERS/SEALERS

A. Primer Sealer, Latex, Interior: MPI #50.
 2. Maximum allowable VOC limit is 200 g/L.

2.4 WATER-BASED PAINTS

A. Latex, Interior, Flat, (Gloss Level 1): MPI #53.
 2. Maximum allowable VOC limit is 200 g/L.

B. Latex, Interior, (Gloss Level 3): MPI #52.
 2. Maximum allowable VOC limit is 200 g/L.

C. Latex, Interior, Semi-Gloss, (Gloss Level 5): MPI #54.
 2. Maximum allowable VOC limit is 200 g/L.

D. Light Industrial Coating, Interior, Water Based, Semi-Gloss (Gloss Level 5): MPI #153.
 2. Maximum allowable VOC limit is 200 g/L.

2.5 PAINT COLOR SCHEDULE

A. PAINT [PT-1]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW6155 Rice Grain.

B. PAINT [PT-2]
 1. Gloss Level: Gloss Level 3, MPI #52.
 2. Color: SW6101 Sands of Time.

C. PAINT [PT-3]
 1. Gloss Level: Gloss Level 3, MPI #52.
2. Color: SW6099 Sand Dollar

D. PAINT [PT-4]
 1. Gloss Level: Gloss Level 3, MPI #52.
 2. Color: SW6222 Riverway.

E. PAINT [PT-5]
 1. Gloss Level: Gloss Level 3, MPI #52.
 2. Color: SW250 Granite Peak.

F. PAINT [PT-6]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW0020 Peacock Plume.

G. PAINT [PT-7]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW6106 Kilim Beige.

H. PAINT [PT-8]
 1. Gloss Level: Field-verify and match existing gloss level.

I. PAINT [PT-9]
 1. Gloss Level: Field-verify and match existing gloss level.

J. PAINT [PT-10]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW6507 Resolute Blue.

K. PAINT [PT-11] – NOT USED

L. PAINT [PT-12]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW6120 Believable Buff.

M. PAINT [PT-13]
 1. Gloss Level: Field-verify and match existing gloss level.

N. PAINT [PT-14] – NOT USED

O. PAINT [PT-15]
 1. Gloss Level: Field-verify and match existing gloss level.

P. PAINT [PT-16] – NOT USED

Q. PAINT [PT-17] – NOT USED

R. PAINT [PT-18] – NOT USED
S. PAINT [PT-19]
 1. Gloss Level: Gloss Level 5, MPI #54.
 2. Color: SW6437 Haven.

T. PAINT [PT-20]
 1. Gloss Level: Gloss Level 5, MPI #54.

U. PAINT [PT-21]
 1. Gloss Level: Gloss Level 5, MPI #54.
 2. Color: SW6113 Interactive Cream.

V. PAINT [PT-22]
 1. Gloss Level: Gloss Level 5, MPI #54.
 2. Color: SW6900 Optimistic Yellow.

W. PAINT [PT-23]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW6126 Navajo White.

X. PAINT [PT-24]
 1. Gloss Level: Gloss Level 5, MPI #54.
 2. Color: SW6219 Rain.

Y. PAINT [PT-25]
 1. Gloss Level: Gloss Level 5, MPI #54.
 2. Color: SW6225 Sleepy Blue.

Z. PAINT [PT-26]
 1. Gloss Level: Gloss Level 5, MPI #54.
 2. Color: SW6508 Secure Blue.

AA. PAINT [PT-27]
 1. Gloss Level: Gloss Level 5, MPI #54.
 2. Color: SW6558 Plummy.

BB. PAINT [PT-28]
 1. Gloss Level: Gloss Level 5, MPI #54.
 2. Color: SW6340 Baked Clay.

CC. PAINT [PT-29]
 1. Gloss Level: Gloss Level 5, MPI #54.
 2. Color: SW6801 Regal Blue.

DD. PAINT [PT-30]
 1. Gloss Level: Gloss Level 5, MPI #54.
 2. Color: SW6901 Daffodil.

EE. PAINT [PT-31]
 1. Gloss Level: Gloss Level 5, MPI #54.
 2. Color: SW6548 Grape Mist.
FF. PAINT [PT-32]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW7037 Balanced Beige.

GG. PAINT [PT-33]
 1. Gloss Level: Field-verify and match existing gloss level.

HH. PAINT [PT-34]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW7003 Toque White.

II. PAINT [PT-35]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW6820 Inspired Lilac.

JJ. PAINT [PT-36]
 1. Gloss Level: Field-verify and match existing gloss level.

KK. PAINT [PT-37]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW0054 Twilight Gray.

LL. PAINT [PT-38]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW7029 Agreeable Gray.

MM. PAINT [PT-39]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW6142 Macadamia.

NN. PAINT [PT-40]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW6112 Biscuit.

OO. PAINT [PT-41] – NOT USED

PP. PAINT [PT-42]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW6129 Restrained Gold.

QQ. PAINT [PT-43]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW6790 Adriatic Sea.

RR. PAINT [PT-44]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW7638 Jogging Path.

SS. PAINT [PT-45]
 1. Gloss Level: Field-verify and match existing gloss level.
2. Color: SW9038 Cucuzza Verde.

TT. PAINT [PT-46]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW6221 Moody Blue.

UU. PAINT [PT-47]
 1. Gloss Level: Field-verify and match existing gloss level.
 2. Color: SW0001 Mulberry Silk.

VV. WOOD STAINS
 1. For new, modified, or salvaged wood chair rails and trim requiring a stained finish.
 2. VOC Content: Products shall comply with VOC limits of authorities having jurisdiction and, for interior paints and coatings applied at Project site, the following VOC limits, exclusive of colorants added to a tint base:
 a. Clear Wood Finishes, Varnishes: VOC not more than 200 g/L.
 b. Stains: 200 g/L.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 1. Gypsum Board: 12 percent.

C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.

D. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

E. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer’s written instructions and recommendations in "MPI Manual" applicable to substrates indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.
C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."
 1. Use applicators and techniques suited for paint and substrate indicated.
 2. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
 3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
 4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
 5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.

B. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

C. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

D. Painting Fire Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:
 1. Paint the following work where exposed in occupied spaces:
 a. Uninsulated metal piping.
 b. Uninsulated plastic piping.
 c. Pipe hangers and supports.
 d. Metal conduit.
 e. Plastic conduit.
 f. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.
 g. Other items as directed by Architect.
 2. Paint portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets that are visible from occupied spaces.

3.4 FIELD QUALITY CONTROL

A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.
 1. Contractor shall touch up and restore painted surfaces damaged by testing.
 2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.
3.5 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 INTERIOR PAINTING SCHEDULE

A. Steel Doors and Frames:
 1. Latex over Factory Primer:
 b. Intermediate Coat: Light industrial, interior, matching topcoat.
 c. Topcoat: Light industrial, interior, semi-gloss, (Gloss Level 5), MPI #153.

B. Substrates Specified in Divisions 21 through 28:
 1. Latex System:
 a. Prime Coat: Primer sealer, latex, interior, MPI #50.
 c. Topcoat: Latex, interior, semi-gloss, (Gloss Level 5), MPI #54.

C. Gypsum Board Substrates:
 1. Latex System:
 a. Prime Coat: Primer sealer, latex, interior, MPI #50.
 c. Topcoat: Latex, interior, flat, (Gloss Level 1), MPI #53.
 1) Locations: Refer to paint color schedule.
 d. Topcoat: Latex, interior, (Gloss Level 3), MPI #52.
 1) Locations: Refer to paint color schedule.
 e. Topcoat: Latex, interior, semi-gloss, (Gloss Level 5), MPI #54.
 1) Locations: Refer to paint color schedule.

END OF SECTION 099123
SECTION 102600 - WALL PROTECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Wall guards.
 2. Corner guards.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, impact strength, fire-test-response characteristics, dimensions of individual components and profiles, and finishes for each impact-resistant wall protection unit.

B. Shop Drawings: For each impact-resistant wall protection unit showing locations and extent. Include sections, details, and attachments to other work.

C. Samples for Initial Selection: For each type of impact-resistant wall protection unit indicated.
 1. Include similar Samples of accent strips and accessories involving color selection.

D. Samples for Verification: For each type of exposed finish required, prepared on Samples of size indicated below.
 1. Corner Guards: 12 inches long. Include examples of joinery, corners and field splices.
 2. Impact-Resistant Wall Covering: 6 by 6 inches square.
 3. Door-Frame Protectors: 12 inches long.

1.4 INFORMATIONAL SUBMITTALS

A. Material Certificates: For each impact-resistant plastic material, from manufacturer.

B. Material Test Reports: For each impact-resistant plastic material.

C. Warranty: Sample of special warranty.
1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each impact-resistant wall protection unit to include in maintenance manuals.
 1. Include recommended methods and frequency of maintenance for maintaining optimum condition of plastic covers under anticipated traffic and use conditions. Include precautions against using cleaning materials and methods that may be detrimental to plastic finishes and performance.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Corner-Guard Covers: Full-size plastic covers of maximum length equal to 2 percent of each type, color, and texture of units installed, but no fewer than two, 8-foot-long units.
 2. Wall Protection: Full size sheets equivalent to 5% of amount of each type installed.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers trained and approved by manufacturer.

B. Source Limitations: Obtain impact-resistant wall protection units from single source from single manufacturer.

C. Product Options: Drawings indicate size, profiles, and dimensional requirements of impact-resistant wall protection units and are based on the specific system indicated. Refer to Division 01 Section "Quality Requirements."
 1. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If modifications are proposed, submit comprehensive explanatory data to Architect for review.

D. Surface-Burning Characteristics: Provide impact-resistant, plastic wall protection units with surface-burning characteristics as determined by testing identical products per ASTM E 84, NFPA 255, or UL 723 by UL or another qualified testing agency.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store impact-resistant wall protection units in original undamaged packages and containers inside well-ventilated area protected from weather, moisture, soiling, extreme temperatures, and humidity.
 1. Maintain room temperature within storage area at not less than 70 deg F during the period plastic materials are stored.
 2. Keep plastic sheet material out of direct sunlight.
3. Store plastic wall protection components for a minimum of 72 hours, or until plastic material attains a minimum room temperature of 70 deg F.
 a. Store corner-guard covers in a vertical position.

1.9 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install impact-resistant wall protection units until building is enclosed and weatherproof, wet work is complete and dry, and HVAC system is operating and maintaining temperature at 70 deg F for not less than 72 hours before beginning installation and for the remainder of the construction period.

1.10 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of impact-resistant wall protection units that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures.
 b. Deterioration of plastic and other materials beyond normal use.

2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MATERIALS

A. PVC Plastic: ASTM D 1784, Class 1, textured, chemical- and stain-resistant, high-impact-resistant PVC or acrylic-modified vinyl plastic with integral color throughout; extruded and sheet material, thickness as indicated.

1. Impact Resistance: Minimum 25.4 ft-lbf/in. of notch when tested according to ASTM D 256, Test Method A.
2. Chemical and Stain Resistance: Tested according to ASTM D 543.
3. Self-extinguishing when tested according to ASTM D 635.
4. Flame-Spread Index: 25 or less.
5. Smoke-Developed Index: 450 or less.

B. Aluminum Extrusions: Alloy and temper recommended by manufacturer for type of use and finish indicated, but with not less than strength and durability properties specified in ASTM B 221 for Alloy 6063-T5.

C. Fasteners: Aluminum, nonmagnetic stainless-steel, or other noncorrosive metal screws, bolts, and other fasteners compatible with items being fastened. Use security-type fasteners where exposed to view.
D. Adhesive: As recommended by impact-resistant plastic wall protection manufacturer and with a VOC content of 70 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.2 WALL PROTECTION [WP-1] – NOT USED

2.3 WALL PROTECTION [WP-2] – NOT USED

2.4 CRASH RAIL [WP-3]
 A. Basis-of-Design Product: Subject to compliance with requirements, provide Construction Specialties; Acrovyn Wall Protection or comparable product approved by Architect.
 1. Profile: To match existing profile.
 2. Colors, Textures, and Patterns: Acrovyn Solid Colors; 929 Oyster Gray.

2.5 BUMPER RAIL [WP-4]
 A. Basis-of-Design Product: Subject to compliance with requirements, provide Construction Specialties; Acrovyn Wall Protection or comparable product approved by Architect.
 1. Profile: To match existing profile.
 2. Colors, Textures, and Patterns: Acrovyn Solid Colors; 929 Oyster Gray.

2.6 FABRICATION
 A. Fabricate impact-resistant wall protection units to comply with requirements indicated for design, dimensions, and member sizes, including thicknesses of components.
 B. Assemble components in factory to greatest extent possible to minimize field assembly. Disassemble only as necessary for shipping and handling.
 C. Fabricate components with tight seams and joints with exposed edges rolled. Provide surfaces free of wrinkles, chips, dents, uneven coloration, and other imperfections. Fabricate members and fittings to produce flush, smooth, and rigid hairline joints.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates and wall areas, with Installer present, for compliance with requirements for installation tolerances, fire rating, and other conditions affecting performance of work.
 B. Examine walls to which impact-resistant wall protection will be attached for blocking, grounds, and other solid backing that have been installed in the locations required for secure attachment of support fasteners.
1. For impact-resistant wall protection units attached with adhesive or foam tape, verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Complete finishing operations, including painting, before installing impact-resistant wall protection system components.

B. Before installation, clean substrate to remove dust, debris, and loose particles.

3.3 INSTALLATION

A. General: Install impact-resistant wall protection units level, plumb, and true to line without distortions. Do not use materials with chips, cracks, voids, stains, or other defects that might be visible in the finished Work.

1. Install impact-resistant wall protection units in locations and at mounting heights indicated on Drawings or, if not indicated, at heights indicated below:

2. Provide splices, mounting hardware, anchors, and other accessories required for a complete installation.

 a. Provide anchoring devices to withstand imposed loads.
 b. Where splices occur in horizontal runs of more than 20 feet, splice aluminum retainers and plastic covers at different locations along the run, but no closer than 12 inches.
 c. Adjust end and top caps as required to ensure tight seams.

B. Impact-Resistant Wall Covering: Install top and edge moldings, corners, and divider bars as required for a complete installation.

3.4 CLEANING

A. Immediately after completion of installation, clean plastic covers and accessories using a standard, ammonia-based, household cleaning agent.

B. Remove excess adhesive using methods and materials recommended in writing by manufacturer.

END OF SECTION 102600
SECTION 102800 – TOILET AND BATH ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Public-use and patient room washroom accessories.

1.3 COORDINATION
A. Coordinate accessory locations with other work to prevent interference with clearances required for access by people with disabilities, and for proper installation, adjustment, operation, cleaning, and servicing of accessories.
B. Deliver inserts and anchoring devices set into concrete or masonry as required to prevent delaying the Work.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 2. Include anchoring and mounting requirements, including requirements for cutouts in other work and substrate preparation.
B. Product Schedule: Indicating types, quantities, sizes, and installation locations by room of each accessory required.
 1. Identify locations using room designations indicated.

1.5 INFORMATIONAL SUBMITTALS
A. Sample Warranty: For manufacturer's special warranty.
1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For accessories to include in maintenance manuals.

1.7 WARRANTY

A. Manufacturer's Special Warranty for Mirrors: Manufacturer agrees to repair or replace mirrors that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, visible silver spoilage defects.
2. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PUBLIC-USE WASHROOM ACCESSORIES

A. Source Limitations: Obtain public-use washroom accessories from single source from single manufacturer.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Specialties, Inc.
2. Bobrick Washroom Equipment, Inc.

C. Grab Bar:

1. Basis-of-Design Product: Bobrick B-5806
3. Material: Stainless steel, 0.05 inch thick.
 a. Finish: Smooth, No. 4 finish (satin) on ends and slip-resistant texture in grip area.

5. Length:
 a. 42 inches.
 b. 36 inches.

D. Swing-up Grab Bar:

3. Material: Stainless steel, 0.05 inch thick.
 a. Finish: Smooth, No. 4 finish (satin) on ends and slip-resistant texture in grip area.

5. Length:
 a. 42 inches.
 b. 36 inches.
2.2 MATERIALS

A. Stainless Steel: ASTM A 666, Type 304, 0.031-inch minimum nominal thickness unless otherwise indicated.

B. Steel Sheet: ASTM A 1008/A 1008M, Designation CS (cold rolled, commercial steel), 0.036-inch minimum nominal thickness.

C. Galvanized-Steel Sheet: ASTM A 653/A 653M, with G60 hot-dip zinc coating.

E. Fasteners: Screws, bolts, and other devices of same material as accessory unit and tamper-and-theft resistant where exposed, and of galvanized steel where concealed.

F. Mirrors: ASTM C1503, Mirror Glazing Quality, clear-glass mirrors, nominal 6.0 mm thick.

2.3 FABRICATION

A. General: Fabricate units with tight seams and joints, and exposed edges rolled. Hang doors and access panels with full-length, continuous hinges. Equip units for concealed anchorage and with corrosion-resistant backing plates.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install accessories according to manufacturers’ written instructions, using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.

B. Grab Bars: Install to withstand a downward load of at least 250 lbf, when tested according to ASTM F 446.

3.2 ADJUSTING AND CLEANING

A. Adjust accessories for unencumbered, smooth operation. Replace damaged or defective items.

B. Remove temporary labels and protective coatings.

C. Clean and polish exposed surfaces according to manufacturer’s written instructions.

END OF SECTION 102800
SECTION 122413 - ROLLER WINDOW SHADES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Manually operated roller shades with single and double rollers to be provided and installed by Contractor.

B. Related Requirements:
 1. Section 061000 "Rough Carpentry" for wood blocking and grounds for mounting roller shades and accessories.
 2. Section 079200 "Joint Sealants" for sealing the perimeters of installation accessories for light-blocking shades with a sealant.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, features, finishes, and operating instructions for roller shades.

B. Shop Drawings: Show fabrication and installation details for roller shades, including shadeband materials, their orientation to rollers, and their seam and batten locations.

C. Samples: For each exposed product and for each color and texture specified, 10 inches long.

D. Product Schedule: For roller shades. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Product Certificates: For each type of shadeband material.

C. Product Test Reports: For each type of shadeband material, for tests performed by manufacturer and witnessed by a qualified testing agency.
1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For roller shades to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective
 covering for storage and identified with labels describing contents.
 1. Roller Shades: Full-size units equal to 5 percent of quantity installed for each size, color,
 and shadeband material indicated, but no fewer than two units.

1.7 QUALITY ASSURANCE
 A. Installer Qualifications: Fabricator of products.

1.8 DELIVERY, STORAGE, AND HANDLING
 A. Deliver roller shades in factory packages, marked with manufacturer, product name, and
 location of installation using same designations indicated on Drawings.

1.9 FIELD CONDITIONS
 A. Environmental Limitations: Do not install roller shades until construction and finish work in
 spaces, including painting, is complete and dry and ambient temperature and humidity
 conditions are maintained at the levels indicated for Project when occupied for its intended use.
 B. Field Measurements: Where roller shades are indicated to fit to other construction, verify
 dimensions of other construction by field measurements before fabrication and indicate
 measurements on Shop Drawings. Allow clearances for operating hardware of operable glazed
 units through entire operating range. Notify Architect of installation conditions that vary from
 Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the
 Work.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Source Limitations: Obtain roller shades from single source from single manufacturer.
 1. Manufacturer: Draper, Inc.,
 a. 411 S. Pearl P. O. Box 425; Spiceland, IN 47385-0425
 b. Tel: 800-238-7999
2.2 MANUALLY OPERATED SHADES WITH SINGLE ROLLERS [WT-1]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Draper; Clutch-Operated FlexShade manual window shade or a comparable product as approved by the Architect.

B. Description: Manually Operated Window Shades with Independent Control: Manually operated, vertical roll-up, fabric window shade with components necessary for complete installation.

C. Chain-and-Clutch Operating Mechanisms: With continuous-loop bead chain and clutch that stops shade movement when bead chain is released; permanently adjusted and lubricated.

 a. Loop Length: Full length of roller shade.
 b. Limit Stops: Provide upper and lower ball stops.
 c. Chain-Retainer Type
 1) Bead Chain Hold Down: Spring-Loaded Tensioner complies with ANSI/WCMA A100.1-2018 safety standard.
 d. Location: To be placed on right- or left-hand side such that ease of operation is maximized.

2. Spring Lift-Assist Mechanisms: Manufacturer’s standard for balancing roller shade weight and for lifting heavy roller shades.
 a. Provide for shadebands that weigh more than 10 lb or for shades as recommended by manufacturer, whichever criterion is more stringent.

D. Rollers: Corrosion-resistant steel or extruded-aluminum tubes of diameters (minimum roller diameter 1.5 inches) and wall thicknesses required to accommodate operating mechanisms and weights and widths of shadebands indicated without deflection. Provide with permanently lubricated drive-end assemblies and idle-end assemblies designed to facilitate removal of shadebands for service. Fabric connected to the roller tube with LSE (low surface energy) double sided adhesive specifically developed to attach coated textiles to metal. Adhesive attachment to eliminate horizontal impressions in fabric.

1. Roller Drive-End Location: Right side of interior face of shade.
2. Direction of Shadeband Roll: Regular, from back (exterior face) of roller.

E. Mounting Hardware: Brackets or endcaps, corrosion resistant and compatible with roller assembly, operating mechanism, installation accessories, and mounting location and conditions indicated.

1. Color and Finish: As selected by Architect from manufacturer’s full range.

F. Shadebands:

 a. Color and Finish: As selected by Architect from manufacturer’s full range.
2. Shadeband Bottom (Hem) Bar: Steel or extruded aluminum.
a. Type: Closed pocket elliptical slat: 1 inch (25 mm) aluminum elliptical slat inside of a 1-5/8 inch (41 mm) pocket with heat sealed ends.
b. Color and Finish: As selected by Architect from manufacturer's full range.

G. Installation Accessories:

1. Front Fascia: Aluminum extrusion that conceals front and underside of roller and operating mechanism and attaches to roller endcaps without exposed fasteners.
 a. Shape: L-shaped.
 b. Height: Manufacturer's standard height required to conceal roller and shadeband assembly when shade is fully open, but not less than 3 inches.

2. Endcap Covers: To cover exposed endcaps.
3. Recessed Shade Pocket: Rectangular, extruded-aluminum enclosure designed for recessed ceiling installation; with front, top, and back formed as one piece, end plates, and removable bottom closure panel.
 a. Height: Manufacturer's standard height required to enclose roller and shadeband assembly when shade is fully open, but not less than 5 inches

4. Installation Accessories Color and Finish: As selected from manufacturer's full range.

2.3 MANUALLY OPERATED SHADES WITH DOUBLE ROLLERS [WT-2]

A. Basis-of-Design Product: Subject to compliance with requirements, provide Draper; Clutch-Operated FlexShade or a comparable product as approved by the Architect.

B. Description: Manually Operated Window Shades with Independent Control: Manually operated, vertical roll-up, fabric window shades with components necessary for complete installation.

C. Chain-and-Clutch Operating Mechanisms: With continuous-loop bead chain and clutch that stops shade movement when bead chain is released; permanently adjusted and lubricated.

 a. Loop Length: Full length of roller shade.
 b. Limit Stops: Provide upper and lower ball stops.
 c. Chain-Retainer Type
 1) Bead Chain Hold Down: Spring-Loaded Tensioner complies with ANSI/WCMA A100.1-2018 safety standard.
 d. Location: To be placed on right- or left-hand side such that ease of operation is maximized.

2. Spring Lift-Assist Mechanisms: Manufacturer's standard for balancing roller shade weight and for lifting heavy roller shades.
 a. Provide for shadebands that weigh more than 10 lb or for shades as recommended by manufacturer, whichever criterion is more stringent.
D. Rollers: Corrosion-resistant steel or extruded-aluminum tubes of diameters and wall thicknesses required to accommodate operating mechanisms and weights and widths of shadebands indicated without deflection. Provide with permanently lubricated drive-end assemblies and idle-end assemblies designed to facilitate removal of shadebands for service.

1. Double-Roller Mounting Configuration: Offset, outside roller over and inside roller under.
2. Inside Roller:
 a. Drive-End Location: Right side of interior face of shade.
 b. Direction of Shadeband Roll: Regular, from back (exterior face) of roller.

3. Outside Roller:
 a. Drive-End Location: Right side of interior face of shade.
 b. Direction of Shadeband Roll: Regular, from back (exterior face) of roller.

4. Shadeband-to-Roller Attachment: Removable spline fitting into integral channel in tube.

E. Mounting Hardware: Brackets or endcaps, corrosion resistant and compatible with roller mounting configuration, roller assemblies, operating mechanisms, installation accessories, and installation locations and conditions indicated.

F. Inside Shadebands:

 a. Color and Finish: As selected by Architect from manufacturer's full range.
2. Shadeband Bottom (Hem) Bar: Steel or extruded aluminum.
 a. Type: Closed pocket elliptical slat: 1 inch (25 mm) aluminum elliptical slat inside of a 1-5/8 inch (41 mm) pocket with heat sealed ends.
 b. Color and Finish: As selected by Architect from manufacturer's full range.

G. Outside Shadebands:

 a. Color and Finish: As selected by Architect from manufacturer's full range
2. Shadeband Bottom (Hem) Bar: Steel or extruded aluminum.
 a. Type: Closed pocket elliptical slat: 1 inch (25 mm) aluminum elliptical slat inside of a 1-5/8 inch (41 mm) pocket with heat sealed ends.
 b. Color and Finish: As selected by Architect from manufacturer's full range.

H. Installation Accessories:

1. Front Fascia: Aluminum extrusion that conceals front and underside of roller and operating mechanism and attaches to roller endcaps without exposed fasteners.
 a. Shape: L-shaped.
 b. Height: Manufacturer's standard height required to conceal roller and shadeband assembly when shade is fully open, but not less than 4 inches
2. Recessed Shade Pocket: Rectangular, extruded-aluminum enclosure designed for recessed ceiling installation; with front, top, and back formed as one piece, end plates, and removable bottom closure panel.
a. Height: Manufacturer's standard height required to enclose roller and shadeband assembly when shade is fully open, but not less than 8 inches.
b. Provide pocket with lip at lower edge to support acoustical ceiling panel.

3. Side Channels: With light seals and designed to eliminate light gaps at sides of shades as shades are drawn down. Provide side channels with shadeband guides or other means of aligning shadebands with channels at tops.

4. Installation Accessories Color and Finish: As selected from manufacturer's full range.

2.4 SHADEBAND MATERIALS

A. Shadeband Material Flame-Resistance Rating: Comply with NFPA 701. Testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

B. Light-Filtering Fabric: Woven fabric, stain and fade resistant.
 1. Source: Roller shade manufacturer.
 2. Weave: Basketweave.
 3. Orientation on Shadeband: Up the bolt.
 4. Openness Factor: 3 percent.
 5. Color: As selected by Architect from manufacturer's full range.

 1. Source: Roller shade manufacturer.
 2. Orientation on Shadeband: Up the bolt.
 3. Color: As selected by Architect from manufacturer's full range.

2.5 ROLLER SHADE FABRICATION

A. Product Safety Standard: Fabricate roller shades to comply with WCMA A 100.1, including requirements for flexible, chain-loop devices; lead content of components; and warning labels.

B. Unit Sizes: Fabricate units in sizes to fill window and other openings as follows, measured at 74 deg F:
 1. Between (Inside) Jamb Installation: Width equal to jamb-to-jamb dimension of opening in which shade is installed less 1/4 inch per side or 1/2-inch total, plus or minus 1/8 inch. Length equal to head-to-sill or -floor dimension of opening in which shade is installed less 1/4 inch, plus or minus 1/8 inch.
 2. Outside of Jamb Installation: Width and length as indicated, with terminations between shades of end-to-end installations at centerlines of mullion or other defined vertical separations between openings.

C. Shadeband Fabrication: Fabricate shadebands without battens or seams to extent possible, except as follows:
 1. Vertical Shades: Where width-to-length ratio of shadeband is equal to or greater than 1:4, provide battens and seams at uniform spacings along shadeband length to ensure
shadeland tracking and alignment through its full range of movement without distortion of the material.

2. Railroaded Materials: Railroad material where material roll width is less than the required width of shadeland and where indicated. Provide battens and seams as required by railroaded material to produce shadelands with full roll-width panel(s) plus, if required, one partial roll-width panel located at top of shadeland.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, operational clearances, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 ROLLER SHADE INSTALLATION

A. Install roller shades level, plumb, and aligned with adjacent units according to manufacturer's written instructions.

 1. Opaque Shadelands: Located so shadeland is not closer than 2 inches to interior face of glass. Allow clearances for window operation hardware.

B. Where roller shade is not pocketed or installed at the underside of a gypsum soffit aligned with the window opening, install roller shade such that the roller shade fascia does not protrude beyond extents of gypsum surface framing window opening.

C. Roller Shade Locations: As indicated in Finish Schedule.

3.3 ADJUSTING

A. Adjust and balance roller shades to operate smoothly, easily, safely, and free from binding or malfunction throughout entire operational range.

3.4 CLEANING AND PROTECTION

A. Clean roller shade surfaces, after installation, according to manufacturer's written instructions.

B. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that roller shades are without damage or deterioration at time of Substantial Completion.

C. Replace damaged roller shades that cannot be repaired, in a manner approved by Architect, before time of Substantial Completion.
END OF SECTION 122413
DIVISION 21 - FIRE SUPPRESSION

210500 COMMON WORK RESULTS FOR FIRE SUPPRESSION
211313 WET-PIPE SPRINKLER SYSTEMS
SECTION 210500 - COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Piping materials and installation instructions common to most piping systems.
2. Mechanical sleeve seals.
3. Sleeves.
4. Escutcheons.
5. Coordination drawings.
6. Project record drawings.
7. Fire-suppression equipment and piping demolition.
8. Equipment installation requirements common to equipment sections.
10. Supports and anchorages.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.

D. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

E. The following are industry abbreviations for rubber materials:

1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.
1.4 SUBMITTALS

A. Product Data: For the following:

1. Mechanical sleeve seals.
2. Escutcheons.

B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Electrical Characteristics for Fire-Suppression Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. Any additional costs as a result of these modifications shall be borne by the contractor. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Protect stored pipes and tubes from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor, if stored inside.

C. Protect flanges, fittings, and piping specialties from moisture and dirt.

1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for fire-suppression installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for fire-suppression items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

D. Sequence, coordinate, and integrate installations of fire suppression materials and equipment for efficient flow of the Work. Coordinate installation of large equipment requiring positioning before closing in building.
E. Coordinate installation of identifying devices after completing covering and painting, if devices are applied to surfaces. Install identifying devices before installing acoustical ceilings and similar concealment.

F. Sequence, coordinate, and integrate removal of existing equipment and material as required to maintain services for existing building and for portions of remodeled areas at all times.

1.8 SCHEDULING AND PHASING

A. All fire suppression work shall be scheduled to meet project completion data. Fire suppression work shall be phased for projects requiring phasing of work. Install additional fittings, valves, caps as required to support phasing. Refer to phasing schedule on drawings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.

2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 21 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 21 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.

 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

2.4 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Acceptable Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

3. Pressure Plates: Carbon steel. Include two for each sealing element.

4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.5 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with set screws.

2.6 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Cast-Brass Type: With set screw.

1. Finish: Polished chrome-plated or Rough brass.
C. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

D. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.

E. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw or spring clips, and chrome-plated finish.

F. One-Piece, Floor-Plate Type: Cast-iron floor plate.

G. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.7 COORDINATION DRAWINGS
A. The Contractor shall prepare CAD generated drawings (min. ¼" scale) showing following systems/items as a minimum:
 1. Fire suppression piping routing including locations of valves, drops to sprinkler heads, risers, etc.
 2. Fire suppression equipment locations and clearances required.

B. The Contractor shall submit the CAD generated drawings to HVAC contractor for coordination with other trades. The drawings shall be submitted either in electronic format or printed copies as requested by HVAC Contractor.

C. The Contractor shall participate in coordination meetings when requested by HVAC Contractor.

2.8 PROJECT RECORD DRAWINGS
A. Drawings shall be furnished in electronic-media (CD-Rewritable type) and at least one hard copy prints.
 1. Format: Same CAD program, version and operating system as the original Contract Drawings.
 2. Incorporate changes and additional information previously marked on Record prints. Delete, re-draw and add details and notations where applicable.

B. Identify and date each drawing and include the designation "PROJECT RECORD DRAWINGS" or "AS-BUILT DRAWING" in a prominent location.

PART 3 - EXECUTION
3.1 FIRE-SUPPRESSION DEMOLITION
A. Refer to Division 02 Section "Selective Structure Demolition" for general demolition requirements and procedures.
3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 21 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping minimum 8 inches above accessible ceilings to allow sufficient space for ceiling panel removal and service access.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

 1. New Piping:

 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with rough-brass finish.
 g. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 h. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Sleeves are not required for core-drilled holes.
N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

2. Install sleeves in new walls and slabs as new walls and slabs are constructed.

3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 1) Seal space outside of sleeve fittings with grout.

Q. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

R. Verify final equipment locations for roughing-in.

S. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.3 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 21 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.

2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

E. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.4 PAINTING

A. Painting of fire-suppression systems, equipment, and components is specified in Division 09 Sections "Interior Painting."

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.5 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor fire-suppression materials and equipment.

B. Field Welding: Comply with AWS D1.1.

END OF SECTION 210500
SECTION 211313 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Fire-protection valves.
 5. Control panels.
 6. Pressure gages.

1.3 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175 psig maximum.

1.4 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.5 PERFORMANCE REQUIREMENTS

A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

 1. Contractor shall obtain fire-hydrant flow test records from authorities having jurisdiction.

C. Sprinkler system design shall be approved by Engineer and authorities having jurisdiction.
1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.

2. Sprinkler Occupancy Hazard Classifications According to NFPA 13 Unless Otherwise Noted:
 a. Building Service Areas: Ordinary Hazard, Group 1.
 b. Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 c. General Business Occupancy: Light Hazard
 d. General Storage Areas: Ordinary Hazard, Group 1.
 e. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 f. Office and Public Areas: Light Hazard.
 g. Restaurant Service Areas: Ordinary Hazard, Group 1.

3. Minimum Density for Automatic-Sprinkler Piping Design According to NFPA 13 Unless Noted Otherwise:
 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
 d. Extra-Hazard, Group 1 Occupancy: 0.30 gpm over 2500-sq. ft. area.
 e. Extra-Hazard, Group 2 Occupancy: 0.40 gpm over 2500-sq. ft. area.
 f. Special Occupancy Hazard: As determined by authorities having jurisdiction.

4. Maximum Protection Area per Sprinkler According to NFPA 13 Unless Noted Otherwise:
 a. Office Spaces and Classrooms: 225 sq. ft.
 b. Storage Areas: 130 sq. ft.
 c. Mechanical Equipment Rooms: 130 sq. ft.
 d. Electrical Equipment Rooms: 130 sq. ft.
 e. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.

5. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 a. Light-Hazard Occupancies: 100 gpm for 30 minutes.
 b. Ordinary-Hazard Occupancies: 250 gpm for 60 to 90 minutes.
 c. Extra-Hazard Occupancies: 500 gpm for 90 to 120 minutes.

D. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to NFPA 13 and ASCE/SEI 7.

1.6 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.

1. Wiring Diagrams: For power, signal, and control wiring.
C. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

D. Coordination Drawings: Sprinkler systems, drawn to minimum ¼” scale, on CAD generated drawings. Refer to Section “Common Work Results for Fire Suppression”.

E. Qualification Data: For qualified Installer.

F. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by the Engineer, including hydraulic calculations if applicable.

G. Welding certificates.

H. Fire-hydrant flow test report.

I. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include “Contractor's Material and Test Certificate for Aboveground Piping.”

J. Field quality-control reports.

K. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:

1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.

 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:

 1. NFPA 13, "Installation of Sprinkler Systems."
 2. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

1.8 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies. Refer to Section “Common Work Results for Fire Suppression” for details.
1.9 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

A. Standard Weight, Black-Steel Pipe: ASTM A 53, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.

C. Uncoated, Steel Couplings: ASTM A 865, threaded.

E. Malleable- or Ductile-Iron Threaded Fittings: UL 860.

F. Cast-Iron Flanges: ASME 16.1, Class 125.

G. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.

I. Grooved-Joint, Steel-Pipe Appurtenances:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Victaulic Company.

2. Pressure Rating: 175 psig minimum.

3. Uncoated, Grooved-End Fittings for Steel Piping: ASTM A 47, malleable-iron casting or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

J. Steel Pressure-Seal Fittings: UL 213, FM-approved, 175-psig pressure rating with steel housing, rubber O-rings, and pipe stop; for use with fitting manufacturers’ pressure-seal tools.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free.

1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.
2. Class 250, Cast-Iron Flanges and Class 300, Steel Raised-Face Flanges: Ring-type gaskets.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

2.4 LISTED FIRE-PROTECTION VALVES

A. General Requirements:

1. Valves shall be UL listed or FM approved.
3. Minimum Pressure Rating for High-Pressure Piping: 250 psig.

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Anvil International, Inc.
2. Crane Co.
4. Metraflex, Inc.
5. Milwaukee Valve Company.
7. NIBCO INC.
8. Potter Roemer.
9. Reliable Automatic Sprinkler Co., Inc.
10. Tyco Fire & Building Products LP.
11. Victaulic Company.

C. Ball Valves:

2. Valves NPS 1-1/2 and Smaller: Bronze body with threaded ends.
3. Valves NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
4. Valves NPS 3: Ductile-iron body with grooved ends.

D. Bronze Butterfly Valves:
 4. End Connections: Threaded.

E. Iron Butterfly Valves:
 3. Body Material: Cast or ductile iron.
 4. Style: Lug or wafer.
 5. End Connections: Grooved.

F. Check Valves:
 2. Pressure Rating: 250 psig minimum.
 3. Type: Swing check.
 5. End Connections: Flanged or grooved.

G. Bronze OS&Y Gate Valves:
 4. End Connections: Threaded.

H. Iron OS&Y Gate Valves:
 2. Pressure Rating: 250 psig minimum.
 3. Body Material: Cast or ductile iron.
 4. End Connections: Flanged or grooved.

I. Indicating-Type Butterfly Valves:
 2. Pressure Rating: 175 psig minimum.
 3. Valves NPS 2 and Smaller:
 a. Valve Type: Ball or butterfly.
 b. Body Material: Bronze.
 c. End Connections: Threaded.
 4. Valves NPS 2-1/2 and Larger:
 a. Valve Type: Butterfly.
b. Body Material: Cast or ductile iron.
c. End Connections: Flanged, grooved, or wafer.

5. Valve Operation: Integral electrical, 115-V ac, prewired, two-circuit, supervisory switch visual indicating device.

J. NRS Gate Valves:

2. Pressure Rating: 250 psig minimum.
5. End Connections: Flanged or grooved.

2.5 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:

2. Pressure Rating: 175 psig minimum.
4. Type: Mechanical-T and -cross fittings.
5. Configurations: Ductile-iron housing with branch outlets.
6. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
7. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:

2. Pressure Rating: 175 psig minimum.
3. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
4. Size: Same as connected piping.
5. Inlet and Outlet: Threaded.

C. Branch Line Testers:

4. Size: Same as connected piping.
5. Inlet: Threaded.
6. Drain Outlet: Threaded and capped.
7. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector's Test Fittings:

2. Pressure Rating: 175 psig minimum.
3. Body Material: Cast- or ductile-iron housing with sight glass.
4. Size: Same as connected piping.
5. Inlet and Outlet: Threaded.

E. Adjustable Drop Nipples:
2. Pressure Rating: 250 psig minimum.
4. Size: Same as connected piping.
5. Length: Adjustable.
6. Inlet and Outlet: Threaded.

2.6 SPRINKLERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Reliable Automatic Sprinkler Co., Inc.
3. Tyco Fire & Building Products LP.
4. Victaulic Company.
5. Viking Corporation.

B. General Requirements:

2. Type: All sprinklers shall be quick response type.
4. Pressure Rating for High-Pressure Automatic Sprinklers: 250 psig minimum.

C. Sprinkler Finishes:

1. Chrome plated.
2. Bronze.
3. Painted.

D. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.

1. Ceiling Mounting: Chrome-plated steel, one piece, flat.
2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

E. Sprinkler Guards:

2. Type: Wire cage with fastening device for attaching to sprinkler.
2.7 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Water-Flow Indicators:
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ADT Security Services, Inc.
 b. McDonnell & Miller; ITT Industries.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
 e. Viking Corporation.
 f. Watts Industries (Canada) Inc.
 4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
 5. Type: Paddle operated.
 7. Design Installation: Horizontal or vertical.

C. Pressure Switches:
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Detroit Switch, Inc.
 b. Potter Electric Signal Company.
 c. System Sensor; a Honeywell company.
 d. Tyco Fire & Building Products LP.
 e. United Electric Controls Co.
 f. Viking Corporation.
 3. Type: Electrically supervised water-flow switch with retard feature.
 5. Design Operation: Rising pressure signals water flow.

D. Valve Supervisory Switches:
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.

2.8 PRESSURE GAGES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AMETEK; U.S. Gauge Division.
 2. Ashcroft, Inc.
 4. WIKA Instrument Corporation.

B. Standard: UL 393.

C. Dial Size: 3-1/2- to 4-1/2-inch diameter.

D. Pressure Gage Range: 0 to 250 psig.

E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

2.9 ESCUTCHEONS

A. General: Manufactured ceiling, floor, and wall escutcheons and floor plates.

B. One-Piece, Cast-Brass Escutcheons: Polished chrome-plated or rough-brass finish with set-screws.

D. One-Piece, Stamped-Steel Escutcheons: Chrome-plated finish with set-screw or spring clips.

E. Split-Casting, Cast-Brass Escutcheons: Polished chrome-plated or rough-brass finish with concealed hinge and set-screw.

F. Split-Plate, Stamped-Steel Escutcheons: Chrome-plated finish with concealed hinge, set-screw or spring clips.

G. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

H. Split-Casting Floor Plates: Cast brass with concealed hinge.

2.10 SLEEVES

A. Cast-Iron Wall Pipe Sleeves: Cast or fabricated of cast iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, standard weight, zinc coated, plain ends.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set-screws.

PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in “Quality Assurance” Article.

B. Report test results promptly and in writing.

3.2 WATER-SUPPLY CONNECTIONS

A. Connect sprinkler piping to building's interior fire water-distribution piping. Install shutoff valve, pressure gage, drain, and other accessories indicated at connection to water-distribution piping.

3.3 PIPING INSTALLATION

A. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.

C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install unions adjacent to each valve in pipes NPS 2 and smaller.

E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

F. Install “Inspector’s Test Connections” in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

G. Install sprinkler piping with drains for complete system drainage.

H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
I. Install alarm devices in piping systems.

J. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

K. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal and install where they will not be subject to freezing.

L. Fill sprinkler system piping with water.

3.4 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

I. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
3.5 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:
 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.

3.6 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of narrow dimension of acoustical ceiling panels.

3.7 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors.

B. Escutcheons for New Piping:
 1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 4. Bare Piping in Unfinished Service Spaces: One piece, cast brass with rough-brass finish or stamped steel with set-screw or spring clips.
 5. Bare Piping in Equipment Rooms: One piece, cast brass stamped steel with set-screw or spring clips.
 6. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

3.8 SLEEVE INSTALLATION

A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls.

B. Sleeves are not required for core-drilled holes.

C. Permanent sleeves are not required for holes formed by removable PE sleeves.

D. Cut sleeves to length for mounting flush with both surfaces unless otherwise indicated.
E. Install sleeves in new partitions, slabs, and walls as they are built.

F. For interior wall penetrations, seal annular space between sleeve and pipe or pipe insulation using joint sealants appropriate for size, depth, and location of joint. Comply with requirements for joint sealants in Division 07 Section "Joint Sealants."

G. For exterior wall penetrations above grade, seal annular space between sleeve and pipe using joint sealants appropriate for size, depth, and location of joint. Comply with requirements for joint sealants in Division 07 Section "Joint Sealants."

H. Seal space outside of sleeves in concrete slabs and walls with grout.

I. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation unless otherwise indicated.

J. Install sleeve materials according to the following applications:

1. Sleeves for Piping Passing through Concrete Floor Slabs: Galvanized-steel pipe.
2. Sleeves for Piping Passing through Concrete Floor Slabs of Mechanical Equipment Areas or Other Wet Areas: Galvanized-steel pipe.
 a. Extend sleeves 2 inches above finished floor level.
 b. For pipes penetrating floors with membrane waterproofing, extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements for flashing in Division 07 Section "Sheet Metal Flashing and Trim."

3. Sleeves for Piping Passing through Gypsum-Board Partitions:
 b. Galvanized-steel-sheet sleeves for pipes NPS 6 and larger.
 c. Exception: Sleeves are not required for water-supply tubes and waste pipes for individual plumbing fixtures if escutcheons will cover openings.

4. Sleeves for Piping Passing through Concrete Roof Slabs: Molded PE or Galvanized-steel pipe.
5. Sleeves for Piping Passing through Exterior Concrete Walls:
 b. Cast-iron wall-pipe sleeves for pipes NPS 6 and larger.
 c. Install sleeves that are large enough to provide 1-inch annular clear space between sleeve and pipe or pipe insulation when sleeve seals are used.

6. Sleeves for Piping Passing through Interior Concrete Walls:
 b. Galvanized-steel-sheet sleeves for pipes NPS 6 and larger.

K. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestop materials and installations in Division 07 Section "Penetration Firestopping."
3.9 IDENTIFICATION
A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.
B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.10 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
 5. Coordinate with fire-alarm tests. Operate as required.
 6. Verify that equipment hose threads are same as local fire-department equipment.
C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports.

3.11 CLEANING
A. Clean dirt and debris from sprinklers.
B. Remove and replace sprinklers with paint other than factory finish.

3.12 PIPING SCHEDULE
A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends; cast-iron threaded fittings; and threaded or grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.
B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.
C. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
D. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 and larger, shall be one of the following:

1. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

3.13 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:

1. Rooms without Ceilings: Upright sprinklers.
2. Rooms with Suspended Ceilings: Concealed sprinklers.
3. Wall Mounting: Concealed sidewall sprinklers.
4. Spaces Subject to Freezing: Upright, pendent, dry sprinklers; and sidewall, dry sprinklers as indicated.
5. Special Applications: Extended-coverage, flow-control, sprinklers where indicated.

B. Provide sprinkler types in subparagraphs below with finishes indicated.

1. Concealed Sprinklers: Rough brass, with factory-painted cover plate color as directed by Architect.
2. Upright and Pendent Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION 211313
DIVISION 22 - PLUMBING

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>220500</td>
<td>COMMON WORK RESULTS FOR PLUMBING</td>
</tr>
<tr>
<td>220519</td>
<td>METERS AND GAGES FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220523</td>
<td>GENERAL-DUTY VALVES FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220529</td>
<td>HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>220553</td>
<td>IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>220700</td>
<td>PLUMBING INSULATION</td>
</tr>
<tr>
<td>221116</td>
<td>DOMESTIC WATER PIPING</td>
</tr>
<tr>
<td>221119</td>
<td>DOMESTIC WATER PIPING SPECIALTIES</td>
</tr>
<tr>
<td>221316</td>
<td>SANITARY WASTE AND VENT PIPING</td>
</tr>
<tr>
<td>221319</td>
<td>SANITARY WASTE PIPING SPECIALTIES</td>
</tr>
<tr>
<td>221413</td>
<td>FACILITY STORM DRAINAGE PIPING</td>
</tr>
<tr>
<td>221423</td>
<td>STORM DRAINAGE PIPING SPECIALTIES</td>
</tr>
<tr>
<td>221600</td>
<td>FACILITY NATURAL-GAS PIPING</td>
</tr>
<tr>
<td>226113</td>
<td>COMPRESSED-AIR PIPING FOR LABORATORY AND HEALTHCARE FACILITIES</td>
</tr>
<tr>
<td>226213</td>
<td>VACUUM PIPING FOR LABORATORY AND HEALTHCARE FACILITIES</td>
</tr>
<tr>
<td>226313</td>
<td>GAS PIPING FOR LABORATORY AND HEALTHCARE FACILITIES</td>
</tr>
</tbody>
</table>
SECTION 220500 – COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Piping materials and installation instructions common to most piping systems.
2. Transition fittings.
3. Dielectric fittings.
4. Mechanical sleeve seals.
5. Sleeves.
7. Grout.
8. Coordination drawings.
10. Trenchings, excavating and backfilling.
11. Plumbing demolition.
12. Equipment installation requirements common to equipment sections.
13. Painting and finishing.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
1.4 SUBMITTALS

A. Product Data: For the following:

1. Transition fittings.
2. Dielectric fittings.
3. Mechanical sleeve seals.
4. Escutcheons.

1.5 QUALITY ASSURANCE

A. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. Any additional costs as a result of these modifications shall be borne by the Contractor. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

B. Plumbing work to comply with International Plumbing Code (IPC) as listed on Drawings and General Conditions.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Protect stored pipes and tubes from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor, if stored inside.

C. Protect flanges, fittings, and piping specialties from moisture and dirt.

1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

D. Sequence, coordinate, and integrate installations of plumbing materials and equipment for efficient flow of the Work. Coordinate installation of large equipment requiring positioning before closing in building.
E. Coordinate connection of plumbing systems with exterior underground utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies.

F. Coordinate installation of identifying devices after completing covering and painting, if devices are applied to surfaces. Install identifying devices before installing acoustical ceilings and similar concealment.

G. Sequence, coordinate, and integrate removal of existing equipment and material as required to maintain services for existing building and for portions of remodeled areas at all times.

1.8 SCHEDULING AND PHASING

A. All plumbing work shall be scheduled to meet project completion date. Plumbing work shall be phased for projects requiring phasing of work. Install additional fittings, valves, caps as required to support phasing. Refer to phasing schedule on drawings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 22 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.

 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
2. **AWWA C110**, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. **Flange Bolts and Nuts**: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. **Solder Filler Metals**: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. **Brazing Filler Metals**: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

2.4 TRANSITION FITTINGS

A. **Acceptable Manufacturers**:

3. Ford Meter Box Company, Incorporated (The); Pipe Products Div.
4. JCM Industries.
5. Smith-Blair, Inc.
6. Viking Johnson.

B. **Flexible Transition Couplings for Underground Nonpressure Drainage Piping**: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.

2.5 DIELECTRIC FITTINGS

A. **Description**: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. **Insulating Material**: Suitable for system fluid, pressure, and temperature.

C. **Acceptable Manufacturers**:

1. Capitol Manufacturing Co.
2. Calpico, Inc.
3. Epco Sales, Inc.
5. Lochinvar Corp.

D. **Dielectric Flanges**: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.

E. **Dielectric-Flange Kits**: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
1. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.6 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Acceptable Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

3. Pressure Plates: Carbon steel. Include two for each sealing element.

4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with set screws.

2.8 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated or rough brass.

D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

E. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.

F. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw or spring clips, and chrome-plated finish.

G. One-Piece, Floor-Plate Type: Cast-iron floor plate.

H. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.9 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.

2.10 COORDINATION DRAWINGS

A. The contractor shall prepare CAD generated drawings (min. ¼” scale) showing following systems/items as a minimum:
 1. Plumbing piping routing including locations of valves, drops to fixtures, risers, etc.
 2. Plumbing equipment locations and clearances required.

B. The contractor shall submit the CAD generated drawings to mechanical contractor for coordination with other trades. The drawings shall be submitted either in electronic format or printed copies as requested by HVAC Contractor.

C. The contractor shall participate in coordination meetings when requested by HVAC Contractor.

2.11 PROJECT RECORD DRAWINGS

A. Drawings shall be furnished in electronic-media (CD-Rewritable type) and at least one hard copy prints.
1. Format: Same CAD program, version and operating system as the original Contract Drawings.
2. Incorporate changes and additional information previously marked on Record prints. Delete, re-draw and add details and notations where applicable.

B. Identify and date each drawing and include the designation “PROJECT RECORD DRAWING” or “AS-BUILT DRAWING” in a prominent location.

PART 3 - EXECUTION

3.1 PLUMBING DEMOLITION

A. Disconnect, demolish, and remove plumbing systems, equipment, and components indicated to be removed.

1. Piping to be Removed: Removed portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material. Generally remove piping up to existing mains or valves.
2. Piping to be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material. Cap behind walls, chases, or shafts or flush with floor. Patch surfaces to match existing adjacent surfaces.
3. Equipment to Be Removed: Disconnect and cap services and remove equipment from project site.
4. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
5. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.

B. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 TRENCHING, EXCAVATING AND BACKFILLING

A. Excavate to required dimensions and depth. The trench excavation shall be in open cut from surface and shall be minimum width necessary to permit the placing of the pipe as required. Excess excavation shall be backfilled with crusher run rock. Such rocks shall be placed at the Contractor’s expense. Lines shall be used to lay out trenches.

B. All excavations shall be properly protected by the necessary bracing and timbers, to prevent any cave-ins or injury to adjacent improvements. The sides of the excavations shall be securely held by bracing or sheathing, which bracing or sheathing shall not be removed until the level of the backfill has reached the point where such removal can be safely carried out. Where adjacent improvements might be injured by the removal of such bracing, the braces shall be left in place to prevent such injury. The thickness of the sheathing and dimensions of the brass braces, shoes and miscellaneous supports to be used by the Contractor shall be of the type required to properly protect the sides of the trench and to prevent injurious cave-ins or erosions.
C. The Contractor shall do all pumping and bailing necessary to keep all excavations free of water and shall provide for the uninterrupted flow of the surface water adjacent to the line of the work during the progress of the work. The Contractor shall inspect the ground where excavation is required to ascertain the structure of the soil. Additional consideration will not be allowed for encountering rock, stone, old foundations or other unfavorable excavating conditions.

D. The backfilling of trenches shall be carried out as rapidly as the testing and acceptance of the finished sections of the installation will permit. The trench shall be backfilled in layers of not to exceed eight inches (8") with good selected clean earth, thoroughly tamped with mechanical tamper to a 95% Standard Proctor Density. Maintain -2% to + 4% optimum moisture content for cohesive soils. For cohesionless soils, maintain moisture at less than +4% of optimum moisture content. Density shall be tested by an approved laboratory, using a standard method. Tests shall be made for each 2 ft. depth on the basis of one test per 1000 sq. ft. of fill area. Last 12" of backfill (except under streets, drives, and walks) shall be made with good clean top soil. Contractor shall obtain and pay for tests. Submit five (5) copies of tests for approval. Note: Broken stones, cinders, wood and rubbish are not acceptable for backfilling. Backfill all street cuts in a manner meeting the approval of the Architect.

E. In spaces between walls and line of excavation, fill with thin layers of selected clean earth; thoroughly tamp in eight inches (8") thick layers and bring up to a finished level of established grades. All wood and foreign materials shall be removed from excavation prior to backfilling.

F. After backfilling, all surplus excavated materials shall be removed from the property.

G. The Contractor shall make a field inspection of the location along which the underground piping is to be constructed, and note all obstructions and improvements at the surface and overhead which may affect the method of operation in the construction of these lines. Such overhead wires and underground pipes or conduits which may exist, or which may be encountered, shall be protected by the Contractor during this construction. Any expense or inconvenience caused by their existence and the necessary protection for utilities adjacent thereto shall be considered as covered and included in the contract, without additional cost to the Owner.

3.3 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
E. Install piping minimum 8 inches above accessible ceilings to allow sufficient space for ceiling panel removal and service access. In general install piping tight to slab, beams, joists and structural members if possible.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
 g. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with rough-brass finish.
 h. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type with concealed hinge and set screw or spring clips.
 i. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 j. Bare Piping in Equipment Rooms: One-piece, stamped-steel type with set screw or spring clips.
 k. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

1. Cut sleeves to length for mounting flush with both surfaces.
a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:

a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing.

 Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.

 1) Seal space outside of sleeve fittings with grout.

4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

T. Verify final equipment locations for roughing-in.

U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.
V. Draining and Refilling of Systems: Provide all shutoff valves, drain valves, pipe, fittings, and miscellaneous material required to drain each existing system as required for new work. After new work is completed, tested, and found tight, refill each system as required. Time for shutting down existing system for draining shall be coordinated with all other work and with Owner’s representative. Cost for all chemicals and additives for refill shall be borne by the Contractor.

3.4 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.

2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.5 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:

1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.

2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.6 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.7 PAINTING

A. Painting of plumbing systems, equipment, and components is specified in Division 09 Sections "Interior Painting."

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.8 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.

B. Field Welding: Comply with AWS D1.1.

3.9 GROUTING

A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout around anchors.

G. Cure placed grout.

END OF SECTION 220500
SECTION 220519 – METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Thermometers.
 2. Gages.
 3. Test plugs.

1.3 DEFINITIONS

A. CR: Chlorosulfonated polyethylene synthetic rubber.
B. EPDM: Ethylene-propylene-diene terpolymer rubber.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated; include performance curves.
B. Shop Drawings: Schedule for thermometers and gages indicating manufacturer's number, scale range, and location for each.
C. Product Certificates: For each type of thermometer and gage, signed by product manufacturer.

PART 2 - PRODUCTS

2.1 DIRECT-MOUNTING, VAPOR-ACTUATED DIAL THERMOMETERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Marsh Bellofram.
 3. Trerice, H. O. Co.
 4. Weiss Instruments, Inc.
 5. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
B. Case: Dry or liquid-filled type, drawn steel or cast aluminum 4-1/2-inch diameter.

C. Element: Bourdon tube or other type of pressure element.

D. Movement: Mechanical, connecting element and pointer.

E. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.

F. Pointer: Red or other dark-color metal.

G. Window: Glass or plastic.

H. Ring: Metal.

I. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.

J. Thermal System: Liquid- or mercury-filled bulb in copper-plated steel, aluminum, or brass stem for thermowell installation and of length to suit installation.

K. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.2 REMOTE-MOUNTING, VAPOR-ACTUATED DIAL THERMOMETERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AMETEK, Inc.; U.S. Gauge Div.
3. Marsh Bellofram.
4. Palmer - Wahl Instruments Inc.
5. Tel-Tru Manufacturing Company.
6. Trerice, H. O. Co.
7. Weiss Instruments, Inc.
8. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.

B. Case: Dry type, drawn steel or cast aluminum, 4-1/2-inch diameter with holes for panel mounting.

C. Element: Bourdon tube or other type of pressure element.

D. Movement: Mechanical, connecting element and pointer.

E. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.

F. Pointer: Red or other dark-color metal.

G. Window: Glass or plastic.

H. Ring: Metal.
I. Connector: Bottom or back union type.

J. Thermal System: Liquid- or mercury-filled bulb in copper-plated steel, aluminum, or brass stem for thermowell installation and of length to suit installation.

K. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.3 BIMETALLIC-ACTUATED DIAL THERMOMETERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Eugene Ernst Products Co.
3. Marsh Bellofram.
4. Palmer - Wahl Instruments Inc.
5. Tel-Tru Manufacturing Company.
6. Trerice, H. O. Co.
7. Weiss Instruments, Inc.
8. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.

B. Description: Direct-mounting, bimetallic-actuated dial thermometers complying with ASME B40.3.

C. Case: Dry or liquid-filled type, stainless steel with 5-inch diameter.

D. Element: Bimetal coil.

E. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.

F. Pointer: Red or other dark-color metal.

G. Window: Glass or plastic.

H. Ring: Stainless steel.

I. Connector: Adjustable angle type.

J. Stem: Metal, for thermowell installation and of length to suit installation.

K. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.4 PRESSURE GAGES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AMETEK, Inc.; U.S. Gauge Div.
WOMEN'S AND CHILDREN'S HOSPITAL – EXTERIOR ENVELOPE REPLACEMENT

UNIVERSITY OF MISSOURI

Issue for Bid

3. Ernst Gage Co.
5. Palmer - Wahl Instruments Inc.
6. Trerice, H. O. Co.
7. Weiss Instruments, Inc.
8. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.

B. Direct-Mounting, Dial-Type Pressure Gages: Indicating-dial type complying with ASME B40.100.

1. Case: Dry or liquid-filled] type, drawn steel or cast aluminum, 4-1/2-inch diameter.
2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
3. Pressure Connection: Brass, NPS 1/4, bottom-outlet type unless back-outlet type is indicated.
4. Movement: Mechanical, with link to pressure element and connection to pointer.
6. Pointer: Red or other dark-color metal.
7. Window: Glass or plastic.
8. Ring: Metal.
9. Accuracy: Grade A, plus or minus 1 percent of middle half scale.
10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure.
11. Range for Fluids under Pressure: Two times operating pressure.

C. Remote-Mounting, Dial-Type Pressure Gages: ASME B40.100, indicating-dial type.

1. Case: Dry type, drawn steel or cast aluminum, 4-1/2-inch diameter with holes for panel mounting.
2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
3. Pressure Connection: Brass, NPS 1/4, bottom-outlet type unless back-outlet type is indicated.
4. Movement: Mechanical, with link to pressure element and connection to pointer.
6. Pointer: Red or other dark-color metal.
7. Window: Glass or plastic.
8. Ring: Metal.
9. Accuracy: Grade A, plus or minus 1 percent of middle half scale.
10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure.
11. Range for Fluids under Pressure: Two times operating pressure.

D. Pressure-Gage Fittings:

1. Valves: NPS 1/4 brass or stainless-steel needle type.
2. Snubbers: ASME B40.5, NPS 1/4 brass bushing with corrosion-resistant, porous-metal disc of material suitable for system fluid and working pressure.
PART 3 - EXECUTION

3.1 THERMOMETER APPLICATIONS
 A. Install thermometers in the outlet of each domestic, hot-water storage tank.
 B. Install vapor or bimetallic-actuated dial thermometers at suction and discharge of each pump.
 C. Provide the following temperature ranges for thermometers:
 1. Domestic Hot Water: 30 to 180 deg F, with 2-degree scale divisions.
 2. Domestic Cold Water: 0 to 100 deg F, with 2-degree scale divisions.

3.2 GAGE APPLICATIONS
 A. Install dry-case-type pressure gages for discharge of each pressure-reducing valve.
 B. Install pressure gages at suction and discharge of each pump.
 C. Install pressure gages after the branch or isolation valve on each floor or wing for both the hot and cold water piping.

3.3 INSTALLATIONS
 A. Install direct-mounting thermometers and adjust vertical and tilted positions.
 B. Install remote-mounting dial thermometers on panel, with tubing connecting panel and thermometer bulb supported to prevent kinks. Use minimum tubing length.
 C. Install thermowells with socket extending a minimum of 2 inches into fluid and in vertical position in piping tees where thermometers are indicated.
 D. Install direct-mounting pressure gages in piping tees with pressure gage located on pipe at most readable position.
 E. Install remote-mounting pressure gages on panel.
 F. Install needle-valve and snubber fitting in piping for each pressure gage.
 G. Install test plugs in tees in piping.
 H. Install permanent indicators on walls or brackets in accessible and readable positions.
 I. Install connection fittings for attachment to portable indicators in accessible locations.
 J. Install thermometers and gages adjacent to machines and equipment to allow service and maintenance for thermometers, gages, machines, and equipment.
 K. Adjust faces of thermometers and gages to proper angle for best visibility.
END OF SECTION 220519
SECTION 220523 – GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Bronze angle valves.
2. Brass ball valves.
3. Bronze ball valves.
5. Iron, grooved-end butterfly valves.
8. Iron, grooved-end swing check valves.
10. Iron gate valves.
13. Chainwheels.

B. Related Sections:

1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
3. Division 33 water distribution piping Sections for general-duty and specialty valves for site construction piping.

1.3 DEFINITIONS

A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene copolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
D. NRS: Nonrising stem.
E. OS&Y: Outside screw and yoke.
1.4 SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 and NSF-372 (lead free) for valve materials for potable water service.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 5. Set butterfly valves closed or slightly open.
 6. Block check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to valve schedule articles for applications of valves.
B. Valve Pressure and Temperature Ratings: Not less than as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
 2. Handwheel: For valves other than quarter-turn types.
 3. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
 4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every ten (10) plug valves, for each size square plug-valve head.
 5. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.

E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 1. Gate Valves: With rising stem.
 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:
 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 2. Grooved: With grooves according to AWWA C606.
 4. Threaded: With threads according to ASME B1.20.1.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE ANGLE VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Crane Co., Crane Valve Group
 2. Hammond Valve.
 4. NIBCO Inc.

B. Class 125, Bronze Angle Valves with Bronze Disc:
 1. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded.
 e. Stem and Disc: Bronze.
f. Packing: Asbestos free.
g. Handwheel: Malleable iron.

C. Class 150, Bronze Angle Valves with Bronze Disc:

1. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem and Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron.

2.3 BRASS BALL VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Crane Co.; Crane Valve Group; Crane Valves.
2. Crane Co.; Crane Valve Group; Jenkins Valves.
5. Jamesbury; a subsidiary of Metso Automation.
7. NIBCO INC.

B. Two-Piece, Full-Port, Brass Ball Valves with Stainless-Steel Trim:

1. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

2.4 BRONZE BALL VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Valve, Inc.
2. Conbraco Industries, Inc.; Apollo Valves.
3. Crane Co.; Crane Valve Group; Crane Valves.
5. Milwaukee Valve Company.
6. NIBCO INC.
7. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:

1. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Lead Free Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

2.5 IRON, SINGLE-FLANGE BUTTERFLY VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Crane Co.; Crane Valve Group; Jenkins Valves.
3. Crane Co.; Crane Valve Group; Stockham Division.
4. DeZurik Water Controls.
5. Hammond Valve.
7. NIBCO INC.
9. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Stainless Steel Disc:

1. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: EPDM.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: 316 Stainless Steel.
2.6 BRONZE SWING CHECK VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Valve, Inc.
2. Crane Co.; Crane Valve Group; Crane Valves.
3. Crane Co.; Crane Valve Group; Jenkins Valves.
4. Crane Co.; Crane Valve Group; Stockham Division.
5. Hammond Valve.
7. NIBCO Inc.
8. Powell Valves.
9. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Class 125, Bronze Swing Check Valves with Bronze Disc:

1. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

C. Class 150, Bronze Swing Check Valves with Bronze Disc:

1. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 300 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

2.7 IRON SWING CHECK VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Crane Co.; Crane Valve Group; Crane Valves.
2. Crane Co.; Crane Valve Group; Jenkins Valves.
3. Crane Co.; Crane Valve Group; Stockham Division.
5. Milwaukee Valve Company.
6. NIBCO Inc.
7. Powell Valves.
8. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
B. Class 125, Iron Swing Check Valves with Metal Seats:

1. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.

C. Class 250, Iron Swing Check Valves with Metal Seats:

1. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 500 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.

2.8 IRON, CENTER-GUIDED CHECK VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Anvil International, Inc.
2. DFT Inc.
3. Hammond Valve.
4. Metraflex, Inc.
5. Milwaukee Valve Company.
7. NIBCO INC.
9. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Class 125, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:

1. Description:
 b. CWP Rating: 200 psig.
 d. Style: Compact wafer.
 e. Seat: Bronze.

C. Class 150, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:
1. Description:
 b. CWP Rating: 300 psig.
 d. Style: Compact wafer.
 e. Seat: Bronze.

D. Class 125, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:

1. Description:
 b. CWP Rating: 200 psig.
 d. Style: Compact wafer.
 e. Seat: EPDM or NBR.

E. Class 150, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:

1. Description:
 b. CWP Rating: 300 psig.
 d. Style: Compact wafer.
 e. Seat: EPDM or NBR.

2.9 BRONZE GATE VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Valve, Inc.
2. Crane Co.; Crane Valve Group; Crane Valves.
3. Crane Co.; Crane Valve Group; Jenkins Valves.
4. Crane Co.; Crane Valve Group; Stockham Division.
5. Hammond Valve.
7. NIBCO Inc.
8. Powell Valves.
9. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Class 125, NRS Bronze Gate Valves:

1. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded or solder joint.
e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron.

C. Class 125, RS Bronze Gate Valves:

1. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded or solder joint.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

D. Class 150, NRS Bronze Gate Valves:

1. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

E. Class 150, RS Bronze Gate Valves:

1. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

2.10 BRONZE GLOBE VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Crane Co.; Crane Valve Group; Crane Valves.
2. Crane Co.; Crane Valve Group; Stockham Division.
3. Hammond Valve.
5. NIBCO Inc.
6. Powell Valves.
7. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Class 125, Bronze Globe Valves with Bronze Disc:

1. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded or solder joint.
 e. Stem and Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron.

C. Class 125, Bronze Globe Valves with Nonmetallic Disc:

1. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded or solder joint.
 e. Stem: Bronze.
 f. Disc: PTFE or TFE.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

D. Class 150, Bronze Globe Valves with Nonmetallic Disc:

1. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: PTFE or TFE.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

2.11 CHAINWHEELS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Babbitt Steam Specialty Co.
2. Roto Hammer Industries.
3. Trumbull Industries.

B. Description: Valve actuation assembly with sprocket rim, brackets, and chain.

1. Brackets: Type, number, size, and fasteners required to mount actuator on valve.
2. Attachment: For connection to valve stems.
3. Sprocket Rim with Chain Guides: Ductile iron of type and size required for valve. Include zinc coating.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install chainwheels on operators for valves 6 inches and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.

F. Install check valves for proper direction of flow and as follows:

1. Swing Check Valves: In horizontal position with hinge pin level.
2. Center-Guided Check Valves: In horizontal or vertical position, between flanges.
3. Lift Check Valves: With stem upright and plumb.
3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:

1. Shutoff Service: Ball, butterfly, gate, or plug valves.
3. Throttling Service: Globe or angle, ball, or butterfly valves.
4. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze or nonmetallic disc.
 b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight or with spring or iron, center-guided, metal or resilient-seat check valves.
 c. NPS 2-1/2 and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.

B. Pressure ratings for valves shall not be less than as required by system pressures.

C. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

D. Select valves, except wafer types, with the following end connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 and Larger: Flanged ends.
3. For Steel Piping, NPS 2 and Smaller: Threaded ends.
4. For Steel Piping, NPS 2-1/2 and Larger: Flanged ends.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
2. Bronze Angle Valves: Class 125 or Class 150, bronze or nonmetallic disc.
3. Ball Valves: Two piece, full port, bronze with stainless-steel trim.
4. Bronze Swing Check Valves: Class 125 or Class 150, bronze or nonmetallic disc.
5. Bronze Globe Valves: Class 125 or Class 150, bronze or nonmetallic disc.

B. Pipe NPS 2-1/2 and Larger:

1. Bronze Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
3. Bronze, Grooved-End Butterfly Valves: 175 or 300 CWP.
4. Bronze Swing Check Valves: Class 125 or Class 250, metal seats.
5. Bronze, Center-Guided Check Valves: Class 125 or Class 150, compact-wafer, metal or resilient seat.
6. Bronze Gate Valves: Class 125 or Class 250, NRS or OS&Y.
7. Bronze Globe Valves: Class 125 or Class 250.

3.6 SANITARY-WASTE AND STORM-DRAINAGE VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Bronze Angle Valves: Class 125 or Class 150, bronze or nonmetallic disc.
 2. Ball Valves: Two piece, full port, brass or bronze with brass, bronze, stainless-steel trim.
 3. Bronze Swing Check Valves: Class 125 or Class 150, bronze or nonmetallic disc.

B. Pipe NPS 2-1/2 and Larger:
 1. Iron Swing Check Valves: Class 125, metal seats.
 2. Iron, Grooved-End Swing Check Valves: 300 CWP.
 3. Iron Gate Valves: Class 125, NRS or OS&Y.
SECTION 220529 – HANGERS AND SUPPORTS FOR PLUMBING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following hangers and supports for plumbing system piping and equipment:

1. Steel pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.
4. Thermal-hanger shield inserts.
5. Fastener systems.
6. Pipe stands.
7. Pipe positioning systems.
8. Equipment supports.

B. Related Sections include the following:

1. Division 21 Section "Water-Based Fire-Suppression Systems" for pipe hangers for fire-suppression piping.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
1.5 SUBMITTALS

A. Product Data: For the following:
 1. Steel pipe hangers and supports.
 2. Thermal-hanger shield inserts.
 3. Powder-actuated fastener systems.
 4. Pipe positioning systems.

B. Welding certificates.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

B. Acceptable Manufacturers:
 2. Carpenter & Paterson, Inc.
 3. Empire Industries, Inc.
 5. Grinnell Corp.
 6. GS Metals Corp.
 8. Piping Technology & Products, Inc.

C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.
2.4 METAL FRAMING SYSTEMS

A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.

B. Acceptable Manufacturers:
 2. GS Metals Corp.
 4. Thomas & Betts Corporation.
 5. Unistrut Corp.; Tyco International, Ltd.

C. Coatings: Manufacturer's hot dipped or galvanized finish unless bare metal surfaces are indicated.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

A. Description: 100-psig minimum, compressive-strength insulation insert encased in sheet metal shield.

B. Acceptable Manufacturers:
 1. Carpenter & Paterson, Inc.
 2. PHS Industries, Inc.
 3. Pipe Shields, Inc.
 5. Value Engineered Products, Inc.

C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with vapor barrier.

D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate.

E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened Portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
1. Acceptable Manufacturers:
 b. Empire Industries, Inc.
 c. Hilti, Inc.
 d. ITW Ramset/Red Head.
 e. MKT Fastening, LLC.
 f. Powers Fasteners.

2.7 PIPE STAND FABRICATION
 A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
 B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
 C. Low-Type, Single-Pipe Stand: One-piece plastic or stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

2.8 MISCELLANEOUS MATERIALS
 A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS
 A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
 B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
 C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
 D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
 E. Use padded hangers for piping that is subject to scratching.
Women's and Children's Hospital – Exterior Envelope Replacement

University of Missouri

Issue for Bid

Hangars and Supports

Project No.: CP180131

For Plumbing Piping and Equipment

August 30, 2019

F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 2.
10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.
18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.
19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

O. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

3.2 HANGER AND SUPPORT INSTALLATION

A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:

1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer’s written instructions.

F. Pipe Stand Installation:

1. Pipe Stand Types except Curb-Mounting Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
2. Curb-Mounting-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. Refer to Division 07 Section “Roof Accessories” for curbs.

G. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9 (for building services piping) are not exceeded.

M. Insulated Piping: Comply with the following:

1. Attach clamps and spacers to piping.
1. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.
2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
5. Insert Material: Length at least as long as protective shield.
6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS
A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS
A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

3.5 ADJUSTING
A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 220529
SECTION 220553 – IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Pipe labels.
 3. Stencils.
 4. Valve tags.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

C. Valve numbering scheme.

D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:
1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.3 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.
 1. Stencil Material: Fiberboard or metal.
 2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
3. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

2.4 VALVE TAGS
A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass wire-link or beaded chain; or S-hook.
B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION
A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION
A. Install or permanently fasten labels on each major item of mechanical equipment.
B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION
A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting".
B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels complying with ASME A13.1, on each piping system.
 1. Identification Paint: Use for contrasting background.
C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment and within mechanical rooms, boiler rooms, chiller rooms, etc.
7. On piping above removable acoustical ceilings.

D. Pipe Label Color Schedule:

1. Domestic Water Piping:
 a. Background Color: Blue.
2. Sanitary Waste and Storm Drainage Piping:
 a. Background Color: Black.

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:

2. Valve-Tag Color:
 b. Hot Water: Natural.
 c. Medical Vacuum: Natural.

3. Letter Color:
 b. Hot Water: Black.
 c. Medical Vacuum: Black.
END OF SECTION 220553
SECTION 220700 – PLUMBING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Insulation Materials:
 a. Flexible elastomeric.
 b. Mineral fiber.
 c. Molded Close Cell.
 2. Insulating cements.
 3. Adhesives.
 5. Lagging adhesives.
 7. Factory-applied jackets.
 8. Field-applied jackets.
 10. Securements.
 11. Corner angles.

B. Related Sections include the following:
 1. Division 23 Section "HVAC Insulation."

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).

B. Shop Drawings:
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 3. Detail removable insulation at piping specialties, equipment connections, and access panels.
4. Detail application of field-applied jackets.
5. Detail field application for each equipment type.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application and equipment Installer for equipment insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following:
 a. Aeroflex USA Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. NOMACO Insulation.

2. Thermal Conductivity: Not exceeding 0.25 BTU-in/hour sq. ft. °F at 75°F mean temperature.

G. Mineral-Fiber, Preformed Pipe Insulation:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Knauf Insulation.
 c. Manson Insulation Inc.
 d. Owens Corning Fiberglas Corp.

2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

3. Thermal Conductivity: Not exceeding 0.23 BTU-in/hour sq. ft. °F at 75°F mean temperature

H. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Manson Insulation Inc.
 e. Owens Corning Fiberglas Corp.

2. Density: 2.5 lbs/cu. ft.
3. Thermal Conductivity: Not exceeding 0.27 BTU-in/hour °F at 75°F mean temperature.

 1. Acceptable Manufacturers: Subject to compliance with requirements provide product by IFS Corporation; Truebro.

2.2 INSULATING CEMENTS
 B. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.

2.3 ADHESIVES
 A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
 B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA Inc.
 b. Armacell LCC.
 c. Foster Products Corporation, H. B. Fuller Company.
 d. RBX Corporation.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Products, Division of ITW.
 b. Foster Products Corporation, H. B. Fuller Company.
2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. ASJ Adhesive, and FSK Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Products, Division of ITW.
 b. Foster Products Corporation, H. B. Fuller Company.
 c. ITW TACC, Division of Illinois Tool Works.
 d. Marathon Industries, Inc.
 e. Mon-Eco Industries, Inc.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dow Chemical Company (The).
 c. P.I.C. Plastics, Inc.
 d. Speedline Corporation.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Childers Products, Division of ITW.
3. ITW TACC, Division of Illinois Tool Works.
4. Marathon Industries, Inc.
5. Mon-Eco Industries, Inc.
C. Vapor-Barrier Mastic: Water or solvent based; suitable for indoor and outdoor use on below ambient services.
 1. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.05 perm at 43-mi dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F.

D. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 3 perms at 0.0625-inch dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 200 deg F.
 3. Solids Content: 63 percent by volume and 73 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.
 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Products, Division of ITW.
 b. Foster Products Corporation, H. B. Fuller Company.
 c. Marathon Industries, Inc.
 d. Mon-Eco Industries, Inc.
 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over equipment and pipe insulation.
 4. Service Temperature Range: Minus 50 to plus 180 deg F.

2.6 SEALANTS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Childers Products, Division of ITW.
 3. Marathon Industries, Inc.
 4. Mon-Eco Industries, Inc.
 5. Pittsburgh Corning Corporation.

B. Joint Sealants for Cellular-Glass:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Permanently flexible, elastomeric sealant.
3. Service Temperature Range: Minus 100 to plus 300 deg F.
5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. FSK and Metal Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. ASJ Flashing Sealants and PVC Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.7 FACTORY-APPLIED JACKETS
A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, Kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with Kraft-paper backing; complying with ASTM C 1136, Type II.

2.8 FIELD-APPLIED JACKETS
A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. Metal Jacket:
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Products, Division of ITW.
 b. PABCO Metals Corporation.
 c. RPR Products, Inc.
 a. Factory cut and rolled to size.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.9 TAPES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Avery Dennison Corporation, Specialty Tapes Division.
 2. Compac Corp.
 4. Venture Tape.

B. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 11.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

C. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 6.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
2.10 SECUREMENTS

A. Bands:
 1. Stainless Steel: ASTM A 167 or ASTM A 240, Type 304; 0.015 inch thick, 1/2 inch wide with wing or closed seal.
 2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.

B. Insulation Pins and Hangers:
 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel or aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated.
3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
a. For below ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated):
Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations:
Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Division 07 Section "Penetration Firestopping" and fire-resistant joint sealers.

F. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word “UNION.” Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

A. Seal longitudinal seams and end joints with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturers’ recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer’s recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available.

2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.

2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.

3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.

4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.

2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.

3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:

1. Draw jacket material smooth and tight.

2. Install lap or joint strips with same material as jacket.

3. Secure jacket to insulation with manufacturer’s recommended adhesive.

4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.

5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer’s recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.
3.9 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

B. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one (1) location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
 2. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three (3) locations of straight pipe, locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.12 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:
 1. NPS ½" through 6": Insulation shall be the following:
 a. Flexible elastomeric: 1/2 inch thick.

B. Domestic Hot and Recirculated Hot Water:
1. NPS 1-1/4" and smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
 b. Flexible elastomeric: 1/2 inch thick

2. NPS 1-1/2" and larger:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 b. Flexible elastomeric: 1 inch thick

C. Stormwater and Overflow:
 1. All Pipe Sizes (vertical and horizontal): Insulation shall be the following:
 a. Flexible elastomeric: 1/2 inch thick.

D. Roof Drain and Overflow Drain Bodies:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1/2 inch thick.

E. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Truebro Handi-Lav-Guard fully molded model 102 insulation kits, including interlocking trap and valve assemblies and nylon fasteners.

F. Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 3/4 inch thick.

3.13 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Domestic Water Piping Where Heat Tracing is Installed:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick

3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.
C. Equipment, Concealed:
 1. None.

D. Equipment, Exposed:
 1. None.

E. Piping, Concealed:
 1. None.

F. Piping, exposed in mechanical room piping that is within 6 ft. of the floor.
 1. Aluminum, Smooth: 0.016 inch thick.

3.15 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. Aluminum, Corrugated with Z-Shaped Locking Seam: 0.016 inch thick.

END OF SECTION 220700
SECTION 221116 – DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
2. Encasement for piping.
4. Flexible connectors.
5. Escutcheons.
6. Sleeves and sleeve seals.
7. Wall penetration systems.

1.3 SUBMITTALS

A. Product Data: For the following products:

1. Specialty valves.
2. Transition fittings.
3. Dielectric fittings.
4. Flexible connectors.
5. Water meters.
7. Escutcheons.
8. Sleeves and sleeve seals.
9. Water penetration systems.

B. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Comply with NSF 61 for potable domestic water piping and components.
1.5 PROJECT CONDITIONS

A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:

1. Notify Architect no fewer than seven (7) days in advance of proposed interruption of water service.
2. Do not proceed with interruption of water service without Architect's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.

4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
5. Grooved-Joint Copper-Tube Appurtenances:
 a. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Anvil International.
 2) Shurjoint Piping Products.
 3) Victaulic Company.
 b. Copper Grooved-End Fittings: ASTM B 75 copper tube or ASTM B 584 bronze castings.
 c. Grooved-End-Tube Couplings: Copper-tube dimensions and design similar to AWWA C606. Include ferrous housing sections, EPDM-rubber gaskets suitable for hot and cold water, and bolts and nuts.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated.
B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Calpico, Inc.
2. Capitol Manufacturing Company.
3. Central Plastics Company.
4. EPCO Sales, Inc.
6. Lochinvar Corp.
7. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
8. Zurn Plumbing Products Group; Wilkins Water Control Products.

C. Dielectric Flanges:

1. Description:
 a. Factory-fabricated, bolted, companion-flange assembly.
 b. Pressure Rating: 150 psig.
 c. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Kits:

1. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.

E. Dielectric Couplings:

1. Description:
 a. Galvanized-steel coupling.
 b. Pressure Rating: 300 psig at 225 deg F.
c. End Connections: Female threaded.
d. Lining: Inert and noncorrosive, thermoplastic.

F. Dielectric Nipples:

1. Description:
 a. Electroplated steel nipple complying with ASTM F 1545.
 b. Pressure Rating: 300 psig at 225 deg F.
c. End Connections: Male threaded or grooved.
d. Lining: Inert and noncorrosive, propylene.

2.5 FLEXIBLE CONNECTORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Flex-Hose Co., Inc.
 2. Flexicraft Industries.
 3. Flex-Weld, Inc.
 4. Hyspan Precision Products, Inc.
 5. Metraflex, Inc.
 6. Unaflex, Inc.
 7. Universal Metal Hose; a Hyspan company

B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

C. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

2.6 ESCUTCHEONS

A. General: Manufactured ceiling, floor, and wall escutcheons and floor plates.

B. One Piece, Cast Brass: Polished, chrome-plated finish with setscrews.

D. One Piece, Stamped Steel: Chrome-plated finish with setscrew.

E. Split Casting, Cast Brass: Polished, chrome-plated finish with concealed hinge and setscrew.
F. Split Plate, Stamped Steel: Chrome-plated finish with concealed hinge, setscrew.

G. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

H. Split-Casting Floor Plates: Cast brass with concealed hinge.

2.7 SLEEVES

A. Cast-Iron Wall Pipes: Fabricated of cast iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc-coated, with plain ends.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with setscrews.

2.8 SLEEVE SEALS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. Calpico, Inc.
3. Metraflex, Inc.
4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing element unit, designed for field assembly, used to fill annular space between pipe and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating of length required to secure pressure plates to sealing elements.

2.9 WALL PENETRATION SYSTEMS

A. Description: Wall-sleeve assembly, consisting of housing and gland, gaskets, and pipe sleeve.

1. Carrier-Pipe Deflection: Up to 5 percent without leakage.
2. Housing: Ductile-iron casting with hub, waterstop, anchor ring, and locking devices. Include gland, bolts, and nuts.
3. Housing-to-Sleeve Gasket: EPDM rubber.

2.10 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.

C. Install shutoff valve immediately upstream of each dielectric fitting.

D. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.

E. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

F. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

G. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

H. Install piping adjacent to equipment and specialties to allow service and maintenance.

I. Install piping to permit valve servicing.

J. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.
K. Install piping free of sags and bends.

L. Install fittings for changes in direction and branch connections.

M. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

N. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.

O. Install thermostats in hot-water circulation piping. Comply with requirements in Division 22 Section "Domestic Water Pumps" for thermostats.

P. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

3.2 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.

E. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

G. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

H. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.
3.3 VALVE INSTALLATION

A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.

B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball or gate valves for piping NPS 2 and smaller. Use butterfly or gate valves for piping NPS 2-1/2 and larger.

C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."

1. Hose-End Drain Valves: At low points in water mains, risers, and branches.

D. Install balancing valve in each hot-water circulation return branch and discharge side of each pump and circulator. Set balancing valves partly open to restrict but not stop flow. Use ball valves for piping NPS 2 and smaller and butterfly valves for piping NPS 2-1/2 and larger. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves.

E. Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for calibrated balancing valves.

3.4 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:

1. NPS 1-1/2 and Smaller: Fitting-type coupling.
2. NPS 2 and Larger: Sleeve-type coupling.

C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.

3.5 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions couplings.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.

1. Vertical Piping: MSS Type 8 or 42, clamps.
2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet If Indicated: MSS Type 49, spring cushion rolls.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support vertical piping and tubing at base and at each floor.

C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.

E. Install supports for vertical copper tubing every 10 feet.

F. Install supports for vertical steel piping every 15 feet.

G. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment and machines to allow service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
3. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.

4. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.8 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors.

B. Escutcheons for New Piping:

1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
4. Bare Piping in Unfinished Service Spaces: One piece, stamped steel with set screw.
5. Bare Piping in Equipment Rooms: One piece, stamped steel with set screw.
6. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

3.9 SLEEVE INSTALLATION

A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls.

B. Sleeves are not required for core-drilled holes.

C. Permanent sleeves are not required for holes formed by removable PE sleeves.

D. Cut sleeves to length for mounting flush with both surfaces unless otherwise indicated.

E. Install sleeves in new partitions, slabs, and walls as they are built.

F. For interior wall penetrations, seal annular space between sleeve and pipe or pipe insulation using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants" for joint sealants.

G. For exterior wall penetrations above grade, seal annular space between sleeve and pipe using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants" for joint sealants.

H. For exterior wall penetrations below grade, seal annular space between sleeve and pipe using sleeve seals specified in this Section.

I. Seal space outside of sleeves in concrete slabs and walls with grout.

J. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation unless otherwise indicated.
K. Install sleeve materials according to the following applications:

1. Sleeves for Piping Passing through Concrete Floor Slabs: Steel pipe.

2. Sleeves for Piping Passing through Concrete Floor Slabs of Mechanical Equipment Areas or Other Wet Areas: Steel pipe.
 a. Extend sleeves 2 inches above finished floor level.
 b. For pipes penetrating floors with membrane waterproofing, extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements in Division 07 Section "Sheet Metal Flashing and Trim" for flashing.

3. Sleeves for Piping Passing through Gypsum-Board Partitions:
 b. Galvanized-steel sheet sleeves for pipes NPS 6 and larger.
 c. Exception: Sleeves are not required for water supply tubes and waste pipes for individual plumbing fixtures if escutcheons will cover openings.

4. Sleeves for Piping Passing through Concrete Roof Slabs: Steel pipe.

5. Sleeves for Piping Passing through Exterior Concrete Walls:
 a. Steel pipe sleeves for pipes smaller than NPS 6.
 b. Cast-iron wall pipe sleeves for pipes NPS 6 and larger.
 c. Install sleeves that are large enough to provide 1-inch annular clear space between sleeve and pipe or pipe insulation when sleeve seals are used.
 d. Do not use sleeves when wall penetration systems are used.

6. Sleeves for Piping Passing through Interior Concrete Walls:
 a. Steel pipe sleeves for pipes smaller than NPS 6.
 b. Galvanized-steel sheet sleeves for pipes NPS 6 and larger.

L. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestop materials and installations.

3.10 SLEEVE SEAL INSTALLATION

A. Install sleeve seals in sleeves in exterior concrete walls at water-service piping entries into building.

B. Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble sleeve seal components and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
3.11 WALL PENETRATION SYSTEM INSTALLATION
 A. Install wall penetration systems in new, exterior concrete walls.
 B. Assemble wall penetration system components with sleeve pipe. Install so that end of sleeve pipe and face of housing are flush with wall. Adjust locking devices to secure sleeve pipe in housing.

3.12 IDENTIFICATION
 A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.
 B. Label pressure piping with system operating pressure.

3.13 FIELD QUALITY CONTROL
 A. Perform tests and inspections.
 B. Piping Inspections:
 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
 C. Piping Tests:
 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and
allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
6. Prepare reports for tests and for corrective action required.

D. Domestic water piping will be considered defective if it does not pass tests and inspections.
E. Prepare test and inspection reports.

3.14 ADJUSTING
A. Perform the following adjustments before operation:
1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide flow of hot water in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.15 CLEANING
A. Clean and disinfect potable and non-potable domestic water piping as follows:
1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

B. Prepare and submit reports of purging and disinfecting activities.

C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.16 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and brazed or soldered joints.

D. Aboveground domestic water piping, NPS 2-1/2 and larger, shall be one of the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper solder-joint fittings; and brazed or soldered joints.
 2. Hard copper tube, ASTM B 88, Type L or; grooved-joint copper-tube appurtenances; and grooved joints.

3.17 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 221116
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following domestic water piping specialties:

1. Vacuum breakers.
2. Strainers.
3. Drain valves.
4. Air vents.

B. Related Sections include the following:

1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
B. NSF Compliance:

2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 VACUUM BREAKERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Conbraco Industries, Inc.
2. FEBCO; SPX Valves & Controls.
4. Toro Company (The); Irrigation Div.
7. Zurn Industries, LLC; Wilkins Div.

B. Pipe-Applied, Atmospheric-Type Vacuum Breakers:

2. Size: NPS 1/4 to NPS 3, as required to match connected piping.
4. Inlet and Outlet Connections: Threaded.
5. Finish: Chrome plated.

C. Hose-Connection Vacuum Breakers:

2. Body: Bronze, nonremovable, with manual drain.
4. Finish: Chrome or nickel plated.

D. Laboratory-Faucet Vacuum Breakers:

2. Size: NPS 1/4 or NPS 3/8 matching faucet size.
4. End Connections: Threaded.
5. Finish: Chrome plated.

2.2 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:
1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations, unless otherwise indicated.
5. Perforation Size:
 a. Strainers NPS 2 and Smaller: 0.020 inch.
 b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.
 c. Strainers NPS 5 and Larger: 0.10 inch.

2.3 HOSE BIBBS

A. Hose Bibbs:
 4. Supply Connections: NPS 1/2 threaded or solder-joint inlet.
 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
 8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
 10. Finish for Finished Rooms: Chrome or nickel plated.
 11. Operation for Equipment Rooms: Wheel handle or operating key.
 12. Operation for Service Areas: Operating key.
 14. Include operating key with each operating-key hose bibb.
 15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.4 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
 2. Pressure Rating: 400-psig minimum CWP.
 4. Body: Copper alloy.
 5. Ball: Chrome-plated brass.
 8. Inlet: Threaded or solder joint.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install Y-pattern strainers for water on supply side of each control valve, water pressure-reducing valve, solenoid valve, and pump.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:

1. Pressure vacuum breakers.
2. Intermediate atmospheric-vent backflow preventers.
3. Reduced-pressure-principle backflow preventers.
5. Dual-check-valve backflow preventers.
6. Reduced-pressure-detector, fire-protection backflow-preventer assemblies.
8. Water pressure-reducing valves.
10. Primary, thermostatic, water mixing valves.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and prepare test reports:

1. Test each pressure vacuum breaker, reduced-pressure-principle backflow preventer, double-check backflow-prevention assembly and double-check, detector-assembly backflow preventer according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.
3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 221119
SECTION 221316 – SANITARY WASTE, SEWER AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following for soil, waste, and vent piping inside the building:

1. Pipe, tube, and fittings.

1.3 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:

1.4 SUBMITTALS

A. Product Data: For pipe, tube, fittings, and couplings.

B. Field quality-control inspection and test reports.

1.5 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Sanitary sewers shall be designed in accordance with the standards and requirements of the Missouri Department of Natural Resources and local requirements (MSD, City of Columbia, Rolla, or Kansas City). The State of Missouri HB 1867 is effective January 1, 2015 and requires tracer wire for all new or fully replaced sewer installations in public right of way. New provisions for sewer installations are included herein.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIALS

A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service class.

B. Gaskets: ASTM C 564, rubber.

C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. Sovent Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.

C. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.

2. Heavy-Duty, Shielded, Cast-Iron Couplings: ASTM A 48/A 48M, two-piece, cast-iron housing; stainless-steel bolts and nuts; and ASTM C 564, rubber sleeve.

2.5 TRACE WIRE AND TEST STATIONS

A. Tracer wire shall be #14 AWG solid, steel core soft drawn high strength tracer wire, 250# average tensile break load, 30 mil High Molecular Weight (HMWPE) or High Density (HDPE) polyethylene jacket complying with ASTM-D-1248, 30 volt rating. Jacket color shall be green. No THHN insulated wire shall be allowed. Tracer wire shall be Copperhead Industries HS-CCS or approved equal. The tracer wire shall be taped to the pipe at the three o'clock position every 5 feet. The tracer wire ends will terminate at a tracer wire test station.
B. Tracer wire shall have moisture resistant splices for direct bury applications. Splices shall be Copperhead Industries SnakeBite or 3M DBR or approved equal.

C. Tracer wire test stations shall be installed within 2 feet of the manhole or structure in the flow line of the pipe. These stations shall be designed to be easily detected by magnetic and electronic locators. A magnet shall be securely attached at the top of the upper tube of the box for locating purposes. Lid shall be green and have a brass terminal for attaching locating equipment and a brass 5-sided nut for removing cap. Tracer wire test station shall be Copperhead Industries SnakePit or approved equal.

PART 3 - EXECUTION

3.1 EXCAVATION

A. Refer to Section "Common Work Results for Plumbing" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

A. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.

B. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:
 1. Hubless cast-iron soil pipe and fittings heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.

C. Aboveground, vent piping NPS 4 and smaller shall be any of the following:
 1. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.

D. Underground, soil, waste, and vent piping shall be any of the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.

E. Underground sanitary sewer piping shall be any of the following:
 1. Ductile iron conforming to ASTM A746 with cement lining conforming to ANSI/AWWA C104/A21.4, and asphaltic coating on the interior and exterior conforming to ANSI/AWWA C111/A21.11, and asbestos-free.
 2. Polyvinyl chloride (PVC) conforming to ASTM D2241, PVC 1120, DR 35, PR 200 (SDR-21). Joints shall conform to ASTM D3033/D3034, Type 1, Grade 1.

3.3 PIPING INSTALLATION

A. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."
B. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers. End of line cleanouts shall use long radius bends with concrete cradles under the bends.

C. Install cleanout fitting with closure plug inside the building in sanitary force-main piping.

D. Install underground, steel, force-main piping.

E. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 22 Section "Common Work Results for Plumbing."

F. Install wall-penetration fitting at each service pipe penetration through foundation wall. Make installation watertight.

1. Install encasement on underground piping according to ASTM A 674 or AWWA C105.

H. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

I. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

J. Install soil and waste drainage and vent piping at the following minimum slopes, unless otherwise indicated:

1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

K. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.

L. Install tracer wire with all exterior sanitary sewer piping.

M. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
3.4 JOINT CONSTRUCTION

A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."

C. Join hub-and-spigot, cast-iron soil piping with calked joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.

D. Join hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints.

E. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-free-alloy solder; and ASTM B 828 procedure, unless otherwise indicated.

F. Grooved Joints: Assemble joint with keyed coupling, gasket, lubricant, and bolts according to coupling and fitting manufacturer's written instructions.

3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

B. Shutoff Valves: Install shutoff valve on each sewage pump discharge.
 1. Install gate or full-port ball valve for piping NPS 2 and smaller.

C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.

D. Backwater Valves: Install backwater valves in piping subject to sewage backflow.
 1. Horizontal Piping: Horizontal backwater valves.
 2. Floor Drains: Drain outlet backwater valves, unless drain has integral backwater valve.
 3. Install backwater valves in accessible locations.
 4. Backwater valve are specified in Division 22 Section "Sanitary Waste Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

A. Pipe hangers and supports are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment." Install the following:
 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 2. Install individual, straight, horizontal piping runs according to the following:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.

F. Install supports for vertical cast-iron soil piping every 15 feet.

G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4: 84 inches with 3/8-inch rod.
 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 3. NPS 2: 10 feet with 3/8-inch rod.
 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 5. NPS 3: 12 feet with 1/2-inch rod.
 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.

H. Install supports for vertical steel piping every 15 feet.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Equipment: Connect drainage piping as indicated. Provide shutoff valve, if indicated, and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.
3.8 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and un-concealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
6. Prepare reports for tests and required corrective action.

3.9 CLEANING

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION 221316
SECTION 221319 – SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following sanitary drainage piping specialties:
 1. Metal cleanouts.
 2. Floor drains.
 3. Through-penetration firestop assemblies.
 5. Flashing materials.
B. Related Sections include the following:
 1. Division 22 Section "Storm Drainage Piping Specialties" for trench drains for storm water, channel drainage systems for storm water, roof drains, and catch basins.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.4 QUALITY ASSURANCE
A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

1.5 COORDINATION
A. Coordinate size and location of roof penetrations.
PART 2 - PRODUCTS

2.1 METAL CLEANOUTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Josam Company; Blucher-Josam Div.
4. Tyler Pipe; Wade Div.
5. Watts Drainage Products Inc.

B. Exposed Metal Cleanouts:

1. Standard: ASME A112.36.2M for cast iron/ASME A112.3.1 for stainless steel for cleanout test tee.
2. Size: Same as connected drainage piping
3. Body Material: As required to match connected piping.
4. Closure: Raised-head, brass or cast-iron plug.
5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

C. Metal Floor and Exterior Grade Cleanouts:

1. Standard: ASME A112.36.2M for heavy-duty, adjustable housing cleanout.
2. Size: Same as connected branch.
3. Type: Heavy-duty, adjustable housing.
4. Body or Ferrule: Cast iron.
5. Clamping Device: Required.
7. Closure: Brass plug with straight threads and gasket.
8. Adjustable Housing Material: Cast iron with threads.
10. Frame and Cover Shape: Round.
11. Top Loading Classification: Heavy Duty.
12. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
14. Size: Same as connected branch.
15. Housing: Stainless steel.
17. Riser: Stainless-steel drainage pipe fitting to cleanout.
18. Provide 24"x24"x8" thick concrete pad 6" below grade to anchor cover on exterior cleanouts. Separate pipe from concrete with two (2) layers of building paper.

D. Cast-Iron Wall Cleanouts:

1. Standard: ASME A112.36.2M. Include wall access.
2. Size: Same as connected drainage piping.
3. Body: As required to match connected piping.
4. Closure: Raised-head, brass or cast-iron plug.
5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.2 FLOOR DRAINS

A. Floor Drains:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company; Blucher-Josam Div.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products Inc.
 f. Zurn Industries, LLC; Light Commercial Operation.
 g. Zurn Industries, LLC; Specification Drainage Operation.

2. Standard: ASME A112.6.3.
4. Seepage Flange: Required.
5. Clamping Device: Required.
6. Outlet: Bottom or Side.
10. Top or Strainer Material: Gray iron/Nickel bronze/Stainless steel.
12. Top Shape: Round.
13. Dimensions of Top or Strainer: Minimum 8 inch diameter.
16. Inlet Fitting: Gray iron, with threaded inlet and threaded or spigot outlet. Trap-seal primer valve connection where shown on drawings.
17. Trap Material: Cast iron.
19. Trap Features: Cleanout.

2.3 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:

2. Size: Same as connected soil, waste, or vent stack.
3. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
5. Special Coating: Corrosion resistant on interior of fittings.
2.4 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Deep-Seal Traps:
 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
 2. Size: Same as connected waste piping.
 a. NPS 2: 4-inch- minimum water seal.
 b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.

B. Air-Gap Fittings:
 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 2. Body: Bronze or cast iron.
 3. Inlet: Opening in top of body.
 4. Outlet: Larger than inlet.
 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

C. Sleeve Flashing Device:
 1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 2 inches above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 2. Size: As required for close fit to riser or stack piping.

2.5 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Use: 4.0-lb/sq. ft. thickness.

B. Copper Sheet: ASTM B 152/B 152M, of the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Applications: 12 oz./sq. ft.
 2. Vent Pipe Flashing: 8 oz./sq. ft.

C. Fasteners: Metal compatible with material and substrate being fastened.

D. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

E. Solder: ASTM B 32, lead-free alloy.
F. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet.
 4. Locate at base of each vertical soil and waste stack.

C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

F. Install through-penetration firestop assemblies in plastic conductors and stacks at floor penetrations.

G. Install deep-seal traps on floor drains and other waste outlets, if indicated.

H. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
I. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.

J. Install wood-blocking reinforcement for wall-mounting-type specialties.

K. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

L. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
 2. Copper Sheets: Solder joints of copper sheets.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counter flashing or commercially made flashing fittings, according to Division 07 Section "Sheet Metal Flashing and Trim."

F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

G. Fabricate and install flashing and pans, sumps, and other drainage shapes.
3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

3.5 FLOOR DRAINS SCHEDULE

A. Floor Drains Schedule:

1. Unfinished Areas on Grade:
 b. Top of Body and Strainer Finish: Gray iron.
 c. Strainer Material: Gray iron.
 d. Top Loading Classification: Extra heavy duty.
 e. Integral Tray and Cleanout: Required.
 f. Backwater Valve: Required.

2. Unfinished Areas above Ground:
 b. Top of Body and Strainer Finish: Gray iron.
 c. Top Loading Classification: Extra heavy duty.
 d. Strainer Material: Gray iron.
 e. Integral Trap and Cleanout: Required.

3. Finished Areas on Grade:
 b. Top of Body and Strainer: Nickel bronze.
 c. Top Loading Classifications: Light duty.
 d. Integral Trap and Cleanout: Required.
 e. Backwater Valve: Required.

4. Finished Areas above Grade:
 c. Top Loading Classification: Light duty.

5. Mechanical Rooms on Grade:
 b. Top of Body and Strainer Finish: Gray iron.
 c. Top Loading Classification: Extra heavy duty.
 d. Strainer Material: Gray iron.
 e. Trap and Cleanout: Required.
 f. Backwater Valve: Required.
g. Sediment Bucket: Aluminum.

h. Drain with 9” deep sump.

6. Mechanical Rooms above Grade:

b. Top of Body and Strainer Finish: Gray iron.

c. Top Loading Classification: Extra heavy duty.

d. Strainer Material: Gray iron.

e. Sediment Bucket: Aluminum.

f. Drain with 9” deep sump.

7. Funnel Floor Drains: Same as floor drains specified above, but with elongated 8x3 funnel.

END OF SECTION 221319
SECTION 221413 – FACILITY STORM DRAINAGE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following storm drainage piping inside the building:
 1. Pipe, tube, and fittings.
 2. Special pipe fittings.

1.3 PERFORMANCE REQUIREMENTS
A. Components and installation shall be capable of withstanding the following minimum working-pressure, unless otherwise indicated:
 1. Storm Drainage Piping: 10-foot head of water.
 2. Storm Drainage, Force-Main Piping: 50 psig.

1.4 SUBMITTALS
A. Product Data: For pipe, tube, fittings, and couplings.
 B. Field quality-control inspection and test reports.

1.5 QUALITY ASSURANCE
A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
2.2 PIPING MATERIALS
 A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS
 A. Pipe and Fittings: ASTM A 74, Service class.
 B. Gaskets: ASTM C 564, rubber.
 C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS
 A. Pipe and Fittings: ASTM A 888 or CISPI 301.
 B. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.
 2. Heavy-Duty, Shielded, Cast-Iron Couplings: ASTM A 48/A 48M, two-piece, cast-iron housing; stainless-steel bolts and nuts; and ASTM C 564, rubber sleeve.

2.5 PVC PIPE AND FITTINGS
 A. Solid-Wall PVC Pipe: ASTM D 1785, drain, waste, and vent.
 B. PVC Socket Fittings: ASTM D 1785, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
 C. Adhesive Primer: ASTM F 656.
 1. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 D. Solvent Cement: ASTM D 2564.
 1. Use PVC solvent cement that has a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 SPECIAL PIPE FITTINGS
 A. Flexible, Nonpressure Pipe Couplings: Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition pattern. Include shear ring, ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.
1. Sleeve Materials:
 b. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 c. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

B. Shielded Nonpressure Pipe Couplings: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

C. Rigid, Unshielded, Nonpressure Pipe Couplings: ASTM C 1461, sleeve-type reducing- or transition-type mechanical coupling molded from ASTM C 1440, TPE material with corrosion-resistant-metal tension band and tightening mechanism on each end.

PART 3 - EXECUTION

3.1 EXCAVATION

A. Refer to Section "Common Work Results for Plumbing" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

A. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.

B. Aboveground storm drainage piping NPS 6 and smaller shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and coupled joints.
 3. Dissimilar Pipe-Material Couplings: Flexible, Shielded, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

C. Aboveground, storm drainage piping NPS 8 and larger shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and coupled joints.
 3. Dissimilar Pipe-Material Couplings: Flexible, Shielded, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

D. Underground storm drainage piping shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 3. Dissimilar Pipe-Material Couplings: Flexible, Shielded, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.
3.3 PIPING INSTALLATION

A. Storm sewer and drainage piping outside the building are specified in Division 33 Section "Storm Utility Drainage Piping".

B. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing".

C. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers. Cleanouts are specified in Division 22 Section "Storm Drainage Piping Specialties".

D. Install cleanout fitting with closure plug inside the building in storm drainage force-main piping.

E. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 22 Section "Common Work Results for Plumbing".

F. Install wall-penetration fitting system at each service pipe penetration through foundation wall. Make installation watertight.

G. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook", Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings".

H. Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

I. Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

J. Install storm drainage piping at the following minimum slopes, unless otherwise indicated:

1. Building Storm Drain: 1 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
2. Horizontal Storm-Drainage Piping: 2 percent downward in direction of flow.

K. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.

L. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.4 JOINT CONSTRUCTION

A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."

E. Plastic, Nonpressure-Piping, Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.5 HANGER AND SUPPORT INSTALLATION

A. Pipe hangers and supports are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment". Install the following:

1. Vertical Piping: MSS Type 8 or Type 42, clamps.
2. Individual, Straight, Horizontal Piping Runs: According to the following:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls.

3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment".

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
2. NPS 3: 60 inches with 1/2-inch rod.
3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
4. NPS 6: 60 inches with 3/4-inch rod.
5. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

F. Install supports for vertical cast-iron soil piping every 15 feet.
G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4: 84 inches with 3/8-inch rod.
 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 3. NPS 2: 10 feet with 3/8-inch rod.

H. Install supports for vertical steel piping every 15 feet.

I. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.

J. Install supports for vertical copper tubing every 10 feet.

K. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.

C. Connect storm drainage piping to roof drains and storm drainage specialties.

3.7 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test storm drainage piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed new, altered, extended, or replaced storm drainage piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.

3. Test Procedure: Test storm drainage piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.

4. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

5. Prepare reports for tests and required corrective action.

3.8 CLEANING

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION 221413
SECTIONS 221423 – STORM DRAINAGE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following storm drainage piping specialties:
 1. Metal cleanouts.
 2. Through-penetration firestop assemblies.
 3. Flashing materials.
 B. Related Sections include the following:
 1. Division 22 Section "Sanitary Waste Piping Specialties" for backwater valves, floor drains, trench drains and channel drainage systems connected to sanitary sewer.

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE
 A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

1.5 COORDINATION
 A. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 METAL CLEANOUTS
 A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Mifab
B. Exposed Metal Cleanouts:
1. Standard: ASME A112.36.2M for cast iron/ASME A112.3.1 for stainless steel for cleanout test tee.
2. Size: Same as connected drainage piping
3. Body Material: As required to match connected piping.
4. Closure: Brass or cast-iron plug.
5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

C. Metal Floor Cleanouts:
1. Standard: ASME A112.36.2M for heavy-duty, adjustable housing cleanout.
2. Size: Same as connected branch.
3. Type: Heavy-duty, adjustable housing.
4. Body or Ferrule: Cast iron.
5. Clamping Device: Required.
7. Closure: Brass plug with straight threads and gasket.
8. Adjustable Housing Material: Cast iron with threads.
10. Frame and Cover Shape: Round.
11. Top Loading Classification: Heavy Duty.
12. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
14. Size: Same as connected branch.
15. Housing: Stainless steel.
17. Riser: Stainless-steel drainage pipe fitting to cleanout.

D. Cast-Iron Wall Cleanouts:
1. Standard: ASME A112.36.2M. Include wall access.
2. Size: Same as connected drainage piping.
3. Body: As required to match connected piping.
4. Closure: Brass or cast-iron plug.
5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.2 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:
2. Size: Same as connected pipe.
3. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.

5. Special Coating: Corrosion resistant on interior of fittings.

2.3 FLASHING MATERIALS

A. Copper Sheet: ASTM B 152/B 152M, 12 oz./sq. ft. thickness.

B. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04-inch minimum thickness, unless otherwise indicated. Include G90 hot-dip galvanized, mill-phosphatized finish for painting if indicated.

C. Fasteners: Metal compatible with material and substrate being fastened.

D. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

E. Solder: ASTM B 32, lead-free alloy.

F. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:

1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.

2. Locate at each change in direction of piping greater than 45 degrees.

3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.

4. Locate at base of each vertical soil and waste stack.

C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Install through-penetration firestop assemblies in plastic conductors and stacks at floor penetrations.
F. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.

G. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.

H. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:

1. **Lead Sheets**: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.

2. **Copper Sheets**: Solder joints of copper sheets.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.

 1. **Pipe Flashing**: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.

 2. **Sleeve Flashing**: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.

 3. **Embedded Specialty Flashing**: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221423
SECTION 221600 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipes, tubes, and fittings.
2. Piping specialties.
3. Piping and tubing joining materials.
4. Valves.
5. Mechanical sleeve seals.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:

1. Piping and Valves: 100 psig minimum unless otherwise indicated.

B. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 2 psig but not more than 5 psig, and is reduced to secondary pressure of more than 0.5 psig but not more than 2 psig.

1.5 SUBMITTALS

A. Product Data: For each type of the following:
1. Piping specialties.
2. Corrugated, stainless-steel tubing with associated components.
3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
4. Dielectric fittings.
5. Mechanical sleeve seals.

B. Qualification Data: For qualified professional engineer.

C. Welding certificates.

D. Field quality-control reports.

E. Operation and Maintenance Data: For motorized gas valves, pressure regulators to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.

B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

D. Protect stored PE pipes and valves from direct sunlight.

1.8 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after
arranging to provide purging and startup of natural-gas supply according to requirements indicated:

1. Notify Architect no fewer than fourteen days in advance of proposed interruption of natural-gas service.
2. Do not proceed with interruption of natural-gas service without Architect's written permission.

1.9 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53, black steel, Schedule 40, Type E or S, Grade B.

4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.

5. Mechanical Couplings:
 a. Steel flanges and tube with epoxy finish.
 b. Buna-nitrile seals.
 c. Steel bolts, washers, and nuts.
 d. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 e. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.
2.2 PIPING SPECIALTIES

A. Appliance Flexible Connectors:
 4. Corrugated stainless-steel tubing with polymer coating.
 5. Operating-Pressure Rating: 0.5 psig.

B. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 1. Copper-alloy convenience outlet and matching plug connector.
 2. Nitrile seals.
 3. Hand operated with automatic shutoff when disconnected.
 4. For indoor or outdoor applications.
 5. Adjustable, retractable restraining cable.

C. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

D. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

B. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES

A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.

B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
1. CWP Rating: 125 psig.
3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

C. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.
 1. CWP Rating: 125 psig.
 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 4. Service Mark: Initials "WOG" shall be permanently marked on valve body.

D. Two-Piece, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. BrassCraft Manufacturing Company; a Masco company.
 c. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation; a subsidiary of American Meter Company.
 3. Ball: Chrome-plated bronze.
 4. Stem: Bronze; blowout proof.
 5. Seats: Reinforced TFE; blowout proof.
 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 8. CWP Rating: 600 psig.
 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

E. Bronze Plug Valves: MSS SP-78.
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Lee Brass Company.

5. Operator: Square head or lug type with tamperproof feature where indicated.

6. Pressure Class: 125 psig.

7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.

8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

F. Cast-Iron, Nonlubricated Plug Valves: MSS SP-78.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 c. Xomox Corporation; a Crane company.

2. Body: Cast iron, complying with ASTM A 126, Class B.

3. Plug: Bronze or nickel-plated cast iron.

4. Seat: Coated with thermoplastic.

5. Stem Seal: Compatible with natural gas.

7. Operator: Square head or lug type with tamperproof feature where indicated.

8. Pressure Class: 125 psig.

9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.

10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

G. Cast-Iron, Lubricated Plug Valves: MSS SP-78.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Flowserve.
 b. Homestead Valve; a division of Olson Technologies, Inc.
 d. Milliken Valve Company.
 e. Mueller Co.; Gas Products Div.

2. Body: Cast iron, complying with ASTM A 126, Class B.

3. Plug: Bronze or nickel-plated cast iron.

4. Seat: Coated with thermoplastic.

5. Stem Seal: Compatible with natural gas.

7. Operator: Square head or lug type with tamperproof feature where indicated.

8. Pressure Class: 125 psig.

9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.

10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
2.5 DIELECTRIC FITTINGS

A. Dielectric Unions:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Central Plastics Company.
 e. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 f. Wilkins; Zurn Plumbing Products Group.

3. Combination fitting of copper alloy and ferrous materials.
4. Insulating materials suitable for natural gas.
5. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.

B. Dielectric Flanges:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Central Plastics Company.
 c. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 d. Wilkins; Zurn Plumbing Products Group.

3. Combination fitting of copper alloy and ferrous materials.
4. Insulating materials suitable for natural gas.
5. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.

C. Dielectric-Flange Kits:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Advance Products & Systems, Inc.
 b. Calpico Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.

3. Companion-flange assembly for field assembly.
4. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or PE bolt sleeves, phenolic washers, and steel backing washers.
5. Insulating materials suitable for natural gas.
6. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.

2.6 SLEEVES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

2.7 ESCUTCHEONS

A. General Requirements for Escutcheons: Manufactured wall and ceiling escutcheons and floor plates, with ID to fit around pipe or tube, and OD that completely covers opening.

B. One-Piece, Deep-Pattern Escutcheons: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Escutcheons: With set screw.
 1. Finish: Polished chrome-plated.

D. Split-Casting, Cast-Brass Escutcheons: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

E. One-Piece, Stamped-Steel Escutcheons: With set screw or spring clips and chrome-plated finish.

F. Split-Plate, Stamped-Steel Escutcheons: With concealed hinge, set screw or spring clips, and chrome-plated finish.

G. One-Piece, Floor-Plate Escutcheons: Cast-iron floor plate.

H. Split-Casting, Floor-Plate Escutcheons: Cast brass with concealed hinge and set screw.

2.8 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.
2.9 LABELING AND IDENTIFYING
 A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
 B. Inspect natural-gas piping according to NFPA 54, the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.
 C. Comply with NFPA 54, the International Fuel Gas Code requirements for prevention of accidental ignition.

3.3 INDOOR PIPING INSTALLATION
 A. Comply with NFPA 54, the International Fuel Gas Code for installation and purging of natural-gas piping.
 B. The Contractor shall extend from the Gas Company’s meter/regulator set outside the building where noted on the drawings, into the mechanical room and connect as indicated. Coordinate the high pressure piping, meter and regulator set with the Gas Company. Gas Company will furnish and install the high pressure line from their existing buried main to the building, furnish and install the meter and regulator. The Contractor shall include the Gas Company’s fees for the service installation as a part of the construction costs.
 C. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
 D. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
E. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

F. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

G. Install piping minimum 12" above accessible ceilings to allow sufficient space for ceiling panel removal. In general gas piping shall not be installed in occupied areas. If piping is required to be installed above occupied areas, then utilize steel piping with welded joints or copper piping with brazed joints. Install shut-off valves on either end of occupied areas for isolation.

H. Locate valves for easy access.

I. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

J. Install piping free of sags and bends.

K. Install fittings for changes in direction and branch connections.

L. Install escutcheons at penetrations of interior walls, ceilings, and floors.

1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 c. Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 d. Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
 e. Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 f. Piping in Equipment Rooms: One-piece, cast-brass type.
 g. Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

N. Verify final equipment locations for roughing-in.

O. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

P. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and
same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

Q. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

R. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

S. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.

1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.

2. In Floors: Install natural-gas piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.

3. In Floor Channels: Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.

4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.

 a. Exception: Tubing passing through partitions or walls does not require striker barriers.

5. Prohibited Locations:

 a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.

 b. Do not install natural-gas piping in solid walls or partitions.

T. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

U. Connect branch piping from top or side of horizontal piping.

V. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

W. Do not use natural-gas piping as grounding electrode.

X. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

Y. Install pressure gage downstream from each line regulator. Pressure gages are specified in Division 22 Section "Meters and Gages for Plumbing Piping."
3.4 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.

B. Install underground valves with valve boxes.

C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

3.5 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook, "Pipe and Tube" Chapter.

F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

G. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hangers and supports specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

3.7 CONNECTIONS

A. Install natural-gas piping electrically continuous and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

B. Install piping adjacent to appliances to allow service and maintenance of appliances.

C. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

D. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.8 LABELING AND IDENTIFYING

A. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for piping and valve identification.

B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.9 PAINTING

A. Comply with requirements in Division 09 painting Sections for painting interior and exterior natural-gas piping.

B. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.10 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Test, inspect, and purge natural gas according to NFPA 54 and the International Fuel Gas Code and authorities having jurisdiction.
C. Natural-gas piping will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports.

3.11 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain earthquake valves.

3.12 OUTDOOR PIPING SCHEDULE
A. Aboveground natural-gas piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

3.13 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG
A. Aboveground, branch piping NPS 1 and smaller shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Socket welded joints shall be used on piping installed in return air plenums.
B. Aboveground, distribution piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Socket welded joints shall be used on piping installed in return air plenums.

3.14 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 0.5 PSIG AND LESS THAN 5 PSIG
A. Aboveground, branch piping NPS 1 and smaller shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Socket welded joints shall be used on piping installed in return air plenums.
B. Aboveground, distribution piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Socket welded joints shall be used on piping installed in return air plenums.
C. Underground, below building, piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

3.15 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE
A. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following:
1. Two-piece, full or regular-port, bronze ball valves with bronze trim.
2. Bronze plug valve.

B. Distribution piping valves for pipe sizes NPS 2-1/2 and larger shall be one of the following:

1. Two-piece, full or regular-port, bronze ball valves with bronze trim.
2. Bronze plug valve.
3. Cast-iron, nonlubricated or lubricated plug valve.

C. Valves in branch piping for single appliance shall be one of the following:

1. Two-piece, full or regular-port, bronze ball valves with bronze trim.
2. Bronze plug valve.

END OF SECTION 221600
SECTION 226113 - COMPRESSED-AIR PIPING FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 SpecificationSections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Medical air piping and specialties, designated "medical air," operating at 50 to 55 psig.
2. Healthcare laboratory air piping and specialties, designated "medical laboratory air," operating at 100 psig.

B. Related Sections include the following:

1. Division 12 Section "Healthcare Casework" for compressed-air outlets in medical casework.

1.3 DEFINITIONS

A. D.I.S.S.: Diameter-index safety system.

B. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

C. Medical Compressed-Air Piping Systems: Include medical air, dental air and medical laboratory air piping systems.

1.4 SUBMITTALS

A. Product Data: For the following:

1. Compressed-air tubes and fittings.
2. Compressed-air valves and valve boxes.
3. Medical compressed-air service connections.
4. Medical compressed-air pressure control panels.
5. Medical compressed-air manifolds.
6. Medical compressed-air alarm system components.

B. Shop Drawings: Diagram power, signal, and control wiring.
C. Piping Material Certification: Signed by Installer certifying that medical compressed-air piping materials comply with NFPA 99 requirements.

D. Qualification Data: For testing agency.

E. Brazing certificates.

F. Field quality-control test reports.

G. Operation and Maintenance Data: For compressed-air piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Medical Compressed-Air Piping Systems for Healthcare Facilities: Qualify installers according to ASSE Standard #6010.
 2. Pressure-Seal Joining Procedure for Copper Tubing: Qualify operators according to training provided by Viega; Plumbing and Heating Systems.

B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the vacuum piping testing indicated, that is a member of the Medical Gas Professional Healthcare Organization or is an NRTL, and that is acceptable to authorities having jurisdiction.
 1. Qualify testing personnel according to ASSE Standard #6020 for inspectors and ASSE Standard #6030 for verifiers.

C. Source Limitations: Obtain compressed-air service connections of same type and from same manufacturer as service connections provided for in Division 22 Section "Gas Piping for Laboratory and Healthcare Facilities."

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

F. ASME Compliance:
 1. Comply with ASME B31.9, "Building Services Piping," for laboratory compressed-air piping operating at 150 psig or less.

1.6 PROJECT CONDITIONS

A. Interruption of Existing Laboratory and Medical Compressed-Air Service(s): Do not interrupt laboratory or medical compressed-air service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:

1. Notify Architect no fewer than seven days in advance of proposed interruption of laboratory and medical compressed-air service(s).
2. Do not proceed with interruption of laboratory and medical compressed-air service(s) without Architect’s written permission.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate medical compressed-air service connections with other service connections. Medical vacuum service connections are specified in Division 22 Section "Vacuum Piping for Laboratory and Healthcare Facilities," and medical gas service connections are specified in Division 22 Section "Gas Piping for Laboratory and Healthcare Facilities."

1.8 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Quick-Coupler Service Connections: Furnish complete noninterchangeable medical compressed-air pressure outlets.
 a. Medical Compressed-Air Service Connections: Equal to ten percent of amount installed, but no fewer than two units.

 a. Compressed-Air D.I.S.S. No. 1160: Equal to ten percent of amount installed, but no fewer than two units.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Copper Medical Gas Tube: ASTM B 819, Type L, seamless, drawn temper, that has been manufacturer cleaned, purged, and sealed for medical gas service or according to CGA G-4.1 for oxygen service. Include standard color marking "OXY," "MED," "OXY/MED," "OXY/ACR," or "ACR/MED" in blue for Type L tube.
1. General Requirements for Copper Fittings: Manufacturer cleaned, purged, and bagged for oxygen service according to CGA G-4.1.
2. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type or MSS SP-73, with dimensions for brazed joints.
3. Copper Unions: ASME B16.22 or MSS SP-123, wrought copper or cast-copper alloy.
4. Press-Type Fittings:
 a. NPS 2 and Smaller: Wrought-copper fitting with EPDM O-ring seal in each end.
 b. NPS 2-1/2 to NPS 4: Bronze fitting with stainless-steel grip ring and EPDM O-ring seal in each end.

B. Memory-Metal Couplings: Cryogenic compression fitting made of ASTM F 2063, nickel-titanium, shape-memory alloy, and that has been manufacturer cleaned, purged, and sealed for oxygen service according to CGA G-4.1.

C. Copper Water Tube: ASTM B 88, Type M, seamless, drawn temper.
 2. Press-Type Fittings:
 a. NPS 2 and Smaller: Wrought-copper fitting with EPDM O-ring seal in each end.
 b. NPS 2-1/2 to NPS 4: Bronze fitting with stainless-steel grip ring and EPDM O-ring seal in each end.

2.2 JOINING MATERIALS

A. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
B. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.
C. Threaded-Joint Tape: PTFE.
D. Solvent Cement for Joining PVC Piping: ASTM D 2564. Include primer complying with ASTM F 656.

2.3 VALVES

A. General Requirements for Valves: Manufacturer cleaned, purged, and bagged according to CGA G-4.1 for oxygen service.
B. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. BeaconMedaes.
C. Ball Valves: MSS SP-110, 3-piece body, brass or bronze.
1. Pressure Rating: 300 psig minimum.
2. Ball: Full-port, chrome-plated brass.
3. Seats: PTFE or TFE.
4. Handle: Lever type with locking device.
5. Stem: Blowout proof with PTFE or TFE seal.

D. Check Valves: In-line pattern, bronze.
 1. Pressure Rating: 300 psig minimum.
 2. Operation: Spring loaded.

E. Zone Valves: MSS SP-110, 3-piece-body, brass or bronze ball valve with gage.
 1. Pressure Rating: 300 psig minimum.
 2. Ball: Full-port, chrome-plated brass.
 3. Seats: PTFE or TFE.
 4. Handle: Lever type with locking device.
 5. Stem: Blowout proof with PTFE or TFE seal.
 7. Pressure Gage: Manufacturer installed on one copper-tube extension.

F. Zone Valve Boxes: Formed steel with anchors for recessed mounting, holes with grommets in box sides for tubing extension protection, and of size for single or multiple valves with pressure gages and in sizes required to permit manual operation of valves.
 1. Interior Finish: Factory-applied white enamel.
 2. Cover Plate: Aluminum or extruded-anodized aluminum with frangible or removable windows.
 3. Valve-Box Windows: Clear or tinted transparent plastic with labeling that includes rooms served, according to NFPA 99.

G. Safety Valves: Bronze-body, ASME-construction, poppet, pressure-relief type with settings to match system requirements.

H. Pressure Regulators: Bronze body and trim; spring-loaded, diaphragm-operated relieving type; manual pressure-setting adjustment; rated for 250-psig minimum inlet pressure; and capable of controlling delivered air pressure within 0.5 psig for each 10-psig inlet pressure.

I. Automatic Drain Valves: Stainless-steel body and internal parts, rated for 200-psig minimum working pressure, capable of automatic discharge of collected condensate. Include mounting bracket where wall mounting is indicated.

2.4 MEDICAL COMPRESSED-AIR SERVICE CONNECTIONS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. BeaconMedaes.
B. Connection Devices: For specific medical compressed-air pressure and service listed. Include roughing-in assemblies, finishing assemblies, and cover plates. Individual cover plates are not required if service connection is in multiple unit or assembly with cover plate. Furnish recessed-type units made for concealed piping unless otherwise indicated.

1. Roughing-in Assembly:
 a. Steel outlet box for recessed mounting and concealed piping.
 b. Brass-body outlet block with secondary check valve that will prevent gas flow when primary valve is removed.
 c. Double seals that will prevent air leakage.
 d. ASTM B 819, NPS 3/8 copper outlet tube brazed to valve with service marking and tube-end dust cap.

2. Finishing Assembly:
 a. Brass housing with primary check valve.
 b. Double seals that will prevent air leakage.
 c. Cover plate with gas-service label.

3. Quick-Coupler Service Connections: Pressure outlet with noninterchangeable keyed indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment, and with positive-locking ring that retains equipment stem in valve during use.

4. D.I.S.S. Service Connections: Pressure outlets, complying with CGA V-5, with threaded indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment.

5. Cover Plates: One piece, stainless steel, with NAAMM AMP 503, No. 4 finish or anodized aluminum and permanent, color-coded, identifying label matching corresponding service.

2.5 MEDICAL COMPRESSED-AIR MANIFOLDS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. BeaconMeades.

B. General Requirements for Medical Compressed-Air Manifolds: Comply with NFPA 99, Ch. 5, "Manifolds for Gas Cylinders without Reserve Supply."

C. Central Control Panel Unit: Weatherproof cabinet, supply and delivery pressure gages, electrical alarm system connections and transformer, indicator lights or devices, manifold connection, pressure changeover switch, line-pressure regulator, shutoff valves, and safety valve.
D. Manifold and Headers: Duplex, nonferrous-metal header for number of cylinders indicated, divided into two equal banks. Units include design for 2000-psig minimum inlet pressure. Include cylinder bank headers with inlet (pigtail) connections complying with CGA V-1, individual inlet check valves, shutoff valve, pressure regulator, check valve, and pressure gage.

E. Compressed-Air Cylinders: Will be furnished by Owner.

F. Operation: Automatic, pressure-switch-activated changeover from one cylinder bank to the other when first bank becomes exhausted, without line-pressure fluctuation or resetting of regulators and without supply interruption by shutoff of either cylinder bank header.

G. Mounting: Wall with mounting brackets for manifold control cabinet and headers/Floor with support legs for manifold control cabinet.

H. Label manifold control unit with permanent label identifying compressed air and system operating pressure.

I. Medical Air Manifolds: For number of cylinders and capacity at 55-psig line pressure.

2.6 MEDICAL COMPRESSED-AIR-PIPING ALARM SYSTEMS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. BeaconMedaes.

B. Components: Designed for continuous service and to operate on power supplied from 120-V ac power source to alarm panels and with connections for low-voltage wiring to remote sensing devices. Include step-down transformers if required.

C. Dew Point Monitors: Continuous line monitoring, having panel with gage or digital display, pipeline sensing element, electrical connections for alarm system, factory- or field-installed valved bypass, and visual and cancelable audio signal for dryer site and master alarm panels. Alarm signals when pressure dew point rises above 39 deg F at 55 psig.

D. Pressure Switches or Transducer Sensors: Continuous line monitoring with electrical connections for alarm system.

1. Low-Pressure Operating Range: 0- to 100-psig.
2. High-Pressure Operating Range: Up to 250-psig.

E. Carbon Monoxide Monitors: Panel with gage or digital display, pipeline sensing element, electrical connections for alarm system, and factory- or field-installed valved bypass. Alarm signals when carbon monoxide level rises above 10 ppm.

2.7 FLEXIBLE PIPE CONNECTORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Flex-Hose Co., Inc.
2. Flexicraft Industries.
3. Hyspan Precision Products, Inc.
4. Metraflex, Inc.
5. Unaflex.
6. Universal Metal Hose; a Hyspan Co.

B. **Description:** Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.

1. **Working-Pressure Rating:** 200 psig minimum.
2. **End Connections:** Threaded copper pipe or plain-end copper tube.

2.8 SLEEVES

A. **Galvanized-Steel Sheet:** 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. **Stack Sleeve Fittings:** Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.

1. **Underdeck Clamp:** Clamping ring with set screws.

2.9 ESCUTCHEONS

A. **General Requirements for Escutcheons:** Manufactured wall and ceiling escutcheons and floor plates, with ID to closely fit around pipe and tube and OD that completely covers opening.

B. **One-Piece, Deep-Pattern Escutcheons:** Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. **One-Piece, Cast-Brass Escutcheons:** With set screw.

1. **Finish:** Polished chrome-plated.

D. **Split-Casting, Cast-Brass Escutcheons:** With concealed hinge and set screw.

1. **Finish:** Polished chrome-plated.

E. **One-Piece, Stamped-Steel Escutcheons:** With set screw or spring clips and chrome-plated finish.

F. **Split-Plate, Stamped-Steel Escutcheons:** With concealed hinge, set screw or spring clips, and chrome-plated finish.

G. **One-Piece, Floor-Plate Escutcheons:** Cast iron.

H. **Split-Casting, Floor-Plate Escutcheons:** Cast brass with concealed hinge and set screw.
2.10 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 PREPARATION

A. Cleaning of Medical Gas Tubing: If manufacturer-cleaned and -capped fittings or tubing are not available or if precleaned fittings or tubing must be recleaned because of exposure, have supplier or separate agency acceptable to authorities having jurisdiction perform the following procedures:

1. Clean medical gas tube and fittings, valves, gages, and other components of oil, grease, and other readily oxidizable materials as required for oxygen service according to CGA G-4.1, "Cleaning Equipment for Oxygen Service."
2. Wash medical gas tubing and components in hot, alkaline-cleaner-water solution of sodium carbonate or trisodium phosphate in proportion of 1 lb of chemical to 3 gal. of water.
 a. Scrub to ensure complete cleaning.
 b. Rinse with clean, hot water to remove cleaning solution.

3.2 PIPING APPLICATIONS

A. Connect new tubing to existing tubing with memory-metal couplings.

B. Medical Air Piping: Use Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.

C. Dental Air Piping: Use Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.

D. Medical Laboratory Air Piping: Use Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.

E. Drain Piping: Use one of the following piping materials:
 1. Copper water tube, cast- or wrought-copper fittings, and soldered joints.
3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of compressed-air piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Comply with ASSE Standard #6010 for installation of compressed-air piping.

C. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.

F. Install piping adjacent to equipment and specialties to allow service and maintenance.

G. Install air and drain piping with 1 percent slope downward in direction of flow.

H. Install nipples, unions, special fittings, and valves with pressure ratings same as or higher than system pressure rating used in applications below unless otherwise indicated.

I. Install eccentric reducers, if available, where compressed-air piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.

J. Install branch connections to compressed-air mains from top of main. Provide drain leg and drain trap at end of each main and branch and at low points.

K. Install thermometer and pressure gage on discharge piping from each air compressor and on each receiver. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping."

L. Install piping to permit valve servicing.

M. Install piping free of sags and bends.

N. Install fittings for changes in direction and branch connections.

O. Install medical compressed-air piping to medical compressed-air service connections specified in this Section, to medical compressed-air service connections in equipment specified in Division 22 Section "Gas Piping for Laboratory and Healthcare Facilities," and to equipment specified in other Sections requiring medical compressed-air service.

P. Install seismic restraints on compressed-air piping. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."

Q. Install compressed-air service connections recessed in walls. Attach roughing-in assembly to substrate; attach finishing assembly to roughing-in assembly.
R. Connect compressed-air piping to air compressors and to compressed-air outlets and equipment requiring compressed-air service.

S. Install unions in copper compressed-air tubing adjacent to each valve and at final connection to each piece of equipment, machine, and specialty.

3.4 VALVE INSTALLATION

A. Install shutoff valve at each connection to and from compressed-air equipment and specialties.

B. Install check valves to maintain correct direction of compressed-air flow from compressed-air equipment.

C. Install valve boxes recessed in wall and anchored to substrate. Single boxes may be used for multiple valves that serve same area or function.

D. Install zone valves and gages in valve boxes. Rotate valves to angle that prevents closure of cover when valve is in closed position.

E. Install safety valves on compressed-air receivers where required by NFPA 99 and where recommended by specialty manufacturers.

F. Install pressure regulators on compressed-air piping where reduced pressure is required.

G. Install automatic drain valves on equipment, specialties, and piping with drain connection. Run drain piping to floor drain so contents spill over or into it.

H. Install flexible pipe connectors in discharge piping of each air compressor.

3.5 JOINT CONSTRUCTION

A. Ream ends of PVC pipes and remove burrs.

B. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.

C. Threaded Joints: Apply appropriate tape to external pipe threads.

D. Brazed Joints: Join copper tube and fittings according to CDA’s “Copper Tube Handbook,” “Brazed Joints” Chapter. Continuously purge joint with oil-free dry nitrogen during brazing.

E. Soldered Joints: Apply ASTM B 813, water-flushable flux to tube end. Join copper tube and fittings according to ASTM B 828.

F. Pressure-Sealed Joints: Join copper tube and press-type fittings with tools recommended by fitting manufacturer.

G. Memory-Metal Coupling Joints: Join new copper tube to existing tube according to procedures developed by fitting manufacturer for installation of memory-metal coupling joints.
H. Solvent-Cemented Joints: Clean and dry joining surfaces. Join PVC pipe and fittings according to the following:

1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
2. Apply primer and join according to ASME B31.9 for solvent-cemented joints, and ASTM D 2672.

3.6 SLEEVE INSTALLATION

A. Sleeves are not required for core-drilled holes.

B. Permanent sleeves are not required for holes formed by removable PE sleeves.

C. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs using galvanized-steel pipe/stack sleeve fittings.

1. Wall Penetrations: Cut sleeves to length for mounting flush with both surfaces.
2. Floor Penetrations: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

D. Install sleeves in new walls and slabs as new walls and slabs are constructed.

E. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:

2. Steel Sheet Sleeves: For pipes NPS 6 and larger penetrating gypsum board partitions.
3. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements in Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 a. Seal space outside of sleeve fittings with grout.

F. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.7 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
c. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
d. Bare Piping in Unfinished Service Spaces: One piece, cast brass with rough-brass finish, stamped steel with set screw or spring clips.
e. Bare Piping in Equipment Rooms: One piece, cast brass stamped steel with set screw or spring clips.
f. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

2. Existing Piping:
b. Insulated Piping: Split plate, stamped steel with concealed hinge and spring clips.
c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split casting, cast brass with chrome-plated finish.
d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split casting, cast brass with chrome-plated finish.
e. Bare Piping in Unfinished Service Spaces: Split casting, cast brass with rough-brass finish/plate, stamped steel with concealed hinge and set screw or spring clips.
f. Bare Piping in Equipment Rooms: Split casting, cast brass/plate, stamped steel with set screw or spring clips.
g. Bare Piping at Floor Penetrations in Equipment Rooms: Split-casting floor plate.

3.8 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.

B. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.

C. Vertical Piping: MSS Type 8 or 42, clamps.

D. Individual, Straight, Horizontal Piping Runs:
 1. 100 Feet and Less: MSS Type 1, adjustable, steel, clevis hangers.
 2. Longer Than 100 Feet: MSS Type 43, adjustable, roller hangers.

E. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for trapeze hangers.

F. Base of Vertical Piping: MSS Type 52, spring hangers.

G. Support horizontal piping within 12 inches of each fitting and coupling.

H. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

I. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
1. NPS 1/4: 60 inches with 3/8-inch rod.
2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
4. NPS 1: 96 inches with 3/8-inch rod.
6. NPS 1-1/2: 10 feet with 3/8-inch rod.
7. NPS 2: 11 feet with 3/8-inch rod.
8. NPS 2-1/2: 13 feet with 1/2-inch rod.
9. NPS 3: 14 feet with 1/2-inch rod.
10. NPS 3-1/2: 15 feet with 1/2-inch rod.
11. NPS 4: 16 feet with 1/2-inch rod.
12. NPS 5: 18 feet with 1/2-inch rod.
14. NPS 8: 23 feet with 3/4-inch rod.

J. Install supports for vertical copper tubing every 10 feet.

3.9 LABELING AND IDENTIFICATION

A. Install identifying labels and devices for nonmedical laboratory compressed-air piping, valves, and specialties. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment."

B. Install identifying labels and devices for medical compressed-air piping systems according to NFPA 99. Use the following or similar captions and color-coding for piping products where required by NFPA 99:

1. Medical Air: Black letters on yellow background.
2. Dental Air: Black letters on yellow-and-white diagonal stripe background.
3. Medical Laboratory Air: Black letters on yellow-and-white checkerboard background.

3.10 FIELD QUALITY CONTROL FOR MEDICAL COMPRESSED-AIR PIPING IN HEALTHCARE FACILITIES

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections of medical compressed-air piping in healthcare facilities and prepare test reports.

B. Perform tests and inspections of medical compressed-air piping systems in healthcare facilities and prepare test reports.

C. Tests and Inspections:

1. Medical Compressed-Air Testing Coordination: Perform tests, inspections, verifications, and certification of medical compressed-air piping systems concurrently with tests, inspections, and certification of medical vacuum piping and medical gas piping systems.

2. Preparation: Perform the following Installer tests according to requirements in NFPA 99 and ASSE Standard #6010:

 a. Initial blowdown.
 b. Initial pressure test.
c. Cross-connection test.
d. Piping purge test.
e. Standing pressure test for positive-pressure medical compressed-air piping.
f. Repair leaks and retest until no leaks exist.

3. System Verification: Comply with requirements in NFPA 99, ASSE Standard #6020, and ASSE Standard #6030 for verification of medical compressed-air piping systems and perform the following tests and inspections:
 a. Standing pressure test.
 b. Individual-pressurization or pressure-differential cross-connection test.
 c. Valve test.
 d. Master and area alarm tests.
 e. Piping purge test.
 f. Piping particulate test.
 g. Piping purity test.
 h. Final tie-in test.
 i. Operational pressure test.
 j. Medical air purity test.
 k. Verify correct labeling of equipment and components.

4. Testing Certification: Certify that specified tests, inspections, and procedures have been performed and certify report results. Include the following:
 a. Inspections performed.
 b. Procedures, materials, and gases used.
 c. Test methods used.
 d. Results of tests.

D. Remove and replace components that do not pass tests and inspections and retest as specified above.

3.11 DEMONSTRATION

A. Engage factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain medical compressed-air alarm systems. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 226113
SECTION 226213 – VACUUM PIPING FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Medical surgical vacuum piping and specialties, designated "medical vacuum" operating at 20 inches mercury.
2. Waste anesthetic gas disposal piping and specialties, designated "WAGD evacuation" operating at 15 inches mercury.
3. Healthcare laboratory vacuum piping and specialties, designated "medical laboratory vacuum" operating at 20 inches mercury.

B. Related Sections include the following:

1.3 DEFINITIONS

A. D.I.S.S.: Diameter-index safety system.
B. HVE: High-volume (oral) evacuation.
C. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
D. WAGD: Waste anesthetic gas disposal.
E. Medical vacuum piping systems include medical vacuum, WAGD evacuation, dental vacuum and medical laboratory vacuum piping systems.

1.4 SUBMITTALS

A. Product Data: For the following:

1. Vacuum pipes, tubes and fittings.
2. Vacuum valves and valve boxes.
3. Medical vacuum service connections and vacuum-bottle brackets.

B. Shop Drawings: Diagram power, signal, and control wiring.
1.5 QUALITY ASSURANCE

A. Installer Qualifications:

1. Medical Vacuum Piping Systems for Healthcare Facilities: Qualify installers according to ASSE Standard #6010.
2. Pressure-Seal Joining Procedure for Copper Tubing: Qualify operators according to training provided by Viega; Plumbing and Heating Systems.

B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the vacuum piping testing indicated, that is a member of the Medical Gas Professional Healthcare Organization or is an NRTL, and that is acceptable to authorities having jurisdiction.

1. Qualify testing personnel according to ASSE Standard #6020 for inspectors and ASSE Standard #6030 for verifiers.

C. Source Limitations: Obtain vacuum service connections of same type and from same manufacture as service connections provided for in Division 22 Section "Gas Piping for Laboratory and Healthcare Facilities".

D. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications," or AWS B2.2, "Standard for Brazing Procedure and Performance Qualification".

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

F. Comply with ASME B31.9, "Building Services Piping", for vacuum piping in laboratory facilities.

1.6 PROJECT CONDITIONS

A. Interruption of Existing Laboratory and Medical Vacuum Service(s): Do not interrupt laboratory or medical vacuum service to facilities occupied by Owner or others unless permitted under the
following conditions and then only after arranging to provide temporary service according to requirements indicated:

1. Notify Architect no fewer than seven days in advance of proposed interruption of laboratory and medical vacuum service(s).
2. Do not proceed with interruption of laboratory and medical vacuum service(s) without Architect's written permission.

1.7 COORDINATION

A. Coordinate medical vacuum service connections with other service connections.

1.8 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Quick-Coupler Service Connections: Furnish complete noninterchangeable medical vacuum suction inlets.
 a. Medical Vacuum Service Connections: Equal to 10 percent of amount installed, but no fewer than two units.
 b. WAGD Evacuation Service Connections: Equal to 10 percent of amount installed, but no fewer than two units.

 a. Medical Vacuum D.I.S.S. No. 1220: Equal to 10 percent of amount installed, but no fewer than two units.
 b. WAGD Evacuation D.I.S.S. No. 2220: Equal to 10 percent of amount installed, but no fewer than two units.

3. Medical Vacuum Bottle Brackets: Equal to 10 percent of amount installed, but no fewer than two units.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Copper Medical Gas Tube: ASTM B 819, Type L, seamless, drawn temper that has been manufacturer cleaned, purged, and sealed for medical gas service or according to CGA G-4.1 for oxygen service. Include standard color marking "OXY", "MED", "OXY/MED", "OXY/ACR", or "ACR/MED" in blue.

 1. General Requirements for Copper Fittings: Manufacturer cleaned, purged, and bagged for oxygen service according to CGA G-4.1.
2. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type or MSS SP-73, with dimensions for brazed joints.
3. Copper Unions: ASME B16.22 or MSS SP-123, wrought copper or cast-copper alloy.
4. Press-Type Fittings:
 a. NPS 2 and Smaller: Wrought-copper fitting with EPDM O-ring seal in each end.
 b. NPS 2-1/2 to NPS 4: Bronze fitting with stainless-steel grip ring and EPDM O-ring seal in each end.

B. Memory-Metal Couplings: Cryogenic compression fitting made of ASTM F 2063, nickel-titanium, shape-memory alloy, and that has been manufacturer cleaned, purged, and sealed for oxygen service according to CGA G-4.1.

2.2 JOINING MATERIALS

A. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
B. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.
C. Threaded-Joint Tape: PTFE.
D. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness, full-face type.
E. Flange Bolts and Nuts: ASME B18.2.1, carbon steel.

2.3 VALVES

A. General Requirements for Valves: Manufacturer cleaned, purged, and bagged according to CGA G-4.1 for oxygen service.
 1. Exception: Factory cleaning and bagging are not required for valves for WAGD service.
B. Copper-Alloy Ball Valves: MSS SP-110, 3-piece body, brass or bronze.
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. BeaconMedaes.
 2. Pressure Rating: 300 psig minimum.
 4. Seats: PTFE or TFE.
 5. Handle: Lever type with locking device.
 6. Stem: Blowout proof with PTFE or TFE seal.
C. Bronze Check Valves: In-line pattern.
1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. BeaconMedaes.

2. Pressure Rating: 300 psig minimum.

D. Zone Valves: MSS SP-110, 3-piece-body, brass or bronze ball valve with gage.
1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. BeaconMedaes.

2. Pressure Rating: 300 psig minimum.
4. Seats: PTFE or TFE.
5. Handle: Lever type with locking device.
6. Stem: Blowout proof with PTFE or TFE seal.
8. Vacuum Gage: Manufacturer installed on one copper-tube extension.

E. Zone Valve Boxes: Formed steel with anchors for recessed mounting, holes with grommets in box sides for tubing extension protection, and of size for single or multiple valves with vacuum gages and in sizes required to permit manual operation of valves.
1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. BeaconMedaes.

2. Interior Finish: Factory-applied white enamel.
3. Cover Plate: Aluminum or extruded-anodized aluminum with frangible or removable windows.
4. Valve-Box Windows: Clear or tinted transparent plastic with labeling that includes rooms served, according to NFPA 99.

F. Safety Valves: Bronze-body, ASME-construction, pressure-relief type with settings to match system requirements.

G. Automatic Drain Valves: Stainless-steel body and internal parts, rated for 200-psig minimum working pressure, capable of automatic discharge of collected condensate. Include mounting bracket where wall mounting is indicated.

2.4 MEDICAL VACUUM SERVICE CONNECTIONS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by the following:
1. BeaconMedaes Gemini III

B. Connection Devices: For specific medical vacuum service listed. Include roughing-in assemblies, finishing assemblies, and cover plates. Individual cover plates are not required if service connection is in multiple unit or assembly with cover plate. Furnish recessed-type units made for concealed piping unless otherwise indicated.

1. Roughing-in Assembly:
 a. Steel outlet box for recessed mounting and concealed piping.
 b. Brass-body inlet block.
 c. Seals that will prevent vacuum leakage.
 d. ASTM B 819, NPS 3/8 copper outlet tube brazed to valve with service marking and tube-end dust cap.

2. Finishing Assembly:
 a. Brass housing with primary check valve.
 b. Seals that will prevent vacuum leakage.
 c. Cover plate with gas-service label.

3. Quick-Coupler Service Connections: Suction inlets for medical vacuum and WAGD evacuation service outlets with noninterchangeable keyed indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment, and with positive-locking ring that retains equipment stem in valve during use.

4. D.I.S.S. Service Connections: Suction inlets, complying with CGA V-5, with threaded indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment.

5. Vacuum Bottle Brackets: One piece, with pattern and finish matching corresponding service cover plate.

6. Cover Plates: One piece, anodized aluminum and permanent, color-coded, identifying label matching corresponding service.

2.5 MEDICAL VACUUM PIPING ALARM SYSTEMS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. BeaconMedaes.

B. Components: Designed for continuous service and to operate on power supplied from 120-V ac power source to alarm panels and with connections for low-voltage wiring to remote sensing devices. Include step-down transformers if required.

C. Vacuum Switches or Transducer Sensors: Continuous line monitoring with electrical connections for alarm system.
1. Vacuum Operating Range: 0- to 30-in. Hg.

2.6 FLEXIBLE PIPE CONNECTORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flex-Hose Co., Inc.
2. Flexicraft Industries.
3. Hyspan Precision Products, Inc.
4. Metraflex, Inc.
5. Universal Metal Hose; a Hyspan Co.

B. Description: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.

2. End Connections: Threaded copper pipe or plain-end copper tube.

2.7 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with set screws.

2.8 ESCUTCHEONS

A. General Requirements for Escutcheons: Manufactured wall and ceiling escutcheons and floor plates, with ID to closely fit around pipe and tube and OD that completely covers opening.

B. One-Piece, Deep-Pattern Escutcheons: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Escutcheons: With set screw.

1. Finish: Polished chrome-plated and rough brass.

D. Split-Casting, Cast-Brass Escutcheons: With concealed hinge and set screw.

1. Finish: Polished chrome-plated and rough brass.

E. One-Piece, Stamped-Steel Escutcheons: With set screw or spring clips and chrome-plated finish.
F. Split-Plate, Stamped-Steel Escutcheons: With concealed hinge, set screw or spring clips, and chrome-plated finish.

G. One-Piece, Floor-Plate Escutcheons: Cast iron.

H. Split-Casting, Floor-Plate Escutcheons: Cast brass with concealed hinge and set screw.

2.9 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.

 2. Design Mix: 5000-psi, 28-day compressive strength.

2.10 NITROGEN

A. Description: Comply with USP 28 - NF 23 for oil-free dry nitrogen.

PART 3 - EXECUTION

3.1 PREPARATION

A. Cleaning of Medical Gas Tubing: If manufacturer-cleaned and -capped fittings or tubing are not available or if precleaned fittings or tubing must be recleaned because of exposure, have supplier or separate agency acceptable to authorities having jurisdiction perform the following procedures:

 1. Clean medical gas tube and fittings, valves, gages, and other components of oil, grease, and other readily oxidizable materials as required for oxygen service according to CGA G-4.1, "Cleaning Equipment for Oxygen Service".
 2. Wash medical gas tubing and components in hot, alkaline-cleaner-water solution of sodium carbonate or trisodium phosphate in proportion of 1 lb of chemical to 3 gal. of water.

 a. Scrub to ensure complete cleaning.
 b. Rinse with clean, hot water to remove cleaning solution.

3.2 PIPING APPLICATIONS

A. Connect new copper tubing to existing tubing with memory-metal couplings.

B. Medical Vacuum Piping: Use one of the following piping materials for each size range:

 1. NPS 4 and Smaller: Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.
2. NPS 4 and Smaller: Type L, copper medical gas tube; press-type fittings; and pressure-sealed joints.
3. NPS 5 to NPS 8: Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.

C. WAGD Evacuation Piping: Use one of the following piping materials for each size range:
 1. NPS 4 and Smaller: Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.
 2. NPS 4 and Smaller: Type L, copper medical gas tube; press-type fittings; and pressure-sealed joints.
 3. NPS 5 to NPS 8: Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.

D. Medical Laboratory Vacuum Piping: Use one of the following piping materials for each size range:
 1. NPS 4 and Smaller: Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.
 2. NPS 4 and Smaller: Type L, copper medical gas tube; press-type fittings; and pressure-sealed joints.
 3. NPS 5 to NPS 8: Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.

E. Drain Piping: Use one of the following piping materials:
 1. Copper water tube, cast- or wrought-copper fittings, and soldered joints.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of vacuum piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Comply with ASSE Standard #6010 for installation of vacuum piping.

C. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.

F. Install piping adjacent to equipment and specialties to allow service and maintenance.

G. Install vacuum and drain piping with 1 percent slope downward in direction of flow.
H. Install nipples, unions, and special fittings, and valves with pressure ratings same as or higher than piping pressure rating used in applications below unless otherwise indicated.

I. Install eccentric reducers, if available, where vacuum piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.

J. Provide drain leg and drain trap at end of each main and branch and at low points.

K. Install thermometer and vacuum gage on inlet piping to each vacuum producer and on each receiver and separator. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping".

L. Install piping to permit valve servicing.

M. Install piping free of sags and bends.

N. Install fittings for changes in direction and for branch connections. Extruded-tee branch outlets in copper tubing may be made where specified.

O. Install medical vacuum piping to medical vacuum service connections specified in this Section and to equipment specified in other Sections requiring medical vacuum service.

P. Install seismic restraints on vacuum piping. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment".

Q. Install medical vacuum service connections recessed in walls. Attach roughing-in assembly to substrate; attach finishing assembly to roughing-in assembly.

R. Install medical vacuum bottle bracket adjacent to each wall-mounted medical vacuum service connection suction inlet.

S. Connect vacuum piping to vacuum producers and to equipment requiring vacuum service.

T. Install unions, in copper vacuum tubing adjacent to each valve and at final connection to each piece of equipment, machine, and specialty.

3.4 VALVE APPLICATIONS

A. Valves for Copper Vacuum Tubing: Use copper alloy ball and bronze check types.

3.5 VALVE INSTALLATION

A. Install shutoff valve at each connection to and from vacuum equipment and specialties.

B. Install check valves to maintain correct direction of vacuum flow to vacuum-producing equipment.

C. Install valve boxes recessed in wall and anchored to substrate. Single boxes may be used for multiple valves that serve same area or function.
D. Install zone valves and gages in valve boxes. Rotate valves to angle that prevents closure of cover when valve is in closed position.

E. Install safety valves on vacuum receivers, where required by NFPA 99, and where recommended by specialty manufacturers.

F. Install automatic drain valves on equipment, specialties, and piping with drain connection. Run drain piping to floor drain, so contents spill over or into it.

G. Install flexible pipe connectors in suction inlet piping to each vacuum producer.

3.6 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Threaded Joints: Apply appropriate tape to external pipe threads.

E. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook", "Brazed Joints" Chapter. Continuously purge joint with oil-free dry nitrogen during brazing.

F. Soldered Joints: Apply ASTM B 813, water-flushable flux to tube end. Join copper tube and fittings according to ASTM B 828.

G. Flanged Joints:
 1. Copper Tubing: Install flange on copper tubes. Use pipe-flange gasket between flanges. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.
 2. PVC Piping: Install PVC flange on PVC pipes. Use pipe-flange gasket between flanges. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.

H. Pressure-Sealed Joints: Join copper tube and copper and copper-alloy fittings with tools recommended by fitting manufacturer.

I. Memory-Metal Coupling Joints: Join new copper tube to existing tube according to procedures developed by fitting manufacturer for installation of memory-metal coupling joints.

3.7 MEDICAL VACUUM PIPING ALARM SYSTEM INSTALLATION

A. Install medical vacuum piping system alarm system components in locations required by and according to NFPA 99.
3.8 SLEEVE INSTALLATION

A. Sleeves are not required for core-drilled holes.

B. Permanent sleeves are not required for holes formed by removable PE sleeves.

C. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs using galvanized-steel pipe, stack sleeve fittings.

1. Wall Penetrations: Cut sleeves to length for mounting flush with both surfaces.
2. Floor Penetrations: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

D. Install sleeves in new walls and slabs as new walls and slabs are constructed.

E. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:

2. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum board partitions.
3. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements in Division 07 Section "Sheet Metal Flashing and Trim" for flashing.

 a. Seal space outside of sleeve fittings with grout.

F. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping".

3.9 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 c. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece or split casting, cast brass with polished chrome-plated finish.
 d. Bare Piping in Unfinished Service Spaces: One piece, cast brass with rough-brass finish stamped steel with set screw or spring clips.
 e. Bare Piping in Equipment Rooms: One piece, cast brass/stamped steel with set screw or spring clips.
 f. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

2. Existing Piping:
b. Insulated Piping: Split plate, stamped steel with concealed hinge and spring clips.
c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split casting, cast brass with chrome-plated finish.
d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split casting, cast brass with chrome-plated finish.
e. Bare Piping in Unfinished Service Spaces: Split casting, cast brass with rough-brass finish/plate, stamped steel with concealed hinge and set screw or spring clips.
f. Bare Piping in Equipment Rooms: Split casting, cast brass/plate, stamped steel with set screw or spring clips.
g. Bare Piping at Floor Penetrations in Equipment Rooms: Split-casting floor plate.

3.10 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.

B. Vertical Piping: MSS Type 8 or 42 clamps.

C. Individual, Straight, Horizontal Piping Runs:
 1. 100 Feet and Less: MSS Type 1, adjustable, steel, clevis hangers.
 2. Longer Than 100 Feet: MSS Type 43, adjustable, roller hangers.

D. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls.
 Support pipe rolls on trapeze. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for trapeze hangers.

E. Base of Vertical Piping: MSS Type 52, spring hangers.

F. Support horizontal piping within 12 inches of each fitting and coupling.

G. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1/4: 60 inches with 3/8-inch rod.
 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
 4. NPS 1: 96 inches with 3/8-inch rod.
 6. NPS 1-1/2: 10 feet with 3/8-inch rod.
 7. NPS 2: 11 feet with 3/8-inch rod.
 8. NPS 2-1/2: 13 feet with 1/2-inch rod.
 9. NPS 3: 14 feet with 1/2-inch rod.
 10. NPS 4: 16 feet with 1/2-inch rod.
 11. NPS 5: 18 feet with 1/2-inch rod.
 12. NPS 6: 20 feet with 5/8-inch rod.
 13. NPS 8: 23 feet with 3/4-inch rod.
I. Install supports for vertical copper tubing every 10 feet.

3.11 LABELING AND IDENTIFICATION

A. Install identifying labels and devices for laboratory vacuum piping, valves, and specialties. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment".

B. Install identifying labels and devices for medical vacuum piping systems according to NFPA 99. Use the following or similar captions and color-coding for piping products where required by NFPA 99:

1. Medical Vacuum: Black letters on yellow background.
2. WAGD: White letters on violet background.
3. Medical Laboratory Vacuum: Black boxed letters on white-and-black checkerboard background.

3.12 FIELD QUALITY CONTROL FOR LABORATORY FACILITY NONMEDICAL VACUUM PIPING

A. Testing Agency: Engage qualified testing agency to perform field tests and inspections of vacuum piping in nonmedical laboratory facilities.

B. Perform tests and inspections of vacuum piping in nonmedical laboratory facilities.

C. Tests and Inspections:

1. Piping Leak Tests for Vacuum Piping: Test new and modified parts of existing piping. Cap and fill vacuum piping with oil-free, dry nitrogen. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.

 a. Test Pressure for Copper Tubing: 100 psig.

2. Repair leaks and retest until no leaks exist.
3. Inspect filters for proper operation.

D. Prepare test reports.

3.13 FIELD QUALITY CONTROL FOR HEALTHCARE FACILITY MEDICAL VACUUM PIPING

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections of medical vacuum piping systems in healthcare facilities and prepare test reports.

B. Perform tests and inspections of medical vacuum piping systems in healthcare facilities and prepare test reports.

C. Tests and Inspections:
1. Medical Vacuum Testing Coordination: Perform tests, inspections, verifications, and certification of medical vacuum piping systems concurrently with tests, inspections, and certification of medical compressed-air piping and medical gas piping systems.

2. Perform the following Installer tests according to requirements in NFPA 99 and ASSE Standard #6010:
 a. Initial blow down.
 b. Initial pressure test.
 c. Cross-connection test.
 d. Piping purge test.
 e. Standing pressure test for vacuum systems.
 f. Repair leaks and retest until no leaks exist.

3. System Verification: Comply with requirements in NFPA 99, ASSE Standard #6020, and ASSE Standard #6030 for verification of medical vacuum piping systems and perform the following tests and inspections:
 a. Standing pressure test.
 b. Individual-pressurization or pressure-differential cross-connection test.
 c. Valve test.
 d. Master and area alarm tests.
 e. Piping purge test.
 f. Final tie-in test.
 g. Operational vacuum test.
 h. Verify correct labeling of equipment and components.

4. Testing Certification: Certify that specified tests, inspections, and procedures have been performed and certify report results. Include the following:
 a. Inspections performed.
 b. Procedures, materials, and gases used.
 c. Test methods used.
 d. Results of tests.

 D. Remove and replace components that do not pass tests and inspections and retest as specified above.

END OF SECTION 226213
SECTION 226313 - GAS PIPING FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Carbon dioxide piping and specialties designated "medical carbon dioxide" operating at 50 to 55 psig.
2. Helium piping, designated "medical helium" operating at 50 to 55 psig.
3. Nitrogen piping and specialties designated "medical nitrogen" operating at 160 to 185 psig.
4. Nitrous oxide piping and specialties designated "medical nitrous oxide" operating at 50 to 55 psig.
5. Oxygen piping and specialties designated "medical oxygen" operating at 50 to 55 psig.
6. Other specialty gas piping and specialties as designated on drawings operating at 50 to 55 psig.

B. Owner-Furnished Material:

1. Medical gas manifolds.
2. Ceiling columns.
4. Owner will furnish gases for medical gas concentration testing specified in this Section.

C. Related Sections include the following:

1. Division 22 Section "Compressed-Air Piping for Laboratory and Healthcare Facilities" for compressed-air piping systems for laboratory and healthcare facilities.
2. Division 22 Section "Vacuum Piping for Laboratory and Healthcare Facilities" for vacuum piping systems for laboratory and healthcare facilities.

1.3 DEFINITIONS

A. CR: Chlorosulfonated polyethylene synthetic rubber.

B. D.I.S.S.: Diameter-index safety system.

C. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
D. Medical gas piping systems include nonflammable gas for healthcare facility patient care or for healthcare laboratory applications.

E. Specialty Gas: Gas, other than medical gas, for nonmedical laboratory facility applications.

1.4 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Gas manifolds and piping shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.5 SUBMITTALS
A. Product Data: For the following:
 1. Tubes and fittings.
 2. Valves and valve boxes.
 3. Medical gas service connections.
 4. Electrical service connections.
 5. Medical nitrogen pressure control panels.
 7. Gas manifolds.
 8. Medical gas alarm system components.
 9. Gas cylinder storage racks.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Piping Material Certification: Signed by Installer certifying that medical gas piping materials comply with NFPA 99 requirements.

D. Qualification Data: For Installer.

E. Brazing certificates.

F. Manufacturer Seismic Qualification Certification: Submit certification that gas manifolds, accessories, and components will withstand seismic forces defined in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment." Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

G. Certificates of Shop Inspection and Data Report for Bulk Gas Storage Tanks: As required by ASME Boiler and Pressure Vessel Code.

H. Field quality-control test reports.

I. Operation and Maintenance Data: For medical gas piping specialties to include in emergency, operation, and maintenance manuals.
1.6 QUALITY ASSURANCE

A. Installer Qualifications:

1. Medical Gas Piping Systems for Healthcare Facilities: Qualify installers according to ASSE Standard #6010 for installers.

B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the medical gas piping testing indicated, that is a member of the Medical Gas Professional Healthcare Organization or is an NRTL as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

1. Qualify testing personnel according to ASSE Standard #6020 for inspectors and ASSE Standard #6030 for verifiers.

C. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications"; or AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. ASME Compliance: Fabricate and label bulk medical gas storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

F. NFPA Compliance:

H. UL Compliance:

2. Comply with UL 544, "Medical and Dental Equipment," for medical gas specialties.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Medical Gas Service(s): Do not interrupt medical gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:

1. Notify Architect no fewer than seven days in advance of proposed interruption of medical gas service(s).
2. Do not proceed with interruption of medical gas service(s) without Architect's written permission.

1.8 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate medical gas service connections with other service connections. Compressed-air service connections are specified in Division 22 Sections "Compressed-Air Piping for Laboratory and Healthcare Facilities" and "Vacuum Piping for Laboratory and Healthcare Facilities."

1.9 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Quick-Coupler Service Connections: Furnish complete noninterchangeable medical gas pressure outlets and suction inlets.
 a. Medical Air: Equal to ten percent of amount installed, but no fewer than two units.
 b. Medical Oxygen: Equal to ten percent of amount installed, but no fewer than two units.
 c. Medical Vacuum: Equal to ten percent of amount installed, but no fewer than two units.

 a. Instrument Air D.I.S.S. No. 1160: Equal to ten percent of amount installed, but no fewer than two units.
 b. Medical Air D.I.S.S. No. 1160: Equal to ten percent of amount installed, but no fewer than two units.
 c. Medical Oxygen D.I.S.S. No 1240: Equal to ten percent of amount installed, but no fewer than two units.
 d. Medical Vacuum D.I.S.S. No. 1220: Equal to ten percent of amount installed, but no fewer than two units.

3. Vacuum Bottle Brackets: Equal to ten percent of amount installed, but no fewer than two units.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Copper Medical Gas Tube: ASTM B 819, Type L, seamless, drawn temper that has been manufacturer cleaned, purged, and sealed for medical gas service or according to CGA G-4.1
for oxygen service. Include standard color marking "OXY," "MED," "OXY/MED," "OXY/ACR," or "ACR/MED" in green for Type K tube and blue for Type L tube.

1. General Requirements for Copper Fittings: Manufacturer cleaned, purged, and bagged for oxygen service according to CGA G-4.1.
2. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type or MSS SP-73, with dimensions for brazed joints.
3. Copper Unions: ASME B16.22 or MSS SP-123, wrought copper or cast-copper alloy.
4. Press-Type Fittings:
 a. NPS 2 and Smaller: Wrought-copper fitting with EPDM O-ring seal in each end.
 b. NPS 2-1/2 to NPS 4: Bronze fitting with stainless-steel grip ring and EPDM O-ring seal in each end.
5. Memory-Metal Couplings: Cryogenic compression fitting made of ASTM F 2063, nickel-titanium, shape-memory-alloy, and that has been manufacturer cleaned, purged, and sealed for oxygen service according to CGA G-4.1.

2.2 JOINING MATERIALS
A. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys.
B. Threaded-Joint Tape: PTFE.

2.3 VALVES
A. General Requirements for Valves: Manufacturer cleaned, purged, and bagged according to CGA G-4.1 for oxygen service.
B. Ball Valves: MSS SP-110, 3-piece body, brass or bronze.
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. BeaconMedaes.
 2. Pressure Rating: 300 psig minimum.
 4. Seats: PTFE or TFE.
 5. Handle: Lever type with locking device.
 6. Stem: Blowout proof with PTFE or TFE seal.
C. Check Valves: In-line pattern, bronze.
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. BeaconMedaes.
2. Pressure Rating: 300 psig minimum.

D. Zone Valves: MSS SP-110, 3-piece-body, brass or bronze ball valve with gage.
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. BeaconMedaes.

 2. Pressure Rating: 300 psig minimum.
 4. Seats: PTFE or TFE.
 5. Handle: Lever type with locking device.
 6. Stem: Blowout proof with PTFE or TFE seal.
 8. Pressure Gage: Manufacturer-installed on one copper-tube extension.

E. Zone Valve Boxes: Formed steel with anchors for recessed mounting, holes with grommets in box sides for tubing extension protection, and of size for single or multiple valves with pressure gages and in sizes required to permit manual operation of valves.
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Amico Corporation.
 b. BeaconMedaes.

 2. Interior Finish: Factory-applied white enamel.
 3. Cover Plate: Aluminum or extruded-anodized aluminum with frangible or removable windows.
 4. Valve-Box Windows: Clear or tinted transparent plastic with labeling that includes rooms served, according to NFPA 99.

F. Safety Valves: Bronze-body, ASME-construction, poppet, pressure-relief type with settings to match system requirements.

G. Pressure Regulators: Bronze body and trim; spring-loaded, diaphragm-operated, relieving type; manual pressure-setting adjustment; rated for 250-psig minimum inlet pressure; and capable of controlling delivered gas pressure within 0.5 psig for each 10-psig inlet pressure.

2.4 MEDICAL GAS PIPING ALARM SYSTEMS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. BeaconMedaes.
B. Components: Designed for continuous service and to operate on power supplied from 120-V ac power source to alarm panels and with connections for low-voltage wiring to remote sensing devices. Include step-down transformers if required.

C. Pressure Switches or Pressure Transducer Sensors: Continuous line monitoring with electrical connections for alarm system.
 1. Low-Pressure Operating Range: 0- to 100-psig.
 2. High-Pressure Operating Range: Up to 250-psig.

2.5 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.

2.6 ESCUTCHEONS

A. General Requirements for Escutcheons: Manufactured wall and ceiling escutcheons and floor plates, with ID to closely fit around pipe and tube and OD that completely covers opening.

B. One-Piece, Deep-Pattern Escutcheons: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Escutcheons: With set screw.
 1. Finish: Polished chrome-plated and rough brass.

D. Split-Casting, Cast-Brass Escutcheons: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated and rough brass.

E. One-Piece, Stamped-Steel Escutcheons: With set screw or spring clips and chrome-plated finish.

F. Split-Plate, Stamped-Steel Escutcheons: With concealed hinge, set screw or spring clips, and chrome-plated finish.

G. One-Piece, Floor-Plate Escutcheons: Cast iron.

H. Split-Casting, Floor-Plate Escutcheons: Cast brass with concealed hinge and set screw.
PART 3 - EXECUTION

3.1 PREPARATION

A. Cleaning of Medical Gas Tubing: If manufacturer-cleaned and -capped fittings or tubing are not available or if precleaned fittings or tubing must be recleaned because of exposure, have supplier or separate agency acceptable to authorities having jurisdiction, perform the following procedures:

1. Clean medical gas tube and fittings, valves, gages, and other components of oil, grease, and other readily oxidizable materials as required for oxygen service according to CGA G-4.1, "Cleaning Equipment for Oxygen Service."

2. Wash medical gas tubing and components in hot, alkaline-cleaner-water solution of sodium carbonate or trisodium phosphate in proportion of 1 lb of chemical to 3 gal. of water.
 a. Scrub to ensure complete cleaning.
 b. Rinse with clean, hot water to remove cleaning solution.

3.2 PIPING APPLICATIONS

A. Medical Gas Piping: Use Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of gas piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Comply with ASSE Standard #6010 for installation of medical gas piping.

C. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.

F. Install piping adjacent to equipment and specialties to allow service and maintenance.

G. Install nipples, unions, and special fittings, and valves with pressure ratings same as or higher than system pressure rating used in applications below unless otherwise indicated.

H. Install piping to permit valve servicing.
I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Install medical gas piping to medical gas service connections specified in this Section, to medical gas service connections in equipment specified in this Section, and to equipment specified in other Sections requiring medical gas service.

L. Install seismic restraints on gas piping. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."

M. Install medical gas service connections recessed in walls. Attach roughing-in assembly to substrate; attach finishing assembly to roughing-in assembly.

N. Connect gas piping to gas sources and to gas outlets and equipment requiring gas service.

O. Install unions, in copper tubing adjacent to each valve and at final connection to each piece of equipment and specialty.

3.4 VALVE INSTALLATION

A. Install shutoff valve at each connection to gas laboratory and healthcare equipment and specialties.

B. Install check valves to maintain correct direction of gas flow from laboratory and healthcare gas supplies.

C. Install valve boxes recessed in wall and anchored to substrate. Single boxes may be used for multiple valves that serve same area or function.

D. Install zone valves and gages in valve boxes. Rotate valves to angle that prevents closure of cover when valve is in closed position.

E. Install pressure regulators on gas piping where reduced pressure is required.

F. Install emergency oxygen connection with pressure relief valve and full-size discharge piping to outside, with check valve downstream from pressure relief valve and with ball valve and check valve in supply main from bulk oxygen storage tank.

3.5 JOINT CONSTRUCTION

A. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.

B. Threaded Joints: Apply appropriate tape to external pipe threads.

C. Brazed Joints: Join copper tube and fittings according to CDA’s "Copper Tube Handbook," "Brazed Joints" Chapter. Continuously purge joint with oil-free, dry nitrogen during brazing.
D. Pressure-Sealed Joints: Join copper tube and press-type fittings with tools recommended by fitting manufacturer.

E. Memory-Metal Coupling Joints: Join new copper tube to existing tube according to procedures developed by fitting manufacturer for installation of memory-metal coupling joints.

3.6 MEDICAL GAS PIPING ALARM SYSTEM INSTALLATION

A. Install medical gas alarm system components in locations required by and according to NFPA 99.

3.7 SLEEVE INSTALLATION

A. Sleeves are not required for core-drilled holes.

B. Permanent sleeves are not required for holes formed by removable PE sleeves.

C. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs using galvanized-steel pipe, galvanized-steel sheet, stack sleeve fittings.
 1. Wall Penetrations: Cut sleeves to length for mounting flush with both surfaces.
 2. Floor Penetrations: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

D. Install sleeves in new walls and slabs as new walls and slabs are constructed.

E. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 2. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum board partitions.
 3. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements in Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 a. Seal space outside of sleeve fittings with grout.

F. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping:"

3.8 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 1. New Piping:
a. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
c. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece or split casting, cast brass with polished chrome-plated finish.
d. Bare Piping in Unfinished Service Spaces: One piece, cast brass with rough-brass finish/stamped steel with set screw or spring clips.
e. Bare Piping in Equipment Rooms: One piece, cast brass/stamped steel with set screw or spring clips.
f. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

2. Existing Piping:

b. Insulated Piping: Split plate, stamped steel with concealed hinge and spring clips.
c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split casting, cast brass with chrome-plated finish.
d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split casting, cast brass with chrome-plated finish.
e. Bare Piping in Unfinished Service Spaces: Split casting, cast brass with rough-brass finish/plate, stamped steel with concealed hinge and set screw or spring clips.
f. Bare Piping in Equipment Rooms: Split casting, cast brass/plate, stamped steel with set screw or spring clips.
g. Bare Piping at Floor Penetrations in Equipment Rooms: Split-casting floor plate.

3.9 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.

B. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.

C. Vertical Piping: MSS Type 8 or 42, clamps.

D. Individual, Straight, Horizontal Piping Runs:
 1. 100 Feet and Less: MSS Type 1, adjustable, steel, clevis hangers.
 2. Longer Than 100 Feet: MSS Type 43, adjustable, roller hangers.

E. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for trapeze hangers.

F. Base of Vertical Piping: MSS Type 52, spring hangers.

G. Support horizontal piping within 12 inches of each fitting and coupling.

H. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.
I. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1/4: 60 inches with 3/8-inch rod.
2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
4. NPS 1: 96 inches with 3/8-inch rod.
6. NPS 1-1/2: 10 feet with 3/8-inch rod.
7. NPS 2: 11 feet with 3/8-inch rod.
8. NPS 2-1/2: 13 feet with 1/2-inch rod.
9. NPS 3: 14 feet with 1/2-inch rod.
10. NPS 4: 16 feet with 1/2-inch rod.
11. NPS 5: 18 feet with 1/2-inch rod.
12. NPS 6: 20 feet with 5/8-inch rod.
13. NPS 8: 23 feet with 3/4-inch rod.

J. Install supports for vertical copper tubing every 10 feet.

3.10 LABELING AND IDENTIFICATION

A. Install identifying labels and devices for specialty gas piping, valves, and specialties. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment."

B. Install identifying labels and devices for healthcare medical gas piping systems according to NFPA 99. Use the following or similar captions and color-coding for piping products where required by NFPA 99:

1. Oxygen: White letters on green background or green letters on white background.

3.11 FIELD QUALITY CONTROL FOR LABORATORY FACILITY SPECIALTY GAS

A. Testing Agency: Engage qualified testing agency to perform field tests and inspections of specialty gas piping for nonhealthcare laboratory facilities and prepare test reports.

B. Perform field tests and inspections of specialty gas piping for nonhealthcare laboratory facilities and prepare test reports.

C. Tests and Inspections:

1. Piping Leak Tests for Specialty Gas Piping: Test new and modified parts of existing piping. Cap and fill specialty gas piping with oil-free, dry nitrogen to pressure of 50 psig above system operating pressure, but not less than 150 psig. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
2. Repair leaks and retest until no leaks exist.
3. Inspect specialty gas regulators for proper operation.
3.12 FIELD QUALITY CONTROL FOR HEALTHCARE FACILITY MEDICAL GAS

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections of medical gas piping systems in healthcare facilities and prepare test reports.

B. Perform tests and inspections of medical gas piping systems in healthcare facilities and prepare test reports.

C. Tests and Inspections:

1. Medical Gas Piping Testing Coordination: Perform tests, inspections, verifications, and certification of medical gas piping systems concurrently with tests, inspections, and certification of medical compressed-air piping and medical vacuum piping systems.

2. Preparation: Perform the following Installer tests according to requirements in NFPA 99 and ASSE Standard #6010:
 a. Initial blow down.
 b. Initial pressure test.
 c. Cross-connection test.
 d. Piping purge test.
 e. Standing pressure test for positive pressure medical gas piping.
 f. Standing pressure test for vacuum systems.
 g. Repair leaks and retest until no leaks exist.

3. System Verification: Comply with requirements in NFPA 99, ASSE Standard #6020, and ASSE Standard #6030 for verification of medical gas piping systems and perform the following tests and inspections:
 a. Standing pressure test.
 b. Individual-pressurization or pressure-differential cross-connection test.
 c. Valve test.
 d. Master and area alarm tests.
 e. Piping purge test.
 f. Piping particulate test.
 g. Piping purity test.
 h. Final tie-in test.
 i. Operational pressure test.
 j. Medical gas concentration test.
 k. Medical air purity test.
 l. Verify correct labeling of equipment and components.
 m. Verify the following source equipment:
 1) Medical gas supply sources.

4. Testing Certification: Certify that specified tests, inspections, and procedures have been performed and certify report results. Include the following:
 a. Inspections performed.
 b. Procedures, materials, and gases used.
 c. Test methods used.
 d. Results of tests.
D. Remove and replace components that do not pass tests and inspections and retest as specified above.

3.13 DEMONSTRATION

A. Engage factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain medical gas alarm system. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 226313
DIVISION 23 - HVAC

230500 COMMON WORK RESULTS FOR HVAC
230523 GENERAL-DUTY VALVES FOR HVAC PIPING
230529 HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
230553 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
230593 TESTING, ADJUSTING AND BALANCING FOR HVAC
230700 HVAC INSULATION
230900 INSTRUMENTATION AND CONTROL FOR HVAC
232113 HYDRONIC PIPING
232213 STEAM AND CONDENSATE HEATING PIPING
232300 REFRIGERANT PIPING
233113 METAL DUCTS
233300 AIR DUCT ACCESSORIES
233713 DIFFUSERS, REGISTERS, AND GRILLES
SECTION 230500 – COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Transition fittings.
 3. Dielectric fittings.
 4. Mechanical sleeve seals.
 5. Sleeves.
 7. Grout.
 8. Coordination drawings.
 9. Project Record Drawings.
 10. HVAC demolition.
 11. Equipment installation requirements common to equipment sections.
 12. Painting and finishing.
 13. Concrete bases.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
F. The following are industry abbreviations for plastic materials:
 1. CPVC: Chlorinated polyvinyl chloride plastic.
 2. PE: Polyethylene plastic.
 3. PVC: Polyvinyl chloride plastic.

G. The following are industry abbreviations for rubber materials:
 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For the following:
 1. Transition fittings.
 2. Dielectric fittings.
 3. Mechanical sleeve seals.
 4. Escutcheons.

B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. Any additional costs as a result of these modifications shall be borne by the contractor. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

D. HVAC work to comply with International Mechanical Code (IMC) as listed on Drawings and General Conditions

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

D. Sequence, coordinate, and integrate installations of HVAC materials and equipment for efficient flow of the Work. Coordinate installation of large equipment requiring positioning before closing in building.

E. Coordinate connection of HVAC systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies.

F. Coordinate installation of identifying devices after completing covering and painting, if devices are applied to surfaces. Install identifying devices before installing acoustical ceilings and similar concealment.

G. Sequence, coordinate, and integrate removal of existing equipment and material as required to maintain services for existing building and for portions of remodeled areas at all times.

1.8 SCHEDULING AND PHASING

A. All HVAC work shall be scheduled to meet project completion date. HVAC work shall be phased for projects requiring phasing of work. Install additional fittings, valves, caps, and dampers as required to support phasing. Refer to phasing schedule on drawings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.
2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Acceptable Manufacturers:
 1. Capitol Manufacturing Co.
 2. Capico Inc.
 3. Epco Sales, Inc.
D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.

E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.

1. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.5 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Acceptable Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

3. Pressure Plates: Carbon steel. Include two for each sealing element.

4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.6 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with set screws.
2.7 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated or rough brass.

D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

E. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.

F. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw or spring clips, and chrome-plated finish.

G. One-Piece, Floor-Plate Type: Cast-iron floor plate.

H. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.8 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.

 2. Design Mix: 5000-psi, 28-day compressive strength.

2.9 COORDINATION DRAWINGS

A. The contractor shall prepare CAD generated overall coordination drawings (min ¼" scale) to coordinate HVAC systems installation with other trades. Following systems/items shall be indicated and co-coordinated, but not limited to, with each other based on input from installers of these systems:

 1. Ceiling layout.
 2. Sheet metal ductwork including locations of boxes, diffusers, grilles/registers, duct risers, fire/smoke dampers, etc.
 3. HVAC piping routing including locations of valves, expansion loops, risers, etc.
 4. Fire suppression piping mains, sprinkler heads, flow switches, etc.
 5. Plumbing piping routing including locations of valves, drops to fixtures, risers, etc.
 6. Electrical systems including locations of light fixtures, routing of main feeders/conduits larger than 3" dia., routing of cable tray, etc.
B. Contractor shall obtain information of other systems from General Contractor, Electrical Contractor, Fire Suppression Contractor, Plumbing Contractor and others as required for incorporation in the coordination drawings.

C. Contractor shall arrange coordination meeting with other contractors, whose systems need coordination, to resolve conflicts.

2.10 PROJECT RECORD DRAWINGS

A. Drawings shall be furnished in electronic-media (CD-Rewritable type) and at least one hard copy prints.

1. Format: Same CAD program, version and operating system as the original Contract Drawings.
2. Incorporate changes and additional information previously marked on Record prints. Delete, re-draw and add details and notations where applicable.

B. Identify and date each drawing and include the designation “PROJECT RECORD DRAWING” or “AS-BUILT DRAWING” in a prominent location.

PART 3 - EXECUTION

3.1 HVAC DEMOLITION

A. Disconnect, demolish, and remove HVAC systems, equipment, and components indicated to be removed.

1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material. Generally remove piping up to existing mains or valves.
2. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material. Generally remove ducts up to existing mains or shut-off dampers.
3. Equipment to Be Removed: Disconnect and cap services and remove equipment.
4. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
5. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.

B. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.
B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping minimum 8 inches above accessible ceilings to allow sufficient space for ceiling panel removal and service access.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
 g. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with rough-brass finish.
 h. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type with concealed hinge and set screw or spring clips.
 i. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 j. Bare Piping in Equipment Rooms: One-piece, stamped-steel type with set screw or spring clips.
 k. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.
M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

2. Install sleeves in new walls and slabs as new walls and slabs are constructed.

3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.

 1) Seal space outside of sleeve fittings with grout.

4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Install steel pipe for sleeves smaller than 6 inches in diameter.
2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble
mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

T. Verify final equipment locations for roughing-in.

U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

V. Draining and Refilling of Systems: Provide all shutoff valves, drain valves, pipe, fittings, and miscellaneous material required to drain each existing system as required for new work. After new work is completed, tested, and found tight, refill each system as required. Time for shutting down existing system for draining shall be coordinated with all other work and with Owner’s representative. Fill glycol system with type and percentage solutions as directed by Owner.

3.3 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.

2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
3.4 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:

1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
D. Install equipment to allow right of way for piping installed at required slope.

3.6 PAINTING

A. Painting of HVAC systems, equipment, and components is specified in Division 09 Sections "Interior Painting."
B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.7 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer’s written instructions.
7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete".
8. Concrete base for pumps shall be a minimum of 5x the pump weight.

3.8 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, hot dip galvanize or cold galvanize and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.
B. Field Welding: Comply with AWS D1.1.

3.9 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor HVAC materials and equipment.
B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
C. Attach to substrates as required to support applied loads.

3.10 GROUTING

A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
B. Clean surfaces that will come into contact with grout.
C. Provide forms as required for placement of grout.
D. Avoid air entrapment during placement of grout.
E. Place grout, completely filling equipment bases.
F. Place grout on concrete bases and provide smooth bearing surface for equipment.
G. Place grout around anchors.
H. Cure placed grout.

END OF SECTION 230500
SECTION 230523 – GENERAL-DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes general duty valves common to several mechanical piping systems.
 B. Related Sections: The following Sections contain requirements that relate to this Section:
 1. Special purpose valves are specified in Division 23 piping system Sections.
 2. Valve tags and charts are specified in Division 23 Section "Mechanical Identification."

1.3 SUBMITTALS
 A. General: Submit each item in this Article according to the Conditions of the Contract and Division 1 Specification Sections.
 B. Product Data for each valve type. Include body material, valve design, pressure and temperature classification, end connection details, seating materials, trim material and arrangement, dimensions and required clearances, and installation instructions. Include list indicating valve and its application.
 C. Maintenance data for valves to include in the operation and maintenance manual specified in Division 1. Include detailed manufacturer's instructions on adjusting, servicing, disassembling, and repairing.

1.4 QUALITY ASSURANCE
 A. Single-Source Responsibility: Comply with the requirements specified in Division 1 Section "Materials and Equipment," under "Source Limitations" Paragraph.
 B. ASME Compliance: Comply with ASME B31.9 for building services piping and ASME B31.1 for power piping.
 C. MSS Compliance: Comply with the various MSS Standard Practice documents referenced.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Prepare valves for shipping as follows:
1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, grooves, and weld ends.
3. Set globe and gate valves closed to prevent rattling.
4. Set ball and plug valves open to minimize exposure of functional surfaces.
5. Set butterfly valves closed or slightly open.
6. Block check valves in either closed or open position.

B. Use the following precautions during storage:

1. Maintain valve end protection.
2. Store indoors and maintain valve temperature higher than ambient dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use a sling to handle large valves. Rig to avoid damage to exposed parts. Do not use handwheels and stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Gate Valves:
 a. Crane Company; Valves and Fitting Division.
 b. Milwaukee Valve Company, Inc.
 c. NIBCO Inc.
 d. Stockham Valves & Fittings, Inc.

2. Ball Valves:
 a. Conbraco Industries, Inc.; Apollo Division.
 b. Milwaukee Valve Company, Inc.
 c. NIBCO Inc.
 d. Stockham Valves & Fittings, Inc.

3. Butterfly Valves:
 a. Crane Company; Valves and Fitting Division.
 b. Grinnell Corp.
 c. Milwaukee Valve Company, Inc.
 d. NIBCO Inc.
 e. Stockham Valves & Fittings, Inc.

4. Swing Check Valves:
 a. Crane Company; Valves and Fitting Division.
 b. Milwaukee Valve Company, Inc.
c. NIBCO Inc.
d. Stockham Valves & Fittings, Inc.

5. Lift Check Valves:
 a. Bonney Forge.

6. Globe Valves:
 a. Crane Company; Valves and Fitting Division.
 b. Milwaukee Valve Company, Inc.
 c. NIBCO Inc.
 d. Stockham Valves & Fittings, Inc.

2.2 BASIC, COMMON FEATURES

A. Pressure and Temperature Ratings: As indicated in the "Application Schedule" of Part 3 of this Section and as required to suit system pressures and temperatures.

B. Sizes: Same size as upstream pipe, unless otherwise indicated.

C. Operators: Use specified operators and handwheels, except provide the following special operator features:

 1. Handwheels: For valves other than quarter turn.
 2. Lever Handles: For quarter-turn valves 6 inches (DN150) and smaller, except for plug valves, which shall have square heads. Furnish Owner with 1 wrench for every 10 plug valves.
 3. Chain-Wheel Operators: For valves 4 inches (DN100) and larger, installed 96 inches (2400 mm) or higher above finished floor elevation.
 4. Gear-Drive Operators: For quarter-turn valves 8 inches (DN200) and larger.

D. Extended Stems: Where insulation is indicated or specified, provide extended stems arranged to receive insulation.

E. Bypass and Drain Connections: Comply with MSS SP-45 bypass and drain connections.

 1. Caution: Where soldered end connections are used, use solder having a melting point below 840 deg F (450 deg C) for gate, globe, and check valves; below 421 deg F (216 deg C) for ball valves.
2.3 GATE VALVES

A. Steam Distribution (15 – 65 psig) – Gate Valves, 2” and Smaller: Threaded outside screw and yoke, Class 800 ASTM A105 forged steel body and bonnet, stainless steel wedge disc and seat; and with cast iron handwheel. Valves 2½” and larger, flanged, forged steel, outside screw and yoke, 150 lb. class.

B. Steam (below 15 psig in building) – Gate Valves 2” and Smaller: 150 lb. rising stem gate valves. Union shall not be integral to the valve. Valves 2½” and larger shall be flanged ends, outside screw and yoke, Class150.

2.4 BALL VALVES

A. Chilled Water and Hot Water - Ball Valves: MSS SP-110, 150 lb., 2” and smaller, ASTM B 584 bronze body and bonnet, 2-piece construction; stainless steel ball, full port blowout proof; stainless steel stem; Teflon seats and seals; soldered end connections, NIBCO T-595-Y, NIBCO S-595-Y or equal:
 3. Memory Stop: For operator handles.

2.5 GLOBE VALVES

A. Chilled Water and Hot Water - Globe Valves, 3 Inches (DN65) and Smaller: MSS SP-80; Class 125, 200-psi (1380-kPa) CWP, or Class 150, 300-psi (2070-kPa) CWP; ASTM B 62 cast-bronze body and screwed bonnet, rubber, bronze, or Teflon disc, silicon bronze-alloy stem, Teflon-impregnated packing with bronze nut, threaded or soldered end connections; and with aluminum or malleable-iron handwheel.

2.6 BUTTERFLY VALVES

A. Chilled Water and Hot Water - Butterfly Valves: MSS SP-67, 200-psi (1380-kPa) CWP, 150 psi maximum pressure differential, ASTM A 126 cast-iron full lug body and bonnet, extended neck, 316 stainless-steel stem, field-replaceable EPDM sleeve and stem seals, Grinnell Series 8000 or equal:
 1. Disc Type: 316 stainless steel.
 2. Operator for Sizes 2 Inches (DN50) to 5 Inches (DN150): Lever handle with latch lock with memory.
 3. Operator for Sizes 6 Inches (DN200) to 24 Inches (DN600): Gear operator with position indicator with chain 6'-0" A.F.F.
 4. Operator for Sizes 6 Inches (DN200) and Larger, 96 Inches (2400 mm) or Higher above Floor: Chain-wheel operator with chain 6'-0" A.F.F.
2.7 CHECK VALVES

A. Swing Check Valves, 2 Inches (DN65) and Smaller: 150 lb.; horizontal swing, Y-pattern, ASTM B 62 cast-bronze body and cap, soldered connections, NIBCO T-433 or equal:

B. Swing Check Valves, 2-1/2 Inches (DN80) and Larger: MSS SP-71, Class 125, 200-psi (1380-kPa) CWP, ASTM A 126 cast-iron body and bolted cap, horizontal-swing bronze disc, flanged end connections, NIBCO F-918 or equal.

C. Lift Check Valves (Pump Discharge): Class 800, forged steel ball type check valve, with bolted bonnet, male-female joint, spiral wound gasket made in F316L/graphite. Valves shall conform to MS-SP-118 and ASME B16.34 and shall be tested according to API 598.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine piping system for compliance with requirements for installation tolerances and other conditions affecting performance of valves. Do not proceed with installation until unsatisfactory conditions have been corrected.

B. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

C. Operate valves from fully open to fully closed positions. Examine guides and seats made accessible by such operation.

D. Examine threads on valve and mating pipe for form and cleanliness.

E. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Check gasket material for proper size, material composition suitable for service, and freedom from defects and damage.

F. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION

A. Install valves as indicated, according to manufacturer’s written instructions.

B. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate the general arrangement of piping, fittings, and specialties.

C. Install valves with unions or flanges at each piece of equipment arranged to allow servicing, maintenance, and equipment removal without system shutdown.

D. Locate valves for easy access and provide separate support where necessary.

E. Install valves in horizontal piping with stem at or above the center of the pipe.
F. Install valves in a position to allow full stem movement.

G. For chain-wheel operators, extend chains to 60 inches (1500 mm) above finished floor elevation.

H. Installation of Check Valves: Install for proper direction of flow as follows:
 1. Swing Check Valves: Horizontal position with hinge pin level.
 2. Lift Check Valve: With stem upright and plumb.

3.3 SOLDIERED CONNECTIONS

A. Cut tube square and to exact lengths.

B. Clean end of tube to depth of valve socket with steel wool, sand cloth, or a steel wire brush to a bright finish. Clean valve socket.

C. Apply proper soldering flux in an even coat to inside of valve socket and outside of tube.

D. Open gate and globe valves to fully open position.

E. Remove the cap and disc holder of swing check valves having composition discs.

F. Insert tube into valve socket, making sure the end rests against the shoulder inside valve. Rotate tube or valve slightly to ensure even distribution of the flux.

G. Apply heat evenly to outside of valve around joint until solder melts on contact. Feed solder until it completely fills the joint around tube. Avoid hot spots or overheating valve. Once the solder starts cooling, remove excess amounts around the joint with a cloth or brush.

3.4 THREADED CONNECTIONS

A. Note the internal length of threads in valve ends and proximity of valve internal seat or wall to determine how far pipe should be threaded into valve.

B. Align threads at point of assembly.

C. Apply appropriate tape or thread compound to the external pipe threads, except where dry seal threading is specified.

D. Assemble joint, wrench tight. Wrench on valve shall be on the valve end into which the pipe is being threaded.

3.5 FLANGED CONNECTIONS

A. Align flange surfaces parallel.
B. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly with a torque wrench.

C. For dead-end service, butterfly valves require flanges both upstream and downstream for proper shutoff and retention.

3.6 VALVE END SELECTION

A. Select valves with the following ends or types of pipe/tube connections:

1. Copper Tube Size, 2-1/2 Inches (DN65) and Smaller: Solder ends, except provide threaded ends for heating hot water and low-pressure steam service.
2. Steel Pipe Sizes, 2-1/2 Inches (DN65) and Smaller: Threaded.
3. Steel Pipe Sizes, 3 Inches (DN80) and Larger: Flanged.

3.7 APPLICATION SCHEDULE

A. General Application: Use gate, ball, and butterfly valves for shutoff duty; lubricated plug cocks, and balancing valves for throttling duty, and butterfly valves on pump discharge. Refer to piping system Specification Sections for specific valve applications and arrangements.

B. Heating and Chilled Water Systems: Use the following valve types:

1. Ball Valves (up to and including 2"): Threaded.
2. Butterfly Valves 3" and Larger:
3. Bronze Swing Check: Class 150, with composition seat.
5. Balancing valves: Bell and Gossett CBV or Armstrong Flowsetter ΔP type

C. Low-Pressure Steam and Condensate Return Systems (Inside Building): Use the following valve types:

1. Gate Valves (2" and smaller): 150 lb., rising stem.
2. Gate Valves (steam supply 3" and larger): 150 lbs, OS&Y.
3. Globe Valves: Class 150, bronze body with Teflon disc (ahead of pressure gauges).

D. Steam and Condensate Return Distribution Systems: Use the following valve types:

1. Gate Valves (Steam Supply 2½" and Smaller): Threaded OS&Y, 800 lb.
2. Gate Valves (steam supply 3" and larger): Class 150, flanged cast steel body.
3. Globe Valves: Class 150, cast steel body with Teflon disc (ahead of pressure gauges).
4. Check Valves: Class 800, forged steel ball check.

3.8 ADJUSTING

A. Adjust or replace packing after piping systems have been tested and put into service, but before final adjusting and balancing. Replace valves if leak persists.
END OF SECTION 230523
SECTION 230529 – HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following hangers and supports for HVAC system piping and equipment:
 1. Steel pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Thermal-hanger shield inserts.
 5. Fastener systems.
 6. Pipe stands.
 7. Equipment supports.

B. Related Sections include the following:
 1. Division 21 Section "Water-Based Fire-Suppression Systems" for pipe hangers for fire-protection piping.
 2. Division 23 Section "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
 3. Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment" for vibration isolation devices.
 4. Division 23 Section(s) "Metal Ducts" and "Nonmetal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

C. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 SUBMITTALS

A. Product Data: For the following:
 1. Steel pipe hangers and supports.
 2. Thermal-hanger shield inserts.
 3. Powder-actuated fastener systems.

B. Welding certificates with picture ID.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to the following:
 1. AWS D1.1, "Structural Welding Code--Steel."
 4. AWS D1.4, "Structural Welding Code--Reinforcing Steel."
 5. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

B. Acceptable Manufacturers:
 2. Carpenter & Paterson, Inc.
 3. Empire Industries, Inc.
5. Grinnell Corp.
6. GS Metals Corp.
8. Piping Technology & Products, Inc.

C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.

B. Acceptable Manufacturers:
 2. GS Metals Corp.
 4. Thomas & Betts Corporation.
 5. Unistrut Corp.; Tyco International, Ltd.

C. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

A. Description: 100-psig-minimum, compressive-strength insulation insert encased in sheet metal shield.

B. Acceptable Manufacturers:
 1. Carpenter & Paterson, Inc.
 2. PHS Industries, Inc.
 3. Pipe Shields, Inc.
 5. Value Engineered Products, Inc.

C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with vapor barrier.
D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate.

E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened Portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Acceptable Manufacturers:
 b. Empire Industries, Inc.
 c. Hilti, Inc.
 d. ITW Ramset/Red Head.
 e. MKT Fastening, LLC.
 f. Powers Fasteners.

2.7 PIPE STAND FABRICATION

A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

1. Acceptable Manufacturers:
 a. ERICO/Michigan Hanger Co.
 b. MIRO Industries.

C. Low-Type, Single-Pipe Stand: One-piece plastic or stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.

2. Vertical Members: Two or more cadmium-plATED-steel or stainless-steel, continuous-thread rods.
3. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.
E. High-Type, Multiple-Pipe Stand: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 1. Bases: One or more plastic.
 2. Vertical Members: Two or more protective-coated-steel channels.
 3. Horizontal Member: Protective-coated-steel channel.

2.8 EQUIPMENT SUPPORTS
A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes and then hot dipped or cold galvanized.

2.9 MISCELLANEOUS MATERIALS
A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS
A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
E. Use padded hangers for piping that is subject to scratching.
F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.
18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.
19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

3.2 HANGER AND SUPPORT INSTALLATION

A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
 1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounting Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.

G. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

H. Equipment Support Installation: Fabricate from welded-structural-steel shapes and then hot dipped or cold galvanize.

I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.1 (for power piping) and ASME B31.9 (for building services piping) are not exceeded.

N. Insulated Piping: Comply with the following:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits according to ASME B31.1 for power piping and ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood inserts.
6. Insert Material: Length at least as long as protective shield.
7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS
A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS
A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING
A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Cold galvanize exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair stick to comply with ASTM A 780.

END OF SECTION 230529
SECTION 230553 – IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Duct labels.
 5. Stencils.
 6. Valve tags.
 7. Warning tags.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

C. Valve numbering scheme.

D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.
PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
3. Minimum Letter Size: 1/2 inch and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment’s Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Red.
D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/2 inch and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.4 DUCT LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Black.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/2 inch and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.5 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of 1-1/4 inches for ducts; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.
 1. Stencil Material: Fiberboard or metal.
 2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
 3. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

2.6 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.

2.7 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 1. Size: 3 by 5-1/4 inches.
 2. Fasteners: Reinforced grommet and wire or string.
 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting."

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, on each piping system.

1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment, within mechanical rooms, boiler rooms, chiller rooms, etc.

D. In general follow Pipe Label Color Schedule as shown below, unless the Owner has different schedule standards in which case the Owner’s schedule shall be followed:

1. Chilled-Water Piping:
 a. Background Color: Blue.
2. Heating Water Piping:
 a. Background Color: Orange.

3. Low-Pressure Steam Piping:
 a. Background Color: Yellow.

4. High-Pressure Steam Piping:
 a. Background Color: Yellow.

5. Steam Condensate Piping:
 a. Background Color: Yellow.

3.4 DUCT LABEL INSTALLATION

A. Install plastic-laminated or self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 1. Blue: For cold-air supply ducts.
 2. Yellow: For hot-air supply ducts.
 4. ASME A13.1 Colors and Designs: For hazardous material exhaust.

B. Stenciled Duct Label Option: Stenciled labels, showing service and associated source equipment and flow direction, may be provided instead of plastic-laminated duct labels, at Installer's option, if lettering larger than 1 inch high is needed for proper identification because of distance from normal location of required identification.

C. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 15 feet in each space, within 5 feet of elbows and tees and both sides of wall penetrations within 3 feet of the penetration.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 1. Valve-Tag Size and Shape:
d. Low-Pressure Steam: 1-1/2 inches, round.
e. High-Pressure Steam: 1-1/2 inches, round.
f. Steam Condensate: 1-1/2 inches, round.

2. Valve-Tag Color:

b. Hot Water: Natural.
c. Low-Pressure Steam: Natural.
d. High-Pressure Steam: Natural.
e. Steam Condensate: Natural.

3. Letter Color:

b. Hot Water: Black.
c. Low-Pressure Steam: Black.
d. High-Pressure Steam: Black.
e. Steam Condensate: Black.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 230553
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 230593 – TESTING, ADJUSTING AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DESCRIPTION OF WORK

A. This scope of services specified the requirements and procedures for mechanical systems testing, adjusting, and balancing. Requirements include measurement and establishment of the fluid quantities of the mechanical systems as required to meet design specifications, and recording and reporting the results. The test and balance work will be performed by the Owner’s personnel. It is the Contractor’s responsibility to assist as outlined below.

B. Test, adjust and balance the following mechanical systems which are shown in the construction documents.

1. Supply air systems.
2. Return air systems
3. Exhaust air systems.
4. Hydronic systems.
5. Steam distribution systems.
6. Verify temperature control system operation.

C. The contractor’s responsibilities are as follows:

1. Notify the Owner’s Representative fourteen (14) days prior to the schedule date for balancing the system.
2. Schedule a two (2) week allowance for the testing and balancing firm to complete the testing and balancing work when scheduling completion of all work required of the Contractor by the contract documents.
3. Cooperate with the testing and balancing firm and shall make all necessary preparations for the TAB efforts.
4. Complete the following work prior to requesting the TAB effort.
 a. Clean and flush all piping systems.
 b. Leak test and make tight all piping systems.
 c. Fill all piping systems with clean water.
 d. Clean and seal all ductwork systems.
 e. Service and tag all equipment.
 f. Set and align all motors and drives.
 g. Start up and prove all equipment and systems.
 h. Make preliminary settings on all control devices and have all systems operational.
 i. Operate all systems successfully for twenty-four (24) hours minimum.
5. Lubricate all motors and bearings.
6. Check fan belt tension.
7. Check fan rotation.
8. Patch insulation, ductwork and housing, using materials identical to those removed.
9. Seal ducts and piping, and test for and repair leaks.
10. Seal insulation to re-establish integrity of the vapor barrier.
11. Attend a coordination meeting prior to the balancing of the system and a coordination meeting following the balancing of the system.
12. Provide a complete set of as-built drawings prior to the TAB effort.
13. Provide craftsmen of the proper trade to work with the TAB firm to make adjustments and installation changes as required.
14. Change out fan sheaves when and if required by the TAB firm.
15. Dedicate the resources to accommodate all changes identified by the test and balance firm in a timely manner.
16. If a significant rebalance (Owner’s determination) of the HVAC system is required due to the Contractor’s failure to properly install and check out the HVAC system, the cost of rebalancing the system shall be borne by the Contractor.

1.3 PRE-BALANCING CONFERENCE

A. Prior to beginning of the testing, adjusting and balancing procedures, a conference with the Owner’s Representative, Engineer and the Test and Balance Agency’s representative will be held. The objective of the conference is final coordination and verification of system operation and readiness for testing, adjusting and balancing.

1.4 SEQUENCING AND SCHEDULING OF SERVICES

A. Test, adjust and balance the air conditioning systems during summer season and heating systems during winter season. This includes at least a period of operation at outside conditions within 5 deg. F wet bulb temperature of maximum summer design condition, and within 10 deg. F dry bulb temperature of minimum winter design conditions. Take final temperature readings during seasonal operation.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230593
SECTION 230700 – HVAC INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Insulation Materials:
 a. Flexible elastomeric.
 b. Mineral fiber.

2. Fire-rated insulation systems.
3. Insulating cements.
4. Adhesives.
5. Mastics.
7. Sealants.
8. Factory-applied jackets.
10. Field-applied cloths.
11. Field-applied jackets.
12. Tapes.
13. Securements.

B. Related Sections:

1. Division 22 Section "Plumbing Insulation."

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following:
 a. Aeroflex USA Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. NOMACO Insulation.

2. Thermal Conductivity: Not exceeding 0.25 BTU-in/hour °F at 75°F mean temperature.

G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Manson Insulation Inc.
 e. Owens Corning Fiberglas Corp.

2. Density: 1.9 lbs/cu. ft.
3. Thermal Conductivity: Not exceeding 0.25 BTU-in/hour sq. ft. °F at 75°F mean temperature.

H. High-Temperature, Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type V, without factory-applied jacket.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Owens Corning Fiberglas Corp.

2. Density: 3.0 lbs/cu. ft.
3. Thermal Conductivity: Not exceeding 0.30 BTU-in/hour sq. ft. °F at 100°F mean temperature.

I. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ. For equipment applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. CertainTeed Corp.
b. Johns Manville.
c. Knauf Insulation.
d. Manson Insulation Inc.
e. Owens Corning Fiberglas Corp.

2. Density: 3.0 lbs/cu. ft.
3. Thermal Conductivity: Not exceeding 0.23 BTU-in/hour sq. ft. °F at 75°F mean temperature.

J. High-Temperature, Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type III, without factory-applied jacket.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Owens Corning Fiberglas Corp.

2. Density: 3.0 lbs/cu. ft.
3. Thermal Conductivity: Not exceeding 0.30 BTU-in/hour sq. ft. °F at 100°F mean temperature.

K. Mineral-Fiber, Preformed Pipe Insulation:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Knauf Insulation.
 c. Manson Insulation Inc.
 d. Owens Corning Fiberglas Corp.

2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in “Factory-Applied Jackets” Article.

3. Thermal Conductivity: Not exceeding 0.23 BTU-in/hour sq. ft. °F at 75°F mean temperature.

L. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Factory-applied jacket requirements are specified in “Factory-Applied Jackets” Article.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Manson Insulation Inc.
2. Density: 2.5 lbs/cu. ft.
3. Thermal Conductivity: Not exceeding 0.27 BTU-in/hour sq. ft. °F at 75°F mean temperature.

2.2 INSULATING CEMENTS

2.3 ADHESIVES
A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA Inc.
 b. Armacell LCC.
 c. Foster Products Corporation, H. B. Fuller Company.
 d. RBX Corporation.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Products, Division of ITW.
 b. Foster Products Corporation, H. B. Fuller Company.
 c. ITW TACC, Division of Illinois Tool Works.
 d. Marathon Industries, Inc.
 e. Mon-Eco Industries, Inc.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
E. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Dow Chemical Company (The).
 c. P.I.C. Plastics, Inc.
 d. Speedline Corporation

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.5 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. P.I.C. Plastics, Inc.
 c. Proto PVC Corporation.
 d. Speedline Corporation.

2. Adhesive: As recommended by jacket material manufacturer.
4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

5. Factory-fabricated tank heads and tank side panels.

D. Metal Jacket:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Childers Products, Division of ITW.
 b. PABCO Metals Corporation.
 c. RPR Products, Inc.

 a. Factory cut and rolled to size.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:

 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.6 TAPES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Avery Dennison Corporation, Specialty Tapes Division.
 2. Compac Corp.
 4. Venture Tape.

B. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

 1. Width: 3 inches.
2. Thickness: 11.5 mils.
4. Elongation: 2 percent.
5. Tensile Strength: 40 lbf/inch in width.
6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

C. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. Width: 3 inches.
2. Thickness: 6.5 mils.
4. Elongation: 2 percent.
5. Tensile Strength: 40 lbf/inch in width.
6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Width: 2 inches.
2. Thickness: 3.7 mils.
3. Adhesion: 100 ounces force/inch in width.
4. Elongation: 5 percent.
5. Tensile Strength: 34 lbf/inch in width.

2.7 SECUREMENTS

A. Bands:

1. Stainless Steel: ASTM A 167 or ASTM A 240, Type 304; 0.015 inch thick, 1/2 inch wide with wing or closed seal.
2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.

B. Insulation Pins and Hangers:

1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel or aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.

1. Verify that systems and equipment to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

O. For above ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated):
Install insulation continuously through walls and partitions.

C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.

1. Comply with requirements in Division 07 Section "Penetration Firestopping" and fire-resistant joint sealers.

D. Insulation Installation at Floor Penetrations:

1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
2. Pipe: Install insulation continuously through floor penetrations.
3. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 EQUIPMENT, TANK, AND VESSEL INSULATION INSTALLATION

A. Mineral Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
3. Protect exposed corners with secured corner angles.
4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 a. Do not weld anchor pins to ASME-labeled pressure vessels.
 b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 d. Do not overcompress insulation during installation.
 e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 f. Impale insulation over anchor pins and attach speed washers.
 g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing
insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.

7. Stagger joints between insulation layers at least 3 inches.
8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.

B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.

1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
2. Seal longitudinal seams and end joints.

C. Insulation Installation on Pumps:

1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch-diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
2. Fabricate boxes from galvanized steel or aluminum, at least 0.040 inch thick.
3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.6 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word “UNION.” Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gauges, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

3.7 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
C. Insulation Installation on Pipe Fittings and Elbows:

 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
3.9 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:

1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.10 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."

3.11 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

3.12 FIELD QUALITY CONTROL

A. Perform tests and inspections.
B. Tests and Inspections:

1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.

2. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.

3. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.13 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:

1. Indoor, concealed supply and outdoor air ductwork, casings and plenums.
2. Indoor, exposed supply, return, relief and outdoor air ductwork, casings and plenums unless otherwise noted on drawings.
3. Outdoor, concealed supply, return and relief air.
4. Outdoor, exposed supply, return and relief air.

B. Items Not Insulated:

1. General Exhaust air ductwork.
2. Factory-insulated flexible ducts.
3. Factory-insulated plenums and casings, terminal boxes, and filter boxes and sections.
4. Flexible connectors.
5. Vibration-control devices.
7. Nameplates and data plates
8. Factory-insulated access panels and doors.

3.14 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Service: Round and all rectangular concealed supply air, return air and exhaust air downstream of energy recovery equipment.

1. Material: Mineral-fiber blanket or board.
2. Thickness: 1-1/2 inches.
3. Number of Layers: One.
5. Vapor Retarder Required: Yes.
B. Service: Round or rectangular exposed supply air, return air and relief air, relief air plenums and exhaust air-downstream of energy recovery equipment.

2. Thickness: 1-1/2 inches.
3. Number of Layers: One.
5. Vapor Retarder Required: Yes.

C. Service: Round or rectangular exposed supply air, return air and relief air, relief air plenums and exhaust air-downstream of energy recovery equipment in mechanical rooms.

2. Thickness: 2 inches.
3. Number of Layers: One.
5. Vapor Retarder Required: Yes.

3.15 OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Service: Round and all rectangular concealed supply air, return air and exhaust air downstream of energy recovery equipment.

1. Material: Mineral-fiber blanket or board.
2. Thickness: 2 inches.
3. Number of Layers: One.
5. Vapor Retarder Required: Yes.

B. Service: Round and all rectangular concealed supply air and return air.

2. Thickness: 1-1/2 inches.
3. Number of Layers: One.
5. Vapor Retarder Required: No.

3.16 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.
3.17 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch thick.

B. Chilled Water:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.

C. Service: Refrigerant piping.
 1. Operating Temperature: 35 to 150 deg F.
 2. Insulation Material: Flexible elastomeric.
 3. Insulation Thickness: Apply the following thicknesses
 a. Pipes Sizes up to 7/8": 3/4 inch.
 b. Pipes Sizes 1" and Larger: 1 inch.
 5. Vapor Retarder Required: No.
 6. Finish: None.

D. Heating-Hot-Water Supply and Return:
 1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 1 inch thick.
 2. NPS 1-1/2 and larger: Insulation shall be one of the following:

E. Low Pressure Steam, Low and High Pressure Steam Condensate, Condensate Pump Discharge, Condensate Pump Receiver Vent to 7 ft., Flash Tank Vent to 7 ft., Steam Relief Vent:
 1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 1-1/2 inch thick.
 2. NPS 1-1/2 and larger: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 2 inches thick.

F. High Pressure Steam (above 15 psig):
 1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
3.18 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Chilled Water:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1-1/2” inches thick.

B. Heating-Hot-Water Supply and Return:
 1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
 2. NPS 1-1/2 and larger: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 2 inches thick.

3. Service: Refrigerant suction, hot gas or liquid line.
 a. Operating Temperature: 35 to 50 deg F.
 b. Insulation Material: Flexible elastomeric.
 c. Insulation Thickness: Two layers of 3/4”.
 e. Vapor Retarder Required: Yes.

3.19 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. Piping, Concealed:
 1. None.

C. Piping, Exposed to view in occupied area and within 6’-0” of finished floor:
 1. PVC Jacket.
D. Piping, Exposed in mechanical rooms except steam & steam condensate:
 1. Aluminum Jacket.

E. Steam & Steam Condensate Piping, Exposed in mechanical rooms:
 1. Aluminum Jacket.

3.20 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Concealed:
 1. None.

D. Ducts and Plenums, Exposed:
 1. Aluminum, Corrugated: 0.024 inch thick.

E. Equipment, Concealed:
 1. None.

F. Equipment, Exposed:
 1. Aluminum, Smooth with Z-Shaped Locking Seam: 0.024 inch thick.

G. Piping, Concealed:
 1. None.

H. Piping, Exposed:
 1. Aluminum, Corrugated with Z-Shaped Locking Seam: 0.024 inch thick.

END OF SECTION 230700
SECTION 230900 – INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls.

1.3 DEFINITIONS

A. DDC: Direct digital control.
B. I/O: Input/output.
D. MS/TP: Master slave/token passing.
E. PC: Personal computer.
F. PID: Proportional plus integral plus derivative.
G. RTD: Resistance temperature detector.

1.4 SYSTEM PERFORMANCE

A. Comply with the following performance requirements:

1. Graphic Display: Display graphic with minimum 20 dynamic points with current data within 10 seconds.
2. Graphic Refresh: Update graphic with minimum 20 dynamic points with current data within 8 seconds.
3. Object Command: Reaction time of less than two seconds between operator command of a binary object and device reaction.
4. Object Scan: Transmit change of state and change of analog values to control units or workstation within six seconds.
5. Alarm Response Time: Annunciate alarm at workstation within 45 seconds. Multiple workstations must receive alarms within five seconds of each other.
6. Program Execution Frequency: Run capability of applications as often as five seconds, but selected consistent with mechanical process under control.
7. Performance: Programmable controllers shall execute DDC PID control loops, and scan and update process values and outputs at least once per second.

1.5 SUBMITTALS

A. Product Data: Include manufacturer’s technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.

1. DDC System Hardware: Bill of materials of equipment indicating quantity, manufacturer, and model number. Include technical data for operator workstation equipment, interface equipment, control units, transducers/transmitters, sensors, actuators, valves, relays/switches, control panels, and operator interface equipment.

2. Control System Software: Include technical data for operating system software, operator interface, color graphics, and other third-party applications.

3. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1. Bill of materials of equipment indicating quantity, manufacturer, and model number.

2. Schematic flow diagrams showing fans, coils, dampers, valves, and control devices.

4. Details of control panel faces, including controls, instruments, and labeling.

5. Written description of sequence of operation.

6. Schedule of dampers including size, leakage, and flow characteristics.

7. DDC System Hardware:
 a. Wiring diagrams for control units with termination numbers.
 b. Schematic diagrams and floor plans for field sensors and control hardware.
 c. Schematic diagrams for control, communication, and power wiring, showing trunk data conductors and wiring between operator workstation and control unit locations.

8. Control System Software: List of color graphics indicating monitored systems, data (connected and calculated) point addresses, output schedule, and operator notations.

9. Controlled Systems:
 a. Schematic diagrams of each controlled system with control points labeled and control elements graphically shown, with wiring.
 b. Scaled drawings showing mounting, routing, and wiring of elements including bases and special construction.
 c. Written description of sequence of operation including schematic diagram.
 d. Points list.

C. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with ASHRAE 135. Control network communication protocol shall be BACnet Standard MS/TP or BACnet IP.
D. Samples for Initial Selection: For each color required, of each type of thermostat or sensor cover with factory-applied color finishes.

E. Software and Firmware Operational Documentation: Include the following:

1. Software operating and upgrade manuals.
2. Program Software Backup: On a magnetic media or compact disc, complete with data files.
3. Device address list.
4. Printout of software application and graphic screens.
5. Software license required by and installed for DDC workstations and control systems.

F. Software Upgrade Kit: For Owner to use in modifying software to suit future systems revisions or monitoring and control revisions.

G. Qualification Data: For Installer and manufacturer.

H. Field quality-control test reports.

I. Operation and Maintenance Data: For HVAC instrumentation and control system to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section “Operation and Maintenance Data,” include the following:

1. Maintenance instructions and lists of spare parts for each type of control device and compressed-air station.
2. Interconnection wiring diagrams with identified and numbered system components and devices.
4. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
5. Calibration records and list of set points.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Automatic control system manufacturer’s authorized representative who is trained and approved for installation of system components required for this Project.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with ASHRAE 135 for DDC system components.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.

B. System Software: Update to latest version of software at Project completion.
1.8 COORDINATION

A. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.

B. Coordinate equipment with Division 28 Section "Fire Detection and Alarm" to achieve compatibility with equipment that interfaces with that system.

C. Coordinate supply of conditioned electrical branch circuits for control units and operator workstation.

D. Coordinate equipment with Division 26 Section "Panelboards" to achieve compatibility with starter coils and annunciation devices.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by those that are capable of interfacing with existing Siemen’s building control system as described on control diagrams.

2.2 CONTROL SYSTEM

A. Control system shall consist of final control elements, interface equipment, other apparatus, accessories, and software connected to distributed controllers operating in multiuser, multitasking environment on token-passing network and programmed to control mechanical systems. An operator workstation permits interface with the network via dynamic color graphics with each mechanical system, building floor plan, and control device depicted by point-and-click graphics.

2.3 DDC EQUIPMENT

A. Control Units: Modular, comprising processor board with programmable, nonvolatile, random-access memory; local operator access and display panel; integral interface equipment; and backup power source.

 1. Units monitor or control each I/O point; process information; execute commands from other control units, devices, and operator stations; and download from or upload to operator workstation or diagnostic terminal unit.

 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:

 a. Global communications.
 b. Discrete/digital, analog, and pulse I/O.
c. Monitoring, controlling, or addressing data points.
d. Software applications, scheduling, and alarm processing.
e. Testing and developing control algorithms without disrupting field hardware and controlled environment.

3. Standard Application Programs:
 a. Electric Control Programs: Demand limiting, duty cycling, automatic time scheduling, start/stop time optimization, night setback/setup, on-off control with differential sequencing, staggered start, antishort cycling, PID control, DDC with fine tuning, and trend logging.
 b. Programming Application Features: Include trend point; alarm processing and messaging; weekly, monthly, and annual scheduling; energy calculations; run-time totalization; and security access.
 c. Remote communications.
 d. Maintenance management.
 e. Units of Measure: Inch-pound and SI (metric).

4. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.

5. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

B. Local Control Units: Modular, comprising processor board with electronically programmable, nonvolatile, read-only memory; and backup power source.
 1. Units monitor or control each I/O point, process information, and download from or upload to operator workstation or diagnostic terminal unit.
 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 a. Global communications.
 b. Discrete/digital, analog, and pulse I/O.
 c. Monitoring, controlling, or addressing data points.
 3. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
 4. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

C. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting will cause no damage to controllers.
 1. Binary Inputs: Allow monitoring of on-off signals without external power.
 2. Pulse Accumulation Inputs: Accept up to 10 pulses per second.
 3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals.
 4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation with three-position (on-off-auto) override switches and status lights.
 5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA) with status lights, two-position (auto-manual) switch, and manually adjustable potentiometer.

7. Universal I/Os: Provide software selectable binary or analog outputs.

D. Power Supplies: Transformers with Class 2 current-limiting type or overcurrent protection; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:

1. Output ripple of 5.0 mV maximum peak to peak.
2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
3. Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.

E. Power Line Filtering: Internal or external transient voltage and surge suppression for workstations or controllers with the following:

1. Minimum dielectric strength of 1000 V.
3. Minimum transverse-mode noise attenuation of 65 dB.
4. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.

2.4 MATERIALS AND EQUIPMENT

A. Conduit and Raceway:

1. Electrical metallic Tubing: EMT and fittings shall conform to ANSI C80.3.
2. Surface Metal Raceway and Fittings: Wiremold 500, Ivory, or approved equal.
3. Flexible Metal Conduit: Indoors, per National Electric Code for connection to moving or vibrating equipment.
4. Liquidtight Flexible Conduit: Outdoors, per National Electric Code for connection to moving or vibrating equipment.

B. Control Valves: Provide factory fabricated electric control valves of type, body material, and pressure class as indicated on the drawings. Butterfly style control valves are not acceptable except for two position applications. Equip control valves with proper shutoff rating for each individual application.

1. Steam and Hot Water:
 a. Manufacturer do not allow KMC valves and actuators.
 b. Water Service Valves: Equal percentage characteristics.
 c. Steam Service Valves: Equal percentage characteristics.
 d. Single Seated Valves: Cage type trim, providing seating and guiding surfaces for plug on “top and bottom” guided plugs.
 e. Valve Trim and Stems: Polished stainless steel.
 g. Control valves should have a minimum 100 psi close-off rating for chilled water applications.

2. Hydronic Chilled Water and Heating Water:
a. Hydronic control valves shall be pressure independent. The flow through the valve shall not vary more than +/- 5% due to system pressure fluctuations across the valve in the selected operating range. The control valve shall accurately control the flow from 1 to 100% full rated flow.

b. The valve bodies shall be of cast iron, steel or bronze and rated for 150 psi working pressure. All internal parts shall be stainless steel, steel, Teflon, brass or bronze.

c. Valves shall be DeltaP Valves manufactured by Flow Control Industries, Belimo P Series, Danfoss AB-QM Series, or approved equal. Belimo EV050 Series is not acceptable.

d. The valves shall have pressure taps across the valve for measuring the pressure drop across the valve. The pressure taps shall have ½-inch extensions for accessibility.

e. Control valves shall be installed with unions or flanges as necessary for easy removal and replacement.

f. Valve Tag shall include the model number, AHU being served, design flow, and maximum flow for that valve.

g. The control valves shall be delivered preset to the scheduled design flow and should be capable of reaching 110% of the design flow to allow for field adjustment for capacity changes.

C. Control Dampers: Ruskin CD-50 or approved equal.

1. Provide dampers with parallel blades for 2-position control.
2. Provide opposed blades for modulating control.
3. Dampers shall be low leakage design with blade and edge seals.
4. Provide multiple sections and operators as required by opening size and sequence of operations, as indicated on the contract drawings.

D. Electric Actuators: Seimens, Johnson Controls, Bray, Belmo, TAC or approved equal, KMC actuators are not approved. Size electric actuators to operate their appropriate dampers or valves with sufficient reserve power to provide smooth modulating action or 2-position action as specified. If mixed air AHU has return air, exhaust air and outside air dampers that are not mechanically linked then static safety switch must be installed and wired to safety circuit. Spring return actuators should be provided on heat exchanger control valves or dampers or as specified on the drawings. Control signal shall be 0 to 10 VDC unless otherwise specified on drawings. Actuators with integral damper end switch are acceptable. For VAV reheat valves, actuators shall have a material override capability to aid in system flushing, startup and balancing.

E. Air Temperature Sensors:

1. All electronic temperature sensors shall be compatible with Seimens systems.
2. Sensors shall be 1,000 ohm platinum, resistance temperature detectors (RTDs) with two wire connections. Duct mounted sensors shall be averaging type. Contractor may install probe type when field conditions prohibit averaging type, but must receive permission from Owner’s Representative.
3. Coordinate thermowell manufacturer with RTD manufacturer.

F. Electronic Temperature Sensors and Transmitters:

1. Chilled Water, Heating Hot Water, and Steam Temperature Sensors:
a. General: The RTD/Temperature Transmitter/Thermowell assembly shall come as a complete assembly from a single manufacturer. The Assembly shall be suitable for use in the accurate measurement of Chilled Tower/Dual Water temperature in a mechanical room environment.

b. Calibration: Each RTD must be match calibrated to the Transmitter via NIST traceable calibration standards. Results are to be programmed into the transmitter. Results are to be presented on report as after condition at the specified calibration points. Assembly shall not be approved for installation until Owner has received all factory calibration reports.

c. RTD:

1) RTD type: 2-wire or 3-wire 100 ohm platinum class A.
2) Outside Diameter: 0.25 inch.
3) Tolerance: +/- 0.06% Type A.
4) Stability: +/- 0.1% over one year.
5) TCR: 0.00385 (ohm/ohm/°C).
6) RTD shall be tip sensitive.
7) Resistance vs. Temperature table for the RTD must be provided to the Owner.

d. Transmitter:

1) Transmitter shall be match calibrated to the RTD and assembled as a matched pair.
2) Type: 2 wire (loop powered).
3) Input: 2 or 3 wire 100 ohm platinum class A or class B RTD.
4) Output: Output shall be a 4-20 mA signal linear to temperature.
5) Calibrated Span:
 a) Chilled Water: 30°F to 130°F
 b) Hot Water: 100°F to 250°F
 c) Steam: 150°F to 450°F
6) Calibration Accuracy, including total of all errors, of the Transmitter & RTD matched pair over the entire space shall be within +/- 0.2% of the calibrated span or +/- 0.18°F, whichever is greater.
7) Supply Voltage: 24 VDC
8) Ambient Operating Temp: 32 to 122°F
9) Epoxy potted for moisture resistance.
10) Mounting: Transmitter shall be mounted in the RTD connection head.

e. Thermowell:

1) Thermowell shall be suitable for immersion in chilled, hot water and steam.
2) Thermowell shall be reduced tip.
3) Thermowell shall be one piece stainless steel machined from solid bar stock.
4) Thermowell shall have ½" NPT process connection to pipe thred-o-let.
5) Thermowell Insertion depth shall be ½ the inside pipe diameter but not to exceed 10".

f. Assembly:
1) Assembly configuration: Spring loaded RTD with thermowell-double ended hex-connection heat.
2) Connection head shall be cast aluminum with chain connecting cap to body, have ½” NPT process and ¾” NPT conduit connections, and a sealing gasket between cap and body.

g. RTD/Temperature Transmitter/Thermowell assembly shall be the following or approved equal:

1) Manufacturer: Pyromation, Inc.
2) Chilled Water: RAF-185L-S4C[length code]08-SL-8HN31, TT440-385U-S (30-130)F with calibration SMC (40,60)F.
3) Hot Water: RAF 185L-S4C[length code]08T2-SL-8HN31, TT440-385U-S (100-250)F with calibration SMC (140,180)F.
4) Steam: RAT185H-S4C[length code]08T2-SL-8HN31, TT440-385U-S (150-450)F with calibration SMC (300,350)F.

G. Occupant Override: Provide wall mounted occupant override button in locations shown on drawings.

H. Low Limit Controllers: Provide unit-mounted low limit controllers, of rod-and-tube type, with an adjustable set point and a manual reset. Capillary shall be of adequate length to horizontally traverse face of cooling coil every 12”. Multiple low limit controllers may be required for large coils. Controller shall have an extra set of contactors for connection to control panel for alarm status. Locate the thermostat case and bellows where the ambient temperature is always warmer that the set point.

I. Humidistats: Humidistats must be contamination resistant, capable of ±2% RH accuracy, have field adjustable calibration and provide a linear proportional signal.

1. HD20K-T91 or equivalent.

J. Humidity High Limit:

1. Multi-function device that can function as a high limit or proportional override humidity controller, as stand-alone proportional controller, or a stand-alone two-position controller.

K. Carbon Dioxide Sensor:

1. Wall Mount: ACI Model ESENSE-R.
2. Duct Mount: ACI Model ESENSE-D.

L. Fan/Pump Status: Status points for fan or pump motors with a VFD must be connected to the terminal strip of the VFD for status indication. Current switches: Current switches are required for fan and pump statuses that are not connected to a VFD. The switches must have an adjustable trip setpoint with LED indication and be capable of detecting broken belts or couplings. Units shall be powered by monitored line, UL listed and CE certified, and have a five year warranty.

1. Kele, Hawkeye or approved equal.
M. Relays Used for Fan and Pump Start/Stop: Must have LED indication and be mounted externally or starter enclosure or VFD.
 1. Kele, RIBU1C or approved equal.

N. Power Supply Used to Provide Power to Contractor-Provided Control Devices: Shall have adjustable DC output, screw terminals, overload protection and 24 VDC and 24 VDC output.
 1. Kele, DCPA-1.2 or approved equal.

O. Pressure Differential Switch:
 1. Fans: NECC model DP222 or approved equal.

P. Differential Pressure Transmitter: Provide units with linear analog, 4-20 mA output proportional to differential pressure, compatible with the Siemens Systems.
 1. Water: Units shall be wet/wet differential pressure capable of a bi-directional pressure range of +/- 50 psid. Accuracy shall be +/- 0.25% full scale with a compensated temperature range of 30 to 150 deg F and a maximum working pressure of 250 psig. Install transmitter in a pre-manufactured bypass valve assembly with shut-off valves, vent valves and a bypass valve, all enclosed in a NEMA 1 enclosure.
 a. Setra model 230 with Kele model BVA-5 bypass valve assembly, or approved equal.
 2. Air: Units shall be capable of measuring a differential pressure of 0 to 5 in. WC. Accuracy shall be +/- 1.0% full scale with a compensated temperature range of 40 to 149 deg F and a maximum working pressure of 250 psig.
 a. Setra model 267, or approved equal.
 b. Shall be installed in control panel and piped 2/3 down the duct unless shown otherwise or approved by Owner's Representative.

Q. Building Static Pressure: Transducer shall utilize a ceramic capacitive sensing element to provide a stable linear output over the specified range of building static pressure. Transducer shall be housed in a wall-mounted enclosure with LCD display. Transducer shall have the following capabilities:
 1. Input Power: 24 VAC
 2. Output: 0-10 VDC
 3. Pressure Range: -0.25 to +0.25 inches w.g.
 4. Display: 3-1/2 digit LCD, displaying pressure in inches w.g.
 5. Accuracy: +/- 1.0% combined linearity and hysteresis.
 6. Temperature Effect: 0.05% / deg C.
 7. Zero Drift (1 year): 2.0% max.
 9. Operating Environment: 0 to 140 deg F, 90% RH (non-condensing).
 10. Fittings: Brass barbs, 1/8” O.D.
 12. Outdoor Sensing Tube Enclosure: UV stabilized thermoplastic or aluminum “can” enclosure to shield outdoor pressure sensing tube from wind effects.
13. Transducer shall be Veris Industries Model PXPLX01S, equivalent from Setra, or approved equal.

R. High Static Pressure Limit Switch: Provide pressure high limit switch to open contact in fan circuit to shut down the supply fan when the inlet static pressure rises above the set point. Provide with an adjustable set point, a manual reset button, 2 SPST (normally closed) contacts, and ¼” compression fittings.

1. Kele model AFS-460-DDS, or approved equal.

S. Airflow/Temperature Measurement Devices:

1. Provide airflow/temperature measurement devices where indicated on the plans. Fan inlet measurement devices shall not be substituted for duct or plenum measurement devices indicated on the plans.

2. The measurement device shall consist of one or more sensor probe assemblies and a single, remotely mounted, microprocessor-based transmitter. Each sensor probe assembly shall contain one or more independently wired sensor housings. The airflow and temperature readings calculated for each sensor housing shall be equally weighted and averaged by the transmitter prior to output. Pitot tubes and arrays are not acceptable. Vortex shedding flow meters are not acceptable.

3. All Sensor Probe Assemblies:
 a. Each sensor housing shall be manufactured of a U.L. listed engineered thermoplastic.
 b. Each sensor housing shall utilize two hermetically sealed, bead-in-glass thermistor probes to determine airflow rate and ambient temperature. Devices that use “chip” or diode case type thermistors are unacceptable. Devices that do not have two (2) thermistors in each sensor housing are not acceptable.
 c. Each sensor housing shall be calibrated at a minimum of 16 airflow rates and have an accuracy of +/- 2% of reading over the entire operating airflow range. Each sensor housing shall be calibrated to standards that are traceable to the National Institute of Standards and Technology (NIST).

 1) Devices whose accuracy is the combined accuracy of the transmitter and sensor probes must demonstrate that the total accuracy meets the performance requirements of this specification throughout the measurement range.

 d. The operating temperature range for the sensor probe assembly shall be -20°F to 160°F. The operating humidity range for the sensor probe assembly shall be 0-99% RH (non-condensing).
 e. Each temperature sensor shall be calibrated at a minimum of three temperatures and have an accuracy of +/- 0.15°F over the entire operating temperature range. Each temperature sensor shall be calibrated to standards that are traceable to the National Institute of Standards and Technology (NIST).
 f. Each sensor probe assembly shall have an integral, U.L. listed, plenum rated cable and terminal plug for connection to the remotely mounted transmitter. All terminal plug interconnecting pins shall be gold plated.
 g. Each sensor assembly shall not require matching to the transmitter in the field.
 h. A single manufacturer shall provide both the airflow/temperature measuring probe(s) and transmitter at a given measurement location.
4. Duct and Plenum Sensor Probe Assemblies:
 a. Sensor housings shall be mounted in an extruded, gold anodized, 6063 aluminum tube probe assembly. Thermistor probes shall be mounted in sensor housings using a waterproof marine grade epoxy resin. All wires within the aluminum tube shall be Kynar coated.
 b. The number of sensor housings provided for each location shall be as follows:

<table>
<thead>
<tr>
<th>Area (sq. ft.)</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td><2</td>
<td>4</td>
</tr>
<tr>
<td>2 to <4</td>
<td>6</td>
</tr>
<tr>
<td>4 to <8</td>
<td>8</td>
</tr>
<tr>
<td>8 to <16</td>
<td>12</td>
</tr>
<tr>
<td>>=16</td>
<td>16</td>
</tr>
</tbody>
</table>

c. Probe assembly mounting brackets shall be constructed of 304 stainless steel. Probe assemblies shall be mounted using one of the following options:

 1) Insertion mounted through the side or top of the duct.
 2) Internally mounted inside the duct or plenum.
 3) Standoff mounted inside the plenum.

d. The operating airflow range shall be 0 to 5,000 FPM unless otherwise indicated on the plans.

5. Fan Inlet Sensor Probe Assemblies:
 a. Sensor housings shall be mounted on 304 stainless steel blocks.
 b. Mounting rods shall be field adjustable to fit the fan inlet and constructed of nickel plated steel.
 c. Mounting feet shall be constructed of 304 stainless steel.
 d. The operating airflow range shall be 0 to 10,000 FPM unless otherwise indicated on the plans.

6. Transmitters:
 a. The transmitter shall have a 16 character alpha-numeric display capable of displaying airflow, temperature, system status, configuration settings and diagnostics. Configuration settings and diagnostics shall be accessed through a pushbutton interface on the main circuit board. Airflow shall be field configurable to be displayed as a velocity or a volumetric rate.
 b. The transmitter shall be capable of independently monitoring and averaging up to 16 individual airflow and temperature readings. The transmitter shall be capable of displaying the airflow and temperature readings of individual sensors on the LCD display.
 c. The transmitter shall have a power switch and operation on 24 VDC (isolation not required). The transmitter shall use a switching power supply fused and protected from transients and power surges.
 d. All interconnecting pins, headers and connections on the main circuit board, option cards and cable receptacles shall be gold plated.
 e. The operating temperature range for the transmitter shall be -20°F to 120°F. The transmitter shall be protected from weather and water.
f. The transmitter shall be capable of communicating with the host controls using one of the following interface options:

1) Linear Analog Output Signal: Field selectable, fuse protected and isolated, 0-10 VDC and 4-20 mA (4-wire).
2) RS-485: Field selectable BACnet-MS/TP, ModBus-RTU and Johnson Controls N2 Bus.
3) 10 Base-T Ethernet: Field selectable BACnet Ethernet, BACnet-IP, ModBus-TCP and TCP/IP.
4) LonWorks Free Topology.

g. The transmitter shall have an infra-red interface capable of downloading individual sensor airflow and temperature date or uploading transmitter configuration data to a handheld PDA (Palm or Microsoft Pocket PC operating systems).

7. The measuring device shall be UL listed as an entire assembly.
8. The manufacturer’s authorized representative shall review and approve placement and operating airflow rates for each measurement location indicated on the plans. A written report shall be submitted to the consulting mechanical engineer if any measurement locations do not meet the manufacturer’s placement requirements.
9. Manufacturer:

 a. Primary, flow elements, sensors, meters and transducers shall be EBTRON, Inc. Model GTx116-P and GTx116-F or approved equal.
 b. The naming of any manufacturer does not automatically constitute acceptance of this standard product nor waive their responsibility to comply totally with all requirements of the proceeding specification.

T. Electrical Requirements: Provide electric-pneumatic switches, electrical devices, and relays that are UL-listed and of type which meet current and voltage characteristics of the project. All devices shall be of industrial commercial grade or better. Residential types will be rejected.

2. Relays: Relays shall have a LED status indicator, voltage transient suppression. Closed-Open-Auto switch, plastic enclosure, and color coded wires. Kele model RIBU1C or approved equal.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONTROL SYSTEMS

A. General: Install systems and materials in accordance with manufacturer’s instructions, roughing-in drawings and details shown on drawings.

B. Raceway: Raceway is to be installed in accordance with the National Electric Code. Use of flexible metal conduit or liquidtight flexible conduit is limited to 36” to connect from EMT to devices subject to movement. Flexible raceway is not to be used to compensate for misalignment of raceway during installation.
C. Control Wiring: Install control wiring in raceway, without splices between terminal points, color-coded. Install in a neat workmanlike manner, securely fastened. Install in accordance with National Electrical Code.

1. Install circuits over 25-volt with color-coded No. 12 stranded wire.
2. Install electronic circuits and circuits under 25-volts with color-coded No. 18 stranded twisted shielded pair type conductor.
3. N2 communications bus wire shall be 18 AWG, plenum rated, stranded twisted shielded, 3 conductor, with blue outer casing, described as 18-03 OAS STR PLNM NEON BLU JK distributed by Windy City Wire, constructed by Cable-Tek, or approved equivalent.
 a. Metastat wiring shall be minimum 20 AWG, plenum rated, stranded, 8 conductor stranded wire.
4. FC communications bus wire shall be 22 AWG, plenum rated, stranded twisted shielded, 3 conductor, with blue outer casing, described as 22-03 OAS STR PLNM NEON BLU JK distributed by Windy City Wire, constructed by Cable-Tek, or approved equivalent.
 a. Network sensor wiring (SA Bus) shall be 22 gauge plenum rated stranded twisted wire, 4 conductor.
5. All control wiring at control panel shall be tagged and labeled during installation to assist owner in making termination connections at control panel. Label all control wires per bid documents.

D. All low voltages electrical wiring shall be run as follows:

1. Route electrical wiring on concealed spaces and mechanical rooms whenever possible.
2. Provide EMT conduit and fittings in mechanical rooms and where indicated on drawings.
3. Low voltage electrical wiring routed above acoustical ceiling is not required to be in conduit, but wire must be plenum rated, but wire must be plenum rated and properly supported to building structure.
4. Provide surface raceway, fittings and boxes in finished areas where wiring cannot be run in concealed spaces. Route on ceiling or along walls as close to ceiling as possible. Run raceway parallel to walls. Diagonal runs are not permitted. Paint raceway and fittings to match existing conditions. Patch/repair/paint any exposed wall penetrations to match existing conditions.

E. All devices shall be mounted appropriately for the intended service and location.

1. Adjustable thermostats shall be provided with base and covers in occupied areas and mounted 48” above finished floor to the top of the device. Tubing and/or wiring shall be concealed within the wall up to the ceiling wherever possible. Surface raceway may only be used with approval of Owners Representative. Wall mounted sensors such as CO2, RH, and non-adjustable temperature sensors shall be mounted 54” above finished floor. Duct mounted sensors shall be provided with mounting brackets to accommodate insulation. Mounting clips for capillary tubes for averaging sensors are required.
2. All control devices shall be tagged and labeled for future identification and servicing of control system.
3. Preheat and mixed air discharge sensors must be of adequate length and installed with capillary tube horizontally traversing face of coil, covering entire coil every 24 inches bottom to top.
4. All field devices must be accessible or access panels must be installed.
F. Install magnehelic pressure gage across each air handling unit filter bank. If the air handling unit has a prefilter and a final filter, two magnehelic pressure gages are required.

3.2 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

B. Perform the following field tests and inspections and prepare test reports:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.
2. Test calibration of electronic controllers by disconnecting input sensors and stimulating operation with compatible signal generator.
3. Test each point through its full operating range to verify that safety and operating control set points are as required.
4. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Adjust PID actions.
5. Test each system for compliance with sequence of operation.
6. Test software and hardware interlocks.

C. DDC Verification:

1. Verify that instruments are installed before calibration, testing, and loop checks.
2. Check instruments for proper location and accessibility.
3. Check instrument installation for direction of flow, elevation, orientation, and other applicable considerations.
4. Check temperature instruments and material and length of sensing elements.
5. Check DDC system as follows:
 a. Verify that DDC controller power supply is from emergency power supply, if applicable.
 b. Verify that wires at control panels are tagged with their service designation and approved tagging system.
 c. Verify that spare I/O capacity has been provided.
 d. Verify that DDC controllers are protected from power supply surges.

D. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.

3.3 ADJUSTING

A. Calibrating and Adjusting:

1. Calibrate instruments.
2. Make three-point calibration test for both linearity and accuracy for each analog instrument.
3. Calibrate equipment and procedures using manufacturer’s written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
4. Control System Inputs and Outputs:
 a. Check analog inputs at 0, 50, and 100 percent of span.
 b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 c. Check digital inputs using jumper wire.
 d. Check digital outputs using ohmmeter to test for contact making or breaking.
 e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.

B. Occupancy Adjustments: When requested within 12 months of date of final acceptance by Owner, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to four visits to Project during other than normal occupancy hours for this purpose.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 230900
SECTION 232113 – HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes piping systems for hot water heating and chilled water cooling systems; makeup water for these systems; blow-down drain lines; and condensate drain piping. Piping materials and equipment specified in this Section include the following:

1. Pipes, fittings, and specialties.
2. Special-duty valves.
3. Hydronic specialties.

B. Related Sections: The following Sections contain requirements that relate to this Section:

1. General Sections "Firestopping" for materials and methods for sealing pipe penetrations through fire and smoke barriers.
2. General Section "Joint Sealants" for materials and methods for sealing pipe penetrations through exterior walls.
3. Division 23 Section "Basic Mechanical Materials and Methods" for general piping materials and installation methods.
4. Division 23 Section "Valves" for gate, globe, ball, butterfly, and check valves.
5. Division 23 Section "Meters and Gages" for thermometers, flow meters, and pressure gages.
6. Division 23 Section "Hangers and Supports" for pipe supports.
7. Division 23 Section "Mechanical Identification" for labeling and identifying hydronic systems.
8. Division 23 Section "HVAC Pumps" for pumps, motors, and accessories for hydronic systems.
10. Division 23 Section "Testing, Adjusting, and Balancing" for hydronic system adjusting and balancing.

1.3 SYSTEM DESCRIPTION

A. Hydronic systems are chilled water and hot water heating, forced, recirculating systems.
1.4 SUBMITTALS

A. General: Submit each item in this Article according to the Conditions of the Contract and Division 1 Specification Sections.

B. Product Data including rated capacities of selected models, weights (shipping, installed, and operating), furnished specialties, accessories, and installation instructions for each hydronic specialty and special-duty valve specified.
 1. Submit flow and pressure drop curves for balancing valves, based on manufacturer's testing.

C. Shop Drawings detailing pipe anchors, special pipe support assemblies, alignment guides, and expansion joints and loops.

D. Field test reports indicating and interpreting test results for compliance with performance requirements specified in Part 3 of this Section.

E. Maintenance data for hydronic specialties and special-duty valves to include in the operation and maintenance manual specified in Division 1.

1.5 QUALITY ASSURANCE

A. ASME Compliance: Comply with the following provisions:
 1. ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label.
 2. Fabricate and stamp air separators and compression tanks to comply with ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.
 3. Welding Standards: Qualify welding processes and operators according to ASME Boiler and Pressure Vessel Code, Section IX, "Welding and Brazing Qualifications."

1.6 COORDINATION

A. Coordinate layout and installation of piping with equipment and with other installations.

B. Coordinate pipe sleeve installation for foundation wall penetrations.

C. Coordinate pipe fitting pressure classes with products specified in related Sections.

D. Coordinate size and location of concrete housekeeping pads. Cast anchor-bolt inserts into pad. Concrete, reinforcement, and formwork requirements are specified in Division 3 Sections.

E. Coordinate installation of pipe sleeves for penetrations in exterior walls and floor assemblies. Coordinate with requirements for firestopping specified in Division 7 Section "Firestopping" for fire and smoke wall and floor assemblies.
1.7 EXTRA MATERIALS

A. Maintenance Stock: Furnish a sufficient quantity of chemicals for initial system startup and for preventive maintenance for one year from Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Balancing Valves:
 a. Armstrong Pumps, Inc.
 b. Bell & Gossett.
 c. Nibco
 d. Tour & Anderson.

2. Pressure-Reducing Valves (Make-up water for hot and chilled water systems):
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. Grinnell Supply Sales Co.
 d. ITT Hoffman; ITT Fluid Handling Div.
 e. Bell & Gossett.

3. Safety Relief Valves:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. Conbraco Industries, Inc.
 d. ITT Fluid Technology Corp.; ITT McDonnell & Miller.
 e. Bell & Gossett.

4. Compression Tanks:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. ITT Fluid Technology Corp.; ITT Bell & Gossett.
 d. Taco, Inc.
 e. Bell & Gossett.

5. Air/Dirt Separators:
 a. Spirotherm.

6. Air Purgers:
 a. Amtrol.
b. Bell & Gossett.
c. Taco.

7. Suction Diffusers:
 a. Bell & Gossett.
 b. Armstrong.

2.2 PIPE AND TUBING MATERIALS

A. General: Refer to Part 3 "Pipe Applications" Article for identifying where the following materials are used.

B. Steel Pipe, 2-1/2-Inch NPS (DN50) and Smaller: All steel pipe shall be ASTM A53, Grade B, Type E. Welded fittings shall be the same material as the pipe.

C. Steel Pipe, 3- to 12-Inch NPS (DN65 to DN300): All steel pipe shall be ASTM A53, Grade B, Type E. Welded fittings shall be the same material as the pipe.

 1. Steel Pipe Nipples: ASTM A 106 or ASTM A 53, Schedule 40, carbon steel, seamless for 2-inch NPS (DN50) and smaller and electric-resistance welded for 2-1/2-inch NPS (DN65) and larger.

D. Steel pipe, 14- to 18-inch NPS (DN 350 to DN 450): All steel pipe shall be ASTM A53, Grade B, Type E. Welded fittings shall be the same material as the pipe.

E. Contractor may, at his option, use Drawn-Temper Copper Tubing: ASTM B 88, Type L (ASTM B 88M, Type B) for chilled and hot water heating piping 2-1/2" and below.

2.3 FITTINGS

A. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125.

B. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300.

C. Cast-Iron Threaded Flanges: ASME B16.1, Classes 125 and 250; raised ground face, bolt holes spot faced.

D. Wrought-Steel Fittings: ASTM A 234 (ASTM A 234M), Standard Weight.

E. Wrought-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:

 2. End Connections: Butt welding.
 3. Facings: Cast iron with flat faced flanges, 125 lb. valves.

F. Wrought-Copper Fittings: ASME B16.22.

G. Wrought-Copper Unions: ASME B16.22.
2.4 JOINING MATERIALS
 A. Solder Filler Metals: ASTM B 32, 95-5 tin antimony.
 B. Brazing Filler Metals: AWS A5.8, Classification Bag 1 (silver).
 C. Welding Materials: Comply with Section II, Part C of ASME Boiler and Pressure Vessel Code for welding materials appropriate for wall thickness and for chemical analysis of pipe being welded.
 D. Gasket Material: Thickness, material, and type suitable for fluid to be handled; and design temperatures and pressures.

2.5 VALVES
 A. Gate, globe, check, ball, and butterfly valves are specified in Division 23 Section "Valves."
 B. Refer to Part 3 "Valve Applications" Article for specific uses and applications for each valve specified.
 C. Balancing Valves (2” and Under): 200-psig (860-kPa) working pressure, 250 deg F (121 deg C) maximum operating temperature, bronze body, balancing valve with combination shutoff capability. Balancing valves shall have memory stop and pressure/temperature metering taps, with wheel handle and indicator. Furnish with portable test kit. Quarter turn valves will not be acceptable.
 D. Pressure-Reducing Valves: Diaphragm-operated, cast-iron or brass body valve, with low inlet pressure check valve, inlet strainer removable without system shutdown, and noncorrosive valve seat and stem. Select valve size, capacity, and operating pressure to suit system. Valve shall be factory set at operating pressure and have capability for field adjustment.
 E. Safety Relief Valves: Brass or bronze body with brass and rubber, wetted, internal working parts; according to ASME Boiler and Pressure Vessel Code, Section IV. See schedule on drawings for sizes.

2.6 HYDRONIC SPECIALTIES
 A. Manual Air Vent: Bronze body and nonferrous internal parts; 150-psig (1035-kPa) working pressure, 225 deg F (107 deg C) operating temperature; ½ ball valve.
 B. Balancing Valves (2-1/2” and Larger): 175 psi working pressure, 250 deg F maximum operating temperature, heavy-duty, cast iron flanged, valves 2-1/2-3” size shall have brass ball with glass and carbon filled TFE seat rings. Valves 4” to 8” shall be fitted with bronze seat, replaceable bronze disc with EPDM seal insert and stainless steel stem. Valve shall have pre-set capability.
 C. Y-Pattern Strainers: 125-psig (860-kPa) working pressure; cast-iron body (ASTM A 126, Class B), flanged ends for 2-1/2-inch NPS (DN65) and larger, threaded connections for 2-inch NPS (DN50) and smaller, bolted cover, perforated Type 304 stainless-steel basket, and bottom drain connection.
D. Basket Strainers: 125-psig (860-kPa) working pressure; high-tensile cast-iron body (ASTM A 126, Class B), flanged end connections, bolted cover, perforated Type 304 stainless-steel basket, and bottom drain connection.

PART 3 - EXECUTION

3.1 PIPE APPLICATIONS

A. Hot Water and Chilled Water: 2-1/2"-Inch NPS (DN50) and Smaller: Steel pipe with threaded joints.

B. Hot Water and Chilled Water: 3-Inch NPS (DN65) and Larger: Steel pipe with welded and flanged joints.

C. Drain Lines: Type L drawn-temper copper tubing with soldered joints.

3.2 VALVE APPLICATIONS

A. General-Duty Valve Applications: Unless otherwise indicated, use the following valve types:
 1. Shutoff Duty: Use ball (up to 2-1/2") and butterfly valves (3" and larger).

B. Install shutoff-duty valves at each branch connection to supply mains, at supply connections to each piece of equipment, and elsewhere as indicated.

C. Install drain valves at low points in mains, risers, branch lines, and elsewhere as required for system drainage.

D. Install center-guided check valves on each pump discharge and elsewhere as required to control flow direction.

E. Install safety relief valves on hot water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Pipe discharge to floor without valves. Comply with ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, for installation requirements.

F. Install pressure-reducing valves set in quick and automatic fill system on hot water generators and elsewhere as required to regulate system pressure.

3.3 PIPING INSTALLATIONS

A. Install piping according to Division 23 Section "Common Work Results for HVAC."

B. Locate groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
C. Install drains at low points in mains, risers, and branch lines consisting of a tee fitting, 3/4-inch NPS ball valve, and short 3/4-inch NPS threaded nipple and cap. Install manual air vents at all high points.

D. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

E. Install branch connections to mains using tee fittings in main with takeoff out bottom of main, except for up-feed risers with takeoff out top of main line.

F. Install unions in pipes 2-inch NPS and smaller, adjacent to each valve, at final connections of each piece of equipment, and elsewhere as indicated. Unions are not required at flanged connections.

G. Install flanges on valves, apparatus, and equipment having 2-1/2-inch NPS and larger connections.

H. Install strainers on supply side of each control valve, pressure-reducing valve, pressure-regulating valve, solenoid valve, in-line pump, and elsewhere as indicated. Install 3/4-inch NPS nipple and ball valve in blow-down connection of strainers 2-inch NPS and larger.

I. Provide temporary caps and covers over piping to prevent collection of dirt and debris during construction.

J. Anchor piping as required to ensure proper direction of expansion and contraction.

3.4 HANGERS AND SUPPORTS

A. General: Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports." Conform to requirements below for maximum spacing of supports.

B. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet (6 m) in length.
 2. Adjustable roller hangers and spring hangers for individual horizontal runs 20 feet (6 m) or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal runs 20 feet (6 m) or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.

C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 3/4: Maximum span, 7 feet; minimum rod size, 1/4 inch.
 2. NPS 1: Maximum span, 7 feet; minimum rod size, 1/4 inch.
 3. NPS 1-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 4. NPS 2: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 5. NPS 2-1/2: Maximum span, 11 feet; minimum rod size, 3/8 inch.
 6. NPS 3: Maximum span, 12 feet; minimum rod size, 3/8 inch.
 7. NPS 4: Maximum span, 14 feet; minimum rod size, 1/2 inch.
 8. NPS 6: Maximum span, 17 feet; minimum rod size, 1/2 inch.
 9. NPS 8: Maximum span, 19 feet; minimum rod size, 5/8 inch.
10. NPS 10: Maximum span, 20 feet; minimum rod size, 3/4 inch.

D. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
3. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
4. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
5. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
6. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.

E. Support vertical runs at each floor.

3.5 PIPE JOINT CONSTRUCTION

A. Refer to Division 23 Section "Common Work Results for HVAC" for joint construction requirements for soldered and brazed joints in copper tubing; threaded, welded, and flanged joints in steel piping; and solvent-welded joints for PVC and CPVC piping.

3.6 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in system, at heat-transfer coils, and elsewhere as required for system air venting.

3.7 FIELD QUALITY CONTROL

A. Testing Preparation: Prepare hydronic piping according to ASME B31.9 and as follows:

1. Leave joints, including welds, uninsulated and exposed for examination during test.
2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush system with clean water. Clean strainers.
4. Isolate equipment that is not subjected to test pressure from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Flanged joints where blinds are inserted to isolate equipment need not be tested.
5. Install relief valve set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Testing: Test hydronic piping as follows:

1. Acceptance Testing: Perform hydrostatic tests on the hydronic piping in accordance with ANSI B 31.9 and as follows:
2. Notify Owner’s Representative 24 hours before required testing. All tests shall be conducted in the presence of the Owner’s Representative.
3. Flush system with clean water. Clean strainers.
4. Minimum test pressure shall be 100 PSIG.
5. Pressure gauge shall be min. 4" dia. Face, 0-160 PSIG, and shall be calibrated within 1 year of test date.
6. Test pressure shall be held for 1 hour.
7. Prepare reports for all tests and required corrective action.
8. Clean and flush hydronic piping systems. Remove, clean, and replace strainer screens. After cleaning and flushing hydronic piping system, but before balancing, remove disposable fine mesh strainers in pump suction diffusers.
9. System shall be operated for a minimum of 24 hours to demonstrate to the Owner’s Representative that system is complete and operational.

3.8 ADJUSTING AND CLEANING

A. After completing system installation, including outlet fittings and devices, inspect finish. Remove burrs, dirt, and construction debris, and repair damaged finishes including chips, scratches, and abrasions.

B. Flush hydronic piping systems with clean water. Remove, clean, and replace strainer screens. After cleaning and flushing hydronic piping system, but before balancing, remove disposable fine-mesh strainers in pump suction diffusers.

C. Mark calibrated nameplates of pump discharge valves after hydronic system balancing has been completed, to permanently indicate final balanced position.

3.9 COMMISSIONING

A. Fill system and perform initial chemical treatment.

B. Check expansion tanks to determine that they are not air bound and that system is completely full of water.

C. Perform these steps before operating the system:

1. Open valves to fully open position. Close coil bypass valves.
2. Check pump for proper direction of rotation.
3. Set automatic fill valves for required system pressure.
4. Check air vents at high points of systems and determine if all are installed and operating freely (automatic type) or bleed air completely (manual type).
5. Set temperature controls so all coils are calling for full flow.
6. Check operation of automatic bypass valves.
7. Lubricate motors and bearings.

END OF SECTION 232113
SECTION 232213 - STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes steam and condensate piping and specialties for building HVAC, sterilizer and domestic water heating systems, including pipes, fittings, special-duty valves, and specialties.

B. Related Sections: The following Sections contain requirements that relate to this Section:

1. Division 23 Section "Basic Mechanical Materials and Methods" for general piping materials and installation methods.
2. Division 23 Section "Valves" for general-duty gate, globe, ball, and check valves applicable to this Section.
3. Division 23 Section "Hangers and Supports" for pipe supports.
4. Division 23 Section "Mechanical Identification" for labeling and identifying steam and condensate piping systems.

1.3 SUBMITTALS

A. General: Submit each item in this Article according to the Conditions of the Contract and Division 1 Specification Sections.

B. Product Data including rated capacities where applicable, furnished options and accessories, and installation instructions for safety relief valves, pressure-reducing valves, and steam traps.

C. Shop Drawings detailing cooling pipe assemblies and indicating dimensions, weights, loadings, required clearances, method of field assembly, components, and location and size of each field connection.

D. Maintenance data for steam and condensate specialties and special-duty valves to include in the operation and maintenance manual specified in Division 1.

E. Field test reports indicating and interpreting test results relative to compliance with specified requirements.

1.4 QUALITY ASSURANCE

A. ASME Compliance: Comply with the following provisions:
1. ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label.
2. Fabricate and stamp flash tanks to comply with ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.
3. Welding Standards: Qualify welding processes and operators according to ASME Boiler and Pressure Vessel Code, Section IX, "Welding and Brazing Qualifications."

1.5 COORDINATION
A. Coordinate layout and installation of piping and flash tanks with steam and condensate equipment and with other installations.
B. Coordinate pipe sleeve installation for foundation wall penetrations.
C. Coordinate installation of equipment supports, and roof penetrations.
D. Coordinate pipe fitting pressure classes with products specified in related Sections.
E. Coordinate size and location of concrete housekeeping pads. Cast anchor-bolt inserts into pad. Concrete, reinforcement, and formwork requirements are specified in Division 3 Sections.
F. Coordinate installation of pipe sleeves for penetrations in exterior walls and floor assemblies. Coordinate with requirements for firestopping specified in General Section "Firestopping" for fire and smoke wall and floor assemblies.

PART 2 - PRODUCT

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Safety Valves:
 b. Spence Engineering Co., Inc.
 2. Pressure-Regulating Valves:
 a. Spence Engineering Co., Inc.
 3. Steam Traps:
 b. Mepco.
 c. ITT Hoffman; ITT Fluid Handling Div.
 d. Watson-McDaniel Co.
 4. Air Vents and Vacuum Breakers:
b. ITT Hoffman; ITT Fluid Handling Div.

2.2 PIPE AND TUBING MATERIALS

A. General: Refer to Part 3 pipe application articles for identifying where the following materials are used.

B. Steel Pipe, 2-Inch NPS and Smaller: All steel pipe shall be ASTM A53, Grade B, Type E. Welded fittings shall be the same material as the pipe.

C. Steel Pipe, 2-1/2- to 12-Inch NPS: All steel pipe shall be ASTM A53, Grade B, Type E. Welded fittings shall be the same material as the pipe.

1. Steel Pipe Nipples: ASTM A 106 or ASTM A 53, Schedules 40 and 80, carbon steel, seamless for 2-inch NPS (DN50) and smaller and electric-resistance welded for 2-1/2-inch NPS (DN65) and larger.

2.3 FITTINGS

A. Malleable-iron fittings: Class 300 type.

B. Schedule 40 fittings: Wrought steel welding type fittings.

2.4 JOINING MATERIALS

A. Welding Materials: Comply with Section II, Part C of ASME Boiler and Pressure Vessel Code for welding materials appropriate for wall thickness and for chemical analysis of pipe being welded.

B. Gasket Material: Flexitaulic or equal, thickness, material, and type suitable for fluid to be handled; and design temperatures and pressures.

C. Bolting: ASTM A193, Grade B7 alloy steel stud bolts with heavy hex nuts, ASTM A194, Grade 2H.

2.5 VALVES

A. Gate and check valves are specified in Division 23 Section "General Duty Valves for HVAC Piping."

B. Refer to Part 3 "Valve Applications" Article for specific uses and applications for each valve specified.
2.6 SAFETY VALVES

A. Furnish ASME, Underwriters-approved steam relief valve on low side of each medium pressure to low pressure regulating valve. Relief valves shall be set to relieve at 15 p.s.i.

B. Connect each relief valve with vent pipe, extend vent pipe and terminate as indicated on drawings. Provide float and thermostatic drip trap for each relief valve, extend drip line from drip trap and end over floor drain.

C. Relief valves shall have enclosed springs with side outlets. Valves 2" and below shall be Kunkle Fig. No. 6010 or equivalent Longergan, Consolidated or approved equal manufacture, bronze, screwed, with stainless steel springs and seats. Valves 2-1/2" and larger shall be Kunkle Fig. No. 252 or equivalent Longergan, Consolidated or approved equal manufacture, iron body, bronze fitted, stainless steel springs and seat, flanged, side outlet. Submit shop drawings of all valves for approval of Architect.

2.7 FLOAT AND THERMOSTATIC TRAPS (LOW PRESSURE STEAM)

A. Furnish and install 250 lb. class, cast iron, heavy duty combination float and thermostatic traps at all points where steam drip traps are required or shown on low pressure steam return piping for main drips, humidifiers, coils, unit heaters and miscellaneous equipment. Minimum size trap acceptable shall have a capacity base on SHEMA rating of 100# per hour with 1/2# differential. Furnish and install 15 degree check valve in 1/2" line around steam trap on each steam coil with automatic control valve for vacuum breaker. Traps with built-in vacuum breakers will not be acceptable. Note: All coils handling all outside air shall be equipped with not less than two (2) traps full capacity of each coil. Set traps on all outside air coils at least 16" below coil outlet.

B. Floats in all traps shall be made of stainless steel. All seats shall be stainless steel.

C. Each float and thermostatic trap shall be equipped with dirt pocket and external angle type strainer ahead of each trap, full size of trap opening. Each trap shall have union on trap inlet and union and shutoff valve on trap outlet unless shown otherwise on drawings. Mount float and thermostatic traps at least 8" below coil outlet.

2.8 INVERTED BUCKET TRAPS (MEDIUM PRESSURE STEAM)

A. All low points in 60 psi. steam piping and all points where condensate lifts are required shall be dripped through cast iron inverted bucket traps. All bucket traps shall be provided with shutoff valves, unions, integral monitoring device, and external steam type "Y" strainer. Traps shall be designed for 250 lb. class, cast iron. Traps shall be designed to handle the load with 15# differential. Provide check valve on discharge of each trap. Size of traps shown on drawings is minimum; increase size of traps where required to meet above requirements.

2.9 STRAINERS

A. Basket Strainers: Strainers for condensate return pumps shall be Crane, Mueller, Spence or McAlear, basket type with stainless steel water strainers with bolted top, full size of piping served, 800 lb. class water pressure, with valved drain piped and turned down over floor drain.
or sump. Openings in strainers shall be 1/8” in diameter. Area of openings in strainers shall be at least 3 times area of pipe connection.

B. “Y” Type Strainers: Provide steam strainer ahead of each automatic control valve and steam trap. Steam strainers shall be full size of pipe served, Crane, Mueller, Spence or McAlear “Y” type, complete with perforated stainless steel cylinders, 800 lb. class, with 3/4” pipe extension and shutoff valve for blowing out strainer.

PART 3 - EXECUTION

3.1 PIPE APPLICATIONS INSIDE BUILDING

A. Steam Piping (includes steam vent piping), 2-Inch NPS (DN50) and Smaller: Schedule 40 steel pipe with threaded joints and Class 300 malleable-iron fittings.

B. Steam Piping (includes steam vent piping), 2-1/2- to 12-Inch NPS: Schedule 40 steel pipe with welded joints, Schedule 40 wrought-steel welding fittings, and Class 150 wrought-steel flanges.

C. Condensate Piping, 2-Inch NPS and Smaller: Schedule 80 steel pipe with threaded joints and Class 300 malleable-iron fittings.

D. Condensate Piping, 2-1/2- to 12-Inch NPS: Schedule 80 steel pipe with welded joints.

3.2 VALVE APPLICATIONS

A. General-Duty Valve Applications: Unless otherwise indicated, use the valve types as specified in Section 15100.

B. Install shutoff-duty valves at each branch connection to supply mains, at inlet connection to each steam trap, and elsewhere as indicated.

C. Vacuum Breakers Less than 15 psig (100 kPa): Class 150 bronze swing check with composition seat.

D. Install drain valves at low points in mains, risers, branch lines, and elsewhere as required for system drainage.

E. Install swing check valves as required to control flow direction and to serve as vacuum breakers, except where noted.

3.3 STEAM-TRAP APPLICATIONS LESS THAN 15 PSIG (100 kPa)

A. Float and Thermostatic Traps: Flash tanks, heat exchangers, and coils.

3.4 STEAM-TRAP APPLICATIONS UP TO 125 PSIG (860 kPa)

A. Inverted Bucket Traps: Steam main and riser drip legs.
B. Traps installed in steam trenches shall be provided with a cooling/storage chamber.

3.5 PIPING INSTALLATIONS

A. Install piping according to Division 23 Section "Common Work Results for HVAC."

B. Locate groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

C. Install drains at low points in mains, risers, and branch lines consisting of a tee fitting, 3/4-inch NPS ball valve, and short 3/4-inch NPS threaded nipple and cap.

D. Install steam supply piping at a uniform grade of 0.2 percent downward in direction of flow.

E. Install condensate return piping at a uniform grade of 0.4 percent downward in direction of flow.

F. Reduce pipe sizes using eccentric reducer fitting installed with level side down.

G. Install branch connections to steam mains using 45-degree fittings in main with takeoff out top of main. Use of 90-degree tee fittings is permissible where 45-degree fittings are impractical. Where length of branch takeoff is less than 10 feet, pitch branch line down toward mains at 0.4 percent slope.

H. Install unions or flanges adjacent to each valve, at final connections to each piece of equipment, and elsewhere as indicated.

I. Install strainers on supply side of each control valve, pressure-regulating valve, solenoid valve, traps, and elsewhere as indicated. Install 3/4-inch NPS nipple and ball valve in blow-down connection of strainers 2-inch NPS and larger. Match size of strainer blowoff connection.

J. Anchor piping to ensure proper direction of expansion and contraction.

K. Install drip legs at low points and natural drainage points such as ends of mains, bottoms of risers, and ahead of pressure regulators, control valves, isolation valves, pipe bends, and expansion joints.
 1. Size drip legs at vertical risers full size and extend beyond rise. Size drip legs at other locations same diameter as main. Provide 18-inch-long drip leg for steam mains smaller than 6-inch NPS. In steam mains 6-inch NPS and larger, provide drip legs 2 pipe sizes smaller than main, but not less than 4-inch NPS.
 2. Equip drip legs, dirt pockets, and strainer blow-downs with gate valves to allow removal of dirt and scale.
 3. Install steam traps close to drip legs.

L. Do not lift condensate piping that is gravity fed.

3.6 STEAM-TRAP INSTALLATION

A. Install steam traps in accessible locations close to connected equipment, maximum 48 inches.
1. Unless otherwise indicated, install gate valve, strainer, and union upstream from trap; install union, check valve, and gate valve downstream from trap.

3.7 PRESSURE-REDUCING VALVE INSTALLATIONS

A. Install pressure-reducing valves as required to regulate system pressure, in readily accessible location for maintenance and inspection.

B. Provide bypass between multiple parallel reducing valves, with gate valve equal in size to area of reducing valve seat ring.

C. Install gate valves and unions around each reducing valve. Unions may be omitted for reducing valves with flanged connections.

D. Install pressure gages on low-pressure side of each reducing valve and ahead of shutoff valve, plus one downstream for shutoff valve.

E. Install strainers upstream for each reducing valve.

F. Install safety valves downstream from each reducing valve station.

3.8 SAFETY VALVE INSTALLATIONS

A. Install valves according to ASME B31.1. Pipe discharge to atmosphere outside building, without stop valves. Comply with ASME Boiler and Pressure Vessel Code installation requirements.

3.9 HANGERS AND SUPPORTS

A. General: Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports." Conform to requirements below for maximum spacing of supports.

B. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet in length.
2. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal runs 20 feet or longer, supported on a trapeze.
3. Spring hangers to support vertical runs.

C. Install hangers with the following maximum spacing and minimum rod sizes:

1. NPS 3/4: Maximum span, 9 feet; minimum rod size, ¼ inch.
2. NPS 1: Maximum span, 9 feet; minimum rod size, ¼ inch.
3. NPS 1-1/2: Maximum span, 12 feet; minimum rod size, 3/8 inch.
4. NPS 2: Maximum span, 13 feet; minimum rod size, 3/8 inch.
5. NPS 2-1/2: Maximum span, 14 feet; minimum rod size, 3/8 inch.
6. NPS 3: Maximum span, 15 feet; minimum rod size, 3/8 inch.
7. NPS 4: Maximum span, 17 feet; minimum rod size, ½ inch.
8. NPS 6: Maximum span, 21 feet; minimum rod size, ½ inch.
D. Support vertical runs at each floor.

3.10 PIPE JOINT CONSTRUCTION

A. Refer to Division 23 Section "Common Work Results for HVAC" for joint construction requirements for threaded, welded, and flanged joints.

3.11 FIELD QUALITY CONTROL

A. Testing Preparation: Prepare steam and condensate piping according to ASME B31.9 and as follows:
 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 2. Flush system with clean water. Clean strainers.
 3. Isolate equipment that is not subjected to test pressure from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Flanged joints where blinds are inserted to isolate equipment need not be tested.
 4. Install relief valve set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Testing: Test steam and condensate piping as follows:
 1. Acceptance Testing: Perform hydrostatic tests on the steam and condensate piping in accordance with ANSI B31.1 and as follows:
 2. Notify Owner's Representative 24 hours before required testing. All tests shall be conducted in the presence of the Owner's Representative.
 3. Flush system with clean water. Clean strainers.
 4. Minimum test pressure shall be 150 PSIG.
 5. Pressure gauge shall be min. 4" dia. Face, 0-160 PSIG, have a current calibration within 1 year of test date.
 6. Test pressure shall be held for 1 hour.
 7. Prepare reports for all tests and required corrective action.
 8. Clean and flush steam piping systems. Remove, clean, and replace strainer screens. After cleaning and flushing steam piping system, but before balancing, remove disposable fine mesh strainers.
 9. System shall be operated for a minimum of 24 hours to demonstrate to the Owner's Representative that system is complete and operational.

3.12 CLEANING

A. After completing system installation, including outlet fittings and devices, inspect finish. Remove burrs, dirt, and construction debris, and repair damaged finishes including chips, scratches, and abrasions.

B. Flush steam and condensate piping with clean water. Remove, clean, and replace strainer screens.
SECTION 232300 – REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.3 PERFORMANCE REQUIREMENTS

A. Line Test Pressure for Refrigerant R-410A:

1.4 SUBMITTALS

A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer’s test data, for the following:

1. Thermostatic expansion valves.
2. Solenoid valves.
3. Hot-gas bypass valves.
4. Filter dryers.
5. Strainers.
6. Pressure-regulating valves.

B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.

1. Shop Drawing Scale: 1/4 inch equals 1 foot.
2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.

C. Welding certificates.
D. Field quality-control test reports.

E. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.5 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications".

C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components".

1.6 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.7 COORDINATION

A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Copper Tube: ASTM B 280, Type ACR.

B. Wrought-Copper Fittings: ASME B16.22.

C. Wrought-Copper Unions: ASME B16.22.

D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.

E. Brazing Filler Metals: AWS A5.8.

F. Flexible Connectors:

2. End Connections: Socket ends.

3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.

5. Maximum Operating Temperature: 250 deg F.
2.2 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:
 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
 3. Operator: Rising stem and hand wheel.
 5. End Connections: Socket, union, or flanged.
 7. Maximum Operating Temperature: 275 deg F.

B. Packed-Angle Valves:
 1. Body and Bonnet: Forged brass or cast bronze.
 2. Packing: Molded stem, back seating, and replaceable under pressure.
 3. Operator: Rising stem.
 5. Seal Cap: Forged-brass or valox hex cap.
 6. End Connections: Socket, union, threaded, or flanged.
 8. Maximum Operating Temperature: 275 deg F.

C. Check Valves:
 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
 6. End Connections: Socket, union, threaded, or flanged.
 7. Maximum Opening Pressure: 0.50 psig.
 9. Maximum Operating Temperature: 275 deg F.

D. Service Valves:
 1. Body: Forged brass with brass cap including key end to remove core.
 2. Core: Removable ball-type check valve with stainless-steel spring.
 4. End Connections: Copper spring.

E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.
 4. End Connections: Threaded.
 5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24-V ac coil.
7. Maximum Operating Temperature: 240 deg F.

F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
 4. End Connections: Threaded.

G. Thermostatic Expansion Valves: Comply with ARI 750.
 1. Body, Bonnet, and Seal Cap: Forged brass or steel.
 4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
 5. Suction Temperature: 40 deg F.
 7. Reverse-flow option (for heat-pump applications).
 8. End Connections: Socket, flare, or threaded union.

H. Hot-Gas Bypass Valves: Comply with UL 429; listed and labeled by an NRTL.
 1. Body, Bonnet, and Seal Cap: Ductile iron or steel.
 5. Seat: Polytetrafluoroethylene.
 6. Equalizer: Internal or External.
 7. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 115-V ac coil.
 9. Set Pressure: As required by system.
10. Throttling Range: Maximum 5 psig.
12. Maximum Operating Temperature: 240 deg F.

I. Straight-Type Strainers:
 2. Screen: 100-mesh stainless steel.
 3. End Connections: Socket or flare.
 5. Maximum Operating Temperature: 275 deg F.

J. Angle-Type Strainers:
 1. Body: Forged brass or cast bronze.
 2. Drain Plug: Brass hex plug.
3. Screen: 100-mesh monel.
4. End Connections: Socket or flare.
6. Maximum Operating Temperature: 275 deg F.

K. Moisture/Liquid Indicators:
2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
3. Indicator: Color coded to show moisture content in ppm.
5. End Connections: Socket or flare.
7. Maximum Operating Temperature: 240 deg F.

L. Replaceable-Core Filter Dryers: Comply with ARI 730.
1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
3. Desiccant Media: Activated alumina or charcoal.
4. Designed for reverse flow (for heat-pump applications).
5. End Connections: Socket.
9. Maximum Operating Temperature: 240 deg F.

M. Permanent Filter Dryers: Comply with ARI 730.
2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
3. Desiccant Media: Activated alumina or charcoal.
4. Designed for reverse flow (for heat-pump applications).
5. End Connections: Socket.
9. Maximum Operating Temperature: 240 deg F.

N. Mufflers:
2. End Connections: Socket or flare.
4. Maximum Operating Temperature: 275 deg F.

O. Receivers: Comply with ARI 495.
1. Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
2. Comply with UL 207; listed and labeled by an NRTL.
4. Tappings: Inlet, outlet, liquid level indicator, and safety relief valve.
5. End Connections: Socket or threaded.
7. Maximum Operating Temperature: 275 deg F.

P. Liquid Accumulators: Comply with ARI 495.
2. End Connections: Socket or threaded.
4. Maximum Operating Temperature: 275 deg F.

2.3 REFRIGERANTS

A. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR ALL REFRIGERANTS

A. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.

B. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

A. Install diaphragm packless or packed-angle valves in suction and discharge lines of compressor.

B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.

C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.

D. Except as otherwise indicated, install diaphragm packless or packed-angle valves on inlet and outlet side of filter dryers.

E. Install a full-sized, three-valve bypass around filter dryers.

F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.

G. Install thermostatic expansion valves as close as possible to distributors on evaporators.
1. Install valve so diaphragm case is warmer than bulb.
2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

H. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 1. Solenoid valves.
 2. Thermostatic expansion valves.
 3. Hot-gas bypass valves.
 4. Compressor.

K. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.

L. Install receivers sized to accommodate pump-down charge.

M. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.
I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Refer to Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operation" for solenoid valve controllers, control wiring, and sequence of operation.

K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

M. Install refrigerant piping in protective conduit where installed belowground.

N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

O. Slope refrigerant piping as follows:
 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps and double risers to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

Q. Before installation of steel refrigerant piping, clean pipe and fittings using the following procedures:
 1. Shot blast the interior of piping.
 2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape.
 3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
 4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
 5. Finally, draw a clean, dry, lintless cloth through the tube or pipe.
 6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.

R. Install pipe sleeves at penetrations in exterior walls and floor assemblies.

S. Seal penetrations through fire and smoke barriers according to Division 07 Section "Penetration Firestopping".
T. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

U. Install sleeves through floors, walls, or ceilings, sized to permit installation of full-thickness insulation.

V. Seal pipe penetrations through exterior walls according to Division 07 Section "Joint Sealants" for materials and methods.

W. Identify refrigerant piping and valves according to Division 23 Section "Identification for HVAC Piping and Equipment".

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.

D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 1. Use Type BCuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

F. Threaded Joints: Thread steel pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry-seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Steel pipe can be threaded, but threaded joints must be seal brazed or seal welded.

H. Welded Joints: Construct joints according to AWS D10.12/D10.12M.

I. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
3.5 HANGERS AND SUPPORTS

A. Hanger, support, and anchor products are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment".

B. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.
5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:

1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.
5. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
6. NPS 2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
7. NPS 2-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
8. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.
9. NPS 4: Maximum span, 12 feet; minimum rod size, 1/2 inch.

D. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:

1. Comply with ASME B31.5, Chapter VI.
2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.

 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.
3.7 SYSTEM CHARGING

A. Charge system using the following procedures:
 1. Install core in filter dryers after leak test but before evacuation.
 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.

B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.

D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 1. Open shutoff valves in condenser water circuit.
 2. Verify that compressor oil level is correct.
 3. Open compressor suction and discharge valves.
 4. Open refrigerant valves except bypass valves that are used for other purposes.
 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.

E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 233113 – METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Single-wall round and flat-oval ducts and fittings.
 4. Sealants and gaskets.
 5. Hangers and supports.

B. Related Sections:
 1. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

1.4 SUBMITTALS

A. Product Data: For each type of the following products:
 1. Sealants and gaskets.

B. Shop Drawings:
1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment and vibration isolation.

C. Coordination Drawings: CAD generated plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.
7. Refer to Section “Common Work Results for HVAC”.

D. Field quality-control reports.

1.5 QUALITY ASSURANCE

B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6.4.4 - "HVAC System Construction and Insulation."
PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-5, "Longitudinal Seams - Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).

C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Transverse Joints - Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Seams - Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653.

2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Carbon-Steel Sheets: Comply with ASTM A 1008, with oiled, matte finish for exposed ducts.

D. Stainless-Steel Sheets: Comply with ASTM A 480, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

E. Aluminum Sheets: Comply with ASTM B 209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.

F. Reinforcement Shapes and Plates: ASTM A 36, steel plates, shapes, and bars; black and galvanized.

1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:

1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
2. Tape Width: 3 inches.
5. Mold and mildew resistant.
6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
7. Service: Indoor and outdoor.
8. Service Temperature: Minus 40 to plus 200 deg F.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
10. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Water-Based Joint and Seam Sealant:

1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Solvent-Based Joint and Seam Sealant:

1. Application Method: Brush on.
2. Base: Synthetic rubber resin.
4. Solids Content: Minimum 60 percent.
5. Shore A Hardness: Minimum 60.
7. Mold and mildew resistant.
8. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
9. VOC: Maximum 395 g/L.
10. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
11. Service: Indoor or outdoor.
12. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

E. Flanged Joint Sealant: Comply with ASTM C 920.

2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
G. Round Duct Joint O-Ring Seals:
 1. Seal shall be rated for 10-inch wg static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.5 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round and flat-oval ducts in maximum practical lengths.
D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL KITCHEN HOOD EXHAUST DUCT

A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold grease and sloped a minimum of 2 percent to drain grease back to the hood.
B. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 20 feet in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings. Locate access panel on top or sides of duct a minimum of 1-1/2 inches from bottom of duct.

C. Do not penetrate fire-rated assemblies except as allowed by applicable building codes and authorities having jurisdiction.

3.4 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts before external insulation is applied. Provide adequate sealing as required to meet duct leakage requirements.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Hangers and Supports."

B. Building Attachments: Concrete inserts or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.
3.7 PAINTING

A. Paint interior of metal ducts, for 24 inches length, that are visible through return and exhaust registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:

2. Maximum Allowable Leakage: Duct system leakages shall not exceed 5% of design air flows. When systems are leak tested in section, the total cumulative leakage of the system shall not exceed 5%.
3. Test the following systems:
 a. All supply air ducts and sections from air handling unit to terminal units.
 b. All return air ducts and sections from grilles/registers to return/relief air fan.
 c. 10% of supply air ductwork downstream of boxes, but not less than two systems.
 d. Two exhaust air duct systems.
4. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
5. Test for leaks before applying external insulation.
6. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
7. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.
2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.
3.9 DUCT CLEANING

A. Clean new and existing duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.
 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 23 Section "Air Duct Accessories" for access panels and doors.
 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:
 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:
 1. Air outlets and inlets (registers, grilles, and diffusers).
 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:
 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.10 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.11 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel.

B. Supply Ducts:

1. Downstream of Air Handling Units and Up to Terminal Units:
 a. Pressure Class: Positive 6-inch wg.

2. From Terminal Units to Outlets:
 a. Pressure Class: Positive 1-inch wg.

3. Ducts Located within Mechanical Equipment Rooms:
 a. Pressure Class: Positive 4-inch wg.

C. Return Ducts:

1. All Ducts:
 a. Pressure Class: Negative 4-inch wg.

D. Exhaust Ducts:

1. General Exhaust System Ducts:
 a. Pressure Class: Negative 4-inch wg.

 a. Exposed to View: Type 304, stainless-steel sheet, No. 4 finish.
 b. Concealed: Type 304, stainless-steel sheet, No. 2D finish or Carbon-steel sheet.
 c. Welded seams and joints.
 d. Pressure Class: Positive or negative 2-inch wg.

3. Ducts Connected to Dishwasher Hoods:
 a. Type 304, stainless-steel sheet.
 b. Exposed to View: No. 4 finish.
c. Concealed: No. 2D finish.
d. Welded seams and flanged joints with watertight EPDM gaskets.
e. Pressure Class: Positive or negative 2-inch wg.

E. Outdoor-Air Ducts:
1. All Ducts:
 a. Pressure Class: Positive or negative 1-inch wg.

F. Intermediate Reinforcement:
1. Galvanized-Steel Ducts: Galvanized steel or carbon steel coated with zinc-chromate primer.

G. Elbow Configuration:
1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 c. Velocity 1500 fpm or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."

2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-3, "Round Duct Elbows."
a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.

1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
4) Radius-to-Diameter Ratio: 1.5.

b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam or Welded.

H. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-6, "Branch Connections."

a. Rectangular Main to Rectangular Branch: 45-degree entry.
b. Rectangular Main to Round Branch: 45-degree square to round.

2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees." Saddle taps are permitted in existing duct.

a. Combination Boot Tee.
b. 45-degree lateral.

END OF SECTION 233113
SECTION 233300 – AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

2. Fire dampers.
3. Smoke Dampers
4. Combination fire and smoke dampers.
5. Flange connectors.
6. Turning vanes.
7. Duct-mounted access doors.
8. Flexible connectors.
9. Roof curbs.
10. Duct accessory hardware.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.

 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:

 a. Special fittings.
 c. Control damper installations.
 d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 e. Wiring Diagrams: For power, signal, and control wiring.

C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
D. Source quality-control reports.

E. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

B. Comply with AMCA 500-D testing for damper rating.

1.5 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fusible Links: Furnish quantity equal to 10 percent of amount installed, but not less than two.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653.

2. Exposed-Surface Finish: Mill phosphatized.

C. Stainless-Steel Sheets: Comply with ASTM A 480, Type 304, and having a No. 2 finish for concealed ducts and D4 finish for exposed ducts.

D. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

E. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.

F. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.
2.2 MANUAL VOLUME DAMPERS

A. Standard, Manual Volume Dampers:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. McGill AirFlow LLC.
 d. METALAIRE, Inc.
 e. Nailor Industries Inc.
 f. Ruskin Company.
 g. Vent Products Company, Inc.

2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames:
 a. Hat-shaped, galvanized-steel channels, 0.064-inch minimum thickness, or 0.10 inch aluminum sheet channels.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.
5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick, or roll-formed aluminum 0.10 inch thick.
7. Bearings:
 a. Molded synthetic or Stainless-steel sleeve.
 b. Dampers shall have axles full length of damper blades and bearings at both ends of operating shaft.
8. Tie Bars and Brackets: Galvanized steel/Aluminum.

2.3 FIRE DAMPERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. Arrow United Industries; a division of Mestek, Inc.
3. Cesco Products; a division of Mestek, Inc.
5. McGill AirFlow LLC.
6. METALAIRE, Inc.
7. Nailor Industries Inc.
8. Ruskin Company.

B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.

D. Fire Rating: 1-1/2 hours.

E. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 1. Minimum Thickness: 0.052 inch thick and of length to suit application.
 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, 0.034-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

2.4 SMOKE DAMPERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Nailor Industries Inc.
 3. Ruskin Company.

B. General Requirements: Label according to UL 555S by an NRTL.

C. Smoke Detector: Integral, factory wired for single-point connection.

D. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

E. Blades: Roll-formed, horizontal, interlocking, 0.034-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.

F. Leakage: Class I.
G. Rated pressure and velocity to exceed design airflow conditions.

H. Mounting Sleeve: Factory-installed, 0.052-inch-thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone caulking.

I. Damper Motors: Modulating or two-position action.

J. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment".

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 23 Section "Instrumentation and Control for HVAC".

3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.

4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.

5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.

6. NonSpring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.

7. Electrical Connection: 24V, single phase, 60 Hz.

K. Accessories:

1. Momentary test switch, damper mounted.

2.5 COMBINATION FIRE AND SMOKE DAMPERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. Cesco Products; a division of Mestek, Inc.
4. Nailor Industries Inc.
5. Ruskin Company.

B. Type: Static and dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.

D. Fire Rating: 1-1/2 hours.
E. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

G. Smoke Detector: Integral, factory wired for single-point connection.

H. Blades: Roll-formed, horizontal, interlocking, 0.034-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.

I. Leakage: Class I.

J. Rated pressure and velocity to exceed design airflow conditions.

K. Mounting Sleeve: Factory-installed, 0.052-inch-thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.

L. Damper Motors: Modulating or two-position action.

M. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 23 Section "Instrumentation and Control for HVAC."

3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.

4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.

5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.

6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.

7. Electrical Connection: 24V, single phase, 60 Hz.

N. Accessories:

1. Remote mounted momentary test switch. Provide with pushbutton and lights (red for closed damper, green for open damper).

2.6 FLANGE CONNECTORS

A. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
B. Material: Galvanized steel.

C. Gage and Shape: Match connecting ductwork.

2.7 TURNING VANES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. METALAIRE, Inc.
4. SEMCO Incorporated.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 2-3, "Vanes and Vane Runners," and 2-4, "Vane Support in Elbows."

D. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.8 DUCT-MOUNTED ACCESS DOORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Warming and Ventilating; a division of Mestek, Inc.
2. Cesco Products; a division of Mestek, Inc.
3. Ductmate Industries, Inc.
5. Greenheck Fan Corporation.
6. McGill AirFlow LLC.
7. Nailor Industries Inc.
8. Ventfabrics, Inc.

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
e. Fabricate doors airtight and suitable for duct pressure class.

2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

3. Number of Hinges and Locks:

a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Four hinges and two compression latches with outside and inside handles.

C. Pressure Relief Access Door:

1. Door and Frame Material: Galvanized sheet steel.
2. Door: Double wall with insulation fill with metal thickness applicable for duct pressure class.
3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
4. Doors close when pressures are within set-point range.
5. Hinge: Continuous piano.
7. Seal: Neoprene or foam rubber.
8. Insulation Fill: 1-inch-thick, fibrous-glass or polystyrene-foam board.

2.9 FLEXIBLE CONNECTORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. Ventfabrics, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.

1. Minimum Weight: 26 oz./sq. yd.
2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
3. Service Temperature: Minus 40 to plus 200 deg F.

1. Minimum Weight: 14 oz./sq. yd. (474 g/sq. m).
2. Tensile Strength: 450 lbf/inch (79 N/mm) in the warp and 340 lbf/inch (60 N/mm) in the filling.
3. Service Temperature: Minus 67 to plus 500 deg F (Minus 55 to plus 260 deg C).

G. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.

1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.10 ROOF CURBS

A. Galvanized steel; mitered and welded corners; 1-1/2-inch-thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.

1. Configuration: Self-flashing without a cant strip, with mounting flange.
2. Overall Height: 18 inches min. See drawings for minimum heights above roof surface.
5. Metal Liner: Galvanized steel.
6. Burglar Bars: 1/2-inch-thick steel bars welded in place to form 6-inch squares, where indicated.
7. Mounting Pedestal: Galvanized steel with removable access panel.
8. Vented Curb: Unlined with louvered vents in vertical sides.

2.11 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 1. Install steel volume dampers in steel ducts.
 2. Install aluminum volume dampers in aluminum ducts.

D. Set dampers to fully open position before testing, adjusting, and balancing.

E. Install test holes at fan inlets and outlets and elsewhere as indicated.

F. Install fire and smoke dampers according to UL listing.

G. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 1. On both sides of duct coils.
 2. Upstream and downstream from duct filters.
 3. At outdoor-air intakes and mixed-air plenums.
 4. At drain pans and seals.
 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links.
 7. At each change in direction and at maximum 50-foot spacing.
 8. Upstream and downstream from turning vanes.
 9. Upstream or downstream from duct silencers.
 10. Control devices requiring inspection.
 11. Elsewhere as indicated.

H. Install access doors with swing against duct static pressure.

I. Access Door Sizes:
 1. One-Hand or Inspection Access: 8 by 5 inches.
 2. Two-Hand Access: 12 by 6 inches.

J. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

K. Install flexible connectors to connect ducts to equipment.

L. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

M. Connect flexible ducts to metal ducts with draw bands and adhesive plus sheet metal screws. Do not use flexible ducts through walls, partitions.

N. Install duct test holes where required for testing and balancing purposes.

O. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.
5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 233300
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 233713 – DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Round ceiling diffusers.
 2. Rectangular and square ceiling diffusers.
 3. Louver face diffusers.
 4. Linear bar diffusers.
 5. Linear slot diffusers.
 6. Linear floor diffuser plenums.
 7. Adjustable bar registers and grilles.
 8. Fixed face registers and grilles.

B. Related Sections:
 1. Division 23 Section "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 5. Duct access panels.

C. Source quality-control reports.
PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Anemostat Products; a Mestek company.
2. Carnes.
4. METALAIRE, Inc.
5. Price Industries.
6. Titus.
7. Tuttle & Bailey.
8. Nailor²

B. Round Ceiling Diffuser:

1. Devices shall be specifically designed for variable-air-volume flows.
2. Material: Steel or Aluminum.
3. Finish: Baked enamel, white unless noted otherwise.
4. Face Style: Minimum three cone.
5. Mounting: To match ceiling type.

C. Rectangular and Square Ceiling Diffusers:

1. Devices shall be specifically designed for variable-air-volume flows.
2. Material: Steel or Aluminum.
3. Finish: Baked enamel, white unless noted otherwise.
4. Face Size: 24 by 24 inches or 12 by 12 inches.
5. Face Style: Minimum three cone.
6. Mounting: To match ceiling type.

D. Louver Face Diffuser:

1. Devices shall be specifically designed for variable-air-volume flows.
2. Material: Steel or Aluminum.
3. Finish: Baked enamel, white unless noted otherwise.
4. Face Size: As indicated on drawings.
5. Mounting: To match ceiling type.
7. Accessories:
 a. Adjustable pattern vanes.
 b. Operating rod extension.
2.2 CEILING LINEAR SLOT OUTLETS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Anemostat Products; a Mestek company.
2. Carnes.
4. METALAIRE, Inc.
5. Price Industries.
6. Titus.
7. Tuttle & Bailey.

B. Linear Bar Diffuser:

1. Devices shall be specifically designed for variable-air-volume flows.
2. Material: Aluminum or Stainless steel.
3. Finish: Baked enamel, white or natural aluminum or polished stainless steel.
4. Core Spacing Arrangement: As indicated on drawings.
5. Deflection Vanes: Extruded construction fixed louvers with removable core.
7. Mounting: Countersunk screw.
8. Accessories: Blank-off strips where shown on drawings.

C. Linear Slot Diffuser:

1. Devices shall be specifically designed for variable-air-volume flows.
4. Finish - Face and Shell: Baked enamel, black.
5. Finish - Pattern Controller: Baked enamel, black.
7. Slot Width/Number of Slots/Length: As indicated on drawings.

2.3 UNDERFLOOR AIR DISTRIBUTION DIFFUSERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Anemostat Products; a Mestek company.
2. Carnes.
4. METALAIRE, Inc.
5. Price Industries.
6. Titus.

B. Round Induction Diffusers:

2. Material: Plastic, high impact, and resistant to cart and foot traffic.
3. Color: Gray or Black.
4. Components:
 a. Diffuser core.
 b. Flow regulator.
 c. Dirt and liquid catch pan.
 d. Spacer flange.
 e. Gasketed, underfloor compression ring.

C. Linear Floor Diffuser Plenums:
 1. Material: Steel.
 3. Components:
 a. Aluminum diffuser core.
 b. Diffuser frame.
 c. Plenum, 0.034-inch steel.

2.4 REGISTERS AND GRILLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Anemostat Products; a Mestek company.
 2. Carnes.
 4. METALAIRE, Inc.
 5. Price Industries.
 6. Titus.
 7. Tuttle & Bailey.

B. Adjustable Bar Register and Grille:
 1. Material: Steel or Aluminum.
 2. Finish: Baked enamel, white unless noted otherwise.
 3. Face Blade Arrangement: Horizontal adjustable.
 6. Frame: 1 inch wide.
 7. Mounting: Countersunk screw.
 8. Damper Type: Adjustable opposed blade for register only.
 9. Accessories:
 a. Front-blade gang operator.

C. Fixed Face Register:
 1. Material: Steel or Aluminum.
 2. Finish: Baked enamel, white unless noted otherwise.
5. Frame: 1 inch wide.
7. Damper Type: Adjustable opposed blade for register only.

2.5 SOURCE QUALITY CONTROL
 A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Install diffusers, registers, and grilles level and plumb.
 B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
 C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING
 A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>260500</td>
<td>COMMON WORK RESULTS FOR ELECTRICAL</td>
</tr>
<tr>
<td>260505</td>
<td>ELECTRICAL TESTING</td>
</tr>
<tr>
<td>260519</td>
<td>LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES</td>
</tr>
<tr>
<td>260526</td>
<td>GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>260529</td>
<td>HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>260533</td>
<td>RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>260543</td>
<td>UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>260548</td>
<td>VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>260553</td>
<td>IDENTIFICATION FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>260923</td>
<td>LIGHTING CONTROL DEVICES</td>
</tr>
<tr>
<td>262726</td>
<td>WIRING DEVICES</td>
</tr>
<tr>
<td>265600</td>
<td>EXTERIOR LIGHTING</td>
</tr>
</tbody>
</table>
SECTION 260500 – COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
 B. MU Division of IT Telecommunications Construction Standards and Specifications apply to this section. The Contractor shall obtain the latest revision of document and install all cables, pathways, boxes, equipment, and hardware in a manner to conform with MU Standards and Specifications.

1.2 SUMMARY
 A. Section Includes:
 1. Electrical equipment coordination and installation.
 2. Sleeves for raceways and cables.
 3. Sleeve seals.
 5. Coordination drawings.
 6. Project record drawings.
 7. Trenching, excavating and backfilling.
 8. Electrical demolition.
 9. Common electrical installation requirements.

1.3 DEFINITIONS
 A. EPDM: Ethylene-propylene-diene terpolymer rubber.
 B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS
 A. Product Data: For sleeve seals.

1.5 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 B. All equipment furnished shall be U.L. Listed and labeled or equivalent approved.
C. Comply with NFPA 70.

D. Equipment Selection: Equipment of larger physical dimensions, higher capacities or ratings may be furnished provided such proposed equipment is approved in writing and connecting mechanical/electrical services are appropriately modified. Any additional costs as a result of these modifications shall be borne by the Contractor.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver raceways in clean condition. Store to prevent entrance of dirt, debris and moisture.

B. Protect stored raceways, wires, and connectors from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor, if stored inside.

1.7 INTERPRETATION OF THE DRAWINGS

A. The drawings indicate diagrammatically the conduit runs and the apparatus served in a general way. No attempt has been made to show exact location of every box, fitting or conduit offset. Such items are to be provided and all wiring connections and home runs are to be made as required. Where conduit runs are shown terminating in arrows, such conduit runs shall be extended to panels/boards or other equipment. Where equipment is specified to be wired, make connections as shown on approved equipment wiring diagrams. Consult equipment approved shop drawings for location of outlets and for miscellaneous controls. Where wire sizes are shown on drawings, the wire size for each circuit shall be for the entire circuit.

B. Where conduit is shown without wiring symbols, install one (1) hot (phase) wire, one (1) neutral wire, and one (1) ground wire.

C. Provide full size neutral for each circuit.

D. No more than three circuits shall be installed in a conduit.

1.8 TEMPORARY POWER

A. The contractor shall make all provisions for and furnish and install all necessary conduit, wire, and distribution equipment for a complete temporary wiring system for use during construction of the building. Temporary wiring shall include a system of temporary lights and power distribution. Refer to Division 01.

1.9 COORDINATION

A. Coordinate arrangement, mounting, and support of electrical equipment:

1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.

2. To provide for ease of disconnecting the equipment with minimum interference to other installations.

3. To allow right of way for piping and conduit installed at required slope.
4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping".

E. Coordinate electrical testing of electrical, mechanical, and architectural items, so equipment and systems that are functionally interdependent are tested to demonstrate successful interoperability.

F. Coordinate rough-in connections to pre-manufactured headwall systems including power for lighting, receptacles; connections for nurse call, voice/data outlets and TV interface.

1.10 LOCATION OF OUTLETS

A. Outlets are only approximately located on the construction drawings and great care must be used in the actual location of outlets by consulting architectural drawings and details and the various fixture drawings and by securing definite locations from the Architect.

B. At various places where outlets are shown below exposed pipes or ducts, Contractor shall set outlet box to clear same by at least 12". Where outlets are installed over piping or ducts, outlets shall be moved so as to clear piping and ducts at no additional cost, using approved conduit and conduit fittings.

C. Switch outlets shall generally be located on lock side of door. Check the latest general drawings on job for door swings before roughing in for switches.

D. Check height of tile or similar wainscots and set switch outlet boxes so that same will clear top of wainscot or will come entirely within the wainscot.

E. Wall outlets installed flush shall be provided with device (plaster) covers set to come flush with the finished surface.

F. For electric water coolers, install box in accordance with manufacturer’s shop drawings so that receptacle will be concealed by unit housing.

G. For other equipment, provide electrical rough-in in accordance with the equipment installation instructions and architectural drawings.

H. Do not use through-the-wall and back-to-back boxes.
WOMEN’S AND CHILDREN’S HOSPITAL – EXTERIOR ENVELOPE REPLACEMENT

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.
 1. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

 2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 3. Pressure Plates: Carbon steel. Include two for each sealing element.
 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

2.4 COORDINATION DRAWINGS

A. The contractor shall prepare CAD generated drawings (min. ¼” scale) showing following systems/items as a minimum:
1. Electrical equipment locations and clearances required.
2. Routing of main feeders and conduits (3” dia. and larger), cable trays and bus ducts.
3. Locations of items in ceiling such as light fixtures.

B. The contractor shall submit the CAD generated drawings to the contractor for coordination with other trades. The drawings shall be submitted either in electronic format or printed copies as requested by the contractor.

C. The contractor shall participate in coordination meetings when requested by the contractor.

2.5 PROJECT RECORD DRAWINGS

A. Drawings shall be furnished in electronic-media (CD-Rewritable type) and at-least one hard copy prints.

1. Format: Same CAD program, version and operating system as the original contract documents.
2. Incorporate changes and additional information previously marked on record prints. Delete, redraw and add details and notations where applicable.

B. Identify and date each drawing and include the designation “PROJECT RECORD DRAWING” or “AS-BUILT DRAWING” in a prominent location.

PART 3 - EXECUTION

3.1 TRENCHING, EXCAVATING AND BACKFILLING

A. Excavate to required dimensions and depth. The trench excavation shall be in open cut from surface and shall be minimum width necessary to permit the placing of the pipe as required. Excess excavation shall be backfilled with crusher run rock. Such rocks shall be placed at the Contractor's expense. Lines shall be used to lay out trenches.

B. All excavations shall be properly protected by the necessary bracing and timbers, to prevent any cave-ins or injury to adjacent improvements. The sides of the excavations shall be securely held by bracing or sheathing, which bracing or sheathing shall not be removed until the level of the backfill has reached the point where such removal can be safely carried out. Where adjacent improvements might be injured by the removal of such bracing, the braces shall be left in place to prevent such injury. The thickness of the sheathing and the dimensions of the cross braces, shoes and miscellaneous supports to be used by the Contractor shall be of type required to properly protect the sides of the trench and to prevent injurious cave-ins or erosions.

C. The Contractor shall do all pumping and bailing necessary to keep all excavations free of water and shall provide for the uninterrupted flow of the surface water adjacent to the line of the work during the progress of the work. The Contractor shall inspect the ground where excavation is required to ascertain the structure of the soil. Additional consideration will not be allowed for encountering rock, stone, old foundations or other unfavorable excavating conditions.

D. In cases where existing sewer or other piping are encountered, they shall not be displaced or disturbed. All sewer lines damaged or disturbed in the construction shall be replaced or
required at the Contractor's expense, unless, in the opinion of the Architect, such damage was
causation through no fault of the Contractor.

E. Contractor shall provide all temporary steel plates, barricades, and such other signs and signals
by day as shall be necessary to warn the public of and protect the workers from the danger
caused by excavations and other obstructions, day and night.

F. The backfilling of trenches shall be carried out as rapidly as the testing and acceptance of the
finished sections of the installation will permit. The trench shall be backfilled in layers of not to
exceed eight inches (8") with good selected clean earth, thoroughly tamped with mechanical
tamper to a 95% optimum compaction. Density shall be tested by an approved laboratory,
using a standard method. Tests shall be made of each 2 ft. depth on the basis of one test per
1000 sq. ft. of fill area. Last 12" of backfill shall be made with good clean top soil. Contractor
shall obtain and pay for tests. Submit five (5) copies of tests for approval. Note: Broken
stones, cinders, wood and rubbish are not acceptable for backfilling. Backfill all street cuts in a
manner meeting the approval of the Architect.

G. In spaces between walls and line of excavation, fill with thin layers of selected clean earth;
thoroughly tamp in eight inches (8") thick layers and bring up to a finished level of established
grades. All wood and foreign material shall be removed from excavation prior to backfilling.

H. After backfilling, all surplus excavated materials shall be removed from the property.

I. The work shall be executed so that any existing permanent structure along and adjacent to the
new work are properly protected. Any damage occurring to these structures shall be repaired
by the Contractor at his own expense.

J. The Contractor shall make field inspection of the location along which the underground conduit
is to be routed, and note all obstructions and improvements at the surface which may affect the
method of operation in the construction of these conduits. Such underground pipes or conduits
which may exist, or which may be encountered, shall be protected by the Contractor during this
construction. Any expense or inconvenience caused by their existence and the necessary
protection for utilities adjacent thereto shall be considered as covered and included in the
contract, without additional cost to the Owner.

3.2 ELECTRICAL DEMOLITION

A. Refer to Division 02 Section “Selective Demolition” for general demolition requirements and
procedures.

B. Disconnect, demolish, and remove electrical systems, fixtures, devices, and components
indicated to be removed. In general, remove all fixtures, raceways, cables, junction boxes, and
equipment not utilized in new construction. For circuits disconnects, remove raceways and
cables all way to the source. Label breakers/switches from where circuits have been removed
as "SPARE".

C. Protect existing electrical equipment and installation indicated to remain. If damaged or
disturbed in the course of the Work, remove damaged portions and install new products of
equal capacity, quality, and functionality.
D. Accessible Work: Remove exposed electrical equipment and installations, indicated to be demolished, in their entirety.

E. Abandoned Work: Cut and remove buried raceway and wiring, indicated to be abandoned in place, 2 inches below the surface of adjacent construction. Cap raceways and patch surface to match existing finish. Raceways shall not be abandoned within walls.

F. Remove demolished material from Project site.

G. Remove, store, clean, reinstall, reconnect, and make operational components indicated for relocation.

H. Remove equipment to be salvaged, disconnect from power, and deliver to Owner as directed.

3.3 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

F. In general install raceways and boxes minimum 8" above hung ceiling. All raceways, boxes and equipment shall be independently supported from structure. Do not support from ductwork or piping.

G. Where new devices are added to existing circuits, take readings prior to adding new devices, and submit to Architect for review. Do not proceed with new work until approved by Architect.

H. All low voltage devices (including but not limited to voice/data communication; nurse call; master antenna television; patient monitoring; telemetry, etc.) that are installed in patient care areas or patient rooms or procedure rooms shall have their conduit extended out to above accessible ceiling space in adjacent corridor. Terminate conduit with a bushing.

3.4 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping." For communications cable penetrations, comply also with requirements in Division 27 Section "Common Work Results for Communications."

K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.5 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
3.6 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION 260500
SECTION 260505 – ELECTRICAL TESTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes general requirements for electrical field testing and inspecting. Detailed requirements are specified in each Section containing components that require testing. General requirements include the following:

1. Suitability of test equipment.
2. Calibration of test instruments.
3. Coordination requirements for testing and inspecting.
4. Reporting requirements for testing and inspecting.

B. Emergency systems shall be tested as specified herein.

1.3 QUALITY ASSURANCE

A. The Electrical Contractor shall completely test and inspect all systems in accordance with the specifications and drawings. The Electrical Contractor shall certify that all systems are in complete working order prior to turning over the Owner.

B. Except as modified by governing codes and by the contract documents, comply with the latest applicable provisions and latest recommendations of the following:

1. NFPA.
2. NEMA.
3. NEC.
4. IEEE.
5. IPCEA.
6. ANSI.
7. UL.
8. NECA.
9. Local Fire Department.
3.1 GENERAL TESTING

A. It shall be the responsibility of this Contractor to furnish all testing instruments/equipment, materials and labor necessary to perform the following tests.

1. After wires or cables are in place, but before being connected to devices and equipment, the system shall be tested for shorts, opens, intentional and unintentional grounds by means of wires in conduit that are shorted or unintentionally grounded shall be replaced.

2. Voltage drops for panel and large feeders shall not exceed 3% hence the total voltage drop for a feeder and any branch circuit shall not exceed 5% of the service voltage. The test shall be made under design load or its’ equal.

3. Any wiring device or electrical apparatus in this contract, if grounded or shorted on an integral “line” part, shall be removed and the problem rectified.

4. When required, complete test and inspection records shall be made and incorporated into a report for each piece of equipment tested. All readings taken shall be recorded. Four (4) copies shall be submitted to the Architect for approval.

5. Notify the Architect, with minimum seven (7) days’ notice, about testing schedule.

3.2 WIRING TEST

A. The wiring and cable tests shall be made before any circuits, main switches, motors, transformers or feeders are energized.

B. Tests shall be made for continuity, identification and absence of shorts and grounds for each conductor. Both ends of a given conductor shall be identified alike. Before circuit terminal connections are made, continuity and identification of wiring shall be checked by means of a DC test device using a bell, light, meter, or buzzer.

C. Insulation Resistance (IR) test shall be made using meggers at the following values:

1. 208Y/120 Volt wiring at 500 Volts DC.

D. Insulation resistance between phase conductors and neutral, phase conductors and ground shall not be less than the minimum requirements of 2000 meg-ohms.

1. Wire terminations shall not be made to equipment (motors, MCCs, but ducts, etc.), until that piece of equipment has been tested and verified as specified in this section.

2. Test motor feeders with motors disconnected, but with circuit breakers, switches or starters in the circuit opened so as to include only that portion of the feeder, required to be tested.

3. Test lighting feeders with the circuit breakers and panelboards connected but with lighting branch circuit breakers or switches open so as to include only the branch circuit to be tested.

4. Contractor shall correct or replace any circuit which is defective or grounded and shall correct all other problems encountered by these tests. All defects whether due to faulty
workmanship or material furnished by the Contractor shall be corrected under this section at the Contractor’s expense.

3.3 LIGHTING TEST

A. Check all lighting fixtures for proper operation. All Contractor supplied fixtures shall be 100% operable at no additional cost to the Owner. Repair cost to Owner-supplied fixtures shall not be the responsibility of the Contractor unless otherwise stated.

B. Verify operation of Lighting Control Systems. Program time clocks per client’s requirements, including holiday setbacks.

3.4 MOTOR TEST

A. Perform motor tests in coordination with fire suppression, plumbing and HVAC contractors for motors furnished with their equipment.

B. All 208/120V motors shall be “spot tested” with 500V DC in a similar manner. The minimum resistance to ground shall be 2000 meg-ohm (corrected to 20 degrees C). The Contractor shall record the ambient temperature of the motor and submit this value along with insulation resistance value. For motors from 7-½ to 20 HP, Contractor shall submit Dielectric Absorption Ratios. For motor above 20 HP, the Polarization Indexes of the motor shall also be submitted.

C. Make the following checks on all motors prior to start up.

1. Check motor nameplates for HP, speed, phase and voltages. Verify proper voltage available for terminal wiring.
2. Check shaft for freedom of rotation.
3. Verify that the motor is properly lubricated prior to energizing.

D. Contractor shall furnish a proper sized heater for each overload relay.

E. Make the following tests on all motors during or immediately after start-up:

1. Check for proper shaft rotation.
2. Check motor for smooth operation (vibration).
3. Take a current reading using a clamp-on ammeter. (Record no-load readings and loaded readings).

3.5 PANELBOARD TESTS

A. Test all equipment to be operated on the 208/120V system at 500V DC prior to connecting feeders. A minimum insulation resistance of 2000 meg-ohms shall be obtained between all phases and between phase and neutral, and phase and ground.
3.6 SPOT TEST

A. “Spot Test” mentioned in this section shall be interpreted as the specific test method of obtaining insulation resistance by applying indicated test voltage for 60 seconds to the equipment or wiring being tested.

3.7 CONTROL WIRING/OUTLET TEST

A. Control wiring shall perform the function as noted in operation methods and/or included schematics and single line diagrams.

B. All 120-volt outlets shall be tested with a Daniel Woodhead Cat. No. 1750 and 1760 tester. Minimum acceptable tension is 10 oz. for receptacles.
SECTION 260519 – LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Building wires and cables rated 600 V and less.
2. Connectors, splices, and terminations rated 600 V and less.
3. Sleeves and sleeve seals for cables.

B. Related Sections include the following:

1. Division 27 Section "Communications Horizontal Cabling" for cabling used for voice and data circuits.

C. Pre-wired systems such as type AC (armored cable), type MC (metal-clad and type NM (nonmetallic-sheathed cable) shall not be used. (Exception: MC may be used for lighting fixture whips up to 6'-0" long. They must be dedicated, not daisy chained together).

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.

B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Qualification Data: For testing agency.

C. Field quality-control test reports.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing
Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

1. Testing Agency’s Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

D. All conductors and cables shall be UL labeled.

1.6 COORDINATION

A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

B. Coordinate layout and installation of conductors and cables with other trades.

1.7 DELIVERY, STORAGE AND HANDLING

A. Delivery conductors and cables according to NEMA WC 26.

B. Protect stored conductors and cables from moisture and dirt. Do not store outside, exposed to elements. Elevate above grade. Do not exceed structural capacity of floor, when stored inside.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Encore Wire and Cable.
2. Senator Wire & Cable Company.

B. Copper Conductors: Comply with NEMA WC 70.

C. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN and XHHW.

D. Multiconductor Cable: Comply with NEMA WC 70 for metal-clad cable, Type MC or mineral-insulated, metal-sheathed cable, Type MI with ground wire.
2.2 CONNECTORS AND SPLICES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFC Cable Systems, Inc.
2. AMP Incorporated/Tyco International.
4. O-Z/Gedney; EGS Electrical Group LLC.
5. 3M; Electrical Products Division.
7. Tyco Electronics Corp.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SLEEVES FOR CABLES

A. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch thickness as indicated and of length to suit application.

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

2.4 SLEEVE SEALS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. Calpico, Inc.
3. Metraflex Co.
4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.

1. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
2. Pressure Plates: Carbon steel. Include two for each sealing element.
3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.
PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL AND SIZE APPLICATIONS

A. Feeders: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.

C. Conductors smaller than No. 12 AWG shall not be utilized anywhere, unless specifically noted on drawings.

D. The minimum conductor size for branch circuits shall be #12 AWG copper. To compensate for voltage drop, where branch circuit lengths are between 100 and 150 feet, use #10 AWG copper. For branch circuit lengths exceeding 150 feet, use #8 AWG copper.

E. Wire size ampacity shall equal or exceed its overload protective device. Where wire sizes shown on the drawings are greater than the apparent ampacity requirements, the size shown shall prevail to compensate for voltage drop. In no instance shall conductors be installed that are less than required by NEC.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THWN, single conductors in raceway or Type XHHW, single conductors in raceway. Mineral-insulated, metal-sheathed cable, Type MI where specifically indicated on drawings.

B. Exposed Feeders: Type THHN-THWN, single conductors in raceway.

C. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

D. Feeders at all other locations: Type THHN-THWN, single conductors in raceway.

E. Exposed Branch Circuits, Including in Crawlspace: Type THHN-THWN, single conductors in raceway.

F. Branch Circuits below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

G. Branch Circuits at all other locations: Type THHN-THWN, single conductors in raceway.

H. Class 1 Control Circuits: Type THHN-THWN, in raceway.

I. Class 2 Control Circuits: Type THHN-THWN, in raceway.

J. Fire Alarm Circuits: Refer to Section 280513 “Conductors and Cables for Electronic Safety and Security”.
3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal conduits in finished walls, and above ceilings, unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed conduits parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

E. Support conduits according to Division 26 Section "Hangers and Supports for Electrical Systems."

F. Identify and factory color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:
 1. For sleeve rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.
E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both wall surfaces.

G. Extend sleeves installed in floors 2 inches above finished floor level.

H. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and cable.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division 07 Section "Joint Sealants."

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division 07 Section "Penetration Firestopping."

L. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.

M. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

N. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between cable and sleeve for installing mechanical sleeve seals.

3.6 SLEEVE-SEAL INSTALLATION

A. Install to seal underground exterior-wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."
3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Perform tests and inspections and prepare test reports.

C. Tests and Inspections:
 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors, and branch circuit conductors for compliance with requirements.
 3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner.
 a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of final acceptance.
 b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

D. Test Reports: Prepare a written report to record the following:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

E. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 260519
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 260526 – GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. MU Division of IT Telecommunications Construction Standards and Specifications apply to this section. The Contractor shall obtain the latest revision of document and install all cables, pathways, boxes, equipment, and hardware in a manner to conform with MU Standards and Specifications.

1.2 SUMMARY

A. This Section includes methods and materials for grounding systems and equipment.

B. This Section includes grounding of electrical systems and equipment and basic requirements for grounding for protection of life, equipment, circuits, and systems. Grounding requirements specified in this Section may be supplemented in other Sections of these Specifications.

C. Related Sections include the following:

1. Division 26 Section 260519 “Low-Voltage Electrical Power Conductors and Cables” for requirements for grounding conductors.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Other Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in Part 3 "Field Quality Control" Article, including the following:

1. Ground rods.

C. Qualification Data: For testing agency and testing agency’s field supervisor.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For grounding to include the following in operation and maintenance manuals:

1. Instructions for periodic testing and inspection of grounding features at grounding connections for separately derived systems based on NFPA 70B.
a. Tests shall be to determine if ground resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if they do not.
b. Include recommended testing intervals.

1.4 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with UL 467 for grounding and bonding materials and equipment.

D. Communications Grounding shall comply with BICSI Telecommunications Distribution Methods Manual (TDMM) and BICSI Information Transport Systems Installation Methods Manual, latest editions.

PART 2 - PRODUCTS

2.1 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
5. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Rectangular bars of annealed copper, 1/4 by 2 inches in cross section, unless otherwise indicated; with insulators.

1. Telecommunications Ground Busbar (TGB) shall have industry-standard 2-hole pattern, and be 4 inches wide, as manufactured by CPI # 40153-012 or approved equivalent.
2.2 CONNECTORS

A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 1. Pipe Connectors: Clamp type, sized for pipe.
 2. Telecommunications Grounding Connector Lugs: Irreversible compression type, 2-hole lug, for connection to TGBs. Approved manufacturers: Burndy, Panduit, Thomas & Betts.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions. All concealed terminations to the grounding electrode shall be made using exothermic welds.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4 inch diameter by 10 feet in diameter.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 10 AWG and smaller, and stranded conductors for No. 8 AWG and larger, unless otherwise indicated.

B. Underground Grounding Conductors: Install bare copper conductor, No. 4/0 AWG minimum.
 1. Bury at least 24 inches below grade.

C. Grounding Bus: Install in electrical and telecom equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus on insulated spacers 1 inch, minimum, from wall 6 inches above finished floor, unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, down to specified height above floor, and connect to horizontal bus.

D. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors, except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.
3.2 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.

C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

E. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

F. Signal and Communication Equipment: For telephone, alarm, voice and data, and other communication equipment, provide No. 3/0 AWG minimum insulated grounding conductor in raceway from electrical service entrance grounding busbar to nearest Telecom room TGB.

1. Telecom Rooms: Terminate grounding conductors on a 1/4-by-4-by-12-inch minimum Telecommunications Grounding Busbar (TGB).
2. Bond each TGB to:
 a. Equipment ground bus of nearest electrical branch circuit panel board, via No. 6 AWG grounding conductor for distances up to 100 feet, No. 3/0 AWG grounding conductor for distances greater than 100 feet. Grounding conductor shall be insulated and routed in raceway.
 b. Nearest building steel when available, via No. 6 AWG grounding conductor for distances up to 100 feet, No. 3/0 AWG grounding conductor for distances greater than 100 feet.
 c. Nearest section of Cable Tray via No. 6 AWG grounding conductor.
 d. Metal conduits and sleeves entering the Telecom Room, via No. 6 AWG grounding conductor.
G. Metal Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

3.3 INSTALLATION

A. Ground electrical systems and equipment according to NEC requirements, except where Drawings or Specifications exceed NEC requirements.

B. Electrical Room Grounding Bus: Space 1 inch (25 mm) from wall and support from wall 6 inches (150 mm) above finished floor except as otherwise indicated.

C. Grounding Conductors: Route along shortest and straightest paths possible, minimizing direction changes and utilizing wide-radius bends where direction changes are necessary, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

D. Common Ground Bonding with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

E. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade, unless otherwise indicated.

1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating, if any.

2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

F. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.

2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.

3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.

G. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed,
connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.

2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.

3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

H. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.

I. In addition to bonding the water service, effectively grounded building steel or rebar of reinforced concrete columns, driven ground rods outside or buried electrode shall be provided and interconnected.

J. Provide a copper ground cable from the above main service ground bus to building steel, driven ground rods outside or buried electrodes.

K. The Main service neutral shall be bonded to the main service ground.

L. Bond all interior metallic water, gas and other metallic lines.

M. The complete metal conduit system shall be used for the equipment grounding system. Conduit systems and associated fittings and terminations shall be made mechanically tight to provide a continuous electrical path to ground and shall be safely grounded at all equipment by bonding all metallic conduit to the equipment enclosures with locknuts cutting thru paint of enclosures. Bond all conduits entering primary switchgear, unit substations and secondary switchboards with a ground wire connecting the grounding type bushings to the equipment ground bar. Conductors shall be sized per NEC.

N. In addition to using the conduit system for grounding, a complete auxiliary green wire equipment grounding system shall be installed, continuous from main ground, through distribution and branch circuit panelboards and paralleling all feeders and branch circuit wiring. The minimum size shall be #12 copper except #14 on control circuits. This shall apply to all circuits rated 100 volts or more above ground potential.

O. Bond all communications conduit systems to ground.

P. Connect ground terminal on wiring devices to auxiliary green wire equipment grounding system.

Q. Motor frames shall be bonded to the equipment grounding system by an independent green wire, sized as shown.

R. System neutral connections shall be insulated from metal enclosures except at the neutral of the service entrance equipment. Connections to the main switchboard enclosure shall be by means of bonding jumpers.

S. The building neutral shall be identified throughout with white conductors.

T. Steel frame buildings and metal exterior coverings on buildings that are not effectively grounded shall be grounded thru a low resistance grounding system whether or not a lightning protection system is required.
U. Ground metal exterior coverings and metal roofs with minimum #4 copper conductor at a minimum of two points, intervals not exceeding 100 feet.

V. Ground steel frame buildings at each corner with maximum of every 60 ft. around the outside perimeter by cadwelding #2/0 (#4/0 for buildings over 75 ft. tall) copper conductor to steel columns and extending below ground to driven ground rods; top of 0.625 inch x 10 ft. ground rod shall be minimum of 12 inches below finished grade and 3 ft. out from building foundation. Bond the water service, street side of water meter, to the adjacent perimeter steel column with #4/0 insulated copper conductor. Sleeve all concrete foundations and masonry walls with PVC sleeve.

W. Metal covers on pull boxes and junction boxes shall be effectively grounded.

X. Connections to driven ground rods or other such electrodes shall be a minimum of three feet from the foundation wall or beyond the roof drip line, whichever is greater. Do not install ground rods in backfill.

Y. The electrodes (driven ground rods) of the electrical grounding system shall not be used for the electrodes for the lightning protection system, and vice versa. However, these two systems shall be bonded together at one point.

Z. Wiring devices shall be connected with grounding jumper from ground pole on device to grounding screw in the outlet box.

AA. Ground Ring: Install a grounding conductor, electrically connected to each building structure ground rod and to each steel column, extending around the perimeter of building.

1. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel.
2. Bury ground ring not less than 24 inches from building foundation.

BB. Ufer Ground (Concrete-Encased Grounding Electrode): Fabricate according to NFPA 70, using a minimum of 20 feet of bare copper conductor not smaller than No. 4 AWG.

1. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.
2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building grounding grid or to grounding electrode external to concrete.

3.4 CONNECTIONS

A. General: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, and connection methods so metals in direct contact will be galvanically compatible.

1. Use electroplated or hot-tin-coated materials to assure high conductivity and to make contact points closer in order of galvanic series.
2. Make connections with clean, bare metal at points of contact.
3. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.
B. Exothermic-Welded Connections: Use for connections to structural steel and for underground connections, except those at test wells. Complete with manufacturer’s written instructions. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.

C. Equipment Grounding-Wire Terminations: For No. 8 AWG and larger, use pressure-type grounding lugs. No. 10 AWG and smaller grounding conductors may be terminated with winged pressure-type connectors.

D. Noncontact Metal Raceway Terminations: Where metallic raceways terminate at metal housings without mechanical and electrical connection to housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically noncontinuous conduits at both entrances and exits with grounding bushings and bare grounding conductors, except as otherwise indicated.

E. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer’s published torque-tightening values. Where these requirements are not available, use those specified in UL 486A and UL 486B.

F. Compression-Type Connections: use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by manufacturer of connectors. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.

G. Moisture Protection: Where insulated grounding conductors are connected to grounding rods or grounding buses, insulate entire area of connection and seal against moisture penetration of insulation and cable.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:

B. Perform the following tests and inspections and prepare test reports:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.

2. Test completed grounding system. The maximum ground-resistance level shall not exceed 5 ohms.

 a. Measure ground resistance not less than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.

 b. Perform tests by fall-of-potential method according to IEEE 81.

3. Prepare dimensioned drawings locating each test well, ground rod and ground rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and...
their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

C. Report measured ground resistances that exceed the following values:

1. Power and Lighting Equipment or System: 5 ohms.

D. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.
SECTION 260529 – HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

B. Related Sections include the following:
 1. Division 26 Section "Vibration and Seismic Controls For Electrical Systems" for products and installation requirements necessary for compliance with criteria.

C. All conduit shall be supported from the building. Attachment to other pipes, conduits, ductwork, etc. will not be allowed.

1.3 DEFINITIONS

A. EMT: Electrical metallic tubing.

B. IMC: Intermediate metal conduit.

C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

A. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.

B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.
1.5 SUBMITTALS

A. Product Data: For the following:
 1. Steel slotted support systems.
 2. Nonmetallic slotted support systems.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 1. Trapeze hangers. Include Product Data for components.
 2. Steel slotted channel systems. Include Product Data for components.
 3. Nonmetallic slotted channel systems. Include Product Data for components.
 4. Equipment supports.

C. Welding certificates.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Comply with NFPA 70.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate installation of equipment supports, and roof penetrations.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.

 1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
5. Channel Dimensions: Selected for applicable load criteria.

B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch-diameter holes at a maximum of 8 inches o.c., in at least 1 surface.
1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. Fabco Plastics Wholesale Limited.
 d. Seasafe, Inc.

2. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items.
3. Fitting and Accessory Materials: Same as channels and angles, except metal items may be stainless steel.
4. Rated Strength: Selected to suit applicable load criteria.

C. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

D. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36, steel plates, shapes, and bars; black and galvanized.

G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
5) MKT Fastening, LLC.

2. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
3. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
4. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
5. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as scheduled in NECA 1, where its Table 1 lists maximum spacings less than stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 1. Secure raceways and cables to these supports with two-bolt conduit clamps.

D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

B. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 03 Section "Cast-in-Place Concrete."

C. Anchor equipment to concrete base.

1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
3.5 PAINTING

A. Touchup: Comply with requirements in Division 09 painting Sections for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533 – RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. MU Division of IT Telecommunications Construction Standards and Specifications apply to this section. The Contractor shall obtain the latest revision of document and install all cables, pathways, boxes, equipment, and hardware in a manner to conform with MU Standards and Specifications.

1.2 SUMMARY

A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.

B. Related Sections include the following:
 1. Division 26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks and underground utility construction.

C. All empty conduit shall be furnished with a pull string.

1.3 DEFINITIONS

A. EMT: Electrical metallic tubing.

B. ENT: Electrical nonmetallic tubing.

C. FMC: Flexible metal conduit.

D. IMC: Intermediate metal conduit.

E. LFMC: Liquidtight flexible metal conduit.

F. LFNC: Liquidtight flexible nonmetallic conduit.

G. RNC: Rigid nonmetallic conduit.

H. RMC: Rigid metal conduit (rigid steel conduit).
1.4 SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.

1. Custom enclosures and cabinets.

C. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

1. Structural members in the paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.

D. Source quality-control test reports.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Allied Tube & Conduit; a Tyco International Ltd. Co.
2. Republic Conduit.
3. Western Tube and Conduit.

B. Rigid Steel Conduit: ANSI C80.1.

C. IMC: ANSI C80.6.

D. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.

1. Comply with NEMA RN 1.
2. Coating Thickness: 0.040 inch, minimum.

E. EMT: ANSI C80.3.
WOMEN’S AND CHILDREN’S HOSPITAL – EXTERIOR ENVELOPE REPLACEMENT

UNIVERSITY OF MISSOURI

Issue for Bid

F. FMC: Zinc-coated steel.

G. LFMC: Flexible steel conduit with PVC jacket.

H. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.

1. Fittings for EMT: Steel or die-cast, compression type, and rated for ground connection.
2. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch, with overlapping sleeves protecting threaded joints.

I. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.

2.2 NONMETALLIC CONDUIT AND TUBING

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFC Cable Systems, Inc.
2. Anamet Electrical, Inc.; Anaconda Metal Hose.
3. CANTEX Inc.
6. Lamson & Sessions; Carlon Electrical Products.
7. Manhattan/CDT/Cole-Flex.
8. RACO; a Hubbell Company.

B. ENT: NEMA TC 13.

C. RNC: NEMA TC 2, Type EPC-40-PVC, unless otherwise indicated.

D. LFNC: UL 1660.

E. Fittings for ENT and RNC: NEMA TC 3; match to conduit or tubing type and material.

F. Fittings for LFNC: UL 514B.

2.3 METAL WIREWAYS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper B-Line, Inc.
2. Hoffman.
4. Square D; Schneider Electric.
B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 3R, unless otherwise indicated.

C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Screw-cover type. Flanged-and-gasketed type where shown on drawings.

E. Finish: Manufacturer's standard enamel finish.

2.4 BOXES, ENCLOSURES, AND CABINETS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
2. EGS/Appleton Electric.
7. RACO; a Hubbell Company.
8. Thomas & Betts Corporation.

B. Pull and junction boxes shall be minimum 4" x 4".

C. Communications back-boxes for outlets shall be 4" x 4", 2-1/2" depth, with 2" x 4" single-gang reducer for single-gang faceplate mounting. Joint/shared boxes for power and Communications are not allowed.

D. Sheet Metal Outlet and Device Boxes: NEMA OS 1.

E. Cast-Metal Outlet and Device Boxes: NEMA FB 1, Type FD, with gasketed cover.

F. Nonmetallic Outlet and Device Boxes: NEMA OS 2.

G. Metal Floor Boxes: Cast or sheet metal, fully adjustable, rectangular.

H. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

I. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, with gasketed cover.

J. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.

 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.

K. Cabinets:
1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer’s standard enamel.
2. Hinged door in front cover with flush latch and concealed hinge.
3. Key latch to match panelboards.
4. Metal barriers to separate wiring of different systems and voltage.
5. Accessory feet where required for freestanding equipment.

2.5 SLEEVES FOR RACEWAYS

A. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
B. Cast-Iron Pipe Sleeves: Cast or fabricated “wall pipe,” equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch thickness as indicated and of length to suit application.
D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

2.6 SLEEVE SEALS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex Co.
 4. Pipeline Seal and Insulator, Inc.
B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 1. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 2. Pressure Plates: Carbon steel. Include two for each sealing element.
 3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:
 1. Exposed Conduit: Rigid steel conduit or IMC.
 2. Concealed Conduit, Aboveground: Rigid steel conduit or RNC, Type EPC-80-PVC.
3. Underground Conduit: RNC, Type EPC-80-PVC, direct buried.
4. Within Underground Duct Banks: RNC, Type EPC-40-PVC.
5. Underground Conduit: RNC, Type EPC-40-PVC, when encased in minimum 3” thick concrete.
6. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
7. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
8. EMT is not allowed to be used outdoors.
9. Rigid metal conduit shall be used for all conduit that exits the building. At least 5 feet of horizontal run out from the building shall be rigid metal conduit to allow for building settlement.
10. Elbows for rigid metal conduit, 3 inches and larger, shall be either plastic coated or tape coated (for corrosion control) rigid metal conduit to prevent damage from pulling ropes.

B. Comply with the following indoor applications, unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed and Subject to Physical Damage: Rigid steel conduit or IMC. Includes raceways in the following locations:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
 d. Electrical rooms.
 e. Stairwells.
 f. Within block or masonry walls.
3. Concealed Above Hung Ceilings and Within Interior Sheet Rock Walls and Partitions: EMT.
4. Underground Conduit: Rigid steel conduit or IMC, below concrete. Conduit is not allowed within poured concrete.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations. Length not to exceed 6 ft.
6. Damp or Wet Locations: Rigid steel conduit.
7. Raceways for Optical Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, optical fiber/communications cable raceway or EMT.
8. Raceways for Optical Fiber or Communications Cable Risers in Vertical Shafts: EMT.
9. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, nonmetallic in damp or wet locations.

C. Concealed: FMC ½” inch – only in specific locations, in existing areas, within existing walls to remain. Utilize only between box in wall to junction box above ceiling. Junction box shall be located within 12” above hung ceiling. FMC, within walls, not acceptable in other locations.

D. Minimum Raceway Size: 3/4-inch trade size, except for Communications cabling which shall be minimum raceway size 1-inch.

E. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.

F. Install raceways underground or below floor only for locations indicated on drawings.

3.2 INSTALLATION

A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping. Do not install horizontal raceway directly and parallel under cold water or chilled water pipes. In general, install raceways as high as possible, closer to underside of structure. Install horizontal raceways minimum 8 inches above ceilings.

C. Complete raceway installation before starting conductor installation.

D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."

E. Conduit and EMT within finished walls and ceilings, unless otherwise indicated.

I. Install exposed raceways parallel or at right angles to nearby surfaces or structural members and follow surface contours as much as possible.

 1. Run parallel or banked raceways together on common supports.
 2. Make parallel bends in parallel or banked runs. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for parallel raceways.

J. Join raceways with fittings designed and approved for that purpose and make joints tight.

 1. Use insulating bushings to protect conductors.

K. Utilize compression fittings only with suitable tools.

L. Raceways embedded in slabs is not allowed.

M. Arrange raceways to cross building expansion joints at right angles with expansion fittings.

N. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
O. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.

P. Terminations: Where raceways are terminated with locknuts and bushings, align raceways to enter squarely and install locknuts with dished part against the box. Where terminations are not secure with one (1) locknut, use two (2) locknuts: one (1) inside and one (1) outside the box.

Q. Where raceways are terminated with threaded hubs, screw raceways or fittings tightly into the hub so the end bears against the wire protection shoulder. Where chase nipples are used, align raceways so the coupling is square to the box and tighten the chase nipple so no threads are exposed.

R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.

S. Raceways for Optical Fiber and Communications Cable: Install raceways, metallic and nonmetallic, rigid and flexible, as follows:

1. Raceway shall be sized to include minimum 33% spare cable capacity for future adds.
2. 1-Inch Trade Size and Larger:
 a. Install raceways in maximum lengths of 150 feet.
 b. Install with a maximum of three 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements.
 c. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.
3. Conduits shall not be daisy-chained together.
4. Conduit inside bend radius must be:
 a. 2" Trade size and smaller conduit: minimum bend radius of six times the conduit inside diameter.
 b. Larger than 2" Trade size conduit: minimum bend radius of 10 times the conduit inside diameter.
5. Conduit fill limits in terms of maximum number of Category 6 cables shall be as follows:
 a. 1" Conduit: 5 cables
 b. 1-1/4" Conduit: 8 cables
 c. 1-1/2" Conduit: 11 cables
 d. 2" Conduit: 20 cables
 e. 3" Conduit: 47 cables
 f. 4" Conduit: 84 cables
6. Maintain following minimum clearances from cable pathways, to avoid electromagnetic interference, from the following:
 a. Motors and transformers: 4-feet
 b. Conduit and cables used for electrical power distribution: 1-foot
 c. Fluorescent lighting: 5-inches
7. Pull boxes shall be placed directly after a bend where possible, or sized accordingly if the pull box is located at the bend.

8. 1-inch minimum conduit shall extend from outlet backbox, to above accessible ceiling with minimum 12-inches clearance above ceiling, turn 90-degrees, and be reamed and installed with a nylon insulated bushing to avoid damage to cables. This conduit must terminate before passing through a fire rated wall.

9. When using architect- and owner- approved surface mount raceway, a Wiremold # 5744S outlet box or approved equal shall be provided. Dual channel raceway such as Wiremold 4000 shall use a V/G4007C-1 device plate.

T. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where otherwise required by NFPA 70.

U. Expansion-Joint Fittings: Install UL approved expansion fittings in each run of aboveground conduit that is located at building expansion joint. Length of fittings shall not exceed 6 inches.

V. Flexible Conduit Connections: Use maximum of 72 inches of flexible conduit from junction boxes to recessed and semirecessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.
2. Flexible conduit from light fixture to lighting fixture not allowed.

W. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.

X. Set metal floor boxes level and flush with finished floor surface.

Y. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

Z. All raceways terminating a junction boxes, located above ceiling shall be provided with color coded vinyl tape indicating the service. Color coding tape shall be applied next to the junction box. Tape color shall match junction box cover color.

AA. The height of the center of outlets above the finished floor, if not otherwise specified or shown on drawings, shall be as following:

<table>
<thead>
<tr>
<th>Service</th>
<th>Height Above Finished Floor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting Brackets</td>
<td>As indicated on drawings</td>
</tr>
<tr>
<td>Switch Outlets</td>
<td>3'-10" to centerline</td>
</tr>
<tr>
<td>Convenience Receptacle</td>
<td>1'-6" (1'-3" to bottom of box) *</td>
</tr>
<tr>
<td>Telephone Outlet</td>
<td>1'-6" (1'-3" to bottom of box) *</td>
</tr>
<tr>
<td>Data Outlet</td>
<td>1'-6" (1'-3" to bottom of box) *</td>
</tr>
<tr>
<td>Wall Telephone Outlet</td>
<td>3'-10" to centerline **</td>
</tr>
<tr>
<td>Fire Alarm Manual Pull Stations</td>
<td>3'-10" to centerline **</td>
</tr>
<tr>
<td>Audio /Visual Alarms</td>
<td>6'-8" to bottom of device ***</td>
</tr>
</tbody>
</table>
* Minimum height of 1'-3" to meet ADA Standards
** Mount at 5'-6" in Mechanical Rooms
*** Maximum of 6' below finished ceiling whichever is least unless shown or indicated otherwise

Note: Where receptacles are shown installed above countertops, mount receptacles no less than 6" centerline above tops of splash back. See architectural elevations case work shop drawings for determining exact heights.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section "Common Work Results for Electrical".
2. Install backfill as specified in Section "Common Work Result for Electrical".
3. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Encase elbows for stub-up ducts throughout the length of the elbow.
4. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
 b. For stub-ups at equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.
5. Warning Tape: A red plastic tracer tape is to be buried 12" above conduit in all installations.

3.4 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:

1. For sleeve cross-section rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.
E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both surfaces of walls.

G. Extend sleeves installed in floors 2 inches above finished floor level.

H. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway unless sleeve seal is to be installed.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Division 07 Section "Penetration Firestopping."

3.5 SLEEVE-SEAL INSTALLATION

A. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

3.7 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.
3.8 CLEANING

A. After completing installation of exposed, factory-finished raceways and boxes, inspect exposed finishes and repair damaged finishes. Remove burrs, dirt, and construction debris.

END OF SECTION 260533
SECTION 260543 – UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. MU Division of IT Telecommunications Construction Standards and Specifications apply to this section. The Contractor shall obtain the latest revision of document and install all cables, pathways, boxes, equipment, and hardware in a manner to conform with MU Standards and Specifications.

1.2 SUMMARY

A. This Section includes the following:

 1. Conduit, ducts, and duct accessories for direct-buried and concrete-encased duct banks.
 2. Handholes and boxes.

1.3 DEFINITION

A. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

A. Product Data: For the following:

 1. Duct-bank materials, including separators and miscellaneous components.
 2. Ducts and conduits and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
 3. Accessories for handholes, boxes, and other structures.
 4. Warning tape.
 5. Warning planks.

B. Shop Drawings for Factory-Fabricated Handholes and Boxes Other Than Precast Concrete: Include dimensioned plans, sections, and elevations, and fabrication and installation details, including the following:

 1. Duct entry provisions, including locations and duct sizes.
 2. Cover design.
 4. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
C. Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures.
 1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.

D. Source quality-control test reports.

E. Field quality-control test reports.

1.5 QUALITY ASSURANCE

A. Comply with ANSI C2.

B. Comply with NFPA 70.

C. Install Communications / Data / Telephone / CATV ducts, handholes, equipment, and accessories per ANSI/TIA-569-B and BICSI TDMM standards.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver ducts to Project site with ends capped. Store nonmetallic ducts with supports to prevent bending, warping, and deforming.

B. Store precast concrete and other factory-fabricated underground utility structures at Project site as recommended by manufacturer to prevent physical damage. Arrange so identification markings are visible.

C. Lift and support precast concrete units only at designated lifting or supporting points.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 1. Notify Architect no fewer than seven days in advance of proposed interruption of electrical service.
 2. Do not proceed with interruption of electrical service without Architect's written permission.

1.8 COORDINATION

A. Coordinate layout and installation of ducts, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field.

B. Coordinate elevations of ducts and duct-bank entrances into handholes, and boxes with final locations and profiles of ducts and duct banks as determined by coordination with other utilities,
underground obstructions, and surface features. Revise locations and elevations from those indicated as required to suit field conditions and to ensure that duct runs drain to handholes, and as approved by Architect.

PART 2 - PRODUCTS

2.1 CONDUIT

B. RNC: NEMA TC 2, Type EPC-40-PVC and Type EPC-80-PVC, UL 651, with matching fittings by same manufacturer as the conduit, complying with NEMA TC 3 and UL 514B.

2.2 NONMETALLIC DUCTS AND DUCT ACCESSORIES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cantex, Inc.
2. CertainTeed Corp.; Pipe & Plastics Group.
4. Electri-Flex Company.
5. IPEX Inc.
6. Lamson & Sessions; Carlon Electrical Products.
7. Manhattan/CDT; a division of Cable Design Technologies.
8. Spiraduct/AFC Cable Systems, Inc.

B. Underground Plastic Utilities Duct: NEMA TC 6 & 8, Type DB-60-PVC and Type DB-120-PVC, ASTM F 512, with matching fittings by the same manufacturer as the duct, complying with NEMA TC 9.

C. Duct Accessories:

1. Duct Separators: Factory-fabricated rigid PVC interlocking spacers, sized for type and sizes of ducts with which used, and selected to provide minimum duct spacings indicated while supporting ducts during concreting or backfilling.
2. Warning Tape: Underground-line warning tape specified in Division 26 Section "Identification for Electrical Systems."
3. Concrete Warning Planks: Nominal 12 by 24 by 3 inches in size, manufactured from 6000-psi concrete.
 a. Color: Red dye added to concrete during batching. Note: Transformer secondary conductors shall not be installed with concrete with red dye.
 b. Mark each plank with "ELECTRIC" in 2-inch-high, 3/8-inch-deep letters.
2.3 PRECAST CONCRETE HANDHOLES AND BOXES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Christy Concrete Products.
2. Oldcastle Precast Group.
3. Riverton Concrete Products; a division of Cretex Companies, Inc.
4. Utility Concrete Products, LLC.
5. Utility Vault Co.
6. Wausau Tile, Inc.

B. Comply with ASTM C 858 for design and manufacturing processes.

C. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.

1. Frame and Cover: Weatherproof cast-iron frame, with cast-iron cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
2. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
3. Cover Legend: Molded lettering, "ELECTRIC."/"TELEPHONE."/As indicated for each service.
4. Configuration: Units shall be designed for flush burial and have open bottom, unless otherwise indicated.
5. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.
 a. Extension shall provide increased depth of 12 inches.
 b. Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.

6. Windows: Precast openings in walls, arranged to match dimensions and elevations of approaching ducts and duct banks plus an additional 12 inches vertically and horizontally to accommodate alignment variations.
 a. Windows shall be located no less than 6 inches from interior surfaces of walls, floors, or frames and covers of handholes, but close enough to corners to facilitate racking of cables on walls.
 b. Window opening shall have cast-in-place, welded wire fabric reinforcement for field cutting and bending to tie into concrete envelopes of duct banks.
 c. Window openings shall be framed with at least two additional No. 4 steel reinforcing bars in concrete around each opening.

7. Duct Entrances in Handhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
 a. Type and size shall match fittings to duct or conduit to be terminated.
 b. Fittings shall align with elevations of approaching ducts and be located near interior corners of handholes to facilitate racking of cable.

8. Handholes 12 inches wide by 24 inches long and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.
2.4 HANDBOLES AND BOXES OTHER THAN PRECAST CONCRETE

A. Description: Comply with SCTE 77.

2. Configuration: Units shall be designed for flush burial and have open bottom, unless otherwise indicated.
3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
5. Cover Legend: Molded lettering, "ELECTRIC."/"TELEPHONE."/As indicated for each service.
6. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
8. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.

B. Polymer Concrete Handholes and Boxes with Polymer Concrete Cover: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Armorcast Products Company.
 b. Carson Industries LLC.
 c. CDR Systems Corporation.
 d. NewBasis.

C. Fiberglass Handholes and Boxes with Polymer Concrete Frame and Cover: Sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Armorcast Products Company.
 b. Carson Industries LLC.
 c. Christy Concrete Products.
 d. Synertech Moulded Products, Inc.; a division of Oldcastle Precast.

D. High-Density Plastic Boxes: Injection molded of high-density polyethylene or copolymer-polypropylene. Cover shall be polymer concrete.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carson Industries LLC.
 b. Nordic Fiberglass, Inc.
 c. PenCell Plastics.
2.5 SOURCE QUALITY CONTROL

A. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.

1. Tests of materials shall be performed by an independent testing agency.
2. Strength tests of complete boxes and covers shall be by either an independent testing agency or the manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 UNDERGROUND DUCT APPLICATION

A. Ducts for Electrical Feeders 600 V and Less: RNC, NEMA Type EPC-80-PVC, in concrete-encased duct bank, unless otherwise indicated.

B. Ducts for Electrical Branch Circuits: RNC, NEMA Type EPC-40-PVC, in direct-buried duct bank, unless otherwise indicated.

C. Underground Ducts for Telephone, Communications, Data, or CATV Circuits: RNC, NEMA Type EPC-40-PVC, in concrete-encased duct bank, unless otherwise indicated.

D. Underground Ducts Crossing Paved Paths, Walks and Driveways or Roadways: RNC, NEMA Type EPC-80-PVC, encased in reinforced concrete.

3.2 UNDERGROUND ENCLOSURE APPLICATION

A. Handholes and Boxes for 600 V and Less, Including Telephone, Communications, and Data Wiring:

1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-10 structural load rating.
2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Precast concrete, AASHTO HB 17, H-20 or Polymer concrete, SCTE 77, Tier 15 or Fiberglass enclosures with polymer concrete frame and cover, SCTE 77, Tier 15 structural load rating.
3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Precast concrete, AASHTO HB 17, H-10 Polymer concrete units, SCTE 77, Tier 8 or Heavy-duty fiberglass units with polymer concrete frame and cover, SCTE 77, Tier 8 structural load rating.
4. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf vertical loading.
3.3 EARTHWORK

A. Excavation and Backfill: Do not use heavy-duty, hydraulic-operated, compaction equipment.

B. Restore surface features at areas disturbed by excavation and reestablish original grades, unless otherwise indicated. Replace removed sod immediately after backfilling is completed.

C. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Owner will restore landscaping.

D. Cut and patch existing pavement in the path of underground ducts and utility structures.

3.4 DUCT INSTALLATION

A. Slope: Pitch ducts a minimum slope of 1:300 down toward handholes and away from buildings and equipment. Slope ducts from a high point in runs to drain in both directions.

B. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches, both horizontally and vertically, at other locations, unless otherwise indicated.

C. Joints: Use solvent-cemented joints in ducts and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent ducts do not lie in same plane.

D. Duct Entrances to Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches o.c. for 5-inch ducts, and vary proportionately for other duct sizes.
 1. Begin change from regular spacing to end-bell spacing 10 feet from the end bell without reducing duct line slope and without forming a trap in the line.
 2. Direct-Buried Duct Banks: Install an expansion and deflection fitting in each conduit in the area of disturbed earth adjacent to handhole.
 3. Grout end bells into structure walls from both sides to provide watertight entrances.

E. Building Wall Penetrations: Make a transition from underground duct to rigid steel conduit at least 15 feet outside the building wall without reducing duct line slope away from the building, and without forming a trap in the line. Use fittings manufactured for duct-to-conduit transition. Install conduit penetrations of building walls as specified in Division 26 Section "Common Work Results for Electrical."

F. Sealing: Provide temporary closure at terminations of ducts that have cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure. Closures and sealing compounds / plugs shall prevent infiltration of gas, water, and vermin.

G. Pulling Cord: Install 100-lbf-test nylon cord in ducts, including spares.

H. In each Communications / Data / Telephone / CATV duct and innerduct, including spares, install 1,500 lb. strength mule-tape pull line with sequential footage mark numbering.
I. When joint-trenches are used to install other utilities along with Communications / Data / Telephone / CATV facilities, the following minimum separation distances shall be maintained:

1. Pipes (gas, water, etc.): 6 inches when crossing; 12 inches when parallel.
2. Power or other foreign conduit: 3 inches of concrete.

J. The total number of bends in a Communications / Data / Telephone / CATV conduit section run shall not exceed 270 degrees of total bends. Each bend shall have a radius not less than 10 times the internal conduit diameter.

K. Concrete-Encased Ducts: Support ducts on duct separators.

1. Separator Installation: Space separators close enough to prevent sagging and deforming of ducts, with not less than 4 spacers per 20 feet of duct. Secure separators to earth and to ducts to prevent floating during concreting. Stagger separators approximately 6 inches between tiers. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.

2. Concreting Sequence: Pour each run of envelope between other terminations in one continuous operation.
 a. Start at one end and finish at the other, allowing for expansion and contraction of ducts as their temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written recommendations, or use other specific measures to prevent expansion-contraction damage.
 b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch reinforcing rod dowels extending 18 inches into concrete on both sides of joint near corners of envelope.

3. Pouring Concrete: Spade concrete carefully during pours to prevent voids under and between conduits and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Use a plank to direct concrete down sides of bank assembly to trench bottom. Allow concrete to flow to center of bank and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-bank application.

4. Reinforcement: Reinforce concrete-encased duct banks where they cross disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.

5. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.

6. Minimum Space between Ducts: 3 inches between ducts and exterior envelope wall, 2 inches between ducts for like services, and 4 inches between power and signal ducts.

7. Depth: Install top of duct bank at least 24 inches below finished grade in areas not subject to deliberate traffic, and at least 30 inches below finished grade in deliberate traffic paths for vehicles, unless otherwise indicated. Install top of Communications / Data / Telephone / CATV duct bank at least 36 inches below finished grade.

8. Stub-Ups: Use manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
b. Stub-Ups to Equipment: For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.

c. Conduit stub-ups through the floor shall extend a minimum 4 inches above the finished floor. The ends of metallic conduit shall be reamed, bushed, and grounded according to the NEC and NESC.

9. Warning Tape: Bury warning tape approximately 12 inches above all concrete-encased ducts and duct banks. Align tape parallel to and within 3 inches of the centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.

L. Direct-Buried Duct Banks:

1. Support ducts on duct separators coordinated with duct size, duct spacing, and outdoor temperature.
2. Space separators close enough to prevent sagging and deforming of ducts, with not less than 4 spacers per 20 feet of duct. Secure separators to earth and to ducts to prevent displacement during backfill and yet permit linear duct movement due to expansion and contraction as temperature changes. Stagger spacers approximately 6 inches between tiers.
3. Excavate trench bottom to provide firm and uniform support for duct bank.
4. After installing first tier of ducts, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand-place backfill to 4 inches over ducts and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction.
5. Install ducts with a minimum of 3 inches between ducts for like services and 6 inches between power and signal ducts.
6. Depth: Install top of duct bank at least 36 inches below finished grade, unless otherwise indicated.
7. Set elevation of bottom of duct bank below the frost line.
8. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.

a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.

b. For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.

9. Warning Planks: Bury warning planks approximately 12 inches above direct-buried ducts and duct banks, placing them 24 inches o.c. Align planks along the width and along the centerline of duct bank. Provide an additional plank for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional planks 12 inches apart, horizontally.

3.5 INSTALLATION OF CONCRETE HANDHOLES, AND BOXES

A. Precast Concrete Handhole Installation:
1. Comply with ASTM C 891, unless otherwise indicated.
2. Install units level and plumb and with orientation and depth coordinated with connecting ducts to minimize bends and deflections required for proper entrances.
3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

B. Elevations:
1. Install handholes with bottom below the frost line, below grade.
2. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch above finished grade.
3. Where indicated, cast handhole cover frame integrally with handhole structure.

C. Drainage: Install drains where indicated. Coordinate with drainage provisions indicated.

3.6 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE
A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting ducts to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of ducts, and seal joint between box and extension as recommended by the manufacturer.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas and trafficways, set so cover surface will be flush with finished grade. Set covers of other handholes 1 inch above finished grade.

D. Install handholes and boxes with bottom below the frost line, minimum 36 inches below grade.

E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in the enclosure.

F. Field-cut openings for ducts and conduits according to enclosure manufacturer’s written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

G. For enclosures installed in asphalt paving and subject to occasional, nondeliberate, heavy-vehicle loading, form and pour a concrete ring encircling, and in contact with, enclosure and with top surface screened to top of box cover frame. Bottom of ring shall rest on compacted earth.

1. Concrete: 3000 psi, 28-day strength, complying with Division 03 Section "Cast-in-Place Concrete," with a troweled finish.
2. Dimensions: 10 inches wide by 12 inches deep.
3.7 GROUNDING

A. Ground underground ducts and utility structures according to Division 26 Section "Grounding and Bonding for Electrical Systems.

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:

1. Demonstrate capability and compliance with requirements on completion of installation of underground ducts and utility structures.
2. Pull aluminum or wood test mandrel through duct to prove joint integrity and test for out-of-round duct. Provide mandrel equal to 80 percent fill of duct. If obstructions are indicated, remove obstructions and retest.
3. Test handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Division 26 Section "Grounding and Bonding for Electrical Systems."

B. Correct deficiencies and retest as specified above to demonstrate compliance.

3.9 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of ducts. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

B. Clean internal surfaces of sump. Remove foreign material.

END OF SECTION 260543
SECTION 260548 – VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Channel support systems.
2. Restraint cables.
3. Hanger rod stiffeners.
4. Anchorage bushings and washers.

B. Related Sections include the following:

1. Division 26 Section "Hangers and Supports for Electrical Systems" for commonly used electrical supports and installation requirements.

1.3 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 SUBMITTALS

A. Product Data: For the following:

1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.

B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data.
1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators and seismic restraints.
 a. Coordinate design calculations with wind-load calculations required for equipment mounted outdoors. Comply with requirements in other Division 26 Sections for equipment mounted outdoors.

2. Indicate materials and dimensions and identify hardware, including attachment and anchorage devices.

3. Field-fabricated supports.

4. Seismic-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.

C. Coordination Drawings: Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints.

D. Field quality-control test reports.

1.5 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

B. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 SEISMIC-RESTRAINT DEVICES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Amber/Booth Company, Inc.
2. Cooper B-Line, Inc.; a division of Cooper Industries.
3. Hilti Inc.
5. Unistrut; Tyco International, Ltd.

B. General Requirements for Restraint Components: Rated strengths, features, and application requirements shall be acceptable to authorities having jurisdiction.

1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.

D. Restraint Cables: ASTM A 603 galvanized-steel cables with end connections made of steel assemblies with thimbles, brackets, swivels, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement.

E. Hanger Rod Stiffener: Reinforcing steel angle clamped to hanger rod. Do not weld stiffeners to rods.

F. Bushings for Floor-Mounted Equipment Anchor: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchors and studs.

G. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices.

H. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

I. Mechanical Anchor: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchors with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.

J. Adhesive Anchor: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.2 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.

1. Powder coating on springs and housings.
2. All hardware shall be galvanized. Hot-dip galvanized metal components for exterior use.
3. Baked enamel or powder coat for metal components on isolators for interior use.
4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS
A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application.
B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION
A. Equipment and Hanger Restraints:
 1. Install restrained isolators on electrical equipment.
 2. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
D. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are
encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.

2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.

4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.

5. Set anchors to manufacturer's recommended torque, using a torque wrench.

6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Remove and replace malfunctioning units and retest as specified above.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust isolators after isolated equipment is at operating weight.

B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

C. Adjust active height of spring isolators.

D. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 260548
SECTION 260553 – IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Identification for raceways.
 2. Identification of power and control cables.
 3. Identification for conductors.
 5. Warning labels and signs.
 6. Instruction signs.
 7. Equipment identification labels.
 8. Miscellaneous identification products.

1.3 SUBMITTALS

A. Product Data: For each electrical identification product indicated.

B. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

1.4 QUALITY ASSURANCE

A. Comply with ANSI A13.1.

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.

B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 POWER RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Red conduit for life safety branch
 3. Orange conduit for critical branch
 4. Yellow conduit for equipment branch
 5. Red conduit for fire alarm devices with red junction boxes.
 6. Legend: Indicate voltage and system or service type.

C. Self-Adhesive Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

2.2 ARMORED AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Colors for Raceways Carrying Circuits at 600 V and Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.
2.3 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

2.4 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding of Conductor Tape: All service, feeder and branch circuit conductors, rated for 600V or less shall be factory color-coded as specified herein. Field applied labels, tapes or bands not acceptable.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

2.5 FLOOR MARKING TAPE

A. 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.

2.6 UNDERGROUND-LINE WARNING TAPE

A. Tape:
 1. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical utility lines.
 2. Printing on tape shall be permanent and shall not be damaged by burial operations.
 3. Tape material and ink shall be chemically inert, and not subject to degrading when exposed to acids, alkalis, and other destructive substances commonly found in soils.

B. Color and Printing:
 1. Comply with ANSI Z535.1 through ANSI Z535.5.
 2. Inscriptions for Red-Colored Tapes: ELECTRIC LINE, HIGH VOLTAGE.
 3. Inscriptions for Orange-Colored Tapes: TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE.

2.7 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
C. Baked-Enamel Warning Signs:
 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal size, 7 by 10 inches.

D. Warning label and sign shall include, but are not limited to, the following legends:
 1. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.8 INSTRUCTION SIGNS

A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch thick for signs up to 20 sq. inches and 1/8 inch thick for larger sizes.
 1. Engraved legend with black letters on white face.
 2. Punched or drilled for mechanical fasteners.
 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.9 EQUIPMENT IDENTIFICATION LABELS

A. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Minimum 0.0625 inch thick adhesive backed, with white letters on a black background. Minimum letter height shall be 3/8 inch.

2.10 JUNCTION/PULL BOX COVER IDENTIFICATION

A. Paint all junction and pull box covers to identify service and voltage as follows:
 1. 120V Normal power – Green.

B. All covers shall identify circuit numbers, panel designation, voltage and service. Identification shall be done by black magic markers.

2.11 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self extinguishing, one piece, self locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

B. Plenum-Rated Cable Ties: Self extinguishing, UV stabilized, one piece, self locking.
2. Tensile Strength at 73 deg F, According to ASTM D 638: 7000 psi.
3. UL 94 Flame Rating: 94V-0.
4. Temperature Range: Minus 50 to plus 284 deg F.
5. Color: Black.

2.12 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in Division 09 painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

F. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas, within mechanical rooms, chiller rooms and boiler rooms.

G. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:

1. Outdoors: UV-stabilized nylon.
2. In Spaces Handling Environmental Air: Plenum rated.

H. Painted Identification: Comply with requirements in Division 09 painting Sections for surface preparation and paint application.
3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for All Service, All Feeder, and Branch Circuits More Than 30 A, and 120 V to ground: Identify with self-adhesive vinyl label or self-adhesive vinyl tape applied in bands. Install labels at 20-foot maximum intervals. The identification will include source board/panel and target board/panel. Use black letters on orange background.

B. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box as specified herein.

C. Power-Circuit Conductor Identification, 600 V or Less: Factory color-code conductors as listed below:
 1. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
 e. Ground: Green.
 f. Switch Legs: Pink.

D. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.

E. Conduits to Be Extended in the Future: Attach marker tape to conductors and list source.

F. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

G. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable.
 1. Limit use of underground-line warning tape to direct-buried cables.
 2. Install underground-line warning tape for both direct-buried cables and cables in raceway.

H. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

I. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels or Baked-enamel warning signs or Metal-backed, butyrate warning signs.
2. Identify system voltage with black letters on an orange background.
3. Apply to exterior of door, cover, or other access.
4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Controls with external control power connections.

J. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

K. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.

L. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine label or Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label 4 inches high.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless provided with self-adhesive means of attachment, fasten labels with
e. Use appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
 f. The label shall include voltage, phases, number of wires, and board/switchgear/equipment served from. (Example: Panelboard BL-20-LN; 120/208 volts, 3 phase, 4 wire, served from board DP-B1-HN).

2. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchboards.
 e. Enclosed switches.
 f. Enclosed circuit breakers.
 g. Enclosed controllers.
 h. Push-button stations.
 i. Contactors.
j. Remote-controlled switches, dimmer modules, and control devices.
k. Battery-inverter units.
l. Monitoring and control equipment.

END OF SECTION 260553
SECTION 260923 – LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following lighting control devices:

1. Time switches.
2. Outdoor and indoor photoelectric switches.
3. Indoor occupancy sensors.
4. Lighting contactors.

B. Related Sections include the following:

1. Division 26 Section "Wiring Devices" for wall-box dimmers, wall-switch occupancy sensors, and manual light switches.

1.3 DEFINITIONS

A. LED: Light-emitting diode.

B. PIR: Passive infrared.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show installation details for occupancy and light-level sensors.

1. Interconnection diagrams showing field-installed wiring.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals.
1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.6 COORDINATION

A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Area Lighting Research, Inc.; Tyco Electronics.
2. Grasslin Controls Corporation; a GE Industrial Systems Company.
3. Intermatic, Inc.
5. Lightolier Controls; a Genlyte Company.
6. Lithonia Lighting; Acuity Lighting Group, Inc.
8. Square D; Schneider Electric.
9. TORK.
10. Watt Stopper (The).

B. Electronic Time Switches: Electronic, solid-state programmable units with alphanumeric display; complying with UL 917.

1. Contact Configuration: SPST or DPDT as indicated on drawings.
2. Contact Rating: 20-A ballast load, 120/240-V ac or as indicated on drawings.
3. Program: 8 on-off set points on a 24-hour schedule and an annual holiday schedule that overrides the weekly operation on holidays or as indicated on drawings.
4. Circuitry: Allow connection of a photoelectric relay as substitute for on-off function of a program on selected channels.
5. Astronomic Time: All channels.
6. Battery Backup: For schedules and time clock.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Area Lighting Research, Inc.; Tyco Electronics.
2. Grasslin Controls Corporation; a GE Industrial Systems Company.
3. Intermatic, Inc.
4. Lithonia Lighting; Acuity Lighting Group, Inc.
5. Paragon Electric Co.; Invensys Climate Controls.
6. Square D; Schneider Electric.
7. TORK.
8. Watt Stopper (The).

B. Description: Solid state, with SPST or DPST dry contacts rated for 1800-VA tungsten or 1000-VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A.

1. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of photocell to prevent fixed light sources from causing turn-off.
2. Time Delay: 15-second minimum, to prevent false operation.
4. Mounting: Twist lock complying with IEEE C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.

2.3 INDOOR PHOTOELECTRIC SWITCHES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

3. Eaton Electrical Inc; Cutler-Hammer Products.
5. Intermatic, Inc.
6. Lithonia Lighting; Acuity Lighting Group, Inc.
9. Square D; Schneider Electric.
10. TORK.
11. Watt Stopper (The).

B. Ceiling-Mounted Photoelectric Switch: Solid-state, light-level sensor unit, with separate relay unit mounted on luminaire, to detect changes in lighting levels that are perceived by the eye. Cadmium sulfide photoresistors are not acceptable.

1. Sensor Output: Contacts rated to operate the associated relay, complying with UL 773A. Sensor shall be powered from the relay unit.
2. Relay Unit: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac. Power supply to sensor shall be 24-V dc, 150-mA, Class 2 power source as defined by NFPA 70.
3. Light-Level Monitoring Range: 10 to 200 fc, with an adjustment for turn-on and turn-off levels within that range.
4. Time Delay: Adjustable from 5 to 300 seconds to prevent cycling, with deadband adjustment.
5. Indicator: Two LEDs to indicate the beginning of on-off cycles.

C. Skylight Photoelectric Sensors: Solid-state, light-level sensor; housed in a threaded, plastic fitting for mounting under skylight, facing up at skylight; with separate relay unit mounted on luminaire, to detect changes in lighting levels that are perceived by the eye. Cadmium sulfide photoresistors are not acceptable.

1. Sensor Output: Contacts rated to operate the associated relay, complying with UL 773A. Sensor shall be powered from the relay unit.
2. Relay Unit: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac. Power supply to sensor shall be 24-V dc, 150-mA, Class 2 power source as defined by NFPA 70.
3. Light-Level Monitoring Range: 1000 to 10,000 fc, with an adjustment for turn-on and turn-off levels within that range.
4. Time Delay: Adjustable from 5 to 300 seconds to prevent cycling, with deadband adjustment.
5. Indicator: Two LEDs to indicate the beginning of on-off cycles.

2.4 INDOOR OCCUPANCY SENSORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Hubbell Lighting.
3. Lithonia Lighting; Acuity Lighting Group, Inc.
4. Sensor Switch, Inc.
5. TORK.
6. Watt Stopper (The).

B. General Description: Wall- or ceiling-mounting, solid-state units with a separate relay unit.

1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
2. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor shall be powered from the relay unit.
3. Relay Unit: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Power supply to sensor shall be 24-V dc, 150-mA, Class 2 power source as defined by NFPA 70.
4. Mounting:
 a. Sensor: Suitable for mounting in any position on a standard outlet box.
 b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
6. Bypass Switch: Override the on function in case of sensor failure.
7. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; keep lighting off when selected lighting level is present.

C. PIR Type: Ceiling mounting; detect occupancy by sensing a combination of heat and movement in area of coverage.
 1. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in.
 2. Detection Coverage (Room): Detect occupancy anywhere in a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.
 3. Detection Coverage (Corridor): Detect occupancy within 90 feet when mounted on a 10-foot-high ceiling.

D. Ultrasonic Type: Ceiling mounting; detect occupancy by sensing a change in pattern of reflected ultrasonic energy in area of coverage.
 1. Detector Sensitivity: Detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
 2. Detection Coverage (Small Room): Detect occupancy anywhere within a circular area of 600 sq. ft. when mounted on a 96-inch-high ceiling.
 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.
 4. Detection Coverage (Large Room): Detect occupancy anywhere within a circular area of 2000 sq. ft. when mounted on a 96-inch-high ceiling.
 5. Detection Coverage (Corridor): Detect occupancy anywhere within 90 feet when mounted on a 10-foot-high ceiling in a corridor not wider than 14 feet.

E. Dual-Technology Type: Ceiling mounting; detect occupancy by using a combination of PIR and ultrasonic detection methods in area of coverage. Particular technology or combination of technologies that controls on-off functions shall be selectable in the field by operating controls on unit.
 1. Sensitivity Adjustment: Separate for each sensing technology.
 2. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.

2.5 LIGHTING CONTACTORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. ASCO Power Technologies, LP; a division of Emerson Electric Co.
 4. GE Industrial Systems; Total Lighting Control.
 5. Grasslin Controls Corporation; a GE Industrial Systems Company.
 6. Hubbell Lighting.
 7. Lithonia Lighting; Acuity Lighting Group, Inc.
9. Square D; Schneider Electric.
10. TORK.
11. Watt Stopper (The).

B. Description: Electrically operated and mechanically held, combination type with nonfused disconnect, complying with NEMA ICS 2 and UL 508.

1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
3. Enclosure: Comply with NEMA 250.
4. Provide with control and pilot devices as indicated on Drawings, matching the NEMA type specified for the enclosure.

C. BAS Interface: Provide hardware interface to enable the BAS to monitor and control lighting contactors.

2. Control: On-off operation.

2.6 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 SENSOR INSTALLATION

A. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.
3.2 CONTACTOR INSTALLATION
A. Mount electrically held lighting contactors with elastomeric isolator pads, to eliminate structure-borne vibration, unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.3 WIRING INSTALLATION
A. Wiring Method: Comply with Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size shall be 3/4 inch.
B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
C. Size conductors according to lighting control device manufacturer's written instructions, unless otherwise indicated.
D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.4 IDENTIFICATION
A. Identify components and power and control wiring according to Division 26 Section "Identification for Electrical Systems."
 1. Identify controlled circuits in lighting contactors.
 2. Identify circuits or luminaries controlled by photoelectric and occupancy sensors at each sensor.
B. Label time switches and contactors with a unique designation.

3.5 FIELD QUALITY CONTROL
A. Perform the following field tests and inspections and prepare test reports:
 1. After installing time switches and sensors, and after electrical circuitry has been energized, adjust and test for compliance with requirements.
 2. Operational Test: Verify operation of each lighting control device, and adjust time delays.
B. Lighting control devices that fail tests and inspections are defective work.

3.6 ADJUSTING
A. Occupancy Adjustments: When requested within 12 months of date of final acceptance by Owner, provide on-site assistance in adjusting sensors to suit occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923
SECTION 262726 – WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Twist-locking receptacles.
 3. Wall-box motion sensors.
 4. Snap switches and wall-box dimmers.
 5. Wall-switch and exterior occupancy sensors.
 6. Floor service outlets, poke-through assemblies, service poles, and multioutlet assemblies.

B. Related Sections include the following:
 1. Division 27 Section "Communications Horizontal Cabling" for workstation outlets.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.

B. GFCI: Ground-fault circuit interrupter.

C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.

D. RFI: Radio-frequency interference.

E. TVSS: Transient voltage surge suppressor.

F. UTP: Unshielded twisted pair.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
C. Field quality-control test reports.

D. Operation and Maintenance Data: For wiring devices to include in all manufacturers’ packing label warnings and instruction manuals that include labeling conditions.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one source.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

1.6 COORDINATION

A. Receptacles for Owner-Furnished Equipment: Match plug configurations.

1. Cord and Plug Sets: Match equipment requirements.

1.7 EXTRA MATERIALS

A. Furnish extra materials described in subparagraphs below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Floor Service Outlet Assemblies: One for every 10 installed, but no fewer than one.
2. Receptacles: One for every 20 installed, but no fewer than two.
3. Snap Switches: One for every 20 installed, but no fewer than two.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers’ Names: Subject to compliance with requirements, provide products by one of the following:

1. Wiring Devices (Receptacles, Switches):
 a. Cooper Wiring Devices.
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Mfg. Company Inc.
 d. Pass & Seymour/Legrand; Wiring Devices Div.
2. Occupancy Sensors:
 a. Cooper Industries, Inc.
 b. Hubbell Incorporated.
 d. Pass & Seymour/Legrand.
 e. The Watt Stopper.

3. Poke-Through and Floor Service Outlets:
 a. Hubbell Incorporated; Wiring Device-Kellems.
 b. Pass & Seymour/Legrand; Wiring Devices Div.
 c. Square D/Groupe Schneider NA.
 d. Thomas & Betts Corporation.
 e. Wiremold Company (The).

4. Multioutlet Assemblies:
 a. Hubbell Incorporated; Wiring Device-Kellems.
 b. Wiremold Company (The).

2.2 STRAIGHT BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, UL 498, and FS W-C-596.

1. Description: Grounding system shall be all brass and integral to the wrap around mounting strap (single-piece with no rivets or mechanical connections in the primary path between the point of ground wire termination and ground blades). NOTE: specific catalog numbers are not listed below. This product description (or similar verbiage) must be highlighted in the submittal documents to confirm this performance requirement has been satisfied.

2.3 GFCI RECEPTACLES

A. General Description: Straight blade, feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A.

2.4 TWIST-LOCKING RECEPTACLES

A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498.

B. Isolated-Ground, Single Convenience Receptacles, 125 V, 20 A:
1. Description: Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.5 SNAP SWITCHES

A. Comply with NEMA WD 1 and UL 20.

B. Switches, 120/277 V, 20 A.

C. Switches shall be heavy-duty, quiet type.

D. Pilot Light Switches, 20 A:
 1. Description: Single pole, with neon-lighted handle, illuminated when switch is "ON."

E. Key-Operated Switches, 120/277 V, 20 A:
 1. Description: Single pole, with factory-supplied key in lieu of switch handle.

F. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors.

G. Key-Operated, Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.

2.6 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.

B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.

C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
 1. 600 W; dimmers shall require no derating when ganged with other devices. Illuminated when "OFF."

D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.7 OCCUPANCY SENSORS

A. Wall-Switch Sensors:
1. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft.

B. Wall-Switch Sensors:

1. Description: Adaptive-technology type, 120/277 V, adjustable time delay up to 20 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft.

C. Long-Range Wall-Switch Sensors:

1. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, with a minimum coverage area of 1200 sq. ft.

D. Long-Range Wall-Switch Sensors:

1. Description: Dual technology, with both passive-infrared- and ultrasonic-type sensing, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, and a minimum coverage area of 1200 sq. ft.

E. Wide-Range Wall-Switch Sensors:

1. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 150-degree field of view, with a minimum coverage area of 1200 sq. ft.

F. Exterior Occupancy Sensors:

1. Description: Passive-infrared type, 120/277 V, weatherproof, adjustable time delay up to 15 minutes, 180-degree field of view, and 110-foot detection range. Minimum switch rating: 1000-W incandescent, 500-VA fluorescent.

2.8 WALL PLATES

A. Single and combination types to match corresponding wiring devices.

1. Plate-Securing Screws: Metal with head color to match plate finish.
4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in "wet locations."

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant, die-cast aluminum with lockable cover.

2.9 FLOOR SERVICE FITTINGS

A. Type: Modular, flush-type, dual-service units suitable for wiring method used.

B. Compartments: Barrier separates power from voice and data communication cabling.

C. Service Plate: Round, die-cast aluminum with satin finish.
D. Power Receptacle: NEMA WD 6 configuration 5-20R, gray finish, unless otherwise indicated.

E. Voice and Data Communication Outlet: Two modular, keyed, color-coded, RJ-45 Category 5e jacks for UTP cable.

2.10 POKE-THROUGH ASSEMBLIES

A. Description: Factory-fabricated and -wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service outlet assembly.

1. Service Outlet Assembly: Pedestal type with services indicated or Flush type with two simplex receptacles and space for two RJ-45 jacks.
2. Size: Selected to fit nominal 3-inch cored holes in floor and matched to floor thickness.
3. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
4. Closure Plug: Arranged to close unused 3-inch cored openings and reestablish fire rating of floor.
5. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of two, 4-pair, Category 5e voice and data communication cables.

2.11 MULTIOUTLET ASSEMBLIES

A. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.

B. Raceway Material: Metal, with manufacturer's standard finish.

C. Wire: No. 12 AWG.

D. Number of Circuits: As indicated on drawings.

2.12 FINISHES

A. Color: Wiring device catalog numbers in Section Text do not designate device color.

1. Wiring Devices: Ivory or White or As selected by Architect, unless otherwise indicated or required by NFPA 70 or device listing.

PART 3 - EXECUTION

3.1 APPLICATION

A. Wiring devices, on emergency power circuits, shall be red in color.

B. All wall plates within a room or area shall be same type – thermoplastic. Mix matching of wall plates shall not be acceptable.
3.2 INSTALLATION

A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted.

B. Coordination with Other Trades:

1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted provided the outlet box is large enough.

D. Device Installation:

1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.
10. Install devices and assemblies level, plumb and square with building lines.

E. Receptacle Orientation:
1. Install ground pin of vertically mounted receptacles at top, and on horizontally mounted receptacles to the right.
2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.
3. Install ground pin of vertically mounted receptacles, located more than 60" above floor, at bottom.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:
1. Install dimmers within terms of their listing.
2. Verify that dimmers used for fan speed control are listed for that application.
3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

J. Install GFCI receptacles as shown on drawings and within 60 inches of water source.

3.3 IDENTIFICATION
A. Comply with Division 26 Section "Identification for Electrical Systems."
1. Receptacles and Switch Wall Plates: Identify panelboard and circuit number from which served. Use engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL
A. Perform tests and inspections and prepare test reports.
1. Test Instruments: Use instruments that comply with UL 1436.
2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.

B. Tests for Convenience Receptacles:
1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 5 percent or higher is not acceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

END OF SECTION 262726
SECTION 265110 – ARCHITECTURAL DIMMING SYSTEM SPECIFICATION

PART 1 - GENERAL

1.1 CONTRACT DOCUMENTS

A. All work of this Section shall comply with the requirements of the Conditions of the Contract (General and Special), with all Sections of Division 1 - General Requirements, with the drawings, and with all other Contract Documents.

1.2 WORK INCLUDED

A. Furnishing all labor, materials, tools, appliances, and equipment, and performing all operations necessary to fabricate, deliver, and install the dimmers and dimming systems and related work indicated on the drawings and in these specifications.

B. Providing the Manufacturer's Services as outlined in these specifications.

1.3 RELATED WORK SPECIFIED ELSEWHERE

A. Architectural lighting - See Section 265100.

B. Related sections of electrical work: See sections of Division 26.

1.4 SUBMITTALS

A. Review the Contract Documents for performance criteria of the lighting systems.

B. Submit shop drawings, including wiring diagrams of all components and riser diagrams indicating interconnecting wires between items of equipment in each of the dimming systems for approval by the Architect, Engineer and Lighting Designer prior to fabrication, shipment, or installation of any equipment. Submit standard cut sheets or catalog literature which includes performance specifications indicating compliance to the specifications herein.

C. Submit a dimming load schedule which clearly lists the actual loads per circuit, which circuits are on their respective control zones, which circuits are on emergency, and the corresponding circuit numbers (per the electrical drawings). Each load schedule shall be arranged (by zone and circuit number) to match as closely as possible the load schedule shown on the drawings.

D. Samples: Submit samples of exposed-finish items for Architect's selection of colors and finishes. Submit color sample(s) of engraving or silk-screen graphics for Architect's approval.

E. Shop drawings and manufacturers data for all lighting controls specified (dimming systems, wall box dimmers, relay switching systems, timeclocks, photocells, etc.) to be submitted at one time.

F. Provide test data or other related information as required to demonstrate conformance with Part 2 of this specification.

MANUFACTURERS

G. The dimming systems shall be manufactured by:

1. Lumenpulse/Pharos.
 1751 Richardson, Suite 1505
 Montreal, Canada H3K 1G6
 877-937-3003
2. Electronic Theater Controls (ETC)
 3030 Laura Lane
 Middleton, WI 53562
 608-831-4116

H. The listing of a manufacturer as "acceptable" does not imply automatic approval. It is the responsibility of the electrical contractor to ensure that any price quotations and submittals meet or exceed the specifications herein.

1.5 LIGHTING CONTROLS SYSTEMS INTEGRATORS

A. The LCSI services shall be provided by:

1. Lighting Associates, Inc.
 3216 S Brentwood Blvd
 Webster Groves, MO 63119
 314-531-3500

2. Mercer Zimmerman
 8981 Bond Street
 Overland Park, KS 66214
 816-438-4546

1.6 QUALITY ASSURANCE

A. Work performed shall conform to the standards of the National Electrical Code and all other applicable local codes.

B. Equipment shall be fabricated according to the standards of Underwriters' Laboratories, Inc. and shall bear Underwriters' Laboratories labels.

C. Manufacturer shall maintain ISO 9001 certification.

1.7 REFERENCE STANDARDS

A. National Fire Protection Association (NFPA) Publication: National Electrical Code, NFPA70

B. Underwriters Laboratories Standards:
 1. UL498, Electrical Attachment Plugs and Receptacles
 2. UL508, Electrical Industrial Control Equipment
 3. UL891, Dead-front Electrical Switchboards
 4. UL924, Standard for Emergency Lighting and Power Equipment
 5. UL1008, Transfer Switch Equipment
 6. UL1573, Stage and Studio Lighting Units

D. American National Standards Institute (ANSI) Standards:
 2. Data Transmission Standard for Controlling Lighting Equipment and Accessories
 3. E1.17-2006 Entertainment Technology - Architecture for Control Networks
 5. E1.20-2-2009 Entertainment Technology – Recommended Practice for Installing Control Cables
7. E1.31-2009 Entertainment Technology - Lightweight streaming protocol for transport of DMX512 using ACN

E. Institute of Electrical and Electronics Engineers, Inc. Standards:

1. 802.3
2. 802.11-b or -g

F. National Electric Code

G. International Building Code

1.8 LIGHTING CONTROLS SYSTEM INTEGRATOR (LCSI) REQUIREMENTS:

A. The System Integrator shall be acknowledged in business as a Lighting Controls System Integration Company (hereafter referred to as LCSI).

B. The LCSI shall employ full time technicians and project managers with experience in completing work of similar or greater size and scope.

C. The LCSI shall be a lighting system contractor who regularly engages in the furnishing, installation and servicing of systems of similar nature, size, scope and complexity.

D. The LCSI shall have maintained for the five (5) years preceding the bid date, a suitably staffed and equipped service organization which has continuously offered maintenance and repair services for the systems being provided.

E. The LCSI shall have on staff at least two (2) full-time manufacturer-certified field service technicians and have technical support and assistance accessible twenty-four (24) hours a day, seven (7) days a week. The LCSI shall provide phone-based field service with a thirty (30) minute response time.

F. The LCSI shall maintain for the duration of this contract all required business and professional licenses and insurance.

G. The LCSI shall demonstrate to the satisfaction of the Owner, through Submittals presented in accordance with the project timetable, that the LCSI meets all the above qualifications.

H. Requirements for Approval: The LCSI who are not pre-approved and are seeking acceptance must submit the following information no later than ten (10) days prior to bid date. Failure to submit any of the required information automatically disqualifies the contractor for consideration of approval.

I. Listing of five (5) equivalent installations including:

J. Name, address, and current telephone number of Owner.

K. Name, address, and current telephone number of Architect or Lighting Designer association with the installation.

L. Scope of work of the installation including all sub-contractors and manufacturers.

M. Brief written description of the LCSI’s operation including facilities, departments, and key personnel.

N. Biographical information of the project manager and integration team members who will be assigned to this project should the contractor be successful.

O. A full and complete financial statement sufficient to determine financial viability.

P. A list of all sub-contractors who the LCSI proposes to use including their qualifications to perform the work.
1.9 WARRANTY

A. Warrant the work of this Section according to the guarantee provisions in the General, Supplementary, and Special Conditions of the Contract.

B. Unless otherwise noted, Manufacturer shall provide a two-year warranty on the complete system for all systems with factory commissioning. Warranty shall cover 100% of the cost of the manufacturer's services and any replacement parts required over the first two years which are directly attributable to the manufacturer.

LCSI WARRANTY: THE LCSI SHALL PROVIDE A ONE (1) YEAR SYSTEM WARRANTY FOR THE COMPLETE SYSTEM, NOT INCLUDING EXPENDABLE SUPPLIES, EFFECTIVE FROM THE DATE OF SYSTEM ACCEPTANCE. WITHIN THIS WARRANTY PERIOD, THE LCSI SHALL BE RESPONSIBLE AS THE OWNER’S SOLE CONTACT FOR THE REMEDY, REPAIR, OR REPLACEMENT OF SYSTEM DEFICIENCIES (THROUGH THE MANUFACTURER’S WARRANTY WHERE APPLICABLE)

PART 2 - PRODUCTS

2.1 GENERAL LIGHTING NETWORK

A. General

1. The network shall provide data distribution over TCP/IP Ethernet networks. Data shall be layer 3 routable. Systems using proprietary formats or formats other than 10/100/1000Mbit wired Ethernet or non-layer 3 routable networks shall not be accepted.

2. Connections shall be made between consoles, face panels, architectural processors, dimmers, Net3 Gateways, and computers over standard Ethernet distribution systems using 10BaseT, 100BaseFL, or greater wiring. All installations shall conform to established Ethernet wiring practice, and installation shall be performed by contractors qualified to do this type of work. All wiring shall be tested at Category 5e or higher for full bandwidth operation to the appropriate IEEE standard.

3. The Lighting Control system must be supplied by a single manufacturer and must have seamless integration over Ethernet between the Entertainment and Architectural lighting control.

B. Capacities

1. The network shall support DMX routing, patching, and prioritization for up to 63,399 universes (32,767-488 DMX addresses). Each address may be input or output from any port on any DMX gateway in the system. DMX input, routing and output shall be specifically supported on the system from multiple sources and locations up to the maximum number of gateways supported by the Ethernet topology.

2. The network shall support multiple network hosts including consoles, gateways, dimming racks, computers, file servers, printers, and architectural control processors with discrete command lines and control. The lighting network shall support multiple venues within a system and discrete systems on the same network.

C. System Configuration and Monitoring

1. Network device configuration shall be via Net3 Concert software and/or ANSI E1.17 Architecture for Control Networks (ACN) or equal.

2. Patch addresses shall support viewing and manipulation via ANSI E1.17 ACN.

3. The system shall permit complete user flexibility allowing the system operator to patch each DMX input address to any ANSI E1.31 streaming ACN address, and DMX output to span streaming ACN universes.
4. The lighting system shall support assignment of DMX offsets, truncation of DMX universes, and provide choice of DMX port prioritization.

5. The lighting system shall support the DD start code extension to ANSI E1.31 which provides priority per address such that multiple control sources can share universes with discrete control per address.

6. Lighting systems that do not support the above-mentioned address patching capabilities shall not be suitable.

7. The system shall allow assignable labels for all network devices to allow easy identification by system users.

8. Each network device shall have a discrete and unique IP address provided automatically by the software. The user may edit this IP address. Systems that do not support automated IP allocation with IP collision avoidance, and systems that do not allow complete reconfiguration of the above-mentioned features over ANSI E1.17 ACN shall not be acceptable.

9. All configuration data for each network device shall be held at the device and system operation shall not require continuous on-line operation of the network configuration software.

10. Lighting console operators shall be able to back-up the network configurations in the lighting control console. In the event of a network device failure, the operator shall be able to apply the configuration of the failed device to a replacement device of the same type without manually reentering settings. Systems that do not support configuration backup as described above shall not be accepted.

11. Architectural and Entertainment systems connected to the same network shall be capable of arbitrating control over E1.31 Streaming ACN (sACN) level data. The system shall be capable of alternating control of individual address data between architectural and entertainment systems without intervention by the user. The user shall dictate the conditions under which system shall automatically take control. The network shall allow user override of the selected defaults. Systems which require direct user intervention to allocate control of dimmers between architectural and entertainment lighting systems shall not be accepted.

12. The Net3 network shall allow multiple DMX input sources to be prioritized on the same universe as network native sources using E1.31 Streaming ACN prioritization. Multiple DMX inputs may be assigned to the same streaming ACN address (this provides multi-source control for a particular address). Likewise, the system shall support E1.31 prioritization of multiple simultaneous network sources. Systems that cannot prioritize multiple DMX inputs and multiple native network sources on a network shall not be deemed suitable.

13. The lighting system shall allow each DMX input address to be assigned a priority on the network allowing each DMX control level coming into the system to participate in full arbitration. Addresses with the highest priority shall have control, with lower priority addresses being ignored. Addresses assigned the same numeric priority, between 1 and 200, shall respond in highest level takes precedence (HTP) manor. The network shall require a valid DMX signal present at the input to initiate prioritization. Systems that do not allow for prioritized HTP for DMX inputs to the network shall not be allowed.

D. Operational Features

1. Each DMX gateway shall control up to 512 DMX addresses per port, within the confines of up to 63,999 DMX universes (32,747,488 address). The specific DMX data input or output by the gateway shall be configurable by the user.

2. Duplicate outputs of DMX data (DMX splitter) and discrete outputs shall be fully supported.
3. Merging of multiple DMX input sources on a single gateway without gateway with DMX output on the same gateway shall be supported without connection to the network. The gateway shall support assignment of priority to each input source independently.
4. File transmission, synchronization and access to software shall be supported.

2.2 LIGHTING PLAYBACK CONTROLLER (LPC)

A. General
1. The Show Controller 4 (MSC4) or equal shall be a microprocessor-based system specifically designed for control of lighting and other related systems in an architectural or entertainment application. A personal computer running emulation software shall not be acceptable.
2. The Controller shall be provided with a 5-year manufacturer warranty.

B. Mechanical
1. Enclosure and mounting shall comply with DIN43880 and EN60715 (35/7.5) respectively
2. The controller shall be an 8-unit DIN enclosure (143.5mm x 90.0mm x 58.0mm)
3. The Controller shall have a recessed switch for resetting the unit without removal of power.
4. There shall be visual indicators on the Controller showing status of the controller and its interfaces.
5. The controller shall be entirely solid-state with no moving parts, fans or hard disc drives
6. The controller shall operate in a temperature range from 0°C to 50°C (32°F to 122°F)

C. Electrical
1. The Controller shall be designed to support the following wire terminations (Camden Electronics CTB9208 5.08mm plug-in rising clamp terminals):
2. The Controller shall support a multi-mode full-duplex RS232/half-duplex RS485 Serial Port
3. RS232/RS485 serial input/output
4. 3-pin rising clamp terminal Camden connector
5. The Controller shall be capable of receiving DMX512 for triggering using the serial port.
6. The Controller shall support eight local inputs capable of digital, analog or contact closure operating mode
7. 16-pin rising clamp terminal Camden connector
8. Isolated digital/ analog inputs
9. 8 tri-mode inputs: active high, active low or contact closure
10. The controller shall support a MIDI input and a MIDI output interface for use in triggers and for MIDI time code
11. 5-pin DIN socket for MIDI In
12. 5-pin DIN socket for MIDI Out
13. 3-pin 9V to 48V DC Power
14. In addition, there shall be the following standard connectors:
15. RJ45 socket for 10/100Base-TX Ethernet
16. USB-B Socket for USB 1.1
17. The Controller shall be able to receive power over Ethernet as an alternative to direct DC power (IEEE 802.3af PoE powered device).
18. The Controller shall be ETL/ETL listed and CE compliant

D. Functional
1. The Controller shall store show data in non-volatile solid-state memory. This memory shall be removable for purposes of backup or disaster-recovery.
2. Show data may be downloaded from a remote personal computer over an Ethernet or USB connection.
3. The Operating Software of the Controller shall be stored in a dedicated non-removable non-volatile solid-state memory. It shall be possible to update the Operating Software by download from a remote personal computer over an Ethernet or USB connection.
4. The Controller shall commence show playback automatically on receiving power without additional external inputs.
5. The Controller shall have an internal real-time clock that continues to operate when external power is absent. It shall be capable of adjusting for Daylight Saving Time automatically and can be updated over the Internet using the Network Time Protocol (NTP).
6. The Controller shall be able to calculate sunrise and sunset times based on longitude and latitude information and use these as triggers for events.
7. The Controller shall have a capacity of 2048 channels of network DMX protocols including streaming ACN (ANSI E 1.31), ETCNet2, Philips KiNet, Pathway XDMX and Art-Net II protocols with one protocol active per 512 channels.
8. The Controller shall support DMX512 output with RDM for up to 1024 channels.
9. The Controller shall operate a web server on its Ethernet interface. This shall allow status information, control and configuration options to be accessed remotely.
10. The appearance and content of the web interface may be customized by the user.
11. The Controller shall allow lighting to be programmed as separate zones, with independent triggering and manual intensity control.
12. The Controller shall support multiple timelines, crossfades and effects running concurrently.
13. The Controller shall support playback of video media with individual pixels mapped to lighting fixtures in an array.
14. The Controller shall support multiple remote modules connected via Ethernet for support of additional show control interfaces, such as contact closures, analog inputs, relay outputs, serial audio input, linear time code, MIDI and DALI.
15. The Controller shall support multiple remote button stations connected via Ethernet for use as triggers and user feedback
16. The Controller shall support multiple streams of linear timecode and audio data within a single networked system.
17. The Controller shall have an internal security feature that will restart the unit in the event of program failure.
18. Multiple Controllers shall automatically synchronize and share triggers when programmed as part of a single show and linked via Ethernet during playback.
19. The Controller shall support conditional logic and execute user-defined Lua scripts to support advanced show control operations.
20. The Controller shall be supported by programming software running on either a PC or Mac platform. Programming features shall include:
 a. Comprehensive architectural and automated fixture library
 b. Drag and drop placement of fixtures on plan
 c. Drag and drop patching of fixtures to output addresses
 d. Import of any media for mapping to fixture arrays
 e. Timeline-based programming and playback
 f. Extensive range of editable effect presets
 g. Drag and drop placement of effect presets and media on timeline
 h. Variety of triggering options for firing system-wide events
 i. Each trigger event may be configured to initiate one or more lighting or show control action
 j. Each trigger event may be configured to test one or more conditions before executing its actions
 k. Simulation of individual timelines, and entire project with triggers
 l. Live output from software for programming verification purposes
 m. Controller and network management tools
 n. Export CSV reports for all aspects of programming
 o. Tools for remote management of content and show programming

2.3 TOUCHSCREEN PANEL CONTROL STATION (TPC)

A. General
1. The TPC shall be the Pharos or Mosaic Touchscreen or equal.
2. Touchscreen stations shall support default and fully graphical control pages.
3. The TPC shall operate using graphic buttons, faders and other images on at least 30 separate programmable control pages.
4. Touchscreen stations shall also allow programming of page pass-code, lock out and visibility levels.

B. Mechanical
1. TPC station shall consist of a backlit liquid crystal display (LCD) with a minimum resolution of 800 by 400 pixels and 24-bit color depth with a capacitive touch interface.
2. Touchscreen bezels shall be constructed of cast aluminum finished in a fine texture powder coat.
3. Touchscreen shall be available in five standard colors
 a. Cream (RAL 9001)
 b. Ivory (RAL 1015)
 c. Gray (RAL 7001)
 d. Black (RAL 9004)
 e. Signal White (RAL 9003)
4. The bezel shall have no visible means of attachment.
5. The bezel shall allow the touchscreen to be installed and removed without the use of tools.
6. The bezel shall provide two working positions for the Touchscreen: service and normal operation.
7. TPC shall offer optional hinged locking covers
 a. Locking covers shall be made from cast aluminum and be painted to match standard touchscreen color options
 b. Locking covers shall allow for viewing of system status on the touchscreen though a smoked Lexan window
8. The manufacturer shall provide back boxes for TPC station.
 a. Flush back box for Touchscreens with or without locking covers shall be 7.94” wide x 5.33” high x 3.25” deep
 b. Surface back box dimensions shall be 8.3” wide x 5.6” high x 2.75” deep
 c. Surface back box for Touchscreens with locking cover dimensions shall be 10.0” wide x 6.7” high x 2.75” deep

C. Electrical
1. TPC shall be powered entirely by the System network.
2. Touchscreens shall connect to the System using an Ethernet network with Power over Ethernet (PoE).
 a. Ethernet Network
 1) Ethernet network shall be 10/100BaseTX, auto MDI/MDIX, 802.3af (PoE) compliant.
 2) Network shall utilize Unshielded Twisted Pair (UTP) Category 5, or better wiring.
 3) PoE power consumption shall be PoE class 2, consuming no more than 6 watts.

D. Functional
1. System
 a. TPC shall support configuration firmware upload from a Paradigm Processor or equal as proxy
 b. The Touchscreen shall support configuration or firmware upload from local removable media
2. Setup Mode
 a. There shall be a setup display that is separate from any user-defined configuration
 b. It shall be possible to view and modify connectivity settings
 c. It shall be possible to view status information
 d. It shall be possible to view and modify LCD screen settings
 e. It shall be possible to perform Touchscreen calibration
 f. It shall be possible to view and modify audio settings
 g. The appearance of the setup display shall be standard and not editable
 h. The setup display may be invoked from within the user-defined configuration and/or physical button on the Touchscreen
 i. There shall be a default protected method to invoke the setup display
3. Configurations
 a. It shall be possible to have multiple configurations stored within a TPC Station
b. Where multiple configurations are stored there shall be a boot menu to allow selection of a configuration

E. Operation

1. TPC shall be designed to allow control of lighting and associated systems via Touchscreen controls. System shall allow the control of presets, sequences, macros and time clock events.

 a. System presets shall be programmable via Button, Button/Fader, Touchscreen, or PC Designer software or equal.
 1) Presets shall have a discrete fade time, programmable from zero to 84,600 seconds with a resolution of one hundred milliseconds.
 2) Presets shall be selectable via Touchscreen stations.

 b. System macros and sequences shall be programmable via PC Designer system software or equal.
 1) Macro and sequence steps shall provide user selectable steps and allow the application of conditional logic.
 2) Macro and sequences shall be activated by button, time clock event or PC Designer software or equal.

 c. System time clock events shall be programmable via the Touchscreen, PC Designer system software or equal, the processor user interface, or the internal web server.
 1) Time clock events shall be assigned to system day types. Standard day types include anyway, weekday, weekend, Sunday, Monday, Tuesday, Wednesday, Thursday, Friday and Saturday. System shall support programming of additional custom or special day types.
 2) Time clock events shall be activated based on sunrise, sunset, time of day or periodic event. System shall automatically compensate for regions using a fully configurable daylight saving time.

 d. A Color picker, supporting Hue, Saturation and Brightness (HSB) color selection shall be available for color selection of color changing fixtures and provide visual feedback of the current color produced by the associated fixture.
 1) The color picker shall be provided with a default layout that requires no user configuration
 2) The Color Picker shall provide RGB faders in addition to the default HSB color wheel for color selection
 3) Color picker values shall allow for numerical value input in addition to color wheel and fader control
 4) The color picker shall be compatible with color mixing systems that use up to seven discrete color control channels

 e. TPC stations shall be designed to operate standard default or custom system functions. Components shall operate default functions unless re-assigned via PC Designer or equal, a Windows-based configuration program.
 1) Optional button functions include preset selection, manual mode activation, record mode activation, station lockout, raise, lower, macro activation, and cue light, or room join/separate.
 2) Optional fader functions include master control, individual channel control, fade rate control or preset master control.
f. TPC stations shall allow programming of station and component electronic lockout levels via PC Designer software or equal.

 g. It shall be possible to adjust LCD contrast and brightness.

 h. It shall be possible to program the station to dim during periods of inactivity.

2.4 EMERGENCY LIGHTING/LOSS OF POWER

A. All circuits listed as emergency lighting shall transfer from normal dimmer intensity to full intensity in the event of normal power failure. Under normal conditions, the emergency circuits in the dimmer zone shall dim at the same intensity as the dimmer zone normal circuits. See Electrical Drawings for schedule of circuits to be transferred.

B. Normal power feed to the dimmer panel shall remain on at all times. Upon the loss of normal power, and with the subsequent presence of emergency power, all emergency circuits shall immediately come to full intensity regardless of the state of the dimmer control settings. Once normal power is restored, all lighting circuits shall revert to the state prior to the power failure.

C. Loss of power, including both emergency and normal shall not cause the loss of any programmed in information.

D. Emergency full on to be accomplished in a manner in compliance with local codes and its operation to be coordinated with the engineer as to the type of emergency power source available in the building. Full on transfer may be accomplished by UL Class 1008 Emergency Transfer Relays mounted in the dimmer panel, or by control signal switching means.

E. Refer to Electrical Drawings for exact quantity and location of emergency fixtures.

F. Exact location of dimmer panels per Electrical Drawings.

2.5 CONTROL SYSTEM

A. Dimming System Description

The lighting control system shall consist of a Lighting Playback Controller (LPC), Touch Panel Controller (TPC), DMX Network gateway system, and PC based lighting design system software as per attached riser diagram and system component catalogue cut sheets.
Speciation Sheet

FEATURES AND BENEFITS
Timeline-based Lighting Playback Controller

Physical:
- Enclosure and mounting complies with DIN43880 and EN60715 (35/7.5 rail) respectively
- Solid state, instant-on
- 8 unit wide DIN enclosure

Performance:
- Up to 4 universes of DMX512
- Programmed and configured using the Pharos Designer software
- Integrated realtime and astronomical clock functionality with daylight saving support
- Use multiple units connected and synchronised over Ethernet to scale to larger installations
- Integrated web interface for remote management, custom pages supported
- Removable SD memory card data storage
- Integrates with other Pharos Controllers (TPC, LPC X)
- Operating temperatures: 0°C to 50°C [32F to 122F]

Interface:
- Isolated DMX512 ports, RDM compatible (2)
- RS232/485 serial port/ DMX in
- RJ45 socket for 10/100Base-TX Ethernet
- IEEE 802.3af PoE powered device
- USB-B socket for USB 1.1
- 5-pin DIN socket for MIDI In
- 5-pin DIN socket for MIDI Out

Electrical:
- 9V to 48VDC power (unit may be powered via DC input or PoE, typical power consumption: 4W)
Specification Sheet

FEATURES AND BENEFITS

One universe, reliable, fully integrated and remotely managed lighting control solution

Physical:
- Touch screen with customisable user interface
- Solid state, instant-on
- Screen diagonal: 4.3"
- Screen resolution: 480x272, color depth: 24 bit, brightness: 340 cd/m²
- Wall-mounting in back box (UK 2-gang 35mm or custom US 2.5", available separately)
- Configuration and Reset buttons beneath magnetic overlay

Performance:
- 1 universe of Ethernet based DMX512
- Programmed and configured using the Pharos Designer software
- Configure control appearance and visual feedback in software
- Integrated realtime and astronomical clock functionality with daylight saving support
- Triggering and show control via touch screen, IR, Ethernet, realtime and astronomical clocks
- Proximity sensor to wake the display
- Use multiple units connected and synchronised over Ethernet to scale to larger installations
- Integrates with other Pharos Controllers (LPC, LPC X, AVC) and Remote Devices (RIO, BPS)
- Integrated web interface for remote management; custom pages supported
- Removable SD memory card data storage
- Operating temperatures: 0°C to 50°C [32F to 122F]

Interface:
- RJ45 socket for 10/100 Base-TX Ethernet

Electrical:
- IEEE 802.3af PoE powered device (typical power consumption 4W)

Protocols:
- DMX512 (only with a converter or LPC 1)
- Ethernet: Art-Net II
- Pathport sACN

DIMMING SYSTEM COMPONENTS: TPC

Women’s and Children’s Hospital

ARCHITECTURAL DIMMING SPECIFICATION
265110 - 14
PART 3 - EXECUTION

3.1 GENERAL
A. Provide any additional relays, transformers, power supplies, or other necessary or auxiliary devices not specifically listed in these specifications or shown on the drawings but needed to affect the functional requirements of the control systems.
B. Provide ten percent minimum spare conductors in all conduits and raceways, control cables, and control cable connectors. Spare conductors shall be indicated and labeled on shop drawings and shall be terminated on barrier terminal strips and in connectors and labeled in the same manner as active conductors.
C. Field terminations in these systems shall be made to numbered screw terminals on circuit breakers or switches or on numbered barrier terminal blocks. Wire nuts and crimped connectors are not acceptable.
D. The Electrical Contractor shall run separate neutrals for all branch load circuits.
E. Upon completion of the installation, the electrical contractor shall completely test all line voltage power and low voltage control wiring for continuity and accuracy of connections. No power is to be applied to the dimming system unless specifically authorized by written instructions from the LCSI’s Project Manager.
F. The contractor shall notify the LCSI’s Project Manager that the system is available for formal checkout by the dimming system manufacturer.

3.2 MANUFACTURER'S SERVICES
A. Manufacturer to assemble and test the dimming system at full load for a minimum of five hours before shipment.
B. System shall be commissioned by a factory-based engineer unless services are already contracted under the LCSI. The commissioning will be performed upon notification by the electrical contractor that the system installation is complete and that all loads have been tested live for continuity and freedom from defects and that all control wiring has been connected and checked for proper continuity. The electrical contractor shall provide both the manufacturer and the Architect with ten working days notice of the scheduled commissioning date. Factory engineer to demonstrate the operation and maintenance of all system components to the Owner’s representative.
C. Provide an Operation and Maintenance Manual to the Owner’s representative containing a set of as-built drawings, operation instructions, maintenance and troubleshooting information and parts lists.
D. Manufacturer shall provide access to qualified personnel able to address problems with the dimming system 24 hours per day, 365 days per year.

3.3 LIGHTING CONTROLS SYSTEM INTEGRATOR’S SERVICES
A. The LCSI’s Project Manager shall be the main contact between the LCSI, Manufacturers, Design Team and Contractors from contract award until final sign off. The LCSI’s Project Manager shall be the same person throughout the entire course of the project.
B. Coordinate lighting control system start up with the Electrical Contractor and Lighting Control System Manufacturer
C. Program addresses for all lighting fixtures in the project scope to the approved settings based on the specifications.
D. Notification shall be provided in writing, 21 days prior to the time factory-trained personnel are needed on the job site. The contractor shall be liable for any return visits by the factory engineer as a result of incomplete or incorrect wiring.

E. LCSI shall coordinate with Lighting Consultant and provide proper support and staff to perform the initial programming of the system and to program system interfaces, base system configuration and fixture addressing, static, dynamic, and preset lighting events. The lighting design consultant shall provide a system narrative outlining the required interface options, as well as key events to be programmed. These events shall also be coordinated and programmed to be scheduled and recalled via the local or other specified interface. Such programming time shall not exceed 40 hours of off-site programming of the configuration and interface and 80 hours of on-site time. This time shall be exclusive of all initialization and commissioning time to make the system operational. Custom connectivity options, coordination with control signals from sources other than the lighting control system and emergency bypass or other building management processing is not included in this programming time.

F. Upon completion of the formal check-out, the LCSI shall demonstrate operation and maintenance of the system to the owner’s representatives. Training session shall not exceed four working hours.

G. A second training session shall be provided six months after the first training session. Training session shall not exceed four working hours. Additional training shall be available upon request. Scheduling for training sessions shall be made in writing, 21 days prior to the time factory-trained personnel are needed on the job site.

3.4 RECORD DRAWINGS AND MANUALS

1. Manuals shall be bound by the LCSI in loose-leaf binders and labeled with tabbed dividers for easy reference.

2. The LCSI shall provide two sets of Instructions and Maintenance manuals to the Owner. The manuals shall consist of, but not be limited to:
 a. System Description
 b. User Operating Instructions
 c. User Maintenance Instructions
 d. Catalogue Cut Sheets from all equipment purchased
 e. Spare Parts Listing
 f. 11” x 17” reduced drawings of all system assemble drawings needed to perform system maintenance.

END OF SECTION 265110
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Location</th>
<th>Finish</th>
<th>Lamp</th>
<th>Watt</th>
<th>Volt</th>
<th>Mfr.</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>Surface mounted LED linear narrow beam color wash with nominal 3.5in tall x 2in extruded aluminum housing; 30° x 30° distribution; clear tempered glass lens; DMX dimming driver; fixed mount; listed for use in wet locations (IP66).</td>
<td>Towers A, B, C</td>
<td>Per Arch.</td>
<td>RGB + 4000K W LED 554 lm/ft L70>280,000hrs</td>
<td>17.25</td>
<td>120V</td>
<td>Lumenpulse</td>
<td>LOG-120-48-RGBW-30x30-UMP-XX-DMX/RDM + LOGCL-UL-STD-50FT-BLACK</td>
</tr>
<tr>
<td>FB</td>
<td>Surface mounted LED linear grazer with nominal 3.5in tall x 2in extruded aluminum housing; 15° x 25° distribution; clear tempered glass lens; DMX dimming driver; slim adjustable mount; listed for use in wet locations (IP66).</td>
<td>Towers A, C</td>
<td>Per Arch.</td>
<td>RGB + 4000K W LED 554 lm/ft L70>280,000hrs</td>
<td>17.25</td>
<td>120V</td>
<td>Lumenpulse</td>
<td>LOG-120-48-RGBW-15x25-SAM-XX-DMX/RDM + LOGCL-UL-STD-10FT-BLACK</td>
</tr>
<tr>
<td>FC</td>
<td>Surface mounted LED floodlight with nominal 10.125in diameter x 4.75in deep die-cast aluminum housing; 10° narrow spot; linear spread lens; clear tempered glass lens; linear spread lens with vertical distribution; DMX dimming driver; short yoke mount; listed for use in wet locations (IP66).</td>
<td>Towers A, B, C</td>
<td>Per Arch.</td>
<td>RGB + 4000K W LED 2233 lm L70>120,000hrs</td>
<td>50W</td>
<td>120V</td>
<td>Lumenpulse</td>
<td>PROVIDE (2) LSLV AND (4) LSLH</td>
</tr>
<tr>
<td>FD</td>
<td>Surface mounted LED floodlight with nominal 10.125in diameter x 4.75in deep die-cast aluminum housing; 6° very narrow spot; clear tempered glass lens; DMX dimming driver; short yoke mount; listed for use in wet locations (IP66).</td>
<td>Towers A, B, C</td>
<td>Per Arch.</td>
<td>RGB + 4000K W LED 2233 lm L70>120,000hrs</td>
<td>50W</td>
<td>120V</td>
<td>Lumenpulse</td>
<td>LBL-120-RGBW-VN-XX-DMX/RDM-SY-UL-3FT + LBLVS-FINISH-XX + PM5-2 + CBX-DS</td>
</tr>
<tr>
<td>FE</td>
<td>Surface mounted LED floodlight with nominal 10.125in diameter x 4.75in deep die-cast aluminum housing; 20° narrow flood; clear tempered glass lens; DMX dimming driver; short yoke mount; listed for use in wet locations (IP66).</td>
<td>Towers A, B, C</td>
<td>Per Arch.</td>
<td>RGB + 4000K W LED 2233 lm L70>120,000hrs</td>
<td>50W</td>
<td>120V</td>
<td>Lumenpulse</td>
<td>LBL-120-RGBW-NF-XX-DMX/RDM-SY-UL-3FT + LBLVS-FINISH-XX + PM5-2 + CBX-DS</td>
</tr>
</tbody>
</table>
The Lumenfacade Color Changing is a high performance linear LED luminaire designed for grazing or floodlighting exterior facades with color. Featuring second generation LED technology, the luminaire is available in 12 in., 24 in., 36 in. or 48 in. sections, and offers a wide number of options, including: a choice of optics for grazing or floodlighting; RGB, RGBW or RGBA color mixing; various mounting options, finishes, accessories and controls. The Lumenfacade Color Changing is also available with a unique asymmetric wallwash distribution, providing exceptional uniformity and brightness for walls and signage.

Features

Color and Color Temperature
Additive RGB, Additive RGB + white 4000K, Additive RGB + amber

Length (nominal)
12 in., 24 in., 36 in., 48 in.

Optics
Asymmetric Wallwash, 8° x 8°, 10° x 10°, 10° x 30°, 10° x 60°, 10° x 90°, 15° x 25°, 30° x 30°, 30° x 60°, 35° x 35°, 50° x 80°, 60° x 60°, 80° x 80°, 90° x 90°

Options
End-to-end configuration (factory installed 16 in black input cable included), Corrosion-resistant coating for hostile environments, 3G ANSI-C136.31 Vibration Rating for bridge applications, CE (certification covers European Economic Area)

Power Consumption
17.25 W/ft, Typically 20% higher for 12 in fixture lengths

Warranty
5-year limited warranty
Specification Sheet

Controls

<table>
<thead>
<tr>
<th>lumenTalk</th>
<th>DMX/DM</th>
<th>RDM</th>
</tr>
</thead>
</table>

Ratings

- IP66
- IK07*
 * asymmetric wallwash lens is IK06 rated

Certifications

- UL
- CE
- RoHS
- 5 years

Performance

Delivered Output

1,898 lm [48 in fixture, RGB full output, 10° x 60°, DMX/RDM],
2,215 lm [48 in fixture, RGBW full output, 10° x 60°, DMX/RDM],
1,442 lm [48 in fixture, RGBA full output, 10° x 60°, DMX/RDM]

Delivered Intensity

8,350 cd at nadir [48 in fixture, RGB full output, 10° x 60°, DMX/RDM], 7,300 cd at nadir [48 in fixture, RGBW full output, 10° x 60°, DMX/RDM], 4,730 cd at nadir [48 in fixture, RGBA full output, 10° x 60°, DMX/RDM]

Lumen Maintenance

L70 280,000 hrs, L95 35,000 hrs

Physical

- **Housing Material**: Low copper content extruded aluminum
- **Lens Material**: Clear tempered glass
- **Hardware Material**: Stainless steel
- **End Cap Material**: Machined aluminum
- **Gasket Material**: Silicone
- **Surface Finish**: Electrostatically applied polyester powder coat

Weight

12 in: 4.5 lbs, 24 in: 7 lbs, 36 in: 10.5 lbs, 48 in: 14 lbs

Electrical and control

- **Voltage**: 100 to 277 volts
- **Fixture Cable**: Power and data in one cable, End-to-end option (ETE): 16 in black input cable (no jumper cable needed for minimum spacing between two fixtures)
- **Leader Cable Conductors**: 5C #16-5
- **Control**: LumenTalk, DMX/RDM enabled
- **Resolution (DMX/RDM)**: Per foot or per fixture (configured with LumenID V3 software), 8-bit or 16-bit, 3 channels (RGB) or 4 channels (RGBW, RGBA)
- **RGB Color Mixing**: 12 LEDs per 12 in [4x Red, 4x Green, 4x Blue]
- **RGBW Color Mixing**: 12 LEDs per 12 in [3x Red, 3x Green, 3x Blue, 3x White]
- **RGBA Color Mixing**: 12 LEDs per 12 in [3x Red, 3x Green, 3x Blue, 3x Amber]

Environmental

- **Storage Temperature**: -40 °F to 185 °F (device must reach start-up temperature value before operating)
- **Start-up Temperature**: -13 °F to 122 °F
- **Operating Temperature**: -40 °F to 122 °F
- **Ingress Protection Rating**: IP66
- **Impact Resistance Rating**: IK07 (asymmetric wallwash lens is IK06 rated)

See attached Lighting Fixture Schedule
Specification Sheet

Mounting options

Surface Mount

UMP - Fixed Mounting

UMA - Mounting hole pattern

Daisy Chain Layout (DMX/RDM)

A - DMX/RDM controller (order separately from Lumenpulse, or by others)
B - Data input (Belden 9841 or equivalent, by others)
C - Data output to next CBX (optional, not isolated/not boosted)
D - CBX/DS
E - Power input (100-277 V, wiring by others)
F - Leader cable (LOGIC)
G - Lumenfacade
H - Jumper cable (LOGIC)
I - Sealing end cap

Maximum run length

<table>
<thead>
<tr>
<th>Configuration/Voltage</th>
<th>120V</th>
<th>240V</th>
<th>277V</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG</td>
<td>68 ft</td>
<td>80 ft</td>
<td>88 ft</td>
</tr>
</tbody>
</table>

Based on 15A maximum, 50 ft leader cable.

- Consult CBX installation instructions for additional wiring details.
- Consult factory for specific applications and maximum fixture count/cable length recommendations. Maximum run length calculations are typically based on 48 in fixtures.
- The DMX/RDM protocol states a maximum of 32 DMX/RDM enabled fixtures on any single run.
- Maximum of 4 DMX/RDM repeaters/CBX cascading in line.
- Maximum of 6 outputs per CBX-ST; maximum of 1 output per CBX/DS.
- RGB color mixture option requires 3 DMX addresses. RGBW color mixture option requires 4 DMX addresses. RGBA color mixture option requires 4 DMX addresses.
- 17.25 W/ft.

Control boxes (order separately)

CBX-DMX/RDM - DMX/RDM enabled (daisy chain or star configuration)

DMX/RDM control box. Up to six power and data outputs to fixtures or fixture runs.
Consult CBX specification sheet and installation instructions for details.
Lumenterminals provided with CBX (2x for daisy chain configuration, 6x for star configuration), consult factory to order spares.
SECTION MOUNTING DETAIL AT VERTICAL FIN

TYPE FA VERTICALLY MOUNTED IN NEW CLADDING REVEAL. CONTINUOUS LENGTHS TO NOM. 3' FROM TOP AND BOTTOM OF FIN.
See attached Lighting Fixture Schedule

Lighting Diagram Detail

Surface Mount

UMP - Fixed Mounting

UMP - Mounting hole pattern

Type FA Fixture Mounting Details
Specification Sheet

Project Name

Women's and Children's Hospital

Type

FB

Catalog / Part Number

- **lumenfacade**
 - **LOG**
 - **COLOR CHANGING**

Photometric Summary

<table>
<thead>
<tr>
<th>Delivered output (lm)</th>
<th>Intensity (peak cd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>1,565</td>
</tr>
<tr>
<td>B'8'8'</td>
<td>1,901</td>
</tr>
<tr>
<td>10'x10'</td>
<td>1,771</td>
</tr>
<tr>
<td>10'x30'</td>
<td>1,800</td>
</tr>
<tr>
<td>10'x60'</td>
<td>1,898</td>
</tr>
<tr>
<td>10'x90'</td>
<td>1,681</td>
</tr>
<tr>
<td>30'x30'</td>
<td>1,770</td>
</tr>
<tr>
<td>30'x60'</td>
<td>1,815</td>
</tr>
<tr>
<td>60'x60'</td>
<td>1,620</td>
</tr>
<tr>
<td>90'x90'</td>
<td>1,688</td>
</tr>
</tbody>
</table>

Description

The Lumenfacade Color Changing is a high performance linear LED luminaire designed for grazing or floodlighting exterior facades with color. Featuring second generation LED technology, the luminaire is available in 12 in, 24 in, 36 in or 48 in sections, and offers a wide number of options, including: a choice of optics for grazing or floodlighting; RGB, RGBW or RGBA color mixing; various mounting options, finishes, accessories and controls. The Lumenfacade Color Changing is also available with a unique asymmetric wallwash distribution, providing exceptional uniformity and brightness for walls and signage.

Features

- **Color and Color Temperature**: Additive RGB, Additive RGB + white 4000K, Additive RGB + amber
- **Length (nominal)**: 12 in, 24 in, 36 in, 48 in
- **Optics**: Asymmetric Wallwash, 8" x 8", 10" x 10", 10" x 30", 10" x 60", 10" x 90", 15" x 25", 30" x 30", 30" x 60", 35" x 35", 50" x 80", 60" x 60", 80" x 80", 90" x 90"
- **Options**: End-to-end configuration (factory installed 16 in black input cable included), Corrosion-resistant coating for hostile environments, 3G ANSI-C136.31 Vibration Rating for bridge applications, CE (certification covers European Economic Area)
- **Power Consumption**: 17.25 W/ft, Typically 20% higher for 12 in fixture lengths
- **Warranty**: 5-year limited warranty

Colors and Color Temperatures

- **RGB**
- **RGBW**
- **RGBA**

See attached Lighting Fixture Schedule

Architect

International Architects Atelier

Fisher Marantz Stone Partners in Architectural Lighting Design

New York | Seattle | www.fmisp.com
Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivered Output</td>
<td>1,898 lm [48 in fixture, RGB full output, 10" x 60", DMX/RDM], 2,215 lm [48 in fixture, RGBW full output, 10" x 60", DMX/RDM], 1,442 lm [48 in fixture, RGBA full output, 10" x 60", DMX/RDM]</td>
</tr>
<tr>
<td>Delivered Intensity</td>
<td>8,350 cd at nadir [48 in fixture, RGB full output, 10" x 60", DMX/RDM], 7,300 cd at nadir [48 in fixture, RGBW full output, 10" x 60", DMX/RDM], 4,730 cd at nadir [48 in fixture, RGBA full output, 10" x 60", DMX/RDM]</td>
</tr>
<tr>
<td>Lumen Maintenance</td>
<td>L70 280,000 hrs, L95 35,000 hrs</td>
</tr>
</tbody>
</table>

Physical

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing Material</td>
<td>Low copper content extruded aluminum</td>
</tr>
<tr>
<td>Lens Material</td>
<td>Clear tempered glass</td>
</tr>
<tr>
<td>Hardware Material</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>End Cap Material</td>
<td>Machined aluminum</td>
</tr>
<tr>
<td>Gasket Material</td>
<td>Silicone</td>
</tr>
<tr>
<td>Surface Finish</td>
<td>Electrostatically applied polyester powder coat</td>
</tr>
<tr>
<td>Weight</td>
<td>12 in: 4.5 lbs, 24 in: 7 lbs, 36 in: 10.5 lbs, 48 in: 14 lbs</td>
</tr>
</tbody>
</table>

Electrical and control

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>100 to 277 volts</td>
</tr>
<tr>
<td>Fixture Cable</td>
<td>Power and data in one cable, End-to-end option (ETE): 16 in black input cable (no jumper cable needed for minimum spacing between two fixtures)</td>
</tr>
<tr>
<td>Leader Cable Conductors</td>
<td>SC #16-5</td>
</tr>
<tr>
<td>Control</td>
<td>Lumentalk, DMX/RDM enabled</td>
</tr>
<tr>
<td>Resolution (DMX/RDM)</td>
<td>Per foot or per fixture (configured with LumenID V3 software), 8-bit or 16-bit, 3 channels (RGB) or 4 channels (RGBW, RGBA)</td>
</tr>
<tr>
<td>RGB Color Mixing</td>
<td>12 LEDs per 12 in [4x Red, 4x Green, 4x Blue]</td>
</tr>
<tr>
<td>RGBW Color Mixing</td>
<td>12 LEDs per 12 in [3x Red, 3x Green, 3x Blue, 3x White]</td>
</tr>
<tr>
<td>RGBA Color Mixing</td>
<td>12 LEDs per 12 in [3x Red, 3x Green, 3x Blue, 3x Amber]</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>-40 °F to 185 °F (device must reach start-up temperature value before operating)</td>
</tr>
<tr>
<td>Start-up Temperature</td>
<td>-13 °F to 122 °F</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40 °F to 122 °F</td>
</tr>
<tr>
<td>Ingress Protection Rating</td>
<td>IP66</td>
</tr>
<tr>
<td>Impact Resistance Rating</td>
<td>IK07 (asymmetric wallwash lens is IK06 rated)</td>
</tr>
</tbody>
</table>
Specification Sheet

Mounting options

<table>
<thead>
<tr>
<th>Surface Mount</th>
<th>SAM - Slim Adjustable Mounting</th>
<th>SAM - Mounting hole pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Daisy Chain Layout (DMX/RDM)

![Daisy Chain Layout Diagram](image4.png)

Maximum run length

<table>
<thead>
<tr>
<th>Configuration/Voltage</th>
<th>120V</th>
<th>240V</th>
<th>277V</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG</td>
<td>68ft</td>
<td>80ft</td>
<td>88ft</td>
</tr>
</tbody>
</table>

Based on 15A maximum, 50 ft leader cable.

- Consult CBX installation instructions for additional wiring details.
- Consult factory for specific applications and maximum fixture count/cable length recommendations. Maximum run length calculations are typically based on 48 in fixtures.
- The DMX/RDM protocol states a maximum of 32 DMX/RDM enabled fixtures on any single run.
- Maximum of 4 DMX/RDM Repeaters/CBX cascading in line.
- Maximum of 6 outputs per CBX-ST, maximum of 1 output per CBX-DS.
- RGB color mixture option requires 3 DMX addresses. RGBA color mixture option requires 4 DMX addresses. RGBA color mixture option requires 4 DMX addresses.
- 17.25 W/ft.

Control boxes (order separately)

CBX-DMX/RDM - DMX/RDM enabled (daisy chain or star configuration)

![Control box Diagram](image5.png)

DMX/RDM control box. Up to six power and data outputs to fixtures or fixture runs. Consult CBX specification sheet and installation instructions for details. Lumen terminators provided with CBX (2x for daisy chain configuration, 6x for star configuration), consult factory to order spares.
SECTION DETAIL AT TOWER C

NTS

UNISTRUT OR KINDORF RACK BY E.C.
NON-FERROUS PEDESTAL SUPPORT
TOP OF ROOF

TYPE FB

6'-6"

TYPE FC, FE

8'-0"

TYPE FD

See attached Lighting Fixture Schedule
See attached Lighting Fixture Schedule

Specification Sheet

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Catalog / Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Photometric Summary

<table>
<thead>
<tr>
<th>Based on RGBW color mix, full output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivered output (lm)</td>
</tr>
<tr>
<td>VN</td>
</tr>
<tr>
<td>NS</td>
</tr>
<tr>
<td>NF</td>
</tr>
<tr>
<td>FL</td>
</tr>
<tr>
<td>WFL</td>
</tr>
</tbody>
</table>

*Photometric performance is measured in compliance with ENSA (M708). Extended. Consult website for the latest IES and IESL files.

Optics

- VN
- NS
- NF
- FL
- WFL

Control

- lumen talk
- dimmable

Rating

- UL
- cUL
- CE
- REHS

Description

The Lumenbeam Large Color Changing is a high-performance, 50W luminaire for applying dynamic color to multistory facades and structures. It offers a wide array of options including a choice of optics for floodlighting or accent lighting; RGB, RGBW or RGBA color mixing; various mounting options, accessories, spread lenses and controls.

Features

- **Color and Color Temperature**: Additive RGB, Additive RGB + white 4000K, Additive RGB + amber
- **Optics (nominal distribution)**: 6°, 10°, 20°, 40°, 60°
- **Optical Option**: Linear spread lens horizontal distribution, Linear spread lens vertical distribution
- **Options**: Short Yoke, 3G ANSI C136.31 Vibration Rating for bridge applications, Corrosion-resistant coating for hostile environments
- **Power Consumption**: 50 W
- **Warranty**: 5-year limited warranty
- **Performance**
 - **Delivered Output**: 1,795 lm [RGB full output, VN optic], 2,233 lm [RGBW full output, VN optic], 1,690 lm [RGBA full output, VN optic]
 - **Delivered Intensity**: 72,904 cd at nadir [RGB full output, VN optic], 93,100 cd at nadir [RGBW full output, VN optic], 66,141 cd at nadir [RGBA full output, optic VN]
 - **Color Consistency**: 2 SDCM
 - **Lumen Maintenance**: L70 120,000 hrs [Ta 25 °C]
Physical

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing Material</td>
<td>Low copper content high pressure die-cast aluminum</td>
</tr>
<tr>
<td>Yoke Material</td>
<td>Heavy aluminum [standard yoke included]</td>
</tr>
<tr>
<td>Lens Material</td>
<td>Clear tempered glass</td>
</tr>
<tr>
<td>Hardware Material</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Gasket Material</td>
<td>Silicone</td>
</tr>
<tr>
<td>Surface Finish</td>
<td>Electrostatically applied polyester powder coat</td>
</tr>
<tr>
<td>Weight</td>
<td>12 lbs</td>
</tr>
<tr>
<td>EPA</td>
<td>Front = 0.94 sq ft, Side = 0.56 sq ft</td>
</tr>
</tbody>
</table>

Electrical and control

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>100 to 277 volts</td>
</tr>
<tr>
<td>Fixture Cable</td>
<td>Power and data in 1 cable, 3 ft cord standard (#16-5), other lengths available</td>
</tr>
<tr>
<td>Resolution (DMX/RDM)</td>
<td>Per fixture, 8 bit or 16-bit, 3 channels (RGB) or 4 channels (RGBW, RGBA)</td>
</tr>
<tr>
<td>Control</td>
<td>Lumentalk, DMX/RDM enabled</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-13 °F to 122 °F</td>
</tr>
<tr>
<td>IP Rating</td>
<td>IP66</td>
</tr>
<tr>
<td>IK Rating</td>
<td>IK10</td>
</tr>
</tbody>
</table>

Accessories (order separately)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Boxes</td>
<td>Power and control box - daisy chain configuration, Power and control box - star configuration</td>
</tr>
<tr>
<td>Control Systems</td>
<td>Lumentouch 2.0™, Lumencue, Lumentone</td>
</tr>
<tr>
<td>Diagnostic and Addressing Tools</td>
<td>LumenID, LumentalkID</td>
</tr>
</tbody>
</table>

Mounting options

- **SY - Short yoke**

![Image of lumenbeam fixture](image-url)
See attached Lighting Fixture Schedule

Specication Sheet

Optical accessories (order separately)
Installed optical accessories will affect the maximum pivot limits for each mounting option, consult factory for details.

VS - Visor

LBLVS-FINISHBK
Interior surface painted black. Please specify desired exterior FINISH from list of available finishes.

Mounting accessories (order separately) BRACKET TYPES REQUIRED AT TOWER A ONLY

PM4-2, PM4.5-2, PM5-2 - Round pole mounting accessory - twin fixtures
*One bracket assembly is supplied per 2 fixtures unless otherwise specified.

Accessories (order separately)

Control Boxes

CBX-DS-Power and control box - daisy chain configuration

DMX/RDM control box. One power and data output to fixture or fixture run. Ethernet enabled option. Refer to CBX specification sheet for details.

Optical options

LSLH - Linear spread lens horizontal distribution
LSLV - Linear spread lens vertical distribution

Factory installed, not adjustable on site. Not available for WFL optic. See ‘Optical Accessories’ section for field adjustable spread lens (LSLA).

PROVIDE (4) LSLH FOR TOWERS B AND C MOUNTING CONDITIONS

PROVIDE (2) LSLV FOR TOWER A MOUNTING CONDITION

lumenpulse™
1220 Marie Victoria Blvd., Longwood, QC J4G 2H9 CA T 1.877.937.3003 | 514.937.3003 F 514.937.6289
info@lumenpulse.com www.lumenpulsegroup.com

Lumenpulse Group Inc. reserves the right to make changes to this product at any time without prior notice and such modification shall be effective immediately.
2017-1.28 copyright © 2017 Lumenpulse Group Inc.
MG - 831

Fisher Marantz Stone Partners in Architectural Lighting Design

Women’s and Children’s Hospital
International Architects Atelier

Type FC

New York | Seattle | www.fmsp.com
See attached Lighting Fixture Schedule

Specification Sheet

Daisy Chain Layout (DMX/RDM)

A - Third party DMX/RDM controller
B - Data input (Belden 9841 or equivalent, by others)
C - Data output to next CBX (optional, not isolated/not boosted)
D - CBX DS
E - Power input (100-277V)
F - Power and data output to fixture (wiring by others)
G - Junction box (by others)
H - Lumenbeam Large
I - Power and data wiring (by others)

Daisy Chain Layout (DMX/RDM) - wiring detail (first or middle of run)

A - From CBX or previous fixture
B - To fixture
C - Data +
D - Data -
E - To next/from previous fixture
F - Live
G - Ground
H - Neutral
I - Wire-nuts (by others)
J - Junction box (by others)

Daisy Chain Layout (DMX/RDM) - wiring detail (end of run)

A - From CBX or previous fixture
B - Lumenterminator*
C - To fixture
D - Data -
E - Data +
F - Neutral
G - Ground
H - Live
I - Wire-nuts (by others)
J - Junction box (by others)

* DMX terminator is required at the end of each run to maintain data integrity. (2x) DMX lumenterminators included per CBX-DS. See installation instructions for details.

Consult factory for specific applications and maximum fixture count/cable length recommendations.

The DMX/RDM protocol states a maximum of 32 DMX/RDM enabled fixtures on any single run.

Maximum of 4 DMX/RDM repeaters/CBX cascading in line.

Maximum of 1 output per CBX-DS.

Maximum of 3 ft cable length between fixture and next junction box for daisy chain layout.

RGB color mixture option requires 3 DMX addresses. RGBW color mixture option requires 4 DMX addresses. RGBA color mixture option requires 4 DMX addresses.

50 watts per fixture.

FMS
Project Women's and Children's Hospital
Architect International Architects Atelier
Fisher Marantz Stone Partners in Architectural Lighting Design

New York | Seattle | www.fmsp.com

lumenbeam
Large
COLOR CHANGING

lumenpulse™
1220 Marie Victoria Blvd., Longwood, QC, M2G 2H9 CA T: 1.877.937.3003 | 514.937.3003 F: 514.937.6289
info@lumenpulse.com www.lumenpulsegroup.com

Lumenpulse Group Inc. reserves the right to make changes to this product at any time without prior notice and such modification shall be effective immediately.

2017.11.28 copyright © 2017 Lumenpulse Group Inc.

MG - 831

FC
Type

4 of 7
ELEVATION DETAIL AT TOWER A (EAST POLE)

NTS
SECTION DETAIL AT TOWER B

SEE LIGHTING LAYOUTS FOR PLAN VIEW OF RACK ASSEMBLY

TYPE FD

TYPE FC, FE

UNISTRUT OR KINDORF RACK BY E.C.

EXISTING MECH. EQUIPMENT STRUCTURE.

TOP OF ROOF

3 in

24 in

36 in

4 in

8 in

36 in

2 in

36 in

SEE LIGHTING FIXTURE SCHEDULE
SECTION DETAIL AT TOWER C

NTS
See attached Lighting Fixture Schedule

Project Name: Women's and Children's Hospital
Architect: International Architects Atelier

Specification Sheet

<table>
<thead>
<tr>
<th>Type</th>
<th>Catalog / Part Number</th>
<th>Qty</th>
</tr>
</thead>
</table>

Photometric Summary

Based on RGBW color mix, full output

<table>
<thead>
<tr>
<th></th>
<th>Delivered output (lm)</th>
<th>Intensity (peak cd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VN</td>
<td>2,233</td>
<td>93,100</td>
</tr>
<tr>
<td>NS</td>
<td>1,767*</td>
<td>66,125*</td>
</tr>
<tr>
<td>NF</td>
<td>1,631*</td>
<td>11,977*</td>
</tr>
<tr>
<td>FL</td>
<td>1,642*</td>
<td>4,543</td>
</tr>
<tr>
<td>WFL</td>
<td>1,600*</td>
<td>1,513</td>
</tr>
</tbody>
</table>

Optics

<table>
<thead>
<tr>
<th></th>
<th>VN</th>
<th>NS</th>
<th>NF</th>
<th>FL</th>
<th>WFL</th>
</tr>
</thead>
</table>

Control

lumenpulse™

Rating

Description

The Lumenbeam Large Color Changing is a high-performance, 50W luminaire for applying dynamic color to multi-story facades and structures. It offers a wide array of options including a choice of optics for floodlighting or accent lighting; RGB, RGBW or RGBA color mixing; various mounting options, accessories, spread lenses and controls.

Features

- Color and Color Temperature: Additive RGB, Additive RGB + white 4000K, Additive RGB + amber
- Optics (nominal distribution): 6", 10", 20", 40", 60"
- Optical Option: Linear spread lens horizontal distribution, Linear spread lens vertical distribution
- Options: Short Yoke, 3G ANSI C136.31 Vibration Rating for bridge applications, Corrosion-resistant coating for hostile environments
- Power Consumption: 50 W
- Warranty: 5-year limited warranty

Performance

- Delivered Output: 1,795 lm (RGB full output, VN optic), 2,233 lm (RGBW full output, VN optic), 1,690 lm (RGBA full output, Vn optic)
- Delivered Intensity: 72,904 cd at nadir (RGB full output, VN optic), 93,100 cd at nadir (RGBW full output, VN optic), 66,141 cd at nadir (RGBA full output, optic VN)
- Color Consistency: 2 SDCM
- Lumen Maintenance: L70 120,000 hrs [Ta 25 °C]
<table>
<thead>
<tr>
<th>Physical</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing Material</td>
<td>Low copper content high pressure die-cast aluminum</td>
</tr>
<tr>
<td>Yoke Material</td>
<td>Heavy aluminum (standard yoke included)</td>
</tr>
<tr>
<td>Lens Material</td>
<td>Clear tempered glass</td>
</tr>
<tr>
<td>Hardware Material</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Gasket Material</td>
<td>Silicone</td>
</tr>
<tr>
<td>Surface Finish</td>
<td>Electrostatically applied polyester powder coat</td>
</tr>
<tr>
<td>Weight</td>
<td>12 lbs</td>
</tr>
<tr>
<td>EPA</td>
<td>Front = 0.94 sq ft, Side = 0.56 sq ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical and control</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>100 to 277 volts</td>
</tr>
<tr>
<td>Fixture Cable</td>
<td>Power and data in 1 cable, 3 ft cord standard [#16-5], other lengths available</td>
</tr>
<tr>
<td>Resolution (DMX/RDM)</td>
<td>Per fixture, 8-bit or 16-bit, 3 channels (RGB) or 4 channels (RGBW, RGBA)</td>
</tr>
<tr>
<td>Control</td>
<td>Lumentalk, DMX/RDM enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-13 ºF to 122 ºF</td>
</tr>
<tr>
<td>IP Rating</td>
<td>IP66</td>
</tr>
<tr>
<td>IK Rating</td>
<td>IK10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accessories (order separately)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Boxes</td>
<td>Power and control box - daisy chain configuration, Power and control box - star configuration</td>
</tr>
<tr>
<td>Control Systems</td>
<td>Lumentouch 2.0™, Lumenene, Lumentone</td>
</tr>
<tr>
<td>Diagnostic and Addressing Tools</td>
<td>LumenID, LumentalkID</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mounting options</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SY - Short yoke</td>
<td></td>
</tr>
</tbody>
</table>
Specification Sheet

Optical accessories (order separately)
Installed optical accessories will affect the maximum pivot limits for each mounting option, consult factory for details.

VS - Visor

BLV5-FINISHBK
Interior surface painted black. Please specify desired exterior FINISH from list of available finishes.

Mounting accessories (order separately) BRACKET TYPES REQUIRED AT TOWER A ONLY

PM4-2, PM4.5-2, PM5-2 - Round pole mounting accessory - twin fixtures
*One bracket assembly is supplied per 2 fixtures unless otherwise specified.

Consult factory for other pole diameters.

Accessories (order separately)

Control Boxes

CBX-D5-Power and control box - daisy chain configuration

DMX/RDM control box. One power and data output to fixture or fixture run.
Ethernet enabled option. Refer to CBX specification sheet for details.

See attached Lighting Fixture Schedule
Daisy Chain Layout (DMX/RDM)

A - Third party DMX/RDM controller
B - Data input (Belden 9841 or equivalent, by others)
C - Data output to next CBX (optional, not isolated/not boosted)
D - CBX DS
E - Power Input (100-277 V)
F - Power and data output to fixture (wiring by others)
G - Junction box (by others)
H - Lumenbeam Large
I - Power and data wiring (by others)

Daisy Chain Layout (DMX/RDM) - wiring detail (first or middle of run)

A - From CBX or previous fixture
B - To fixture
C - Data +
D - Data -
E - To next/from previous fixture
F - Live
G - Ground
H - Neutral
I - Wire-nuts (by others)
J - Junction box (by others)

Daisy Chain Layout (DMX/RDM) - wiring detail (end of run)

A - From CBX or previous fixture
B - Lumenterminator *
C - To fixture
D - Data -
E - Data +
F - Neutral
G - Ground
H - Live
I - Wire-nuts (by others)
J - Junction box (by others)

- Consult factory for specific applications and maximum fixture count/cable length recommendations.
- The DMX/RDM protocol states a maximum of 32 DMX/RDM enabled fixtures on any single run.
- Maximum of 4 DMX/RDM repeaters/CBX cascading in line.
- Maximum of 1 output per CBX-DS.
- Maximum of 3 ft cable length between fixture and next junction box for daisy chain layout.
- RGB color mixture option requires 3 DMX addresses. RGBW color mixture option requires 4 DMX addresses. RGBA color mixture option requires 4 DMX addresses.
- 50 watts per fixture.

* DMX terminator is required at the end of each run to maintain data integrity. (2x) DMX lumenterminators included per CBX-DS. See installation instructions for details.
ELEVATION DETAIL AT TOWER A (EAST POLE)

TOP ROW: TYPE FD

48 in

10 in

TOP OF POLE AT 14'-0"

GRADE REFERENCE

1/8" : 1"1
See attached Lighting Fixture Schedule

Section Detail at Tower B

NTS

EXISTING MECH. EQUIPMENT STRUCTURE.

TOP OF ROOF

UNISTRUT OR KINDORF RACK BY E.C.

3 in

36 in

4 in

8 in

24 in

4 in

36 in

8 in

SECTION DETAIL AT TOWER B
SECTION DETAIL AT TOWER C

NTS
See attached Lighting Fixture Schedule

Specification Sheet

Project Name:

Type

Catalog / Part Number

Qty

Photometric Summary

Based on RGBW color mix, full output

<table>
<thead>
<tr>
<th></th>
<th>Delivered output (lm)</th>
<th>Intensity (peak cd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VN</td>
<td>2,233</td>
<td>93,100</td>
</tr>
<tr>
<td>NS</td>
<td>1,767*</td>
<td>66,125*</td>
</tr>
<tr>
<td>NF</td>
<td>1,631*</td>
<td>11,977*</td>
</tr>
<tr>
<td>FL</td>
<td>1,642*</td>
<td>4,541*</td>
</tr>
<tr>
<td>WFL</td>
<td>1,600*</td>
<td>1,510*</td>
</tr>
</tbody>
</table>

*Photometric performance is measured in compliance withIESNA (1-M-08).

Description

The Lumenbeam Large Color Changing is a high-performance, 50W luminaire for applying dynamic color to multi-story facades and structures. It offers a wide array of options including a choice of optics for floodlighting or accent lighting; RGB, RGBW or RGBA color mixing; various mounting options, accessories, spread lenses and controls.

Features

Color and Color Temperature

Additive RGB, Additive RGB + white 4000K, Additive RGB + amber

Optics (nominal distribution)

6", 10", 20", 40", 60"

Optical Option

Linear spread lens horizontal distribution, Linear spread lens vertical distribution

Options

Short Yoke, 3G ANSI C136.31 Vibration Rating for bridge applications, Corrosion-resistant coating for hostile environments

Power Consumption

50 W

Warranty

5-year limited warranty

Performance

Delivered Output

1,795 lm [RGB full output, VN optic], 2,233 lm [RGBW full output, VN optic], 1,690 lm [RGB full output, Vn optic]

Delivered Intensity

72,904 cd at nadir [RGB full output, VN optic], 93,100 cd at nadir [RGBW full output, VN optic], 66,141 cd at nadir [RGB full output, optic VN]

Color Consistency

2 SDCM

Lumen Maintenance

L70 120,000 hrs [To 25°C]

Architect

International Architects Atelier

Women’s and Children’s Hospital

Fisher Marantz Stone Partners in Architectural Lighting Design

New York | Seattle | www.fm-sp.com
Physical

- **Housing Material**: Low copper content high pressure die-cast aluminum
- **Yoke Material**: Heavy aluminum (standard yoke included)
- **Lens Material**: Clear tempered glass
- **Hardware Material**: Stainless steel
- **Gasket Material**: Silicone
- **Surface Finish**: Electrostatically applied polyester powder coat
- **Weight**: 12 lbs
- **EPA**: Front = 0.94 sq ft, Side = 0.56 sq ft

Electrical and control

- **Voltage**: 100 to 277 volts
- **Fixture Cable**: Power and data in 1 cable, 3 ft cord standard (#16-5), other lengths available
- **Resolution (DMX/RDM)**: Per fixture, 8-bit or 16-bit, 3 channels (RGB) or 4 channels (RGBW, RGBA)
- **Control**: Lumentalk, DMX/RDM enabled

Environmental

- **Operating Temperature**: -13 °F to 122 °F
- **IP Rating**: IP66
- **IK Rating**: IK10

Accessories (order separately)

- **Control Boxes**: Power and control box - daisy chain configuration, Power and control box - star configuration
- **Control Systems**: Lumentouch 2.0™, Lumenvue, Lumentone
- **Diagnostic and Addressing Tools**: LumenID, LumentalkID

Mounting options

- **SY - Short yoke**

See attached Lighting Fixture Schedule
See attached Lighting Fixture Schedule

Optical accessories (order separately)

Installed optical accessories will affect the maximum pivot limits for each mounting option, consult factory for details.

VS - Visor

LILVS-FINISHBK
Interior surface painted black. Please specify desired exterior FINISH from list of available finishes.

Mounting accessories (order separately)

| BRACKET TYPES REQUIRED AT TOWER A ONLY |

PM4-2, PM4.5-2, PM5-2 - Round pole mounting accessory - twin fixtures
*One bracket assembly is supplied per 2 fixtures unless otherwise specified.

Consult factory for other pole diameters.

Accessories (order separately)

Control Boxes

CBX-DS-Power and control box - daisy chain configuration

DMX/RDM control box. One power and data output to fixture or fixture run. Ethernet enabled option. Refer to CBX specification sheet for details.
See attached Lighting Fixture Schedule

Daisy Chain Layout (DMX/RDM)

Daisy Chain Layout (DMX/RDM) - wiring detail (first or middle of run)

Daisy Chain Layout (DMX/RDM) - wiring detail (end of run)

- Consult factory for specific applications and maximum fixture count/cable length recommendations.
- The DMX/RDM protocol states a maximum of 32 DMX/RDM enabled fixtures on any single run.
- Maximum of 4 DMX/RDM repeaters/CBX cascading in line.
- Maximum of 1 output per CBX-DS.
- Maximum of 3 ft cable length between fixture and next junction box for daisy chain layout.
- RGB color mixture option requires 3 DMX addresses. RGBW color mixture option requires 4 DMX addresses. RGBA color mixture option requires 4 DMX addresses.
- 50 watts per fixture.

* DMX terminator is required at the end of each run to maintain data integrity. (2x) DMX lumintermminators included per CBX-DS. See installation instructions for details.
ELEVATION DETAIL AT TOWER A (EAST POLE)

TOP OF POLE AT 14'-0"

TYPE FD

TYPE FE

TYPE FC

GRADE REFERENCE

TOP ROW: TYPE FD
See attached Lighting Fixture Schedule

SECTION DETAIL AT TOWER B

EXISTING MECH. EQUIPMENT STRUCTURE.

UNISTRUT OR KINDORF RACK BY E.C.

TOP OF ROOF

36 in

24 in

36 in

8 in

4 in

3 in

TYPE FD

TYPE FC, FE

SEE LIGHTING LAYOUTS FOR PLAN VIEW OF RACK ASSEMBLY
SECTION DETAIL AT TOWER C

- TYPE FB
- TYPE FC, FE
- TYPE FD
- UNISTRUT OR KINDORF RACK BY E.C.
- NON-FERROUS PEDESTAL SUPPORT
- TOP OF ROOF

6'-6"
8'-0"

NTS
Round Non-Tapered Steel Poles

Pole Shaft
The pole shaft is one piece construction, being fabricated from a weldable grade carbon steel structural shape. It is classed as a grade of material with a yield strength of 36,000 psi. The pole shaft has a full length longitudinal rib-weld and is internally coiled in accordance with usual codes and excellent finish properties.

Base Plate
The base plate is fabricated from structural quality hot rolled carbon steel plate that meets or exceeds a yield strength of 36,000 psi. The anchor base is fabricated the pole shaft and is circumferentially welded top and bottom. All welds are performed in accordance with the American Welding Society specification AWS D1.1, latest edition.

Anchor Bolts
Anchor bolts are fabricated from commercial quality hot rolled carbon steel bar that meets or exceeds a yield strength of 36,000 psi. Four properly sized anchor bolts, each with two properly sized hard washers, are assembled and supplied with 4 flats, either driven through the base plate or not. For additional information regarding anchor bolts, see AHRA 53, Full galvanized anchor bolts are available upon request.

Handholds
A cast aluminum handgrip, having a rectangular 2" x 4" or 3" x 5" molded opening, located on both sides, is installed on all poles. A grounding provision is located inside the handgrip.
See attached Lighting Fixture Schedule

<table>
<thead>
<tr>
<th>Mounting Designation</th>
<th>Bollard Mount</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 3/4" x 4" TK100</td>
<td>100% Construction Documents</td>
</tr>
<tr>
<td>3 7 3/4" x 4" TK100</td>
<td></td>
</tr>
<tr>
<td>3 7 3/4" x 4" TK100</td>
<td></td>
</tr>
<tr>
<td>3 7 3/4" x 4" TK100</td>
<td></td>
</tr>
<tr>
<td>4 7 3/4" x 4" TK100</td>
<td></td>
</tr>
<tr>
<td>4 7 3/4" x 4" TK100</td>
<td></td>
</tr>
<tr>
<td>4 7 3/4" x 4" TK100</td>
<td></td>
</tr>
<tr>
<td>4 7 3/4" x 4" TK100</td>
<td></td>
</tr>
</tbody>
</table>

OPTIONS

There are numerous options that can be ordered. Please indicate these selections under the column in the catalog number. Example: CUL FRP2-IC

- **3C** Base Cover
- **3PE** Thru-bolted Coupling*
- **3PFL** Thru-bolted Flange**
- **3RFBP** Rotation Openings**
- **3LAB** Less Arbor Bolt
- **3V1** Vibration Damper Internal

- **Standard Handles**
 - **SPIN** 3" x 5" Push Knob Handle

- **Replacement Parts Catalog**

 - **6** Standard Parts
 - **6S** Ground Sleeve
 - **6TE** Cast Ter Couvy

 - **6S** Ground Sleeve: Recommended Mounting Height
 - **6S** Ground Sleeve: Recommended Embedment Depth

 - **62** Embedment Depth

- **Additional Custom**
 - **62** 2 x 180°
 - **6S** 3 x 90°
 - **6S** 4 x 90°

- **Additional Counter Base Plate**
 - **CNP** Cast Iron Base Plate

* Please advise site, location, and orientation. (Handles are restricted by size of pole shaft diameter.)
* * Located 2" above base plate and same rate as handle, (no electrical included)

PACKAGING

To ensure proper handling, the lighting standard including the base plate shall be wrapped in heavy corrugated specialty designed packaging. The following guidelines are recommended:

KW Industries, Inc.

Our customer focused quality control procedures provide our customers the highest quality lighting standards in the industry.
specification sheet

lumenID™ kit

client

project name

order#

type

qty

features and benefits

- USB to serial converter
- Compact and simple demonstration tool for white DMX dimming, Dynamic White and Color Changing products
- Addressing & diagnostic software provided
- Compatible with Windows XP, Windows 7, Windows 8 and Windows 10 (32-bit or 64-bit)
- Operating temperatures: 0° C to 50° C [32F to 122F]

kit content

- USB to DMX 512 lumenID hardware interface
- PDF User manual available for download on the Lumenpulse Website
- USB cable
- Addressing cable
- Demo cable
- Adapter cables (3x)

downloads

Available on the Lumenpulse website:

- lumenID software
- lumenID user manual

how to order

LumenID kit must be specified on all white DMX dimming, Dynamic White and Color Changing applications.

lid

housing

1

© Copyright Lumenpulse Group Inc. 2018

1220 Marie-Victorin Blvd.
longueuil, QC
P. 514.937.3003
F. 514.937.6289

info@lumenpulse.com
www.lumenpulse.com

5-year limited warranty.

Consult www.lumenpulse.com for our complete Standard Terms and Conditions of Sales.

Lumenpulse Group Inc. reserves the right to make changes to this product at any time without prior notice and such changes shall be effective immediately.
SECTION 265600 – EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Exterior luminaires with lamps and ballasts.
 2. Pole light fixtures are furnished by the owner and installed by the contractor.

B. Related Sections include the following:
 1. Division 26 Section "Interior Lighting" for exterior luminaires normally mounted on exterior surfaces of buildings.

1.3 DEFINITIONS

A. CRI: Color-rendering index.

B. HID: High-intensity discharge.

C. Luminaire: Complete lighting fixture, including ballast housing if provided.

D. Pole: Luminaire support structure, including tower used for large area illumination.

E. Standard: Same definition as "Pole" above.

1.4 SUBMITTALS

A. Product Data: For each luminaire and support component, arranged in order of lighting unit designation. Include data on features, accessories, finishes, and the following:
 1. Physical description of luminaire, including materials, dimensions, effective projected area, and verification of indicated parameters.
 2. Details of attaching luminaires and accessories.
 3. Details of installation and construction.
 4. Luminaire materials.
 5. Photometric data based on laboratory tests of each luminaire type, complete with indicated lamps, ballasts, and accessories.
a. For indicated luminaires, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.

b. Photometric data shall be certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

6. Ballasts, including energy-efficiency data.
7. Lamps, including life, output, and energy-efficiency data.
8. Materials, dimensions, and finishes of poles.
9. Means of attaching luminaires to supports, and indication that attachment is suitable for components involved.
10. Anchor bolts for poles.
11. Manufactured pole foundations.

B. Shop Drawings:

1. Anchor-bolt templates keyed to specific poles and certified by manufacturer.
2. Design calculations, certified by a qualified professional engineer, indicating strength of screw foundations and soil conditions on which they are based.

C. Samples for Verification: For products designated for sample submission in Exterior Lighting Device Schedule. Each sample shall include lamps and ballasts.

D. Qualification Data: For agencies providing photometric data for lighting fixtures.

E. Field quality-control test reports.

F. Operation and Maintenance Data: For luminaries to include in emergency, operation, and maintenance manuals.

G. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Comply with NFPA 70.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Store owner provided poles on decay-resistant-treated skids at least 12 inches above grade and vegetation. Support poles to prevent distortion and arrange to provide free air circulation.

B. Retain factory-applied pole wrappings on metal poles until right before pole installation. For poles with nonmetallic finishes, handle with web fabric straps.

1.7 WARRANTY

A. Special Warranty: Manufacturer’s standard form in which manufacturer agrees to repair or replace products that fail in materials or workmanship; that corrode; or that fade, stain, perforate, erode, or chalk due to effects of weather or solar radiation within specified warranty period. Manufacturer may exclude lightning damage, hail damage, vandalism, abuse, or unauthorized repairs or alterations from special warranty coverage.

1. Warranty Period for Luminaires: Five years from date of final acceptance by Owner.
2. Warranty Period for Metal Corrosion: Five years from date of final acceptance by Owner.
3. Warranty Period for Color Retention: Five years from date of final acceptance by Owner.
4. Warranty Period for Lamps: Replace lamps and fuses that fail within 12 months from date of Substantial Completion; furnish replacement lamps and fuses that fail within the second 12 months from date of final acceptance by Owner.

1.8 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
2. Glass and Plastic Lenses, Covers, and Other Optical Parts: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
3. Ballasts: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
4. Globes and Guards: 10 for every 20 of each type and rating installed. Furnish at least one of each type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

B. In Exterior Lighting Device Schedule where titles below are column or row headings that introduce lists, the following requirements apply to product selection:
1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. Antique Street Lighting.
 b. Architectural Arc Lighting.
 c. Bega/US.
 d. Beta Lighting.
 e. Devine Lighting; Division of Hubbell Lighting.
 f. Gurz Co.
 g. General Electric Lighting Systems, Inc.
 h. Hubbell Lighting Inc.
 i. Holophane.
 j. Kiln Lighting.
 k. Lithonia Lighting.
 l. LSI Lighting Systems.
 m. Lumec.
 n. McGraw-Edison Co.
 o. McPhiblen; division of Thomas Lighting.
 q. Stremer.

2.2 LUMINAIRES, GENERAL REQUIREMENTS

A. Luminaires shall comply with UL 1598 and be listed and labeled for installation in wet locations by an NRTL acceptable to authorities having jurisdiction.

B. Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires.

C. Metal Parts: Free of burrs and sharp corners and edges.

D. Sheet Metal Components: Corrosion-resistant aluminum, unless otherwise indicated. Form and support to prevent warping and sagging.

E. Housings: Rigidly formed, weather- and light-tight enclosures that will not warp, sag, or deform in use. Provide filter/breather for enclosed luminaires.

F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Designed to disconnect ballast when door opens.

G. Exposed Hardware Material: Stainless steel.

H. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.

I. Light Shields: Metal baffles, factory installed and field adjustable, arranged to block light distribution to indicated portion of normally illuminated area or field.
J. Reflecting surfaces shall have minimum reflectance as follows, unless otherwise indicated:

1. White Surfaces: 85 percent.
2. Specular Surfaces: 83 percent.
3. Diffusing Specular Surfaces: 75 percent.

K. Lenses and Refractors Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.

L. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.

M. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or SSPC-SP 8, "Pickling."

2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 a. Color: As selected from manufacturer's standard catalog of colors.

N. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20; and seal aluminum surfaces with clear, hard-coat wax.
3. Class I, Clear Anodic Finish: AA-M32C22A41 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
4. Class I, Color Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611.
 a. Color: As selected by Architect.

2.3 FLUORESCENT BALLASTS AND LAMPS

A. Low-Temperature Ballast Capability: Rated by its manufacturer for reliable starting and operation of indicated lamp(s) at temperatures minus 20 deg F and higher.

B. Ballast Characteristics:
1. Power Factor: 90 percent, minimum.
2. Sound Rating: A.
3. Total Harmonic Distortion Rating: Less than 10 percent.
6. Transient-Voltage Protection: Comply with IEEE C62.41 Category A or better.

C. Low-Temperature Lamp Capability: Rated for reliable starting and operation with ballast provided at temperatures minus 20 deg F and higher.

D. Fluorescent Lamps: Low-mercury type. Comply with the EPA's toxicity characteristic leaching procedure test; shall yield less than 0.2 mg of mercury per liter when tested according to NEMA LL 1.

2.4 POLES AND SUPPORT COMPONENTS, GENERAL REQUIREMENTS

A. Concrete Pole Foundations: Cast in place, with anchor bolts to match pole-base flange. Concrete, reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete."

PART 3 - EXECUTION

3.1 LUMINAIRE INSTALLATION

A. Install lamps in each luminaire.

B. Fasten luminaire to indicated structural supports.

1. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.

C. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources.

3.2 POLE INSTALLATION

A. Align pole foundations and poles for optimum directional alignment of luminaires and their mounting provisions on the pole.

B. Clearances: Maintain the following minimum horizontal distances of poles from surface and underground features, unless otherwise indicated on Drawings:

1. Fire Hydrants and Storm Drainage Piping: 60 inches.
3. Trees: 15 feet.
C. Concrete Pole Foundations: Set anchor bolts according to anchor-bolt templates furnished by pole manufacturer. Concrete materials, installation, and finishing requirements are specified in Division 03 Section "Cast-in-Place Concrete."

D. Foundation-Mounted Poles: Mount pole with leveling nuts, and tighten top nuts to torque level recommended by pole manufacturer.
 1. Use anchor bolts and nuts selected to resist seismic forces defined for the application and approved by manufacturer.
 2. Grout void between pole base and foundation. Use nonshrink or expanding concrete grout firmly packed to fill space.
 3. Install base covers, unless otherwise indicated.
 4. Use a short piece of 1/2-inch-diameter pipe to make a drain hole through grout. Arrange to drain condensation from interior of pole.

E. Raise and set poles using web fabric slings (not chain or cable).

3.3 CORROSION PREVENTION

A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.

B. Steel Conduits: Comply with Division 26 Section "Raceway and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch-thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.4 GROUNDING

A. Ground metal poles and support structures according to Division 26 Section "Grounding and Bonding for Electrical Systems."
 1. Install grounding electrode for each pole, unless otherwise indicated.
 2. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.

B. Ground nonmetallic poles and support structures according to Division 26 Section "Grounding and Bonding for Electrical Systems."
 1. Install grounding electrode for each pole.
 2. Install grounding conductor and conductor protector.
 3. Ground metallic components of pole accessories and foundations.

3.5 FIELD QUALITY CONTROL

A. Inspect each installed fixture for damage. Replace damaged fixtures and components.

B. Illumination Observations: Verify normal operation of lighting units after installing luminaires and energizing circuits with normal power source.
1. Verify operation of photoelectric controls.

C. Illumination Tests:

1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IESNA testing guide(s):

 d. IESNA LM-64, "Photometric Measurements of Parking Areas."
 e. IESNA LM-72, "Directional Positioning of Photometric Data."

D. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

END OF SECTION 265600
DIVISION 27 – COMMUNICATIONS

270500 COMMON WORK RESULTS FOR COMMUNICATIONS
271500 COMMUNICATIONS HORIZONTAL CABLEING
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 270500 – COMMON WORK RESULTS FOR COMMUNICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. MU Division of IT Telecommunications Construction Standards and Specifications apply to this section. The Contractor shall obtain the latest revision of document and install all cables, pathways, boxes, equipment, and hardware in a manner to conform with MU Standards and Specifications.

1.2 SUMMARY

A. Section Includes:
 1. Communications equipment coordination and installation.
 2. Sleeves for pathways and cables.
 3. Sleeve seals.
 5. Common communications installation requirements.

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.

B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For pre-manufactured sleeves, and for sleeve seals.

1.5 COORDINATION

A. Coordinate arrangement, mounting, and support of communications equipment:
 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 3. To allow right of way for piping and conduit installed at required slope.
 4. So connecting pathways, cables, wireways and cable trays will be clear of obstructions and of the working and access space of other equipment.
B. Coordinate installation of required supporting devices and other structural components as they are constructed.

C. Coordinate location of access panels and doors for communications items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

1.6 SCHEDULING AND PHASING

A. All Communications work shall be scheduled to meet project completion date. All work shall be phased for projects requiring phasing work. Install additional conduit, junction-boxes, pull-boxes, devices, cables as required to support phasing. Refer to phasing schedule on drawings.

PART 2 - PRODUCTS

2.1 SLEEVES FOR PATHWAYS AND CABLES

A. Pre-manufactured fire-stop sleeves: STI EZ-Path Series 44. Provide in quantity to match cable fill capacity to fill capacity of adjacent cable tray, where tray path crosses fire- and/or smoke-rated walls.

B. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

C. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Sleeves for Rectangular Openings: Galvanized sheet steel.

1. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and pathway or cable.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
c. Metraflex Co.
d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of pathway or cable.

3. Pressure Plates: Carbon steel. Include two for each sealing element.

4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

2.4 COORDINATION DRAWINGS

A. The contractor shall prepare CAD generated drawings (min. ¼” scale) showing following systems/items as a minimum:
 1. Equipment locations and clearances required.
 2. Locations of items in ceilings such as lights, etc.

B. The contractor shall submit the CAD generated drawings for coordination with other trades. The drawings shall be submitted either in electronic format or printed copies as requested by the contractor.

C. The contractor shall participate in coordination meetings when requested.

2.5 PROJECT RECORD DRAWINGS

A. Drawings shall be furnished in electronic-media (CD-Rewritable type) and at-least one hard copy prints.
 1. Format: Same CAD program, version and operating system as the original contract documents.
 2. Incorporate changes and additional information previously marked on record prints. Delete, redraw and add details and notations where applicable.

B. Identify and date each drawing and include the designation “PROJECT RECORD DRAWING” or “AS-BUILT DRAWING” in a prominent location, with contractor’s name below it.
PART 3 - EXECUTION

3.1 DEMOLITION

A. Refer to Division 02 Section “Selective Demolition” for general demolition requirements and procedures.

B. Disconnect, demolish, and remove communication systems, fixtures, devices, and components indicated to be removed. In general, remove all fixtures, raceways, cables, junction boxes, and equipment not utilized in new construction. For devices disconnected, remove raceways and cables all way to the source.

C. Protect existing communication equipment and installation indicated to remain. If damaged or disturbed in the course of the Work, remove damaged portions and install new products of equal capacity, quality, and functionality.

D. Accessible Work: Remove exposed communication equipment and installations, indicated to be demolished, in their entirety.

E. Remove demolished material from Project site.

F. Remove, store, clean, reinstall, reconnect, and make operational components indicated for relocation.

G. Remove equipment to be salvaged, disconnect from power, and deliver to Owner as directed.

3.2 COMMON REQUIREMENTS FOR COMMUNICATIONS INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both communications equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

F. In general install raceways and boxes minimum 8” above hung ceiling. All raceways, boxes and equipment shall be independently supported from structure. Do not support from ductwork or piping.

G. Maintain following minimum clearances from J-hooks and all cable pathways, to avoid electromagnetic interference, from the following:
1. Motors and transformers: 4-feet
2. Conduit and cables used for electrical power distribution: 1-foot
3. Fluorescent lighting: 5-inches

3.3 SLEEVE INSTALLATION FOR COMMUNICATIONS PENETRATIONS

A. Communications penetrations occur when pathways, cables, wireways, or cable trays penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting to extend three inches past both surfaces of walls.

F. Extend sleeves installed in floors four inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and pathway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and pathway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants".

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pathway and cable penetrations. Install sleeves and seal pathway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

K. Roof-Penetration Sleeves: Seal penetration of individual pathways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between pathway or cable and sleeve for installing mechanical sleeve seals.
3.4 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for pathway or cable material and size. Position pathway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pathway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.5 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for communications installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION 270500
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. MU Division of IT Telecommunications Construction Standards and Specifications apply to this section. The Contractor shall obtain the latest revision of document and install all cables, pathways, boxes, equipment, and hardware in a manner to conform with MU Standards and Specifications.

1.2 SUMMARY

A. Section Includes:

1. Pathways.
2. UTP cabling.
3. Coaxial cable.
4. Cabling system identification products.
5. Cable management system.

B. Related Sections:

1. Division 26 Section "Cable Trays for Electrical Systems".
2. Division 28 Section "Conductors and Cables for Electronic Safety and Security" for voice and data cabling associated with system panels and devices.

C. System Description:

1. The Owner will furnish and terminate all telephone, data and television cable for installation by the Contractor. The Contractor shall install all Owner-provided cable and label in a manner acceptable to the Owner.
2. All backbone cabling and telephone, data and television distribution equipment will be furnished and installed by the Owner.
3. Equipment racks and overhead ladder runways, and associated grounding/bonding of them, in Telecom Rooms shall be furnished and installed by Owner.
4. All work shall be coordinated with the Owner.
5. Cabling shall be supported with cable tray and with J-hooks in accessible ceiling areas. Cable tray and J-hook layout is shown on the plans and shall be furnished and installed by the Contractor. Install cabling in EMT conduit in areas where ceilings are not accessible.
1.3 DEFINITIONS

A. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.

C. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel.

D. Consolidation Point: A location for interconnection between horizontal cables extending from building pathways and horizontal cables extending into furniture pathways.

E. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.

F. EMI: Electromagnetic interference.

G. IDC: Insulation displacement connector.

H. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).

I. LAN: Local area network.

J. MUTOA: Multiuser telecommunications outlet assembly, a grouping in one location of several telecommunications outlet/connectors.

K. Outlet/Connectors: A connecting device in the work area on which horizontal cable or outlet cable terminates.

L. RCDD: Registered Communications Distribution Designer.

M. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of longitudinal side rails and a bottom without ventilation openings.

N. Trough or Ventilated Cable Tray: A fabricated structure consisting of longitudinal side rails and a bottom having openings for the passage of air.

O. UTP: Unshielded twisted pair.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.
 1. For coaxial cable, include the following installation data for each type used:
 a. Nominal OD.
 b. Minimum bending radius.
 c. Maximum pulling tension.

B. Shop Drawings:
1. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
2. Cabling administration drawings and printouts.

C. J-hooks.
D. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.
E. Source quality-control reports.
F. Field quality-control reports.

1.5 QUALITY ASSURANCE
A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.

1. Layout Responsibility: Preparation of Shop Drawings and Cabling Administration Drawings by an RCDD.
2. Installation Supervision: Installation shall be under the direct supervision of a BICSI Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.

B. All testing shall be performed by Owner. Contractor shall re-pull all cable that fails test.

C. Furnish and install blank coverplates for all unused openings.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Telecommunications Pathways and Spaces: Comply with ANSI/TIA-569-B.

1.6 DELIVERY, STORAGE, AND HANDLING
A. The Owner will deliver all cables to the job site. The Contractor shall store cables to prevent entrance of dirt, debris and moisture.

B. Protect stored cables from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor, if stored inside.

1.7 PROJECT CONDITIONS
A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
1.8 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

PART 2 - PRODUCTS

2.1 PATHWAYS

A. Cable Support: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.

1. J-hooks with fastening devices to maintain cable bundles within j-hooks.
2. J-hooks to be plenum rated, and as manufactured by B-Line, Erico/Caddy, or Panduit.
3. J-hooks shall be sized to allow for minimum 33% spare cable capacity, with a minimum support diameter of 2 inches.
4. Cable bundles in J-hooks shall not exceed fifty cables.

B. Conduit and Boxes: Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems." Flexible metal conduit shall not be used.

1. Outlet boxes shall be no smaller than 4 inches wide, 4 inches high, and 2-1/2 inches deep, with plaster ring to accommodate a 2 inch by 4 inch faceplate, unless noted otherwise on the plans.
2. Conduit stub-ups from outlet boxes to above accessible ceiling, shall be 1 inch diameter minimum, shall turn 90-degrees at a minimum 12" above ceiling, and shall be reamed and have insulated bushings installed to avoid cable damage.

2.2 GROUNDING

A. Comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems" for grounding conductors and connectors.

B. Comply with ANSI-J-STD-607-A.

2.3 IDENTIFICATION PRODUCTS

A. Comply with TIA/EIA-606-A and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

B. Comply with requirements in Division 26 Section "Identification for Electrical Systems."

C. Clearly label every cable installed, with matching labels on both ends, with laminated machine-printed cable labels.
3.1 CABLE INSTALLATION REQUIREMENTS

A. Install voice, data and television cable as supplied by the Owner.

B. Furnish all required installation tools to facilitate cable pulling without damage to cable jacket.

C. During pulling operation adequate number of workers shall be present to allow cable observation at all points of raceway entry and exit, as well as to feed cable and operate pulling machinery.

D. Pull cables in accordance with cable manufacturer’s recommendations and ANSI/IEEE C2 Standards. Recommended pulling tensions and pulling bending radius shall not be exceeded. Any cables bent or kinked to radius less than recommended dimension are not allowed and shall be replaced at no expense to Owner.

 1. Category 6 cables shall be installed with minimum bend radius of six times the outside cable diameter.

E. Pull all cable by hand unless installation conditions require mechanical assistance. Where mechanical assistance is used, care shall be taken to insure that maximum tensile load for cable as defined by these specifications is not exceeded. This may be in the form of continuous monitoring of pulling tension, use of “break-away” or other approved method.

F. Install cable in conduit cable trays or J-hooks in accessible ceiling areas. Anchor all cable supports independently to building structure. All routing shall be kept clear of other trades' work. D-rings and bridal rings are not acceptable.

G. J-hook cable supports shall be installed in accordance with manufacturers’ installation requirements. Spacing of J-hook cable supports shall be maximum every 5 ft. or in accordance with cable manufacturers’ specifications, whichever distance is shorter.

H. Size all cable pathways to allow for minimum 33% spare cable fill capacity.

 1. Maximum number of Category 6 cables allowed to be installed in conduit according to conduit trade sizes shall be as follows:

 a. 1” Conduit: 5 cables
 b. 1-1/4” Conduit: 8 cables
 c. 1-1/2” Conduit: 11 cables
 d. 2” Conduit: 20 cables
 e. 3” Conduit: 47 cables
 f. 4” Conduit: 84 cables

I. Cable bundles in j-hooks shall not exceed a maximum of 50 cables.

J. Eliminate cable stress caused by tension in suspended cable runs. Cables must exhibit some sag in hanging between supports.
K. Cable routing in telecom closet shall be routed and supported on Owner-furnished Owner-installed ladder runway. Coordinate installation and lengths required with the Owner as required for the Owner to land cables on the equipment furnished and installed by them. Provide minimum 10-feet of slack past termination location in every cable in Telecom Room, based on coordination with Owner, per requirements in the UMC Division of IT Telecommunications Construction Standards and Specifications.

L. Provide minimum 12-inches of cable slack in outlet back-boxes, and 3-feet of cable slack in service loop above each outlet conduit stub-up.

M. Contractor shall be responsible for identifying and reporting to Construction Manager any existing damage to walls, flooring, tiles and furnishings in work area prior to start of work. Repair damage to interior spaces caused by installation of cable, raceway or other hardware. Repairs must match pre-existing color and finish of walls, floors and ceilings. Replace any contractor-damaged ceiling tiles to match color, size, style and texture.

N. Avoid abrasion and other damage to cables during installation.

O. Pulling lubricant may be used to ease pulling tensions. Lubricant shall be of type that is non-injurious to cable jacket and other materials used. Lubricant shall not harden or become adhesive with age.

P. Provide pull cord (200 lb. minimum) installed with cable installed in each conduit 1¼" and larger.

Q. Provide to Engineer, prior to installation, submittals drawings showing proposed installation for approval.

R. Install cables with no splices unless otherwise specified. Damaged or broken cables must be completely replaced at no additional cost to Owner.

S. Cabling shall be neatly laced, dressed, and supported. Plenum-rated cable ties shall be utilized in plenum spaces. Velcro-type cable ties shall be utilized in Telecom Rooms, on maximum spacing of 36" between ties. Cable ties shall be hand-applied, never applied with a tool, and shall remain loose around cable bundles such that the ties can be rotated by hand after installation.

T. Grounding and Bonding:
 1. Contractor to coordinate system grounding and bonding requirements where provided.
 2. Comply with Division 26 Section "Grounding and Bonding for Electrical Systems."

U. Voice and data system cables shall be placed within cable trays where shown on floor plans, and in J-hoops where cables are not in cable trays and are above accessible ceilings. Support J-hoops from wall or structure above accessible ceilings. Furnish and install all-thread, Unistrut or other support structure as required to support J-hooks and cables.

V. Maintain 8" minimum clearance from bottom of J-hooks to ceilings.

W. Maintain following minimum clearances from J-hooks and all cable pathways, to avoid electromagnetic interference, from the following:
 1. Motors and transformers: 4-feet
2. Conduit and cables used for electrical power distribution: 1-foot
3. Fluorescent lighting: 5-inches

X. Cable pathways shall be installed in such a way as to facilitate ongoing maintenance, additions, and relocations.

Y. All pathway devices and support hardware shall have smooth edges, with no sharp edges coming in contact with cables.

Z. Pathways and cabling shall be installed such that no Communications cable length exceeds 295-feet total from Telecom Room termination location to outlet termination location.

AA. Cable routing, support, and sealing of penetrations shall meet applicable MU codes.

3.2 TESTING

A. Owner shall be responsible for cable testing and qualified personnel to conduct acceptance tests.

B. If Owners’ tests fail to meet industry specifications, the Contractor shall replace and make changes as are necessary and then Owner will repeat tests, which disclose fault or defective material, equipment or installation method. Provide labor and materials at no additional cost to Owner.

END OF SECTION 271500
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>280500</td>
<td>COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY</td>
</tr>
<tr>
<td>280513</td>
<td>CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY</td>
</tr>
<tr>
<td>283111</td>
<td>DIGITAL, ADDRESSABLE FIRE ALARM SYSTEM</td>
</tr>
</tbody>
</table>
SECTION 280500 – COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Electronic safety and security equipment coordination and installation.
 2. Sleeves for raceways and cables.
 3. Sleeve seals.
 5. Coordination drawings.
 6. Project record drawings.
 7. Electronic safety and security demolition.

1.3 DEFINITIONS
A. EPDM: Ethylene-propylene-diene terpolymer rubber.
B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS
A. Product Data: For sleeve seals.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Delivery raceways in clean condition. Store to prevent entrance of dirt, debris and moisture.
B. Protect stored raceways, cables, and connectors from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor, if stored inside.

1.6 COORDINATION
A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
3. To allow right of way for piping and conduit installed at required slope.
4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

1.7 SCHEDULING AND PHASING

A. All electronic safety and security work shall be scheduled to meet project completion date. All work shall be phased for projects requiring phasing of work. Install additional conduit, junction-boxes, pull-boxes, devices as required to support phasing. Refer to phasing schedule on drawings.

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.

1. Minimum Metal Thickness:

a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.

b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
3. Pressure Plates: Carbon steel. Include two for each sealing element.
4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

2.4 COORDINATION DRAWINGS

A. The contractor shall prepare CAD generated drawings (min. ¼” scale) showing following systems/items as a minimum:
 1. Main equipment locations and clearances required.
 2. Locations of items in ceiling such as cameras, smoke detectors, heat detectors, etc.

B. The contractor shall submit the CAD generated drawings to the contractor for coordination with other trades. The drawings shall be submitted either in electronic format or printed copies as requested by the contractor.

C. The contractor shall participate in coordination meetings when requested by the contractor.

2.5 PROJECT RECORD DRAWINGS

A. Drawings shall be furnished in electronic-media (CD-Rewritable type) and at-least one hard copy prints.
 1. Format: Same CAD program, version and operating system as the original contract documents.
 2. Incorporate changes and additional information previously marked on record prints. Delete, redraw and add details and notations where applicable.

B. Identify and date each drawing and include the designation “PROJECT RECORD DRAWING” or “AS-BUILT DRAWING” in a prominent location, with contractor’s name below it.
PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRONIC SAFETY AND SECURITY PENETRATIONS

A. Electronic safety and security penetrations occur when raceways, pathways, cables, wireways, or cable trays penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry

1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."
J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION 280500
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 280513 – CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. UTP cabling.
 2. 50/125-micrometer, multimode optical fiber cabling.
 3. Coaxial cabling.
 4. RS-232 cabling.
 5. RS-485 cabling.
 6. Low-voltage control cabling.
 7. Control-circuit conductors.
 8. Fire alarm wire and cable.

B. All fire alarm system wiring shall be installed in a dedicated raceway. Raceway may be EMT, RMC, FMC and LFMC (flexible type limited by NEC).

1.3 DEFINITIONS

A. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.

C. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel section.

D. EMI: Electromagnetic interference.

E. IDC: Insulation displacement connector.

F. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).

G. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.

H. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
I. RCDD: Registered Communications Distribution Designer.

J. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.

K. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.

L. UTP: Unshielded twisted pair.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

1. For fire alarm wiring and cable, include the following installation data for each type used:
 a. Nominal OD.
 b. Minimum bending radius.
 c. Maximum pulling tension.

B. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:

 1. Vertical and horizontal offsets and transitions.
 2. Clearances for access above and to side of cable trays.
 3. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 4. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.

C. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.

D. Source quality-control reports.

E. Field quality-control reports.

F. Maintenance Data: For wire and cable to include in maintenance manuals.

1.5 QUALITY ASSURANCE

A. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 50 or less.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install UTP, optical fiber, and coaxial cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 PATHWAYS

A. All fire alarm system wiring shall be installed in a dedicated raceway. Raceway may be EMT, RMC, FMC, LFMC (flexible type limited by NEC), and surface raceway (only in areas where not subject to damage).

B. Support of Open Cabling: NRTL labeled for support of Category 5e/Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.

1. Support brackets with cable tie slots for fastening cable ties to brackets.
2. Lacing bars, spools, J-hooks, and D-rings.
3. Straps and other devices.

C. Cable Trays:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cable Management Solutions, Inc.
 b. Cablofil Inc.
 c. Chalfant Manufacturing Co.
 d. Cooper B-Line, Inc.
 e. Cope - Tyco/Allied Tube & Conduit.
 f. GS Metals Corp.
 g. MONO-SYSTEMS, Inc.
 h. MP Husky.
 i. FW Industries.

2. Cable Tray Materials: Metal, suitable for indoors, and protected against corrosion by electroplated zinc galvanizing, complying with ASTM B 633, Type 1, not less than 0.000472 inch.
 a. Basket Cable Trays: 6 inches wide and 2 inches. Wire mesh spacing shall not exceed 2 by 4 inches.
 b. Trough Cable Trays: Nominally 6 inches wide.
c. Ladder Cable Trays: Nominally 18 inches wide, and a rung spacing of 12 inches.

d. Channel Cable Trays: One-piece construction, nominally 4 inches wide. Slot spacing shall not exceed 4-1/2 inches o.c.

e. Solid-Bottom Cable Trays: One-piece construction, nominally 12 inches wide. Provide without solid covers.

D. Conduit and Boxes: Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems." Flexible metal conduit shall not be used.

1. Outlet boxes shall be no smaller than 2 inches wide, 3 inches high, and 2-1/2 inches deep.

2.2 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches. Comply with requirements for plywood backing panels in Division 06 Section "Rough Carpentry".

2.3 UTP CABLE

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Belden CDT Inc.; Electronics Division.
2. Berk-Tek; a Nexans company.
3. Genesis Cable Products; Honeywell International, Inc.
4. KRONE Incorporated.
5. Mohawk; a division of Belden CDT.
6. Nordex/CDT; a subsidiary of Cable Design Technologies.
7. Superior Essex Inc.
8. 3M.
9. Tyco Electronics/AMP Netconnect; Tyco International Ltd.

B. Description: 100-ohm, 4-pair UTP, formed into 25-pair binder groups covered with a blue thermoplastic jacket.

1. Comply with ICEA S-90-661 for mechanical properties.
2. Comply with TIA/EIA-568-B.1 for performance specifications.
3. Comply with TIA/EIA-568-B.2, Category 5e or Category 6.
4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:

a. Communications, General Purpose: Type CM or CMG.
b. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
c. Communications, Riser Rated: Type CMR, complying with UL 1666.
d. Communications, Limited Purpose: Type CMX.
e. Multipurpose: Type MP or MPG.
f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
g. Multipurpose, Riser Rated: Type MPR, complying with UL 1666.
2.4 UTP CABLE HARDWARE

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Hubbell Premise Wiring.
3. KRONE Incorporated.
4. Leviton Voice & Data Division.
5. Nordex/CDT; a subsidiary of Cable Design Technologies.
6. Panduit Corp.
7. Siemon Co. (The).
8. Tyco Electronics/AMP Netconnect; Tyco International Ltd.

B. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.

C. Connecting Blocks: 110-style for Category 5e/110-style for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

2.5 OPTICAL FIBER CABLE

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Berk-Tek; a Nexans company.
2. Corning Cable Systems.
3. General Cable Technologies Corporation.
4. Mohawk; a division of Belden CDT.
5. Nordex/CDT; a subsidiary of Cable Design Technologies.
6. Optical Connectivity Solutions Division; Emerson Network Power.
7. Superior Essex Inc.
8. 3M.
9. Tyco Electronics/AMP Netconnect; Tyco International Ltd.

B. Description: Multimode, 50/125-micrometer, 24-fiber, nonconductive, tight buffer, optical fiber cable.

1. Comply with ICEA S-83-596 for mechanical properties.
2. Comply with TIA/EIA-568-B.3 for performance specifications.
3. Comply with TIA/EIA-492AAAA-B for detailed specifications.
4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:

 a. General Purpose, Nonconductive: Type OFN or OFNG.
 b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 c. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 d. General Purpose, Conductive: Type OFC or OFCG.
 e. Plenum Rated, Conductive: Type OFCP, complying with NFPA 262.
 f. Riser Rated, Conductive: Type OFCR, complying with UL 1666.
5. Conductive cable shall be steel armored type.
6. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
7. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

C. Jacket:
2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

2.6 OPTICAL FIBER CABLE HARDWARE

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. ADC.
 3. Berk-Tek; a Nexans company.
 4. Corning Cable Systems.
 5. Hubbell Premise Wiring.
 6. Nordex/CDT; a subsidiary of Cable Design Technologies.
 7. Optical Connectivity Solutions Division; Emerson Network Power.
 8. Siemon Co. (The).

 1. Quick-connect, simplex and duplex, Type SC/Type ST connectors. Insertion loss not more than 0.75 dB.
 2. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.7 RS-232 CABLE

A. Standard Cable: NFPA 70, Type CM.
 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 2. Polypropylene insulation.
 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 4. PVC jacket.
 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.

B. Plenum-Rated Cable: NFPA 70, Type CMP.
 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 2. Plastic insulation.
3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.

2.8 RS-485 CABLE

A. Standard Cable: NFPA 70, Type CM or CMG.
 1. Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
 5. Flame Resistance: Comply with UL 1581.

B. Plenum-Rated Cable: NFPA 70, Type CMP.
 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 2. Fluorinated ethylene propylene insulation.
 3. Unshielded.
 4. Fluorinated ethylene propylene jacket.

2.9 LOW-VOLTAGE CONTROL CABLE

A. Paired Lock Cable: NFPA 70, Type CMG.
 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
 5. Flame Resistance: Comply with UL 1581.

B. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
 5. Flame Resistance: Comply with NFPA 262.

C. Paired Lock Cable: NFPA 70, Type CMG.
 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
 5. Flame Resistance: Comply with UL 1581.
D. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 2. Fluorinated ethylene propylene insulation.
 3. Unshielded.

2.10 CONTROL-CIRCUIT CONDUCTORS
A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
B. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

2.11 FIRE ALARM WIRE AND CABLE
A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Comtran Corp.
 2. Genesis Cable Products; Honeywell International, Inc.
 3. Rockbestos-Suprenant Cable Corporation.
 4. West Penn Wire/CDT; a division of Cable Design Technologies.
B. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
C. Wiring shall be U.L. listed as fire alarm protection signaling circuit cable per NEC. Wire for notification circuits shall be a minimum #14 AWG, type KF-2 or KFF-2. Cable type may vary if recommended by the system manufacturer for compatibility with system warranty or design.

2.12 IDENTIFICATION PRODUCTS
A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Brady Corporation
 2. HellermannTyton.
 3. Kroy LLC.
 4. Panduit Corp.
B. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
C. Comply with requirements in Division 26 Section "Identification for Electrical Systems."

2.13 SOURCE QUALITY CONTROL
A. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
B. Factory test UTP cables according to TIA/EIA-568-B.2.
C. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
D. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
E. Cable will be considered defective if it does not pass tests and inspections.
F. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 INSTALLATION OF PATHWAYS
A. Cable Trays: Comply with NEMA VE 2 and TIA/EIA-569-A-7.
B. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.
C. Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems." for installation of conduits and wireways.
D. Install manufactured conduit sweeps and long-radius elbows whenever possible.
E. Pathway Installation in Equipment Rooms:
 1. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
 2. Install cable trays to route cables if conduits cannot be located in these positions.
 3. Secure conduits to backboard when entering room from overhead.
 4. Extend conduits 3 inches above finished floor.
 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.
F. Backboards: Install backboards with 96-inch dimension vertical. Butt adjacent sheets tightly, and form smooth gap-free corners and joints.
3.2 INSTALLATION OF CONDUCTORS AND CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:
 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 3. Install 110-style IDC termination hardware unless otherwise indicated.
 4. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
 7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 8. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 9. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:
 2. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.

D. Optical Fiber Cable Installation:
 2. Cable shall be terminated on connecting hardware that is rack or cabinet mounted.

E. Open-Cable Installation:
 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

F. Installation of Cable Routed Exposed under Raised Floors:
 1. Install plenum-rated cable only.
 2. Install cabling after the flooring system has been installed in raised floor areas.
 3. Coil cable 72 inches long shall be neatly coiled not less than 12 inches in diameter below each feed point.
G. Outdoor Coaxial Cable Installation:
 1. Install outdoor connections in enclosures complying with NEMA 250, Type 4X. Install corrosion-resistant connectors with properly designed O-rings to keep out moisture.
 2. Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches.

H. Separation from EMI Sources:
 1. Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
 5. Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.

3.3 FIRE ALARM WIRING INSTALLATION

A. Comply with NECA 1 and NFPA 72.

B. Wiring Method: Install wiring in metal raceway according to Division 26 Section "Raceway and Boxes for Electrical Systems."
 1. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.

C. Wiring Method:
1. Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.

D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system’s wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.

F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

G. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.

H. Wiring to Remote Alarm Transmitting Device: 1-inch conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.4 CONTROL-CIRCUIT CONDUCTORS

A. Minimum Conductor Sizes:
 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.5 FIRESTOPPING

A. Comply with requirements in Division 07 Section "Penetration Firestopping."

B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.

C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING

B. For low-voltage wiring and cabling, comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems."

3.7 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.

2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.

 a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

4. Optical Fiber Cable Tests:

 a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

 b. Link End-to-End Attenuation Tests:

 1) Multimode Link Measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.

 2) Attenuation test results for links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.

C. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.

D. End-to-end cabling will be considered defective if it does not pass tests and inspections.
E. Prepare test and inspection reports.

END OF SECTION 280513
SECTION 283111 – DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

 A. Section Includes:

 1. Fire-alarm control unit.
 3. System smoke detectors.
 8. Addressable interface device.
 10. System printer.

 B. All devices, equipment and installation are to be provided by a single source who assumes responsibility for the entire system per NFPA 72. Non-addressable devices do not have to be of the same brand as the main system, but must meet the manufacturer’s requirements and UL ratings for the system installed.

1.3 DEFINITIONS

 A. LED: Light-emitting diode.

1.4 SYSTEM DESCRIPTION

 A. Noncoded, UL-certified addressable system, with multiplexed signal transmission, dedicated to fire-alarm service only.

 B. The fire alarm panel is to be expandable. Each notification circuit shall contain a minimum of 20% excess capacity.

 C. Trouble and alarm outputs from the fire alarm panel shall be connected to the building management system.
D. All wiring to be installed in conduit.

1.5 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Fire-alarm control unit and raceways shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event".

1.6 SUBMITTALS

A. General Submittal Requirements:

1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified fire-alarm technician, Level III minimum.
 c. Licensed or certified by authorities having jurisdiction.

B. Product Data: For each type of product indicated.

C. Shop Drawings: For fire-alarm system. Include plans, elevations, sections, details, and attachments to other work.

2. Current draw on each notification circuit with allowance for 20% expansion.
3. Include voltage drop calculations for all notification appliance circuits.
4. Include battery-size calculations for entire system including any power expanders.
5. Include performance parameters and installation details for each detector, verifying that each detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
6. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale and coordinating installation of duct smoke detectors and access to them. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators. Locate detectors according to manufacturer's written recommendations.
7. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.
8. Include floor plans to indicate all final outlet locations showing address of each addressable device. Show size and route of cable and conduits.
9. Include a matrix showing alarm and initiation devices with associated actions.
10. Power Calculations:
 a. Battery Capacity Calculations: Battery size shall be a minimum of 125% of the calculated requirement. Batteries must be capable of operating the panel in
normal mode for 24 hours with sufficient capacity to operate the panel in alarm mode for 15 minutes at the end of that 24 hour period.
b. Supervisory power requirements for all equipment.
c. Alarm power requirements for all equipment.
d. Power supply rating justification showing power requirements for each of the system power supplies. Power supplies shall be sized to furnish the total connected load in a worst case condition.

11. Complete manufacturer's catalog data on all devices, modules, bases, etc.

12. Submit panel and annunciator panel configuration showing layout including the following as applicable:

a. Master system CPU including all fire detection, evacuation alarm control modules, and supervised power amplifiers with the required back up modules.
b. Circuit interface panels including all modules.
c. Power supplies, batteries and battery chargers.
d. Pre-amplifiers, and tone generators.
e. Equipment enclosures.
f. Alarm monitoring modules, and supervised control modules.
g. Initiation loop must be capable of supporting at least 60 devices of any type. If the loop supports different numbers of different type devices, it must be capable of supporting at least 60 devices of each type.
h. Alarm notification circuits must be capable of 1.5 amps per circuit at 24vdc. Panels capable of allowing varying current draws per circuit, but allowing an average of 1.5 amps average may be allowed if the engineer designs the circuits appropriately. In that case each circuit must still have .3 amp minimum allowed for future in addition to the designed load.

13. A complete proposed system database including a description of all logic strings, control by event programming and point identification labels on a computer CD or 3.5" high density floppy disk and in a formatted printed form, as required for offsite editing, uploading and downloading shall be submitted for evaluation by the owner. A programming manual shall accompany the submitted program and shall be adequate to allow understanding, operation and editing by the system.

14. The latest version of software for programming the fire alarm system. A programming manual shall accompany the submitted program and shall be adequate to allow understanding, operation and editing by the system.

D. Qualification Data: For qualified Installer.

E. Proposed vendors must be able to show the ability to respond to requests for service within 24 hours and the ability to supply replacement parts for the system within 48 hours relative to the site where the system is to be installed.

F. Seismic Qualification Certificates: For fire-alarm control unit, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
G. Field quality-control reports.

H. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. Comply with the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
2. Provide "Record of Completion Documents" according to NFPA 72 article "Permanent Records" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter.
3. Record copy of site-specific software.
4. Provide "Maintenance, Inspection and Testing Records" according to NFPA 72 article of the same name and include the following:
 a. Frequency of testing of installed components.
 b. Frequency of inspection of installed components.
 c. Requirements and recommendations related to results of maintenance.
 d. Manufacturer's user training manuals.

5. Manufacturer's required maintenance related to system warranty requirements.
6. Abbreviated operating instructions for mounting at fire-alarm control unit.
7. Copy of NFPA 25.

I. Software and Firmware Operational Documentation:

1. Software operating and upgrade manuals.
2. Program Software Backup: On magnetic media or compact disk, complete with data files.
3. Device address list.
4. Printout of software application and graphic screens.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.

B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level III technician.

C. Source Limitations for Fire-Alarm System and Components: Obtain fire-alarm system from single source from single manufacturer. Components shall be compatible with, and operate as, an extension of existing system.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.
1.8 PROJECT CONDITIONS

A. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:

1. Notify Architect no fewer than seven (7) days in advance of proposed interruption of fire-alarm service.
2. Do not proceed with interruption of fire-alarm service without Architect’s written permission.

1.9 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning with final acceptance by Owner, provide software support for two years.

C. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of final acceptance by Owner. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.

1. Provide 30 days’ notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

1.10 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but no fewer than 1 unit.
2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than 1 unit.
3. Smoke Detectors, Fire Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than 1 unit of each type.
4. Detector Bases: Quantity equal to 2 percent of amount of each type installed, but no fewer than 1 unit of each type.
5. Keys and Tools: One extra set for access to locked and tamperproofed components.
6. Audible and Visual Notification Appliances: One of each type installed.
7. Fuses: Two of each type installed in the system.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products compatible with fire alarm system noted below:

1. NOTIFIER; a Honeywell company.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one or more of the following devices:

2. Heat detectors.
3. Flame detectors.
4. Smoke detectors.
5. Duct smoke detectors.
6. Verified automatic alarm operation of smoke detectors.
7. Automatic sprinkler system water flow.
8. Heat detectors in elevator shaft and pit.
10. Fire standpipe system.

B. Fire-alarm signal shall initiate the following actions:

1. Continuously operate alarm notification appliances.
2. Identify alarm at fire-alarm control unit and remote annunciators where indicated.
3. Transmit an alarm signal to the remote alarm receiving station.
4. Unlock electric door locks in designated egress paths.
5. Release fire and smoke doors held open by magnetic door holders.
6. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
7. Close smoke dampers in air ducts of designated air-conditioning duct systems.
8. Recall elevators to primary or alternate recall floors.
9. Record events in the system memory.
10. Record events by the system printer.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:

1. Valve supervisory switch.
2. Low-air-pressure switch of a dry-pipe sprinkler system.
3. Elevator shunt-trip supervision.

D. System trouble signal initiation shall be by one or more of the following devices and actions:

1. Open circuits, shorts, and grounds in designated circuits.
2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
3. Loss of primary power at fire-alarm control unit.
4. Ground or a single break in fire-alarm control unit internal circuits.
5. Abnormal ac voltage at fire-alarm control unit.
7. Failure of battery charging.
8. Abnormal position of any switch at fire-alarm control unit or annunciator.
9. Fire-pump power failure, including a dead-phase or phase-reversal condition.
10. Low-air-pressure switch operation on a dry-pipe or preaction sprinkler system.

E. System Trouble and Supervisory Signal Actions: Initiate notification appliance and annunciate at fire-alarm control unit and remote annunciators. Record the event on system printer.

2.3 FIRE-ALARM CONTROL UNIT

A. General Requirements for Fire-Alarm Control Unit:

1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864 and listed and labeled by an NRTL.
 a. System software and programs shall be held in flash electrically erasable programmable read-only memory (EEPROM), retaining the information through failure of primary and secondary power supplies.
 b. Include a real-time clock for time annotation of events on the event recorder and printer.
2. Addressable initiation devices that communicate device identity and status.
 a. Smoke sensors shall additionally communicate sensitivity setting and allow for adjustment of sensitivity at fire-alarm control unit.
 b. Temperature sensors shall additionally test for and communicate the sensitivity range of the device.
3. Addressable control circuits for operation of mechanical equipment.
4. Fire alarm panel shall be equipped with a "walk test" feature to allow each activating device to be tested without the need to reset the panel after each device is activated.
5. Fire alarm panel shall be equipped with a "building evacuate" switch.
6. System shall be capable of silencing horns while leaving strobes in alarm. System reset shall reset both horns and strobes. Acknowledge shall silence horns. These functions shall only be accessible to authorized personnel.
7. Each circuit, initiating and notification shall have a disconnect switch in the Fire Alarm Control Panel (FACP) to disable the circuit during maintenance. This may be a physical switch or a "soft" switch that disables the circuit and causes a trouble on the panel until the circuit is re-set. The circuit must be disabled and reset by one action of a qualified person who has access to these switches. These switches are not to be accessible from the operator portion of the panel but must require the panel to be fully opened to gain access.

B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

1. Annunciator and Display: Liquid-crystal type, 2 line(s) of 80 characters, minimum.
2. Keypad: Arranged to permit entry and execution of programming, display, and control commands and to indicate control commands to be entered into the system for control of smoke-detector sensitivity and other parameters.

C. Circuits:

1. Initiating Device, Notification Appliance, and Signaling Line Circuits: NFPA 72, Class B.
 a. Initiating Device Circuits: Style A/Style B/Style C.
 b. Notification Appliance Circuits: Style Y.
 c. Signaling Line Circuits: Style 0.5.
 d. Install no more than 50 addressable devices on each signaling line circuit.

D. Smoke-Alarm Verification:

1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
2. Activate an NRTL-listed and -approved "alarm-verification" sequence at fire-alarm control unit and detector.
3. Record events by the system printer.
4. Sound general alarm if the alarm is verified.
5. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.

E. Notification Appliance Circuit: Operation shall sound in a temporal pattern complying with ANSI 53.4.1.

F. Elevator Recall:

1. Smoke detectors at the following locations shall initiate automatic elevator recall. Alarm-initiating devices, except those listed, shall not start elevator recall.
 a. Elevator lobby detectors except the lobby detector on the designated floor.
 b. Smoke detector in elevator machine room.
 c. Smoke detectors in elevator hoistway.

2. Elevator lobby detectors located on the designated recall floors shall be programmed to move the cars to the alternate recall floor.
3. Water-flow alarm connected to sprinkler in an elevator shaft and elevator machine room shall shut down elevators associated with the location without time delay.
 a. Water-flow switch associated with the sprinkler in the elevator pit may have a delay to allow elevators to move to the designated floor.

G. Door Controls: Door hold-open devices that are controlled by smoke detectors at doors in smoke barrier walls shall be connected to fire-alarm system.

H. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups. Record sensitivity adjustments and
sensitivity-adjustment schedule changes in system memory, and print out the final adjusted values on system printer.

I. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.

J. Printout of Events: On receipt of signal, print alarm, supervisory, and trouble events. Identify zone, device, and function. Include type of signal (alarm, supervisory, or trouble) and date and time of occurrence. Differentiate alarm signals from all other printed indications. Also print system reset event, including same information for device, location, date, and time. Commands initiate the printing of a list of existing alarm, supervisory, and trouble conditions in the system and a historical log of events.

K. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.

1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

L. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

M. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.4 MANUAL FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.

1. Single-action mechanism, breaking-glass or plastic-rod type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.

2. Double-action mechanism requiring two actions to initiate an alarm, breaking-glass or plastic-rod type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.

3. Station Reset: Key operated switch. Key to be type used by the University and match the fire alarm panel.

4. Indoor Protective Shield: Factory-fabricated clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm. Lifting the cover actuates an integral battery-powered audible horn intended to discourage false-alarm operation.
2.5 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:

1. Comply with UL 268; operating at 24-V dc, nominal.
2. Detectors shall be four-wire type.
3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
6. Integral Visual-Indicating Light: LED type indicating detector has operated and power-on status.
7. Remote Control: Unless otherwise indicated, detectors shall be analog-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
 a. Rate-of-rise temperature characteristic shall be selectable at fire-alarm control unit for 15 or 20 deg F per minute.
 b. Fixed-temperature sensing shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F.
 c. Provide multiple levels of detection sensitivity for each sensor.
8. Any initiating device installed above a suspended ceiling shall have an indicator showing below the ceiling the location of the device.

B. Photoelectric Smoke Detectors:

1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

C. Duct Smoke Detectors: Photoelectric type complying with UL 268A.

1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector.
4. Each sensor shall have multiple levels of detection sensitivity.
5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.

2.6 HEAT DETECTORS

A. General Requirements for Heat Detectors: Comply with UL 521.

B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute unless otherwise indicated.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

C. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature of 190 deg F.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

D. Continuous Linear Heat-Detector System:
 1. Detector Cable: Rated detection temperature 155 deg F. NRTL listed for "regular" service and a standard environment. Cable includes two steel actuator wires twisted together with spring pressure, wrapped with protective tape, and finished with PVC outer sheath. Each actuator wire is insulated with heat-sensitive material that reacts with heat to allow the cable twist pressure to short-circuit wires at the location of elevated temperature.
 2. Control Unit: Two-zone or multizone unit as indicated. Provide same system power supply, supervision, and alarm features as specified for fire-alarm control unit.
 3. Signals to Fire-Alarm Control Unit: Any type of local system trouble shall be reported to fire-alarm control unit as a composite "trouble" signal. Alarms on each detection zone shall be individually reported to central fire-alarm control unit as separately identified zones.
 4. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.7 NOTIFICATION APPLIANCES

A. General Requirements for Notification Appliances: Individually addressed, connected to a signaling line circuit, equipped for mounting as indicated and with screw terminals for system connections.
B. General Requirements for Notification Appliances: Connected to notification appliance signal circuits, zoned as indicated, equipped for mounting as indicated and with screw terminals for system connections.

1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated and with screw terminals for system connections.

C. Chimes, Low-Level Output: Vibrating type, 75-dBA minimum rated output.

D. Chimes, High-Level Output: Vibrating type, 81-dBA minimum rated output.

E. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 85 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol. Horns shall be Wheelock NH or AH or approved equal.

F. Visible Notification Appliances: Xenon strobe lights comply with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch high letters on the lens.

1. Rated Light Output:
 a. 75 cd, unless noted otherwise.

2. Mounting: Wall mounted unless otherwise indicated.

3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.

4. Flashing shall be in a temporal pattern, synchronized with other units.

5. Strobe Leads: Factory connected to screw terminals.

7. Fire alarm strobe flash rate to be one flash per second with low current design. Strobes will be Wheelock RSS series or equal. Strobes with adjustable candela levels from 15 to 110 shall be furnished.

8. Synchronized strobes are required where more than one strobe is visible from any location, including corridors. Where synchronized strobes are used, use appropriate control module based on manufacturer’s recommendations, such as Wheelock SM, DSM or equal.

2.8 MAGNETIC DOOR HOLDERS

A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching doorplate.

1. Electromagnet: Requires no more than 3 W to develop 25-lbf holding force.

2. Wall-Mounted Units: Flush mounted unless otherwise indicated.

3. Rating: 24-V ac or dc.

4. Rating: 120-V ac.

B. Material and Finish: Match door hardware.
2.9 REMOTE ANNUNCIATOR

A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.

1. Mounting: Flush cabinet, NEMA 250, Type 1.

B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.10 ADDRESSABLE INTERFACE DEVICE

A. Description: Microelectronic monitor module, NRTL listed for use in providing a system address for alarm-initiating devices for wired applications with normally open contacts.

B. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall.

2.11 DIGITAL ALARM COMMUNICATOR TRANSMITTER

A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632 and be listed and labeled by an NRTL.

B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture one or two telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.

C. Local functions and display at the digital alarm communicator transmitter shall include the following:

1. Verification that both telephone lines are available.
2. Programming device.
3. LED display.
5. Communications failure with the central station or fire-alarm control unit.

D. Digital data transmission shall include the following:

1. Address of the alarm-initiating device.
2. Address of the supervisory signal.
3. Address of the trouble-initiating device.
4. Loss of ac supply or loss of power.
5. Low battery.
6. Abnormal test signal.
7. Communication bus failure.

E. Secondary Power: Integral rechargeable battery and automatic charger.
F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

2.12 SYSTEM PRINTER
A. Printer shall be listed and labeled by an NRTL as an integral part of fire-alarm system.

2.13 DEVICE GUARDS
A. Description: Welded wire mesh of size and shape for the manual station, smoke detector, gong, or other device requiring protection.
 1. Factory fabricated and furnished by manufacturer of device.
 2. Finish: Paint of color to match the protected device.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION
A. Comply with NFPA 72 for installation of fire-alarm equipment.
B. Equipment Mounting: Install fire-alarm control unit on concrete base with tops of cabinets not more than 72 inches above the finished floor. Retain first subparagraph below if Project requires seismic bracing. Coordinate with Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
 1. Install seismic bracing. Comply with requirements in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
C. Equipment Mounting: Install fire-alarm control unit on finished floor with tops of cabinets not more than 72 inches above the finished floor.
 1. Comply with requirements for seismic-restraint devices specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
D. Smoke- or Heat-Detector Spacing:

3. Smooth ceiling spacing shall not exceed 30 feet.

4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Appendix A in NFPA 72.

5. HVAC: Locate detectors not closer than 3 feet from air-supply diffuser or return-air opening.

6. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture.

E. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct.

F. Heat Detectors in Elevator Shafts: Coordinate temperature rating and location with sprinkler rating and location.

G. Single-Station Smoke Detectors: Where more than one smoke alarm is installed within a dwelling or suite, they shall be connected so that the operation of any smoke alarm causes the alarm in all smoke alarms to sound.

H. Remote Status and Alarm Indicators: Install near each smoke detector and each sprinkler water-flow switch and valve-tamper switch that is not readily visible from normal viewing position.

I. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille.

J. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling.

K. Device Location-Indicating Lights: Locate in public space near the device they monitor.

L. Fire-Alarm Control Unit: Surface mounted, with tops of cabinets not more than 72 inches above the finished floor.

M. Annunciator: Install with top of panel not more than 72 inches above the finished floor.

3.2 CONNECTIONS

A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Division 08 Section "Door Hardware." Connect hardware and devices to fire-alarm system.

1. Verify that hardware and devices are NRTL listed for use with fire-alarm system in this Section before making connections.

B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 3 feet from the device controlled. Make an
addressable confirmation connection when such feedback is available at the device or system being controlled.

1. Alarm-initiating connection to stairwell and elevator-shaft pressurization systems.
2. Smoke dampers in air ducts of designated air-conditioning duct systems.
3. Alarm-initiating connection to elevator recall system and components.
4. Supervisory connections at valve supervisory switches.
5. Supervisory connections at elevator shunt trip breaker.

3.3 IDENTIFICATION
A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section “Identification for Electrical Systems.”
B. Install framed instructions in a location visible from fire-alarm control unit.

3.4 GROUNDING
A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.
B. Ground fire alarm equipment, conductors, and cable shields per NFPA and manufacturer.

3.5 FIELD QUALITY CONTROL
A. Field tests shall be witnessed by authorities having jurisdiction.
B. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
C. Perform tests and inspections.
1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
D. Tests and Inspections:
1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed Record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" Table in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter.
 b. Comply with "Visual Inspection Frequencies" Table in the "Inspection" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.

3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.

4. Test audible appliances for the private operating mode according to manufacturer's written instructions.

5. Test visible appliances for the public operating mode according to manufacturer's written instructions.

E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

F. Fire-alarm system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

I. Annual Test and Inspection: One year after date of final acceptance by Owner, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 283111